Science.gov

Sample records for avalanches

  1. Snow Avalanches

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Over the last century, mountain ranges in Europe and North America have seen substantial development due to the increase in recreational activities, transportation, construction in high altitude areas, etc. In these mountain ranges, avalanches often threaten man's activities and life. Typical examples include recent disasters, such as the avalanche at Val d'Isère in 1970 (39 people were killed in a hostel) or the series of catastrophic avalanches throughout the Northern Alps in February 1999 (62 residents killed). The rising demand for higher safety measures has given new impetus to the development of mitigation technology and has given rise to a new scientific area entirely devoted to snow and avalanches. This paper summarises the paramount features of avalanches (formation and motion) and outlines the main approaches used for describing their movement. We do not tackle specific problems related to snow mechanics and avalanche forecasting. For more information on the subject, the reader is referred to the main textbooks published in Alpine countries [1-8].

  2. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  3. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims. PMID:26983147

  4. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  5. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  6. Avalanche speed in thin avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  7. Avalanche characteristics of single heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Low, L. C.; You, A. H.; Andy, L. L. Y.; Tan, S. L.

    2009-03-01

    A simple Monte Carlo (MC) model is proposed to study the avalanche characteristics of heterojunction avalanche photodiode (HAPD). This model is capable to simulate the avalanche multiplication and excess noise factor in HAPDs by including the dead-space effect, hole to electron ionization ratio and heterointerface probability. The dead-space effect showed a vital role in reducing noise in single junction HAPDs based on the statistical determination in our model. It is shown that the dead-space effect reduces the avalanche noise in heterojunction device due to the localized ionization events. We found that the dead-space effect and the number of hole feedback impact ionizations are still the dominant effects to improve the excess noise factor especially in the injection layer of the device. In addition, the probability of electron and hole to cross the heterointerface will eliminate the secondary impact ionizations in the device.

  8. Photon counting: Avalanche inspiration

    NASA Astrophysics Data System (ADS)

    Milburn, Gerard

    2008-07-01

    The ability of a customized avalanche-photodiode detector to distinguish the exact number of photons that it receives will simplify the tools required to perform reliable experiments in quantum optics.

  9. Avalanches in Wood Compression

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Miksic, A.; Ovaska, M.; Alava, Mikko J.

    2015-07-01

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  10. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  11. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  12. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free. PMID:26274428

  13. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  14. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1984-01-01

    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  15. Exclusion processes with avalanches.

    PubMed

    Bhat, Uttam; Krapivsky, P L

    2014-07-01

    In an exclusion process with avalanches, when a particle hops to a neighboring empty site which is adjacent to an island the particle on the other end of the island immediately hops, and if it joins another island this triggers another hop. There are no restrictions on the length of the islands and the duration of the avalanche. This process is well defined in the low-density region ρ < 1/2. We describe the nature of steady states (on a ring) and determine all correlation functions. For the asymmetric version of the process, we compute the steady state current, and we describe shock and rarefaction waves which arise in the evolution of the step-function initial profile. For the symmetric version, we determine the diffusion coefficient and examine the evolution of a tagged particle.

  16. Flares as Avalanches?

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.

    2003-05-01

    In 1991, E.T. Lu and R. Hamilton (ApJ 380, L89) suggested that flares could be interpreted as avalanches of reconnection events in coronal magnetic structures driven to a self-organized critical state. Physical underpinning for the simple cellular automaton model they used to illustrate their idea can be readily found in the nanoflare conjecture for coronal heating championed over the past two decades by E.N. Parker (e.g., ApJ 330, 474 [1988]). In this lecture I will give a brief overview of Lu & Hamilton's avalanche model, and describe how it can be physically interpreted in the context of Parker's nanoflare conjecture. After discussing some illustrative model results, I will focus on recent comparisons of the model's predictions with flare observations. Finally, I will discuss some recent attempts at quantitatively exploring the physical relationship between model components and the physics of magnetic reconnection.

  17. Avalanche photoconductive switching

    SciTech Connect

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  18. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  19. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  5. Neuronal avalanches and learning

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  6. Avalanche effects near nanojunctions

    NASA Astrophysics Data System (ADS)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  7. Avalanche effects near nanojunctions.

    PubMed

    Nandigana, Vishal V R; Aluru, N R

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1/f"-type dynamics for the voltage chaos and "1/f^{2}"-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps. PMID:27575159

  8. EEG, temporal correlations, and avalanches.

    PubMed

    Benayoun, Marc; Kohrman, Michael; Cowan, Jack; van Drongelen, Wim

    2010-12-01

    Epileptiform activity in the EEG is frequently characterized by rhythmic, correlated patterns or synchronized bursts. Long-range temporal correlations (LRTC) are described by power law scaling of the autocorrelation function and have been observed in scalp and intracranial EEG recordings. Synchronous large-amplitude bursts (also called neuronal avalanches) have been observed in local field potentials both in vitro and in vivo. This article explores the presence of neuronal avalanches in scalp and intracranial EEG in the context of LRTC. Results indicate that both scalp and intracranial EEG show LRTC, with larger scaling exponents in scalp recordings than intracranial. A subset of analyzed recordings also show avalanche behavior, indicating that avalanches may be associated with LRTC. Artificial test signals reveal a linear relationship between the scaling exponent measured by detrended fluctuation analysis and the exponent of the avalanche size distribution. Analysis and evaluation of simulated data reveal that preprocessing of EEG (squaring the signal or applying a filter) affect the ability of detrended fluctuation analysis to reliably measure LRTC.

  9. Modeling of avalanche multiplication and noise in heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Groves, C.; David, J. P. R.; Rees, G. J.; Ong, D. S.

    2004-06-01

    A simple Monte Carlo model is used to simulate the avalanche process in a multiplication region which incorporates a heterojunction, intended to introduce localization into the ionization process and reduce excess avalanche noise. The results are compared with those of models where the ionization path length distribution is represented by an exponential decay, displaced from the origin by a ballistic dead space. While the latter results depend sensitively on the arbitrary choice of scheme used to evaluate the model parameters, they agree remarkably well with Monte Carlo, considering the simplicity of the model.

  10. Effect of avalanche build-up time on avalanche photodiode sensitivity

    SciTech Connect

    Ando, H.; Kanbe, H.

    1985-03-01

    A calculation method for the receiver sensitivity of an avalanche photodiode is considered, taking into account avalanche build-up time and carrier transit time, in addition to the CR time constant. Actual receiver performance is estimated in a high data rate region of up to 10 Gbits/s for germanium avalanche photodiodes, applying the measured avalanche build-up time.

  11. Avalanche Collapse of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2012-12-01

    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.

  12. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  13. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  14. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  15. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  16. Experimental Avalanches in a Rotating Drum

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  17. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  18. Quantitative Scaling of Magnetic Avalanches

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bohn, F.; Corrêa, M. A.; Sommer, R. L.; Le Doussal, P.; Wiese, K. J.

    2016-08-01

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples—which are characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  19. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents. PMID:27588876

  20. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    SciTech Connect

    Suzuki, Shingo; Namekata, Naoto Inoue, Shuichiro; Tsujino, Kenji

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  1. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  2. GIS-aided avalanche warning in Norway

    NASA Astrophysics Data System (ADS)

    Jaedicke, Christian; Syre, Egil; Sverdrup-Thygeson, Kjetil

    2014-05-01

    Avalanche warning for large areas requires the processing of an extensive amount of data. Information relating to the three basic requirements for avalanche warning - knowledge of terrain, the snow conditions, and the weather - needs to be available for the forecaster. The information is highly variable in time. The form and visualization of the data is often decisive for the use by the avalanche forecasters and therefore also for the quality of the produced forecasts. Avalanche warnings can be issued at different scales from national to regional and down to object specific. Often the same warning service is working at different scales and for different clients requiring a flexible and scalable approach. The workflow for producing avalanche forecasts must be extremely efficient - all the way from acquiring observation data, evaluating the situation, down to publishing the new forecast. In this study it has been an aim to include the entire workflow in a single web application. A Geographic Information Systems (GIS) solution was chosen to include all data needed by the forecaster for the avalanche danger evaluation. This interactive system of maps features background information for the entire country, such as topographic maps, slope steepness, aspect, hill shades and satellite images. In each avalanche warning area, all active avalanche paths are plotted including information on wind exposure. Each avalanche path is linked to a webpage with more details, such as fall height, release area elevation and pictures. The avalanche path webpage also includes information on the object at risk e.g. buildings, roads, or other objects. Thus, the forecaster can easily get an overview on the overall situation and focus on single avalanche paths to generate detailed avalanche warnings for the client.

  3. Snowfall and avalanche synchronization: beyond observational statistics

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Forclaz, Romain; Sovilla, Betty; Corripio, Javier; Perona, Paolo

    2015-04-01

    We present a methodology for quantifying the synchronization between snowfall and avalanches in relation to slope and terrain properties at the detachment zone. Focusing on a particular field situation (SLF study site, Vallée de la Sionne, Valais, Switzerland), we present a dataset consisting of 549 avalanche events and use a stochastic framework (Perona et al., Proceedings of the Royal Society A, 2012) for capturing the avalanche statistics with a minimal number of ingredients. Over the observation period (7 years), meteorological data was collected and pictures of the slope were taken every 30 minutes. For the avalanche events, slope, aspect, coordinates and altitude of the detachment zone are available from georeferenced images, and the timing of the events can be obtained from selecting the images before and after avalanche events. All model parameters can directly be computed from meteorological data (snow depth evolution), except for one parameter: the state-dependent avalanche release rate, which aggregates the influence of slope and terrain properties. From the timing distribution of the precipitation events and of the avalanche events, we calibrate the model and fix the value of the missing parameter by maximizing the likelihood of the field observations, conditional to the value of the model parameter. We carefully discuss confidence intervals for our parameter estimation. The calibrated model allows us to obtain statistical properties of the avalanches in our study site, beyond observational statistics. We compute the synchronization between snowfall and avalanches for low and high slopes, which in turn allows us to derive the return period of avalanche events (dependent and independent on the release depth). We obtain the critical event magnitude above which the return period of avalanche events with release depth h* is shorter than the return period of snowfall with equal deposited snow depth h*. Finally, using the concept of information entropy, we

  4. Avalanche dynamics of elastic interfaces.

    PubMed

    Le Doussal, Pierre; Wiese, Kay Jörg

    2013-08-01

    Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d

  5. Stabilization of avalanche processes on dynamical networks

    NASA Astrophysics Data System (ADS)

    Savitskaya, N. E.

    2016-02-01

    The stabilization of avalanches on dynamical networks has been studied. Dynamical networks are networks where the structure of links varies in time owing to the presence of the individual "activity" of each site, which determines the probability of establishing links with other sites per unit time. An interesting case where the times of existence of links in a network are equal to the avalanche development times has been examined. A new mathematical model of a system with the avalanche dynamics has been constructed including changes in the network on which avalanches are developed. A square lattice with a variable structure of links has been considered as a dynamical network within this model. Avalanche processes on it have been simulated using the modified Abelian sandpile model and fixed-energy sandpile model. It has been shown that avalanche processes on the dynamical lattice under study are more stable than a static lattice with respect to the appearance of catastrophic events. In particular, this is manifested in a decrease in the maximum size of an avalanche in the Abelian sandpile model on the dynamical lattice as compared to that on the static lattice. For the fixed-energy sandpile model, it has been shown that, in contrast to the static lattice, where an avalanche process becomes infinite in time, the existence of avalanches finite in time is always possible.

  6. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  7. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events.

  8. Time Directed Avalanches in Invasion Models

    SciTech Connect

    Maslov, S. Department of Physics, SUNY at Stony Brook, Stony Brook, New York 11794 )

    1995-01-23

    We define forward and backward time-directed avalanches for a broad class of self-organized critical models including invasion percolation, interface depinning, and a simple model of evolution. Although the geometrical properties of the avalanches do not change under time reversal, their stationary state statistical distribution does. The overall distribution of forward avalanches [ital P]([ital s])[similar to][ital s][sup [minus]2] is superuniversal in this class of models. The power-law exponent [pi] for the distribution of distances between subsequent active sites is derived from the properties of backward avalanches.

  9. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  10. On the temporal organization of neuronal avalanches.

    PubMed

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  11. On the temporal organization of neuronal avalanches

    PubMed Central

    Lombardi, Fabrizio; Herrmann, Hans J.; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified. PMID:25389393

  12. Field management of avalanche victims.

    PubMed

    Brugger, H; Durrer, B; Adler-Kastner, L; Falk, M; Tschirky, F

    2001-10-01

    The median annual mortality from snow avalanches registered in Europe and North America 1981-1998 was 146 (range 82-226); trend stable in Alpine countries (r=-0.29; P=0.24), increasing in North America (r=0.68; P=0.002). Swiss data over the same period document 1886 avalanche victims, with an overall mortality rate of 52.4% in completely-buried, versus 4.2% in partially-, or non-buried, persons. Survival probability in completely-buried victims in open areas (n=638) plummets from 91% 18 min after burial to 34% at 35 min, then remains fairly constant until a second drop after 90 min. Likewise, survival probability for completely-buried victims in buildings or on roads (n=97) decreases rapidly following burial initially, but as from 35 min it is significantly higher than that for victims in open areas, with a maximum difference in respective survival probability (31% versus 7%) from 130 to 190 min (P<0.001). Standardised guidelines are introduced for the field management of avalanche victims. Strategy by rescuers confronted with the triad hypoxia, hypercapnia and hypothermia is primarily governed by the length of snow burial and victim's core temperature, in the absence of obviously fatal injuries. With a burial time < or =35 min survival depends on preventing asphyxia by rapid extrication and immediate airway management; cardiopulmonary resuscitation for unconscious victims without spontaneous respiration. With a burial time >35 min combating hypothermia becomes of paramount importance. Thus, gentle extrication, ECG and core temperature monitoring and body insulation are mandatory; unresponsive victims should be intubated and pulseless victims with core temperature <32 degrees C (89.6 degrees F) (prerequisites being an air pocket and free airways) transported with continuous cardiopulmonary resuscitation to a specialist hospital for extracorporeal re-warming. PMID:11719168

  13. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  14. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  15. Avalanche!--Teachable Moments in Outdoor Education

    ERIC Educational Resources Information Center

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  16. Avalanche in Adhesion at Metal Interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Good, Brian S.

    1994-01-01

    Simulations have shown that as two metal surfaces approach each other, the surface layers can avalanche together when the rigid interfacial spacing falls below a critical distance. This is accompanied by a discontinuous decrease in the adhesive energy. Here we present an examination of this phenomenon for the body centered cubic (BCC) metals Fe and W using the Equivalent Crystal Theory. In order to identify the circumstances under which avalanche might be inhibited, the effect of loss of registry between the two surfaces is investigated in detail. The avalanche is inhibited when the two surfaces are sufficiently far out of registry and when only a few layers near the surface are allowed to relax. As the relaxing slabs get thicker a sharp avalanche reappears. However, as the loss of registry increases the energy released in the avalanche decreases.

  17. 3D avalanche multiplication in Si-Ge lateral avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Jamil, Erum; Hayat, Majeed M.; Davids, Paul S.; Camacho, Ryan M.

    2016-05-01

    Si-Ge lateral avalanche photodiodes (Si-Ge LAPDs) are promising devices for single photon detection, but they also have technology challenges. Si-Ge LAPDs are CMOS compatible and capable of detecting photons near the 1550 nm telecommunications bands. However, the Si-Ge LAPD exhibits a unique avalanche multiplication process in silicon, where the electrons and holes follow curved paths in three-dimensional space. Traditional models for the analysis of the avalanche multiplication process assume one-dimensional paths for the carriers that undergo the chains of impact ionizations; therefore, they are not suitable for analyzing the avalanche properties of Si-Ge LAPDs. In this paper, the statistics of the avalanche process in the Si-Ge LAPD are modeled analytically using a method that was recently developed by our group for understanding the avalanche multiplication in nanopillar, core-shell GaAs avalanche photodiodes, for which the electric field is non-uniform in magnitude and direction. Specifically, the calculated mean avalanche gain and the excess noise are presented for the Si-Ge LAPD device. It is also shown that the avalanche characteristics depend upon the specific avalanche path taken by the carrier, which depends, in turn, on the lateral location where each photon is absorbed in the Ge absorber. This property can be exploited to achieve reduced excess noise as well as wavelength-sensitive single-photon detection.

  18. Preliminary Study on Rock Avalanche in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wen, Y.; Hsieh, M.

    2012-12-01

    Rock avalanche is a kind of rapid (average >100 km/h) granule flow caused by crushing and pulverization of rock materials during catastrophic rock slide. Literature researches show that rock avalanches typically occur on steep, high-relief slopes underlain by hard rocks, and have volumes >10,000,000 m3. Rock avalanches also are characterized by long runout distances, which are 5 to 10 times the total fall heights. Some cases can run up the opposing valley wall. Rock avalanches generally occurred in active mountains (e.g., New Zealand) and were triggered by earthquakes or rainfall (snowmelt), but with exceptions. There were few rock avalanches in historical time in Taiwan. This could reflect: (1) intrinsic instability of hillslopes due to weak rock, frequent earthquakes/heavy rains, which resulted in landslides of high frequency/low magnitude; (2) limited runout space along deeply incised river-valley systems, which increased the likelihood of rock-slope failures to transform to debris flows. However, there are ancient rock-avalanche records, found at Shou-shan coast (SW Taiwan) and Shin-she, Chang-pin, Tu-lan along Hua-tung coast (E Taiwan), which is likely to have undergone coseismic uplift. These places, with steep slopes, underlain by hard rock, and free for materials to run, are most prone to rock avalanches in the future.

  19. Temporal correlations in neuronal avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  20. Statistical properties of avalanches in networks.

    PubMed

    Larremore, Daniel B; Carpenter, Marshall Y; Ott, Edward; Restrepo, Juan G

    2012-06-01

    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust to complex underlying network topologies.

  1. Temporal correlations in neuronal avalanche occurrence

    PubMed Central

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  2. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  3. Temporal correlations in neuronal avalanche occurrence.

    PubMed

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  4. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  5. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  6. Avalanche control: Conservation Guide Series No. 5

    SciTech Connect

    Not Available

    1985-01-01

    This book examines different methods for determining the characteristics of snow cover and for localizing avalanche risk. It describes various techniques for temporary defense; for snow stabilization in the starting zone; and for wind deflection.

  7. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  8. Directed avalanche processes with underlying interface dynamics.

    PubMed

    Chen, Chun-Chung; den Nijs, Marcel

    2002-07-01

    We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall. The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the critical exponents of the various avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a detailed study of whether avalanche-correlated Monte Carlo sampling changes the scaling exponents of KPZ interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow convergence seems intrinsic to avalanche dynamics.

  9. Prehistoric rock avalanches in the Olympic Mountains, Washington

    USGS Publications Warehouse

    Schuster, R.L.; Logan, R.L.; Pringle, P.T.

    1992-01-01

    Rock avalanches blocked streams in the Olympic Mountains southwest of Puget Sound during the past few thousand years. Limiting radiocarbon ages indicated that three or four of six avalanches occurred from 1000 to 1300 years ago or shortly thereafter. Most of the dates were from the outer preserved rings of trees drowned behind avalanche dams. These three or four avalanches may be coeval not only with one another but also with abrupt tectonic deformation in western Washington. No rock avalanches in the Olympic Mountains are known to have resulted from storms or earthquakes during the past century. The avalanches strengthen the case that a large prehistoric earthquake occurred in the Puget Sound region.

  10. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  11. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  12. The application of Landsat data to mapping avalanche hazards

    NASA Technical Reports Server (NTRS)

    Waterman, S.

    1979-01-01

    Two test areas, representing a variety of avalanche hazards, were selected in the San Juan Mountains of Colorado. Midwinter Landsat digital data were analyzed using a clustering technique, and the results compared to 1:24,000 scale maps of avalanche hazards derived from air photo interpretation and field surveys. Confined avalanches were readily identified because of the high contrast between the snow covered avalanche track and the adjacent forested slopes. Unconfined avalanches could not be identified without supplementary topographic data. Spatial characteristics were of primary importance in delineating avalanche tracks. Spatial resolution was the limiting factor in avalanche detection. Landsat data should prove useful for rapid reconnaissance mapping of avalanche hazards, particularly in the absence of other data sources.

  13. Predicting extreme avalanches in self-organized critical sandpiles.

    PubMed

    Garber, Anja; Hallerberg, Sarah; Kantz, Holger

    2009-08-01

    In a finite-size Abelian sandpile model, extreme avalanches are repelling each other. Taking a time series of the avalanche size and using a decision variable derived from that, we predict the occurrence of a particularly large avalanche in the next time step. The larger the magnitude of these target avalanches, the better is their predictability. The predictability which is based on a finite-size effect, is discussed as a function of the system size.

  14. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  15. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  16. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  17. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented. PMID:25871044

  18. Definition and Characterization of Potential Avalanche Release Areas

    NASA Astrophysics Data System (ADS)

    Maggioni, M.; Gruber, U.

    The avalanche hazard map zones in Switzerland are defined by the frequency and the impact pressure of a potential avalanche event. Therefore, it is crucial to be able to accurately estimate the release frequency and, related to the frequency, the release ex- tent for a specific avalanche track. In this work a detailed analysis of avalanche release area topographies is performed to find general rules to relate topographic parameters to the avalanche frequency. In the region of Davos, an almost complete database of avalanche events over the last 50 years exists, that covers not only frequent avalanche tracks but the whole area. Using Geographic Information System (GIS) technologies in combination with Digital Elevation Models (DEM), all avalanche release areas have been analysed with respect to topographic characteristics. In a first step, topographic parameters like slope, curvature and aspect are derived from the DEM and used for the automatic definition of the potential release areas. In a second step, every potential re- lease area is characterised by smaller scale geomorphologic parameters. Finally, these geomorphologic parameters are analysed with respect to the avalanche frequencies ob- served in the different potential release areas. The general rules are a valuable aid for the avalanche experts in cases where information about historic avalanche is lacking for a particular track. Furthermore, the probability distributions can be directly used as input for uncertainty modelling of avalanche run-out distances and impact pressure by Monte Carlo methods.

  19. Avalanche mode of motion - Implications from lunar examples.

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as 'efficient' as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  20. Avalanche mode of motion: Implications from lunar examples

    USGS Publications Warehouse

    Howard, K.A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as "efficient" as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  1. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  2. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as

  3. The role of thermal coupling on avalanches in manganites.

    PubMed

    Macià, F; Abril, G; Hernandez, J M; Tejada, J

    2009-10-01

    We report here a study on the environmental dependence of the occurrence, at low temperature, of ultra-sharp field induced avalanches in phase separated manganites. Despite the high reproducibility of avalanches, it has already been observed that the critical fields shift with the magnetic field sweep rate and that different sample sizes lead to different ignition fields for the avalanches. Critical growing rates have been suggested to describe the avalanche ignition though the role of thermal coupling has hardly been considered. We qualitatively analyze here a set of experimental data on avalanches in manganites and discuss the role of thermal coupling as a key parameter of the instability in a dynamical system.

  4. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  5. Rock avalanches caused by earthquakes: Source characteristics

    USGS Publications Warehouse

    Keefer, D.K.

    1984-01-01

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed ofintensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  6. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  7. Extended kinetic theory applied to snow avalanches

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-04-01

    In this work we apply the extended kinetic theory, a three-dimensional rheological model for rapid granular flows, to the two-dimensional, depth-averaged shallow water framework, used in snow avalanche simulations. Usually, empirical relations are used to determine the basal friction, which represents the material behavior in the avalanche. Here we present an energy equivalent basal friction relation which accounts for energy dissipating processes in the avalanche body as predicted by the extended kinetic theory. The obtained relation is compared to traditional basal friction relations, e.g. the Voellmy model by conducting numerical simulations with both approaches. As reference, field measurements of runout, affected area and velocity are compared to the simulation results. Two avalanche events, that occurred at the Vallée de la Sionne and Ryggfonn test sites, are evaluated with this method. It is shown that the kinetic theory delivers a physically based explanation for the structure of phenomenological friction relations. However, the new form of the frictional terms explicitly takes the flow depth into account. As consequence, improvements in finding unified parameter sets for various observation variables and events of different sizes could be achieved.

  8. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  9. Fractal avalanche ruptures in biological membranes.

    PubMed

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  10. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  11. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  12. Simulations of avalanche breakdown statistics: probability and timing

    NASA Astrophysics Data System (ADS)

    Ng, Jo Shien; Tan, Chee Hing; David, John P. R.

    2010-04-01

    Important avalanche breakdown statistics for Single Photon Avalanche Diodes (SPADs), such as avalanche breakdown probability, dark count rate, and the distribution of time taken to reach breakdown (providing mean time to breakdown and jitter), were simulated. These simulations enable unambiguous studies on effects of avalanche region width, ionization coefficient ratio and carrier dead space on the avalanche statistics, which are the fundamental limits of the SPADs. The effects of quenching resistor/circuit have been ignored. Due to competing effects between dead spaces, which are significant in modern SPADs with narrow avalanche regions, and converging ionization coefficients, the breakdown probability versus overbias characteristics from different avalanche region widths are fairly close to each other. Concerning avalanche breakdown timing at given value of breakdown probability, using avalanche material with similar ionization coefficients yields fast avalanche breakdowns with small timing jitter (albeit higher operating field), compared to material with dissimilar ionization coefficients. This is the opposite requirement for abrupt breakdown probability versus overbias characteristics. In addition, by taking band-to-band tunneling current (dark carriers) into account, minimum avalanche region width for practical SPADs was found to be 0.3 and 0.2 μm, for InP and InAlAs, respectively.

  13. Are Comet Outbursts the Result of Avalanches?

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H. Jay

    2016-10-01

    Recently, Rosetta became the first spacecraft to make high-resolution observations of a comet outburst (a rapid, ephemeral increase in dust production) emerging from the surface of a comet nucleus. These outbursts occurred near perihelion, lasted only a few minutes, and produced a highly collimated outburst plume without any corresponding increase in H2O or CO2 gas production (See abstract by Rinaldi et al.). These observations cannot be explained by proposed driving outburst mechanisms (such as crystallization of amorphous ice, cryovolcanic gas exsolution, or explosive outgasing of subsurface chambers), all of which are driven by gas, and would therefore lead to an increase in the gas production.We propose instead that the observed outbursts on Comet 67P/Churyumov-Gerasimenko (hereafter 67P) are the result of cometary avalanches. The surface of 67P contains many cliffs and scarps, with dusty surface layers blanketing the shallower slopes above and below these steep surfaces. The Rosetta spacecraft returned clear evidence of mass wasting, which form icy talus fields that are the source of much of 67P's cometary activity. Additionally, Rosetta observed morphological changes over time in the shallower, dusty surface layers above these steep slopes, which suggest that avalanches periodically release dusty materials onto these active talus fields.Here we present the results of a numerical simulation of dusty material avalanching into an active area (active talus field). These simulations show that such avalanches will generate a transient, highly collimated outburst plume that closely matches the observed morphology of the outbursts emanating from the surface of 67P. This mechanism predicts that cometary outbursting should not be directly associated with any increase in gas production, consistent with observations. Additionally, we show that regions of the nucleus that have sourced outburst plumes contain steep surfaces (above the angle of repose), which is required

  14. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  15. The Marocche rock avalanches (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof

    2015-04-01

    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  16. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Butler, David R.

    1988-01-01

    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  17. Physical models of giant subaqueous rock avalanches

    NASA Astrophysics Data System (ADS)

    De Blasio, F. V.

    2011-12-01

    Large subaqueous rock avalanches are characterized by horizontal run-outs approximately ten times longer than the fall height. It is shown that this mobility is somehow puzzling, as it corresponds to a decrease of the effective friction coefficient by a factor 10-50 compared to bare rock. Two dynamical models are so introduced to explain the observed mobility. In the first model, the fast-moving fragmented rock avalanche is subjected to a lift force that makes it hydroplane, avoiding contact with the sea floor. In a second model the fragmented material ingests water, transforming into a non-Newtonian fluid that progressively reduces its shear strength. Both models give peak velocity of 65-70 m/s, which implies a high potential for tsunami generation.

  18. Olokele rock avalanche, island of Kauai, Hawaii.

    USGS Publications Warehouse

    Jones, B.L.; Chinn, S.S.W.; Brice, J.C.

    1984-01-01

    In October 1981 a mass of rock and soil having an estimated volume of 500 000 m3 fell as a rock fall-avalanche from a steep slope 800 m high near the head of Olokele Canyon. Boulders were launched into the air from a bench on the slope for a downstream distance of about 850 m. The velocity of the avalanche was rapidly diminished by impact against the valley sides, and it became a muddy debris flow that traveled 4.6 km downstream, severely eroding the valley sides. The volume of debris deposited on the canyon bottom is estimated to be 2 500 000 m3, or about four times the volume derived from the slope. -from Authors

  19. Hierarchical networks, power laws, and neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Friedman, Eric J.; Landsberg, Adam S.

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions—even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  20. Stochastic simulation of electron avalanches on supercomputers

    SciTech Connect

    Rogasinsky, S. V.; Marchenko, M. A.

    2014-12-09

    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  1. Hierarchical networks, power laws, and neuronal avalanches.

    PubMed

    Friedman, Eric J; Landsberg, Adam S

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  2. Time arrival of slab avalanche masses

    NASA Astrophysics Data System (ADS)

    McClung, D. M.

    2003-10-01

    One of three criteria to demonstrate self-organized criticality (SOC) for a critical phenomenon is that time arrival of events displays a frequency dependence which is inversely proportional to frequency (f) to some power. That is, for SOC, the power spectrum in the frequency (f) domain is supposed to fall off as 1/fβ, where β is typically a number between 1 and 2. Avalanche phenomena have been used as prototypes for illustrating SOC, and therefore it is of interest as to whether snow avalanches follow the criterion. In this paper, time series analyses of mass arrivals from 20 years of records constituting ˜10,000 avalanches are presented for Bear Pass and Kootenay Pass, British Columbia. The results suggest that the autocorrelation functions and partial autocorrelation functions of the series fall off in an exponential manner so that the implied power spectra in the frequency domain, given by the Fourier transforms of the autocorrelation functions, decay with frequency in a manner which is not strictly consistent with SOC. In common with SOC, the power spectra are suggested to have most content in the low-frequency events and the spectra do not constitute white noise. However, given the limitations on the data sampling and recording, it cannot be definitively stated that the power spectra fall off with 1/f® as required for SOC.

  3. Unjamming and jamming transitions of granular avalanches

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Ziwei

    2014-03-01

    Study of the jamming transitions of granular materials has become an active field of research in recent years. A closely related inverse process is the unjamming transition, where granular systems may suddenly lose rigidity and start to flow freely. Understanding such a process is of crucial implication towards the understanding of natural disasters such as snow avalanches, landslides and earthquakes. Recent work by Banigan and colleagues (Nature Physics 2013) has provided a new perspective in the study of unjamming and jamming transitions by applying nonlinear dynamical methods. To test their proposition experimentally, we have designed a rotating drum filled with bidisperse photo-elastic disks to create particle avalanches. In unjamming transition, Lyapunov vector and velocity fields are indeed strongly correlated in spatial domain, whereas in jamming transition no such a strong correlation is observed. The Lyapunov exponents are positive in unjamming transition and negative in jamming transition. In addition, the total stress variation, kinetic energy, and non-affine motion of particles all show strong correlations in the time domain during avalanches. Their spatial correlations have also been analyzed.

  4. Reversible Avalanches and Criticality in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles

    2015-03-01

    Despite its importance for basic science and industry, the physical process that causes a solid to change its shape permanently under external deformation is still not well understood. In this paper we use molecular dynamics simulations of amorphous solids under oscillatory shear to study this phenomenon, and show that at a critical strain amplitude, the size of the cooperative atomic motion that allows for a permanent deformation diverges. We compare this non-equilibrium critical behavior to that of a ``front depinning'' transition. This viewpoint, based on fluctuations and statistics, is complementary to the dynamical ``transition to chaos'' which was previously identified at the same strain amplitude. Below this irreversibile-depinning transition, we observe large avalanches which are completely repetitive with each shear strain cycle. This suggests that while avalanches on their own do not cause irreversible deformation, it is likely that the irreversibility transition and the ``depinning-like'' transition are two aspects of the same phenomena. One implication is that the transition could be detected before the onset of irreversible flow by an analysis of the power spectra of avalanches. Work done in collaboration with Ido Regev, Karin Dahmen, John Weber, and Turab Lookman.

  5. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  6. Thermal avalanches near a Mott transition.

    PubMed

    Lashley, J C; Gofryk, K; Mihaila, B; Smith, J L; Salje, E K H

    2014-01-22

    We probe the volume collapse transition (ΔV/Vo ∼ 15%) between the isostructural γ and α phases (T ∼ 100 K) of Ce0.9Th0.1 using the Hall effect, three-terminal capacitive dilatometry, and electrical resistivity measurements. Hall effect measurements confirm the itinerant ground state as the carrier concentration increases by a factor of 7 in the α phase, γ phase (nH = 5.28 × 10(26) m(-3)), and the α phase (nH = 3.76 × 10(27) m(-3)). We were able to detect a noise spectrum consisting of avalanches while slowly varying the temperature through the hysteretic region. We surmise that the avalanches originate from intergranular stresses at the interfaces between partially transformed high-volume and low-volume phases. The statistical distribution of avalanches obey power laws with energy exponent ϵ ≃ 1.5. Hall effect measurements, combined with universal critical exponents, point to short electron mean-free percolation pathways and carrier localization at phase interfaces. Carrier localization was predicted many years ago for elemental cerium by Johansson (1974 Phil. Mag. 30 469).

  7. Neuronal avalanches in spontaneous activity in vivo.

    PubMed

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  8. Mechanisms of evolution of avalanches in regular graphs.

    PubMed

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  9. Edge effect on the power law distribution of granular avalanches.

    PubMed

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  10. Mechanisms of evolution of avalanches in regular graphs

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  11. Avalanche in adhesion. [interfacial separation between two Ni crystals

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Bozzolo, Guillermo; Banerjea, Amitava; Ferrante, John

    1989-01-01

    Consider surfaces being brought into contact. It is proposed that atomic layers can collapse or avalanche together when the interfacial spacing falls below a critical distance. This causes a discontinuous drop in the adhesive binding energy. Avalanche can occur regardless of the stiffness of external supports. A simple understanding of the origin of this phenomenon is provided. A numerical calculation has been carried out for adhesion in Ni. A new wear mechanism due to avalanche is suggested.

  12. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  13. Unambiguous reconstruction of network structure using avalanche dynamics.

    PubMed

    Leleu, Timothée; Aihara, Kazuyuki

    2015-02-01

    A robust method for inferring the structure of networks is presented based on the one-to-one correspondence between the expected composition of cascades of bursts of activity, called crackling noise or avalanches, and the weight matrix. Using a model of neuronal avalanches as a paradigmatic example, we derive this correspondence exactly by calculating the closed-form expression of the joint probability distribution of avalanche sizes obtained by counting separately the number of elements active in each subnetwork during avalanches. PMID:25768549

  14. towards a continuum theory of avalanches

    NASA Astrophysics Data System (ADS)

    Champeaux, Stephanie

    2001-10-01

    Recently there has been increased interest in avalanches and other structures and their role in turbulent transport in confined plasmas. Experimental and computational investigations [1] have provided evidence of avalanche phenomena at work in transport dynamics. Numerical simulations of familiar turbulence models exhibit anisotropic radially extended structures clearly related to mesoscale transport events or bursts [2]. Such structures, also called streamers, may be viewed as radially extended cells of nonlinear nature (as indicated by mounting evidence). Modulational instabilities are explored as a mechanism for avalanche type formation in drift-ITG turbulence. Radially extended streamer cell formation and self-regulation are investigated within both random phase approximation and coherent envelope approaches [3]. The dual roles of the modulated Reynolds stress and nonlinear pressure advection are elucidated. While convection cells are a time-honored topic, a major new theme of this work is the study of the cell saturation mechanisms, which regulate the transport. Both poloidal shearing on the underlying ITG turbulence, Kelvin-Helmholtz type instability and curvature-drift resonant damping are explored as a saturation mechanism. Saturation levels for streamer and underlying turbulence are estimated. Implications for scalings of enhancement factors are discussed. Aspect of streamer structure and dynamics are used to estimate the variance of the drift-wave induced heat flux, which is shown to be proportional to the streamer intensity level. Streamer growth then results in a significant enhancement of the heat flux variance to order unity. [1] B.A. Carreras et al Phys Rev Lett 83 (1999) 3653; P.A. Politzer Phys Rev Lett 84 (2000) 1192 [2] P. Beyer et al Phys Rev Lett 85 (2000) 4892 [3] P.H. Diamond, S. Champeaux et al Nuclear Fusion in press; S. Champeaux & P.H. Diamond Phys Lett A in press

  15. Type-II Superlattice Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most

  16. Neuronal Avalanches in Spontaneous Activity In Vivo

    PubMed Central

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N.; Yu, Shan; Singer, Wolf; Plenz, Dietmar

    2010-01-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called “neuronal avalanches,” were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1–32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above –1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of −1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches. PMID:20631221

  17. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  18. Lifetime of bubble rafts: cooperativity and avalanches.

    PubMed

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-15

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes. PMID:17677967

  19. TCAD simulation of Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  20. Photon detection with cooled avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  1. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  2. Cooled avalanche photodiode used for photon detection

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  3. Bilayer avalanche spin-diode logic

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Fadel, Eric R.; Wessels, Bruce W.; Querlioz, Damien; Sahakian, Alan V.

    2015-11-01

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  4. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  5. Validation of DEM prediction for granular avalanches on irregular terrain

    NASA Astrophysics Data System (ADS)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  6. Avalanches mediate crystallization in a hard-sphere glass.

    PubMed

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-01

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  7. A cooled avalanche photodiode with high photon detection probability

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  8. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  9. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  10. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders. PMID:24483518

  11. Similar Hamiltonian Between Avalanche-effect & Sociophysics

    NASA Astrophysics Data System (ADS)

    Maksoed, Ssi, Wh-

    2016-05-01

    Of similar Hamiltonian concerned in ``sociophysics'', there were RandomFieldIsingModel/RFIM in external field retrieved in S. Sabhapandit:``Hysteresis & Avalanche in RandomFieldIsingModel'',2002:'' ..in earthquake, it is an energy release and in case of ferromagnet, it is the size of the domain flips''. Following the extremes & compromises curve in Serge Galam: ``Sociophysics: a Review of Galam Model'', 2008 fig. 12, h 9 whereas it seems similar with ``heating curve''-Prof. Ir. Abdul Kadir: ``Mesin Arus Searah'', h 192 when the heat sources are continuous denote continuous opinion dynamics. Further, hysteresis as duties in ``Kajian Analisis Model Mikromagnetik dari Struktur Magnet Nanokomposit'', 2007 [ UI file no. S29286 ] also sought:'' calculate the probability that `one more site became unstable' causes an avalanche of the spin flips...'' usually found in Per Bak sand-pile fractal characters experiment exhibits. Great acknowledgment to HE. Mr. LieutGen-TNI[rtd]. H. TUK SETYOHADI, +62-21-7220385, Jl. Sriwijaya Raya 3, Kebayoran Baru, South-Jakarta.

  12. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  13. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  14. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  15. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  16. Reducing financial avalanches by random investments

    NASA Astrophysics Data System (ADS)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  17. [Avalanche emergency. New aspects of the pathophysiology and therapy of buried avalanche victims].

    PubMed

    Brugger, H; Falk, M; Adler-Kastner, L

    1997-03-14

    A series of investigations on the pathophysiology and management of persons buried in an avalanche has been undertaken over the past few years in response to increased awareness of the importance of emergency medical treatment of avalanche victims and the fact that the high mortality rate has not decreased in spite of the improvement in rescue techniques. This paper is the very first review of the problems encountered in avalanche disasters. The developments over the past 20 years, in particular, are summarized and discussed. Furthermore, current opinions and recommendations on optimal rescue procedure, as well as the prevention of such emergencies are presented. Precise assessment of the survival probability after burial under an avalanche and recognition of the prognostic importance of an air pocket, but only limited role of hypothermia, provide the basis for new concepts governing therapy and triage by the emergency doctor. Resulting guidelines have been endorsed by the Emergency Medicine Subdivision of the International Commission of the Alpine Rescue Services (ICAR) and these recommendations are intended for implementation by organised rescue teams in order to reduce secondary deaths following successful extrication of victims from the avalanche masses. However, the chance of being rescued alive depends primarily on the rapidity of extrication, i.e. how quickly the rescue teams are alerted and transported to the disaster area in the first instance, then how quickly the victims are located and extricated. In order to reduce the mortality additional preventive measures must be introduced to avoid complete burial if possible, or appreciably hasten the rescue procedure. The very steep drop ("fatal kink") in survival probability as from 15 minutes after burial underlines the absolute necessity of the mastery of efficient rescue procedure by uninjured companions. Improvement of the technical developments for the avoidance of total burial (avalanche air bag) and

  18. Avalanche situation in Turkey and back calculation of selected events

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-05-01

    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  19. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  20. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations.

  1. Disordered artificial spin ices: Avalanches and criticality (invited)

    SciTech Connect

    Reichhardt, Cynthia J. Olson Chern, Gia-Wei; Reichhardt, Charles; Libál, Andras

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  2. Indirect flat-panel detector with avalanche gain

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Hunt, Dylan C.; Tanioka, Kenkichi; Rowlands, John A.

    2004-05-01

    A new concept - an indirect flat-panel detector with avalanche gain - for low dose x-ray imaging has been proposed. The detector consists of an amorphous selenium (a-Se) photoconductor optically coupled to a structured cesium iodide (CsI) scintillator. Under an electric field ESe, the a-Se is sensitive to light and converts the optical photons emitted from CsI into electronic signal. These signals can be stored and read out in the same fashion as in existing flat-panel detectors. When ESe is increased to > 90 V/μm, avalanche multiplication occurs. The avalanche gain ranges between 1-800 depending on ESe and the thickness of the a-Se layer dSe. The avalanche a-Se photoconductor is referred to as HARP (High-gain Avalanche Rushing amorphous Photoconductor). A cascaded linear system model for the proposed detector was developed in order to determine the optimal CsI properties and avalanche gain for different x-ray imaging applications. Our results showed that x-ray quantum noise limited performance can be achieved at the lowest exposure level necessary for fluoroscopy (0.1 μR) and mammography (0.1 mR) with a moderate avalanche gain of 20 (d = 1-2 μm). A laboratory test system using an existing HARP tube optically coupled (through a lens) to a CsI layer was built and the advantage of avalanche gain in overcoming electronic noise was demonstrated experimentally. One of the advantages of the avalanche gain is that it will permit the use of high resolution (HR) CsI (which due to its low light output has not previously been used in flat-panel detectors) to improve DQE at high spatial frequencies.

  3. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  4. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    NASA Astrophysics Data System (ADS)

    Simonelli, C.; Valado, M. M.; Masella, G.; Asteria, L.; Arimondo, E.; Ciampini, D.; Morsch, O.

    2016-08-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  5. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    SciTech Connect

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  6. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    NASA Technical Reports Server (NTRS)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  7. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  8. Scaling crossover for the average avalanche shape

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Stefanos; Bohn, Felipe; Sommer, Rubem L.; Durin, Gianfranco; Zapperi, Stefano; Sethna, James P.

    2010-03-01

    Universality and the renormalization group claim to predict all behavior on long length and time scales asymptotically close to critical points. In practice, large simulations and heroic experiments have been needed to unambiguously test and measure the critical exponents and scaling functions. We announce here the measurement and prediction of universal corrections to scaling, applied to the temporal average shape of Barkhausen noise avalanches. We bypass the confounding factors of time-retarded interactions (eddy currents) by measuring thin permalloy films, and bypass thresholding effects and amplifier distortions by applying Wiener deconvolution. We show experimental shapes that are approximately symmetric, and measure the leading corrections to scaling. We solve a mean-field theory for the magnetization dynamics and calculate the relevant demagnetizing-field correction to scaling, showing qualitative agreement with the experiment. In this way, we move toward a quantitative theory useful at smaller time and length scales and farther from the critical point.

  9. DUE AvalRS: Remote Sensing Derive Avalanche Inventory Data for Decision Support and Hind-Cast After Avalanche Events

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Regula; Kronholm, Kalle; Solberg, Rune; Larsen, Siri Oyen; Salberg, Arnt-Borre; Larsen, Jan Otto; Bjordal, Heidi

    2010-12-01

    Each year, snow avalanches hit populated areas and parts of the transport network in the Norwegian mountain regions, leading to loss of lives and the damaging of buildings and infrastructure. We present the results of a feasibility study on the operation of a service providing the National Public Roads Administration (NPRA) with hind-cast avalanche inventory data on a local-to-regional scale during the course of the winter season, and as soon as possible after major avalanche events. We have explored the use of imagery from high-resolution and very-high-resolution space-borne satellites applying manual mapping and automated image segmentation.

  10. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  11. Avalanches and clusters in planar crack front propagation.

    PubMed

    Laurson, Lasse; Santucci, Stephane; Zapperi, Stefano

    2010-04-01

    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent tau{a}=1.5. We derive a scaling relation tau{a}=2tau-1 between the local cluster exponent tau{a} and the global avalanche exponent tau . For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.

  12. Effects of scale-free avalanche walks on anomalous diffusions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2016-07-01

    Effects of scale-free avalanche walks on anomalous diffusions have been studied by introducing simple non-Markovian walk models. The scale-free avalanche walk is realized as a walker goes to one direction consistently in a time interval, the distribution of which follows a power-law. And it is applied to the memory models, in which the entire history of a walk process is memorized or the memory for the latest step is enhanced with time. The power-law avalanche walk with memory effects strengthens the persistence between steps and thus makes the Hurst exponent be larger than the cases without avalanche walks, while does not affect the anti-persistent nature.

  13. Random walk theory applied to electron avalanche formation

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1974-01-01

    Use of microscopic detail in random walk theory describing the initial formations of a large number of avalanches shows that concomitant electron transport coefficients quickly relax to equilibrium values. This enables the use of random walks having step sizes and probabilities based only on local electric field strengths and densities. A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is demonstrated for helium. Avalanche growth retardation followed by an abrupt growth augmentation as time proceeds is shown to be associated with the formation of regions of charge density extrema near the avalanche axis and within the axial distance covered by the electron swarm.

  14. Physical vulnerability of reinforced concrete buildings impacted by snow avalanches

    NASA Astrophysics Data System (ADS)

    Bertrand, D.; Naaim, M.; Brun, M.

    2010-07-01

    This paper deals with the assessment of physical vulnerability of civil engineering structures to snow avalanche loadings. In this case, the vulnerability of the element at risk is defined by its damage level expressed on a scale from 0 (no damage) to 1 (total destruction). The vulnerability of a building depends on its structure and flow features (geometry, mechanical properties, type of avalanche, topography, etc.). This makes it difficult to obtain vulnerability relations. Most existing vulnerability relations have been built from field observations. This approach suffers from the scarcity of well documented events. Moreover, the back analysis is based on both rough descriptions of the avalanche and the structure. To overcome this problem, numerical simulations of reinforced concrete structures loaded by snow avalanches are carried out. Numerical simulations allow to study, in controlled conditions, the structure behavior under snow avalanche loading. The structure is modeled in 3-D by the finite element method (FEM). The elasto-plasticity framework is used to represent the mechanical behavior of both materials (concrete and steel bars) and the transient feature of the avalanche loading is taken into account in the simulation. Considering a reference structure, several simulation campaigns are conducted in order to assess its snow avalanches vulnerability. Thus, a damage index is defined and is based on global and local parameters of the structure. The influence of the geometrical features of the structure, the compressive strength of the concrete, the density of steel inside the composite material and the maximum impact pressure on the damage index are studied and analyzed. These simulations allow establishing the vulnerability as a function of the impact pressure and the structure features. The derived vulnerability functions could be used for risk analysis in a snow avalanche context.

  15. Modeling negative feedback in single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Hayat, Majeed M.; Ramirez, David A.; Rees, Graham J.; Itzler, Mark A.

    2010-04-01

    Recently, considerable attention has been placed upon exploiting the negative-feedback effect in accelerating the quenching time of the avalanche current in passively quenched single-photon avalanche-diode (SPAD) circuits. Reducing the quenching time results in a reduction in the total charge generated in the SPAD, thereby reducing the number of trapped carries; this, in turn, can lead to improved after-pulsing characteristics. A passively quenched SPAD circuit consists of a DC source connected to the SPAD, to provide the reverse bias, and a series load resistor. Upon a photon-generated electron-hole pair triggering an avalanche breakdown, current through the diode and the load resistor rises quickly reaching a steady state value, after which it can collapse (quench) at a stochastic time. In this paper we review recent analytical and Monte-Carlo based models for the quenching time. In addition, results on the statistics of the quenching time and the avalanche pulse duration of SPADs with arbitrary time-variant field across the multiplication region are presented. The calculations of the statistics of the avalanche pulse duration use the dead-space multiplication theory (DSMT) to determine the probability of the avalanche pulse to quench by time t after the instant s at which the electron-hole pair that triggers the avalanche was created. In the analytical and Monte-Carlo based models for the quenching time, the dynamic negative feedback, which is due to the dynamic voltage drop across the load resistor, is taken into account. In addition, in the Monte-Carlo simulations the stochastic nature of the avalanche current is also considered.

  16. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  17. Avalanche risk assessment for the link Osh - Bishkek, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Nazarkulova, Kydyr

    2015-04-01

    The Bishkek-Osh road is main North-South ground transportation connection between the two major cities of Kyrgyzstan. One of the causes for frequent interruptions and closures between November and May is the avalanche risk due to local terrain characteristics and orographically induced precipitation maxima during winter. As a first step towards more effective prediction and implementation of mitigating measures the development of a digital avalanche inventory ('avalanche cadastre') has been initiated. This is aiming at modeling regional risk, and prioritizes the implementation of protective infrastructures in the most avalanche-prone zones. In addition, this helps with continuous monitoring of avalanche behaviour and the assessment of potential influence of climate change. For the parameterisation of models and support of decisions, details about avalanche incidences need to be collected. Historical data collected during Soviet time serve as an important baseline, complemented by more recent data. Overall, developing such a geo database shall be useful and effective for future planning at the Ministry of Emergency Services. This paper demonstrates important parameters to be collected and critical role of historical data as a baseline. Geodatabases are being developed on ArcGIS and used locally for planning preventive measures.

  18. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support. PMID:25375434

  19. Avalanches and hysteresis in frustrated superconductors and XY spin glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T =0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  20. Avalanches, plasticity, and ordering in colloidal crystals under compression

    NASA Astrophysics Data System (ADS)

    McDermott, D.; Reichhardt, C. J. Olson; Reichhardt, C.

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  1. A revision of the Haiming rock avalanche (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  2. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  3. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  4. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  5. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  6. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  7. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events. PMID:27415320

  8. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  9. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  10. Avalanche outbreaks emerging in cooperative contagions

    NASA Astrophysics Data System (ADS)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  11. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  12. OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES

    SciTech Connect

    S. BOETTCHER; A. PERCUS

    2000-08-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.

  13. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  14. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations. PMID:23767588

  15. Infrasonic monitoring of snow avalanches in the Alps

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  16. Avalanches in a stochastic model of spiking neurons.

    PubMed

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  17. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  18. The effectiveness of mean-field theory for avalanche distributions

    NASA Astrophysics Data System (ADS)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  19. Gain-Bandwidth Product Optimization of Heterostructure Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Kwon, Oh-Hyun; Hayat, Majeed M.; Campbell, Joe C.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2005-05-01

    A generalized history-dependent recurrence theory for the time-response analysis is derived for avalanche photodiodes with multilayer, heterojunction multiplication regions. The heterojunction multiplication region considered consists of two layers: a high-bandgap Al_0.6 Ga_0.4 As energy-buildup layer, which serves to heat up the primary electrons, and a GaAs layer, which serves as the primary avalanching layer. The model is used to optimize the gain-bandwidth product (GBP) by appropriate selection of the width of the energy-buildup layer for a given width of the avalanching layer. The enhanced GBP is a direct consequence of the heating of primary electrons in the energy-buildup layer, which results in a reduced first dead space for the carriers that are injected into the avalanche-active GaAs layer. This effect is akin to the initial-energy effect previously shown to enhance the excess-noise factor characteristics in thin avalanche photodiodes (APDs). Calculations show that the GBP optimization is insensitive to the operational gain and the optimized APD also minimizes the excess-noise factor.

  20. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  1. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  2. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  3. Debris avalanche deposits: emplacement dynamics, morphology and hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.; Dufresne, A.

    2013-12-01

    Debris avalanches from volcanoes form some of the largest subaerial and submarine landslide deposits on Earth, covering vast areas (10s to 100s km2) and displaying typically hummocky surface topography. Numerical models have been developed that can identify the area threatened by an event of known volume from a known volcano, if the runout mechanics can be understood. Better understanding the hazards from these enormous events requires realistic parameterization of models, which must be able to explain debris avalanche deposit geometries under water, in air, on Mars and in vacuo on the Moon. We have shown that the complex deposit geometry of the 25 km3 Socompa deposit in Chile can be explained by the effects of basal debris fragmenting during runout. The hummocky surface morphology of many debris avalanche deposits again indicates that the emplacement process involved a very mobile basal layer, above which the travelling mass passively extends, leading to lateral and longitudinal disaggregation of the mass into discrete blocks whose dimension reflects the mass depth. Submarine debris avalanches can also be modelled on this basis, because the presence of ambient water does not fundamentally alter the fragmentation process; to assess the additional hazards of debris avalanches entering into water, models are available to simulate the tsunami generated by such events.

  4. Activity-Dependent Model for Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    Networks of living neurons represent one of the most fascinating systems of modern biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behavior of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behavior is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. This fundamental problem in neurobiology has recently shown a number of features in common to other complex systems. These features mainly concern the morphology of the network, namely the spatial organization of the established connections, and a novel kind of neuronal activity. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. Both features have been found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behavior. In this contribution, we apply a statistical mechanical model to describe the complex activity in a neuronal network. The network is chosen to have a number of connections in long range, as found for neurons in vitro. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. The numerical power spectra for electrical activity reproduces also the power law behavior measured in an EEG of man resting with the eyes closed.

  5. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  6. Universality in the mean spatial shape of avalanches

    NASA Astrophysics Data System (ADS)

    Thiery, Thimothée; Le Doussal, Pierre

    2016-05-01

    Quantifying the universality of avalanche observables beyond critical exponents is of current great interest in theory and experiments. Here, we compute the spatial shape of avalanches in the universality class of the depinning of elastic interfaces in random media. We provide for the first time an analytically tractable definition of the spatial shape, accessible in experiments, and study the mean spatial shape of avalanches at fixed size centered around their starting point (seed). We calculate the associated universal scaling functions, both in a mean-field model and beyond. Notably, they are predicted to exhibit a cusp singularity near the seed. The results are in good agreement with a numerical simulation of an elastic line.

  7. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  8. TOPICAL REVIEW: Nonlocal impact ionization and avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Rees, G. J.; David, J. P. R.

    2010-06-01

    Impact ionization and avalanche multiplication are conventionally described in terms of ionization coefficients which depend only upon the local electric field. Such a description takes no account of the effect of ionization dead space, within which the population distribution, and hence the ionization coefficient of carriers injected cool approach equilibrium with the high electric field, inhibiting ionization and reducing multiplication. This effect, which increases in importance as device dimensions are reduced, clearly benefits such high field devices as transistors by suppressing parasitic avalanche multiplication. It also improves the performance of avalanche photodiodes (APDs) by reducing the spatial randomness of impact ionization, so that the resulting excess multiplication noise is also reduced. It reduces temperature sensitivity and may also further enhance APD speed. This paper reviews these effects and some theoretical models used to describe them. In memory of Peter Robson, who inspired and encouraged scientists and engineers, young and old.

  9. Avalanche Dynamics of Crackle Sound in the Lung

    SciTech Connect

    Alencar, Adriano M.; Buldyrev, Sergey V.; Majumdar, Arnab; Stanley, H. Eugene; Suki, Bela

    2001-08-20

    We analyze a sequence of short transient sound waves, called 'crackles,' which are associated with explosive openings of airways during lung inflation. The distribution of time intervals between consecutive crackles {Delta}t shows two regimes of power law behavior. We develop an avalanche model which fits the data over five decades of {Delta}t. We find that the regime for large {Delta}t is related to the dynamics of distinct avalanches in a Cayley tree, and the regime for small {Delta}t is determined by the dynamics of crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which provides information about lung inflation.

  10. Erosive granular avalanches : a cross confrontation between theory and experiment.

    SciTech Connect

    Clement, E.; Malloggi, F.; Andreotti, B.; Aranson, I. S.; Materials Science Division; ESPCI-Univ. Paris; Univ. of Twente

    2007-01-01

    Results on two laboratory scale avalanches experiments taking place both in the air and under-water, are presented. In both cases a family of solitary erosion/deposition waves are observed. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagram, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. These experiments are studied theoretically in the framework of the 'partial fluidization' model of dense granular flows. This model identifies a family of propagating solitary waves displaying a behavior similar to the experimental observation. A primary cause for the transverse instability is related to the dependence of avalanche velocity on the granular mass trapped by the flow.

  11. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  12. Distribution of maximum velocities in avalanches near the depinning transition.

    PubMed

    LeBlanc, Michael; Angheluta, Luiza; Dahmen, Karin; Goldenfeld, Nigel

    2012-09-01

    We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities v(m) in the mean field theory of the interface depinning transition. We derive the extreme value distribution P(v(m)|T) for the maximum velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, v(m), scales as P(v(m))~v(m)(-2) for large v(m). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

  13. Internal Avalanches in a Growing Pile of Superconducting Vortices

    NASA Astrophysics Data System (ADS)

    Lee, Choong-Seop; Bassler, Kevin E.; Paczuski, Maya

    2002-03-01

    Avalanches of magnetic vortices produced by systematically increasing an external magnetic field applied to a type-II superconductor are studied using a simple ``sandpile'' type cellular model (K. E. Bassler and M. Paczuski, Phys. Rev. Lett. 81), 3761 (1998).. The cellular model describes the over-damped stick-slip dynamics of the vortices, which results in avalanches of vortex motion as the magnetic field increased. Driving the system by very slowly increasing the magnetic field, the system reaches a self-organized critical state in which the average density of vortices is increasing. In that state, the scaling properties and critical exponents describing the avalanche statistics are measured, and compared with recent experiments.

  14. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature. PMID:26548036

  15. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California

    NASA Astrophysics Data System (ADS)

    Crandell, D. R.; Miller, C. D.; Glicken, H. X.; Christiansen, R. L.; Newhall, C. G.

    1984-03-01

    A debris-avalanche deposit extends 43 km northwestward from the base of Mount Shasta across the floor of Shasta Valley, California, where it covers an area of at least 450 km2. The surface of the deposit is dotted with hundreds of mounds, hills, and ridges, all formed of blocks of pyroxene andesite and unconsolidated volcaniclastic deposits derived from an ancestral Mount Shasta. Individual hills are separated by flat-topped laharlike deposits that also form the matrix of the debris avalanche and slope northwestward about 5 m/km. Radiometric ages of rocks in the deposit and of a postavalanche basalt flow indicate that the avalanche occurred between about 300,000 and 360,000 yr ago. An inferred average thickness of the deposit, plus a computed volume of about 4 km3 for the hills and ridges, indicate an estimated volume of about 26 km3, making it the largest known Quaternary landslide on Earth.

  16. Modeling and monitoring avalanches caused by rain-on-snow events

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain

  17. Effect of volume fraction on granular avalanche dynamics.

    PubMed

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches. PMID:25314432

  18. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  19. Effect of volume fraction on granular avalanche dynamics

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Goldman, Daniel I.

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ0. We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45∘ angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ0∈[0.58-0.63] and differed above or below the granular critical state, ϕc, defined as the onset of dilation as a function of increasing volume fraction. For ϕ0-ϕc<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ0=7.7±1.4∘ and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θm=28.5±1.0∘. Granular material at ϕ0-ϕc>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ0=32.1±1.5∘ prior to the onset of an avalanche at θm=35.9±0.7∘. Both θ0 and θm increased with ϕ0 and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θR=22±2∘, was independent of ϕ0. From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ0, with ϕ0-ϕc<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ0-ϕc>0. Our study elucidates how initial conditions—including volume fraction—are important determinants of granular slope stability and the onset of avalanches.

  20. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  1. Avalanches in strained amorphous solids: does inertia destroy critical behavior?

    PubMed

    Salerno, K Michael; Maloney, Craig E; Robbins, Mark O

    2012-09-01

    Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.

  2. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  3. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  4. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  5. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2011-12-01

    Practitioners working in avalanche terrain may never witness an extreme event, but understanding extreme events is important for categorizing avalanches that occur within a given season. Historical records of avalanche incidents and direct observations are the most reliable evidence of avalanche activity, but patterns in vegetation can be used to further quantify and map the frequency and magnitude of past events. We surveyed published literature to synthesize approaches for using vegetation sampling to characterize avalanche terrain, and developed examples to identify the benefits and caveats of using different practical field methods to estimate avalanche frequency and magnitude. Powerful avalanches can deposit massive piles of snow, rocks, and woody debris in runout zones. Large avalanches (relative to the path) can cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking trees. Discs and cores can be collected from downed trees to detect signals of past avalanche disturbance recorded in woody plant tissue. Signals of disturbance events recorded in tree rings can include direct impact scars from the moving snow and wind blast, development of reaction wood in response to tilting, and abrupt variation in the relative width of annual growth rings. The relative ages of trees in avalanche paths and the surrounding landscape can be an indicator of the area impacted by past avalanches. Repeat photography can also be useful to track changes in vegetation over time. For Colorado, and perhaps elsewhere, several vegetation ecology methods can be used in combination to accurately characterize local avalanche frequency and magnitude.

  6. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  7. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  8. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  9. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  10. Avalanches in dry and saturated disordered media at fracture

    NASA Astrophysics Data System (ADS)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  11. Gridded snow maps supporting avalanche forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  12. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  13. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    ERIC Educational Resources Information Center

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  14. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  15. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

    PubMed

    Petermann, Thomas; Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A L; Chialvo, Dante R; Plenz, Dietmar

    2009-09-15

    Spontaneous neuronal activity is an important property of the cerebral cortex but its spatiotemporal organization and dynamical framework remain poorly understood. Studies in reduced systems--tissue cultures, acute slices, and anesthetized rats--show that spontaneous activity forms characteristic clusters in space and time, called neuronal avalanches. Modeling studies suggest that networks with this property are poised at a critical state that optimizes input processing, information storage, and transfer, but the relevance of avalanches for fully functional cerebral systems has been controversial. Here we show that ongoing cortical synchronization in awake rhesus monkeys carries the signature of neuronal avalanches. Negative LFP deflections (nLFPs) correlate with neuronal spiking and increase in amplitude with increases in local population spike rate and synchrony. These nLFPs form neuronal avalanches that are scale-invariant in space and time and with respect to the threshold of nLFP detection. This dimension, threshold invariance, describes a fractal organization: smaller nLFPs are embedded in clusters of larger ones without destroying the spatial and temporal scale-invariance of the dynamics. These findings suggest an organization of ongoing cortical synchronization that is scale-invariant in its three fundamental dimensions--time, space, and local neuronal group size. Such scale-invariance has ontogenetic and phylogenetic implications because it allows large increases in network capacity without a fundamental reorganization of the system.

  16. Reducing the Odds: Backcountry Powder Skiing in Avalanche Terrain.

    ERIC Educational Resources Information Center

    Daffern, Tony

    This paper provides information and strategies to reduce the risk of encountering an avalanche when skiing or climbing on steep slopes. Skiers must recognize that the risk exists, be aware of their own tolerance for risk, and not allow companions to pressure them into taking more risk than they can tolerate. Ideally, one should ski with a small…

  17. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  18. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances. PMID:27176380

  19. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}. PMID:27176256

  20. Silicon avalanche photodiodes developed at the Institute of Electron Technology

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz

    2004-07-01

    Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.

  1. Electron avalanche structure determined by random walk theory

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  2. Volcanic and non-volcanic debris avalanche deposit

    NASA Astrophysics Data System (ADS)

    Manzella, Irene; Phillips, Jeremy; Bonadonna, Costanza

    2010-05-01

    Dry debris avalanches are characterized by extremely rapid, flow-like motion of large masses and they travel extremely long distances showing much greater mobility than could be predicted using frictional models. Rock avalanches (i.e. flows of fragmented rock derived from a bed-rock failure) and volcanic debris avalanches (i.e. block and ash flows caused by volcanic sector collapses) are both examples of this phenomenon. However, field observations show that volcanic-derived avalanches travel typically greater distance than non-volcanic rock avalanches. At present time the mechanisms involved in these phenomena are still mostly unknown. Several theories have been developed to explain their long runouts but there is no general agreement on a comprehensive rheological law and many questions remain unsolved. The main goal of this research is to constrain experimentally the effect of the characteristics of flow material on runout, deposit morphology and granular flow mechanisms. This will help identify the main differences between volcanic and non-volcanic debris avalanches. Preliminary experiments of unconstrained granular flows have been carried out at the École Polytechinique Féderale de Lausanne. Three kinds of material with different grain size distribution were used: a fine sand with D90 of 0.55mm and two types of gravel with similar density and friction coefficient but with D90 values of respectively 2 and 4 mm. Experiments showed relevant differences between sand and gravel deposit morphologies. The shape of the sand deposit is rather regular and compact whereas the gravel deposit showed well defined angular discontinuities: a central zone with a small slope and several ridges and a front, rear and sides with strong inclination. The presence of ridges and a steep front in gravel deposit evidence a rapid stop of the mass. These morphological features are also often observed in the field. For this reason this kind of gravel results to be more suitable for

  3. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  4. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  5. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  6. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation. PMID:18808393

  7. Snow avalanche detection and identification for near real-time application

    NASA Astrophysics Data System (ADS)

    Havens, S.; Johnson, J. B.; Marshall, H.; Nicholson, B.; Trisca, G. O.

    2013-12-01

    A near real-time avalanche detection system will provide highway avalanche forecasters with a tool to remotely monitor major avalanche paths and provide information about regional avalanche activity and timing. For the last three winters, a network of infrasound arrays has been remotely monitoring both avalanche and non-avalanche events along a 10 mile section of Highway 21 in Idaho. To provide the best results to avalanche forecasters, the system must be robust and detect all major avalanche events of interest that affect the highway. Over the last three winters, the infrasound arrays recorded multiple avalanche cycles and we explore different methods of event detection for both large dry avalanches (strong infrasound signal) and small wet avalanches (weak infrasound signal). We compare the F-statistic and cross-correlation techniques (i.e. PMCC) to determine the most robust method and develop computationally efficient algorithms to implement in near-real time using parallel processing and GPU computing. Once an event has been detected, we use the artificial intelligence method of recursive neural networks to classify based on similar characteristics to past known signals.

  8. Electroded avalanche amorphous selenium (a-Se) photosensor

    PubMed Central

    Bubon, Oleksandr; DeCrescenzo, Giovanni; Zhao, Wei; Ohkawa, Yuji; Miyakawa, Kazunori; Matsubara, Tomoki; Kikuchi, Kenji; Tanioka, Kenkichi; Kubota, Misao; Rowlands, John A.; Reznik, Alla

    2012-01-01

    Although avalanche amorphous selenium (a-Se) is a very promising photoconductor for a variety of imaging applications, it is currently restricted to applications with electron beam readout in vacuum pick-up tube called a High-gain Avalanche Rushing Photoconductor (HARP). The electron beam readout is compatible with high definition television (HDTV) applications, but for use in solid-state medical imaging devices it should be replaced by an electronic readout with a two-dimensional array of metal pixel electrodes. However, due to the high electric field required for avalanche multiplication, it is a technological challenge to avoid possible dielectric breakdown at the edges, where electric field experiences local enhancement. It has been shown recently that this problem can be overcome by the use of a Resistive Interface Layer (RIL) deposited between a-Se and the metal electrode, however, at that time, at a sacrifice in transport properties. Here we show that optimization of RIL deposition technique allows for electroded avalanche a-Se with transport properties and time performance previously not achievable with any other a-Se structures. We have demonstrated this by detailed analysis of transport properties performed by Time-of-Flight (TOF) technique. Our results showed that a stable gain of 200 is reached at 104 V/μm for a 15-μm thick a-Se layer, which is the maximum theoretical gain for this thickness. We conclude that RIL is an enabling technology for practical implementation of solid-state avalanche a-Se image sensors. PMID:23115545

  9. Laboratory study of avalanches in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart

    2015-11-01

    Results of a basic heat transport experiment [] involving an off-axis heat source are presented. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. A ring-shaped electron beam source injects low energy electrons (below ionization energy) along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the machine walls. It is demonstrated that this heating configuration provides an ideal environment to study avalanche phenomena under controlled conditions. The avalanches are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and azimuthal dynamics. After each collapse the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are only observed for a limited combination of heating powers and magnetic fields. At higher heating powers the system transitions from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. The pressure profile then transitions to a near steady-state in which anomalous transport balances the external pressure source. Performed at the Basic Plasma Science Facility at UCLA, supported jointly by DOE and NSF.

  10. The development of structures in analogue and natural debris avalanches

    NASA Astrophysics Data System (ADS)

    Paguican, Engielle Mae; van Wyk de Vries, Benjamin; Mahar Francisco Lagmay, Alfredo; Grosse, Pablo

    2010-05-01

    All types of rockslide-debris avalanches present a plethora of internal structures that are also well observed on the surface. Many of these are seen as faults and folds that can be used to determine deformation history and kinematics. We present two sets of simple and well-constrained experiments of reduced basal friction laboratory rockslides, equivalent to a highly deformed simple shear layer, with plug-flow. These follow the original ramp-slide work of Shea and van Wyk de Vries (Geosphere, 2008). The experiments used a curved ramp where materials accelerate until reaching a gently-sloped depositional surface and a constantly inclined ramp with a more regular slope and longer slides. A detailed description of deposit structures, their sequential formation and morphology is then used to investigate the transport type and deformation chronology from slide initiation to runout stopping of avalanches. Results using a curved ramp show accumulation and thickening at where the slope decreases. The thickened mass then further remobilises and advances by secondary collapse of the mass. Such a stop-start process may be important in many mountainous avalanches where there are rapid changes in slope. The constantly inclined ramp shows shearing and extensional structures at the levees and a set of compression and extension structures in the middle. We noted that frontal accumulation during flow occurs as materials at the front move slower relative to those in the medial and proximal zones. This also leads to secondary frontal collapse, and helps to maintain a thicker mass that can flow further. Descriptions and analyses of these structures are then applied to the kinematics and dynamics of natural examples. We study the 2006 Guinsaugon Rockslide event in the Philippines and find that frontal accumulation and secondary avalanching had also occurred and were important in determining the distribution and runout of the mass. Frontal bulking and collapse may also have occurred at

  11. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    NASA Astrophysics Data System (ADS)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  12. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  13. A multi path, weather independent avalanche monitoring tool using distributed acoustic fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Prokop, Alexander; Wirbel, Anna

    2013-04-01

    Information on avalanche activity is a paramount parameter in avalanche forecasting. When avalanches are released spontaneously, the risk of avalanches is very high. Triggering avalanches by artificial means, such as explosives launched from helicopter or avalanche towers, can also give information on the stability of the snow pack. Hence, monitoring of avalanches released naturally or artificially, is an important quantity in avalanche forecasting. This information is also needed when deciding whether to close or not endangered ski runs, roads or railway lines. So far monitoring systems lack certain benefits. Either they monitor only large avalanches, can only be used for single avalanche tracks or are weather/sight dependant. Therefore a new tool for avalanche- monitoring, a distributed fiber optic system, is for the first time installed and adapted for the purpose of monitoring snow avalanche activity. The method is based on an optical time domain reflectometer (OTDR) system, which dates back to the 1970`s and detects seismic vibrations and acoustic signals on a fiber optic cable that can have a length of up to 30 km. An appropriate test slope for this configuration has been found in the ski area of "Lech am Arlberg". In this work a detailed description of the theoretical background, the system implementation, the field installation, realization of tests and an investigation of the recorded data is presented. We conducted 100 tests and triggered 41 avalanches so far with a runout distances ranging from a few meters to approximately 250 meters, all of which were detected by the system, as well as the 59 not successful attempts of artificial triggering. Moreover we measured properly if critical infrastructure (in our case a ski run) was reached by the avalanches or not. The spatial distributed sensing approach allowed us to relate the amplitude and spectral content of the signals to avalanche size, avalanche speed and snow properties of the avalanches. In

  14. Ice insulation by rock avalanche debris: the Mt. Cook (1991) and Beatrice (2004) rock avalanches, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Reznichenko, Natalya V.; Davies, Tim R.; Shulmeister, James; Winkler, Stefan

    2010-05-01

    The formation of terminal moraines mainly results from glacier changes in response to climate variations. But glaciers may also react sensitively to increased debris cover caused by large-scale failure of bedrock slopes. Catastrophic rock avalanches are a major source of sediment in active orogens like e.g. the Southern Alps, New Zealand (Shulmeister et al., 2009). They often occur as a result of earthquakes, and also due to slope failure driven in the longer term by regional uplift. Rock avalanche deposits can drastically alter glacier mass balance through reduced ablation and consequential altered flow rates, and can contribute to glacier moraine formation (see e.g. Hewitt, 2005, 2009; Shulmeister et al., 2009). Consequently, the frequently-assumed linkage between terminal moraine formation and climate forcing may need to be reconsidered. Especially for the investigation of the regional Holocene glacier and climate chronologies it is essential to separate and assess the tectonic/coseismic impact on terminal moraine formation. In order to investigate the role of catastrophic landslide events in moraine formation, Ground Penetrating Radar (GPR) surveys of rock avalanche deposits on the Tasman and Hooker Glaciers, Southern Alps, New Zealand, were compared with laboratory experiments of the debris cover effect on underlying ice ablation. The 1991 Mt. Cook rock avalanche deposit on the Tasman Glacier is up to 10 m thick and has caused a 25 m high ridge to form at the upvalley edge of the deposit. The smaller 2004 Mt. Beatrice rock avalanche onto Hooker Glacier has formed an elevated plateau with similar raised edges because of reduced ice melting under the rock avalanche deposit. The reduction of ice-surface ablation on the glaciers is compared with laboratory data on ice ablation rates under various thickness of debris-cover, under controlled conditions with replication of diurnal temperature, radiation cycles and rainfall conditions. The latest results are presented

  15. Maximum speeds and alpha angles of flowing avalanches

    NASA Astrophysics Data System (ADS)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  16. A new web-based system to improve the monitoring of snow avalanche hazard in France

    NASA Astrophysics Data System (ADS)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  17. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  18. Arrest of Avalanche Propagation by Discontinuities on Snow Cover

    NASA Astrophysics Data System (ADS)

    Frigo, B.; Chiaia, B.

    2009-04-01

    Considering the spatial variability of the snow cover, the paper analyses, in the framework of Fracture Mechanics, the Mode II fracture propagation on snow cover that leads to large dry slab avalanches. Under the hypothesis of a perfectly brittle phenomenon, avalanche triggering is usually investigated numerically by means of Linear Elastic Fracture Mechanics (McClung, 1979; Chiaia et al., 2008). Since, however, the real phenomenon is intrinsically dynamical, another aspect to investigate is represented by dynamic fracture propagation. In this paper, we model dynamic crack propagation into a dry snow slab, to assess the possibility of crack arrest due to the presence of weak zones distributed along the snow slope. As a consequence of the first triggering mechanism (the Mode II fracture propagation on the weak plane), the secondary Mode I crack propagation in the crown is studied by means of numerical simulations based on Dynamic Elastic Fracture Mechanics and on the theory of crack arresters. By taking into account kinetic energy and using the FEM software FRANC 2D (Wawrzynek and Ingraffea, 1993), several paths of crown fracture propagation and their stability have been investigated. The snowpack is considered as a linear-elastic plate (2D problem), whose physical and mechanical parameters are chosen according to classical literature values. To investigate the possible arrest of crown fracture, we apply the theory of crack arresters, usually adopted for pipelines and perforated steel sheets fracture problems. To study crack arrest, different crack paths are simulated, in discontinuous (equipped with different shapes and geometries of artificial voids) snowpacks. The simulations show the effectiveness of these weak zones, to reduce substantially the crack driving force of the propagating fracture. This means that, increasing spatial variability tends to stabilize the snow slope, eventually splitting a major avalanche event into smaller, independent avalanches. Our

  19. Stability of Granular Packings Jammed under Gravity: Avalanches and Unjamming

    NASA Astrophysics Data System (ADS)

    Merrigan, Carl; Birwa, Sumit; Tewari, Shubha; Chakraborty, Bulbul

    Granular avalanches indicate the sudden destabilization of a jammed state due to a perturbation. We propose that the perturbation needed depends on the entire force network of the jammed configuration. Some networks are stable, while others are fragile, leading to the unpredictability of avalanches. To test this claim, we simulated an ensemble of jammed states in a hopper using LAMMPS. These simulations were motivated by experiments with vibrated hoppers where the unjamming times followed power-law distributions. We compare the force networks for these simulated states with respect to their overall stability. The states are classified by how long they remain stable when subject to continuous vibrations. We characterize the force networks through both their real space geometry and representations in the associated force-tile space, extending this tool to jammed states with body forces. Supported by NSF Grant DMR1409093 and DGE1068620.

  20. Ray optics behavior of flux avalanche propagation in superconducting films

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Johansen, T. H.; Chaudhuri, S.; Maasilta, I. J.; Galperin, Y. M.

    2015-02-01

    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 μ m thick metal layer, the refractive index was close to n =1.4 . The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adopted physical picture.

  1. A compact gas-filled avalanche counter for DANCE

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-12-01

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ˜2.4×108/s are described.

  2. Origin of the Avalanche-Like Photoluminescence from Metallic Nanowires

    PubMed Central

    Ma, Zongwei; Yu, Ying; Shen, Shaoxin; Dai, Hongwei; Yao, Linhua; Han, Yibo; Wang, Xia; Han, Jun-Bo; Li, Liang

    2016-01-01

    Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices. PMID:26728439

  3. Photon avalanche up-conversion in holmium doped fluoride glasses

    SciTech Connect

    Chen, Y.H.; Liu, G.K.; Beitz, J.V.; Jie Wang

    1996-08-01

    Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

  4. Stability of the discretization of the electron avalanche phenomenon

    SciTech Connect

    Villa, Andrea; Barbieri, Luca; Gondola, Marco; Leon-Garzon, Andres R.; Malgesini, Roberto

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  5. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  6. Macroscopic control parameter for avalanche models for bursty transport

    SciTech Connect

    Chapman, S. C.; Rowlands, G.; Watkins, N. W.

    2009-01-15

    Similarity analysis is used to identify the control parameter R{sub A} for the subset of avalanching systems that can exhibit self-organized criticality (SOC). This parameter expresses the ratio of driving to dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is found to occur when R{sub A}{yields}0. This is in the opposite sense to (Kolmogorov) turbulence, thus identifying a deep distinction between turbulence and SOC and suggesting an observable property that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite R{sub A} with the same R{sub A}{yields}0 exponent if the system supports a sufficiently large range of lengthscales, necessary for SOC to be a candidate for physical (R{sub A} finite) systems.

  7. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  8. Weathering processes implied from analysis of small Martian avalanche chutes

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1992-01-01

    It has been proposed that the smaller features of martian spur and gully slope morphology, located along the upper walls of Valles Marineris, are avalanche chutes. A three-dimensional stability back-analysis technique was developed and applied to these small avalanche chutes, yielding average values of cohesion and angle of internal friction for the mobile layer materials on these slopes at the time of each slope failure. Generally, the analysis showed that at the time of each slope failure material strengths had been reduced to those of moderately cohesive debris down through depths of tens of meters. These results have implications and possible constraints for the nature and rate of martian weathering processes.

  9. Characterization of midwave infrared InSb avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Abautret, J.; Perez, J. P.; Evirgen, A.; Rothman, J.; Cordat, A.; Christol, P.

    2015-06-01

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(-50 mV) = 32 nA/cm2 at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at -4 V at 77 K. The Okuto-Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  10. GaN/InGaN avalanche phototransistors

    NASA Astrophysics Data System (ADS)

    Shen, Shyh-Chiang; Kao, Tsung-Ting; Kim, Hee-Jin; Lee, Yi-Che; Kim, Jeomoh; Ji, Mi-Hee; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-03-01

    We report on III-nitride (III-N) avalanche phototransistor (APT) action by illuminating ultraviolet (UV) photons onto a GaN/InGaN npn heterojunction bipolar transistor in an open-base configuration. A high responsivity of >1 A/W was measured for the device operating at a collector-to-emitter voltage (VCE) of <15 V in the phototransistor mode. The carrier multiplication in the reversed biased collector leads to a photocurrent avalanche as VCE increases. At λ = 380 nm, the GaN/InGaN APT shows a responsivity of >68 A/W at VCE = 95 V. The InGaN APT demonstrates the feasibility of using III-N bipolar transistor structures for high-sensitivity UV photodetection applications.

  11. Cyclic formation of debris avalanches at Mount St Augustine volcano

    NASA Astrophysics Data System (ADS)

    Begét, James E.; Kienle, Juergen

    1992-04-01

    VOLCANIC debris avalanches have been seen at many volcanoes since the 1980 eruption of Mount St Helens, but typically only one or two avalanche deposits are identified at each eruptive centre, suggesting that catastrophic slope failures are rare or even unique events in the lifetime of a volcano1-4 Here we present a series of radiocarbon dates from volcanic deposits showing that the summit edifice of Mount St Augustine, a 1,220-m-high active volcano on Augustine Island in the Cook Inlet area of south-central Alaska, has repeatedly collapsed and regenerated, averaging 150-200 years per cycle, during the past 2,000 years. The unprecedented frequency of summit edifice failure was made possible by sustained lava effusion rates over 10 times greater than is typical of plate-margin volcanoes.

  12. Propagation of avalanches in Mn12-acetate: magnetic deflagration.

    PubMed

    Suzuki, Yoko; Sarachik, M P; Chudnovsky, E M; McHugh, S; Gonzalez-Rubio, R; Avraham, Nurit; Myasoedov, Y; Zeldov, E; Shtrikman, H; Chakov, N E; Christou, G

    2005-09-30

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. PMID:16241690

  13. Propagation of avalanches in Mn12-acetate: magnetic deflagration.

    PubMed

    Suzuki, Yoko; Sarachik, M P; Chudnovsky, E M; McHugh, S; Gonzalez-Rubio, R; Avraham, Nurit; Myasoedov, Y; Zeldov, E; Shtrikman, H; Chakov, N E; Christou, G

    2005-09-30

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

  14. Electro-thermal simulation of superconducting nanowire avalanche photodetectors

    SciTech Connect

    Marsili, F.; Najafi, F.; Herder, C.; Berggren, K. K.

    2011-01-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  15. Quantum Theory for Cold Avalanche Ionization in Solids

    SciTech Connect

    Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.

    2010-09-10

    A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.

  16. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  17. Receiver characteristics of laser altimeters with avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  18. Geiger-mode avalanche photodiodes, history, properties and problems

    NASA Astrophysics Data System (ADS)

    Renker, D.

    2006-11-01

    Geiger-mode avalanche photodiodes (G-APDs) have been developed during recent years and promise to be an alternative to photomultiplier tubes. They have many advantages like single photon response, high detection efficiency, high gain at low bias voltage and very good timing properties but some of their properties, the dark count rate for example, can be a problem. Several types of G-APDs are on the market and should be selected carefully for a given application.

  19. Local to global avalanches in sheared granular materials

    NASA Astrophysics Data System (ADS)

    Weng, Dengming; Wang, Dong; Bertrand, Thibault; Bares, Jonathan; Berhinger, Bob

    2015-11-01

    Commonly, granular materials yield or flow if sufficiently large shear stress is applied, leading to avalanche-like behavior. Rearrangement phenomenon can produce dramatic events like snow avalanches, land-slides or earthquakes. For experimentally sheared media, we seek to understand the dynamics of the grain rearrangements from the local to the global scale. In this work, force networks and displacement fields are measured on two-dimensional sheared material for cyclically sheared photoelastic circular particles. Avalanches, their size, location and duration are extracted at the global scale from the rapid variation of the macroscopic energy stored in the system whereas at the local scale they are measured from the energy drop, displacement and rotation of each particle. Statistics of those different quantities are computed and correlated to test their intrinsic entanglement and analyze their universal dynamics. These results are quantitatively different from what has been observed for different analytic coarse-grained approaches and permit a clear measurement of the effect of the packing fraction and inter-particle friction coefficient on the statistical behavior.

  20. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  1. Particle-size segregation in dense granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  2. A novel stream encryption scheme with avalanche effect

    NASA Astrophysics Data System (ADS)

    Min, Lequan; Chen, Guanrong

    2013-11-01

    This paper proposes a novel stream encryption scheme with avalanche effect (SESAE). Using this scheme and an ideal pseudorandom number generator (PRNG) to generate d-bit segment binary key streams, one can encrypt a plaintext such that by using any key stream generated from a different seed to decrypt the ciphertext, the decrypted plaintext will become an avalanche-like text which has 2 d - 1 consecutive one's with a high probability. As a cost, the required bits of the ciphertext are d times those of the plaintext. A corresponding avalanche-type encryption theorem is established. Two chaotic 12-bit segment PRNGs are designed. A generalized FIPS140 test and SESAE test for the two chaotic PRNGs, RC4 12-bit segment PRNG and 12-bit segment Matlab PRNG are implemented. The SESAE tests for 16-bit segment PRNGs are also compared. The results suggest that those PRNGs are able to generate the SESAEs which are similar to those generated via ideal PRNGs.

  3. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  4. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches

    PubMed Central

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems. PMID:27092071

  5. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.

    PubMed

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.

  6. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.

    PubMed

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems. PMID:27092071

  7. Spatial aspects of vulnerability and risk resulting from snow avalanches

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Koltermann, P.; Sokratov, S.; Seliverstov, Y.; Shnyparkov, A.

    2012-04-01

    Mountain regions provide a significant proportion of areas used for human settlements, economic purpose, and recreation. Simultaneously, due to steep vertical gradients mountain areas are prone to mass movement processes. The intersection of such processes with areas used by human action turns them into hazards. In particular in arctic regions, which show a greater susceptibility to disturbances than many landscapes, considerable efforts have been undertaken in recent decades to reduce the adverse effects of mountain hazards. The concept of risk supplemented the traditional engineering approaches of technical mitigation since the 1990s to comprehensively manage these threats, and to develop strategies for a sustainable use of these areas. The concept of risk is based on a mathematical combination of hazards and consequences, but is static over time. However, three major dynamic systems interact in the field of mountain hazard risk management: the physical environment, which includes hazardous events; the social and demographic characteristics of the communities that experience them; and the values at risk such as buildings, roads, and other components of the built environment. These dynamics have not sufficiently been taken into account so far in natural hazard risk management, in particular with respect to industrialised artic regions. Within the city of Kirovsk, Kola Peninsula, Russian Federation, these dynamics were assessed by taking snow avalanche risk as an example. The test site is exposed to multiple avalanche tracks with repeated releases during individual winter seasons, endangering the built environment and any kind of infrastructure lines. The aim was to contribute to the development of a spatial risk model for mountain regions on different temporal scales. The spatial characteristics of the long-term avalanche risk, as a result of the evolution of the built environment, was analysed on an annual as well as inter-annual level. This long-term development

  8. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    SciTech Connect

    Deng, Hongxiang; Zu, Xiaotao; Zheng, WG; Yuan, XD; Xiang, Xia; Sun, Kai; Gao, Fei

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  9. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    USGS Publications Warehouse

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  10. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  11. Avalanche dynamics of magnetic flux in a two-dimensional discrete superconductor

    SciTech Connect

    Ginzburg, S. L.; Nakin, A. V.; Savitskaya, N. E.

    2006-11-15

    The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.

  12. Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow.

    PubMed

    Fischer, Raphaël; Gondret, Philippe; Rabaud, Marc

    2009-09-18

    We investigate, in the rotating drum configuration, the transition from the regime of discontinuous avalanches observed at low angular velocity to the regime of continuous flow observed at higher velocity. Instead of the hysteretic transition reported previously by Rajchenbach [Phys. Rev. Lett. 65, 2221 (1990)], with an apparent bistability of the two flow regimes in a range of drum velocities, we observe intermittency with spontaneous erratic switches from one regime to the other. Both scenarios of transition are recovered by a model dynamic equation for the avalanche flow with two sources of stochasticity: a Langevin noise during the avalanche flow and a distributed maximal stability angle at which avalanches start.

  13. Information processing occurs via critical avalanches in a model of the primary visual cortex

    NASA Astrophysics Data System (ADS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  14. A Simple Numerical Approach To Avalanche Forecasting: Chowkibal-tangdhar Axis, Kashmir, India

    NASA Astrophysics Data System (ADS)

    Singh, Amreek; Joshi, J. C.; Ganju, Ashwagosha

    Chowkibal-Tangdhar axis of Kashmir region in India is a stretch of about 36 kms with 26 major avalanche sites. It falls in Pir Panjal range and crosses Nastachun pass cutting across Shamsabari Mountains, at an altitude of 3120m. Snow-meteorological data of 10 years recorded at two different altitude zones in the axis were statistically analyzed in the backdrop of the avalanche occurrences observed during the same period on the axis. The results show primary significance towards avalanching for certain variables e.g. fresh snow depth, snowfall rate, standing snow, water equivalent of fresh precipitation, recorded at either observatory. But for others, especially wind parameters, trend of significance is different for the two observatories. The results have also been compared with one similar study conducted for the data from Kooteny pass, British Columbia, Canada. The comparison shows a similar significance trend for most of the variables for the two areas. The attempt has also been made to identify the ranges of variables responsible for the formation of loose snow, slab, dry or wet avalanches with their avalanche size. The overall study provides an objective criterion to assess the significance of individual snow-met variables from avalanching point of view. The significance criterion thus evolved has been further implemented in the development of a simple numerical model to assess the probability, type and size of avalanching in the axis. For a particular day, the significance level of individual parameters is first determined according to the developed criterion. The average level of significance then indicates the probability of avalanching in the axis on that day. A critical limit of probability based on the data of past occurrences, helps to put that particular day in the class of avalanche or non-avalanche day. The values of the individual variables, then predict the likely nature of avalanche in terms of type and size based on the pre-identified ranges.

  15. Avalanches at the Core-Mantle Boundary: Possible Role in Geomagnetic Reversals, Mantle Plumes, and Superchrons

    NASA Astrophysics Data System (ADS)

    Muller, R. A.; Levine, J.; Rohde, R.

    2002-12-01

    Avalanches at the core-mantle boundary have not been directly observed, but if they exist they could affect many geophysical phenomena. Avalanches occur in ?sediment? accumulating on the inner surface of the mantle (according to the theory of Buffett et al.). Because the sediment is not evenly deposited, avalanches could provide the primary mechanism to redistribute sedimentary material evenly over the core-mantle boundary. Core-mantle avalanches, like turbidity flows in the ocean, consist of both solid material and entrained liquid. Such flows can occur at shallow angles (less than a few degrees) and could continue for many kilometers or hundreds of kilometers, depending on the topography. However, these avalanches are upside-down: they flow upward, propelled by buoyancy, into inverted valleys on the mantle surface. The avalanches mix relatively cool sediment with hot liquid iron, creating a redistribution of heat near the boundary. If the avalanche is sufficiently thick (100 m) then the cold pulse will create a downward plume in the core which can disrupt the convective cells that maintain the Earth?s dipole field. When the cells reestablish, the result is a geomagnetic reversal or excursion. We predict a reversal pattern different from that of the chaotic reversals seen in simulations by Glatzmeier. Avalanche-triggered reversals begin with a rapid drop in the dipole moment (but with higher order moments increasing), followed by a period with low dipole moment lasting from hundreds to thousands of years, followed by a rapid build-up of the reversed dipole field. Studies of the detailed time structure of reversals can test the model. As with turbidity flows, we expect a spectrum of avalanche sizes. The largest avalanches are the least probable. The sudden removal of a sediment blanket exposes the lower mantle to a pulse of heat, and for sufficiently large avalanches (>> 100 meters thick) this can contribute to the conditions needed for a mantle plume. A large

  16. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  17. Analysis of spanning avalanches in the two-dimensional nonequilibrium zero-temperature random-field Ising model.

    PubMed

    Spasojević, Djordje; Janićević, Sanja; Knežević, Milan

    2014-01-01

    We present a numerical analysis of spanning avalanches in a two-dimensional (2D) nonequilibrium zero-temperature random field Ising model. Finite-size scaling analysis, performed for distribution of the average number of spanning avalanches per single run, spanning avalanche size distribution, average size of spanning avalanche, and contribution of spanning avalanches to magnetization jump, is augmented by analysis of spanning field (i.e., field triggering spanning avalanche), which enabled us to collapse averaged magnetization curves below critical disorder. Our study, based on extensive simulations of sufficiently large systems, reveals the dominant role of subcritical 2D-spanning avalanches in model behavior below and at the critical disorder. Other types of avalanches influence finite systems, but their contribution for large systems remains small or vanish.

  18. Avalanche-diode oscillator circuit with tuning at multiple frequencies

    NASA Technical Reports Server (NTRS)

    Parker, D.; Ablow, C. M.; Lee, R. E.; Karp, A.; Chambers, D. R.

    1971-01-01

    Detailed theoretical analysis of three different modes or types of high efficiency oscillation in a PIN diode are presented. For the TRAPATT mode in a PIN diode, it is shown that a traveling avalanche zone is not necessary to generate a dense trapped plasma. An economical computer program for TRAPATT oscillations in a PIN diode is described. Typical results of diode power, dc-to-RF conversion efficiency, and required circuit impedances are presented for several different current waveforms. A semianalytical solution for a second type of high efficiency mode in a PIN diode is derived assuming a rectangular current waveform. A quasi-static approximation is employed to derive a semianalytical solution for the voltage across a PIN diode in a third mode, where avalanching occurs during a major portion of a half cycle. Calculations for this mode indicate that the power increases proportionally to the magnitude of the drive current with a small decrease in efficiency relative to the ordinary TRAPATT mode. An analytical solution is also given for a PIN diode, where it is assumed that the ionization coefficient is a step function. It is shown that the step-ionization approximation permits one to draw possible patterns of avalanche region in the depletion layer as a function of time. A rule governing admissible patterns is derived and an example solution given for one admissible pattern. Preliminary experimental results on the high-efficiency oscillations are presented and discussed. Two different experimental circuits, which used channel-dropping filters to provide independent harmonic tuning, are described. Simpler circuits used to produce high-efficiency oscillations are discussed. Results of experiments using inexpensive Fairchild FD300 diodes are given.

  19. Neuronal avalanches in the resting MEG of the human brain.

    PubMed

    Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N A; Smith, Marie L; Coppola, Richard; Bullmore, Edward; Plenz, Dietmar

    2013-04-17

    What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.

  20. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  1. Avalanche proton-boron fusion based on elastic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Eliezer, Shalom; Hora, Heinrich; Korn, Georg; Nissim, Noaz; Martinez Val, Josè Maria

    2016-05-01

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 109 alphas. We suggest that these unexpected very high fusion reactions of proton with 11B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-11B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  2. A 1.06 micrometer avalanche photodiode receiver

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  3. Sixteen-year follow-up of childhood avalanche survivors

    PubMed Central

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05). When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001), poor financial status (F=12.21, p<0.001), and unemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic

  4. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.

    PubMed

    Espinosa-Marzal, R M; Arcifa, A; Rossi, A; Spencer, N D

    2014-01-01

    We have measured forces between mica surfaces across two hydrophobic ionic liquids with a surface forces apparatus. Both surface-adsorbed water and alkyl-chain length on the imidazolium cation influence the structure of the nanoconfined film and the dynamics of film-thickness transitions. Friction shows accumulative microslips as precursors to collective "avalanches" that abruptly reduce friction momentarily. This behavior is interpreted as a consequence of interlayer ion correlations within the 1 to 2 nm thick film; we identify this to be analogous to the friction response of crackling noise systems over a broad range of sizes.

  5. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  6. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones.

  7. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  8. New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization.

    PubMed

    Ramirez, David A; Hayat, Majeed M; Rees, Graham J; Jiang, Xudong; Itzler, Mark A

    2012-01-16

    Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load's feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today's counting rate barrier in the 1.55-μm detection window. PMID:22274495

  9. Snow-avalanche impact landforms in Breheimen, southern Norway: Origin, age, and paleoclimatic implications

    SciTech Connect

    Matthews, J.A.; McCarroll, D. )

    1994-05-01

    Twelve snow-avalanche ramparts in Jostedalen and Sprongdalen (Breheimen, southern Norway) are investigated to elucidate processes of formation, the history of avalanche activity, and their potential for paleoclimatic reconstruction. Variation in the form of these riverbank boulder ramparts reflects local patterns of avalanche impact. Differences in clast roundness between ramparts, avalanche tracks, and river beds indicate that, on average, 50 to 60% of the clasts in the ramparts originate from river bedload as opposed to avalanche source areas or tracks. Rampart clasts increase in roundness downstream over a distance of 12 km, and the contribution from the river bed varies from 26 to 80% depending on local factors. Conventional lichenometric dating suggests ages for the initiation of rampart formation of 250 to 2000 yr, but they probably have a much longer history. Lichen-size frequency distributions, using the largest lichen from each of n boulders, reflect the age-frequency of surface boulders, providing a record of late Holocene avalanche activity. A simulation model suggests that maximum avalanche activity affected nine of the ramparts during the 19th century, after the peak of the Little Ice Age. The pattern of avalanche activity differs from the pattern of glacier variations but is in close agreement with that of debris-flow activity. The ramparts may yield a valuable proxy record of winter snowfall. 48 refs., 12 figs., 4 tabs.

  10. A Methodology To Allow Avalanche Forecasting on an Information Retrieval System.

    ERIC Educational Resources Information Center

    Purves, R. S.; Sanderson, M.

    1998-01-01

    Presents adaptations and tests undertaken to allow an information retrieval system to forecast the likelihood of avalanches on a particular day; the forecasting process uses historical data of the weather and avalanche conditions for a large number of days. Describes a method for adapting these data into a form usable by a text-based IR system and…

  11. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Barber, David L.

    1988-01-01

    Because of increased recreational use of alpine environments in the western United States, this lesson plan integrates the themes of location, place, and human-environment interaction in order to teach avalanche hazard awareness. Presents classroom activities and research topics to enhance student awareness of snow avalanche hazards. Provides…

  12. Application of a regional approach for hazard mapping at an avalanche site in northern Italy

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Rosso, R.

    2008-04-01

    The currently adopted approach to avalanche hazard mapping in northern Italy includes avalanche dynamic modelling, coupled with statistical analysis of snow depth at avalanche start. The 30-years and 300-years return period avalanches at a given site are modelled and their run out zone and pressure are evaluated. The snow depth in the avalanche release zone is assumed to coincide with the three days snow fall depth H72 featuring a return period of 30 years and 300 years, respectively. In the Italian alps only short series of observed snow depth are available, covering a period of 20 years or so, thus requiring a regional approach, or index value approach for the purpose of high return period quantile estimation. Based of former studies, here we apply the index value approach developed for the Lombardia region, in northern Italy, for hazard mapping in a particular avalanche site. A dynamic avalanche model is tuned using the runout data for two major observed avalanche events. Then, the 30-years and 300-years runout zone and dynamic pressure are calculated. It is then shown that the obtained hazard maps are more accurate than those obtained using the evaluation of H72 as deduced from distribution fitting in a single site.

  13. Possible changes for mudflow and avalanche activity in former Soviet Union due to the global warming

    SciTech Connect

    Glazovskaya, T.G.; Sidorova, T.L.; Seliverstov, Y.G.

    1996-12-31

    Past research, as well as laboratory evidence have revealed a relationship between climate, mudflow, and avalanche activity. It is possible to predict changes in mudflow and avalanche activity by using climate models. In this study, the GFDL model was used which contained data on mean monthly air temperature, precipitation, and carbon dioxide concentrations.

  14. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  15. Two examples of expert knowledge based system for avalanche forecasting and protection

    NASA Astrophysics Data System (ADS)

    Buisson, Laurent; Giraud, Gérald

    1995-11-01

    In avalanche modelling and control and in avalanche forecasting, most of the knowledge is based on scientific theory but the experience of specialists (field practitioners, forecasters...) plays a large role. This paper presents two French computer-based systems dedicated to avalanche modelling and control and to avalanche forecasting. They are both based on expert knowledge. ELSA (Etude et Limites de Sites d'Avalanches), is a computer system dedicated to the modelling of the knowledge of avalanche experts and to the integration of new symbolic computer models with classical numerical models. The basic aim of integration is to build a unique computer system incorporating all these models. After a description of the terrain representation, we present the different scenarios that ELSA takes into account. Then, the methods which deal with some phenomena occurring in avalanches are described. The problems involved in the integration of these methods close this first part. MEPRA is an expert system built to create an objective tool in avalanche risk forecasting. This development allowed us to imagine a processing system for 2 of the most important problems in avalanche risk forecasting: representation of the present snow cover characteristics and evaluation of avalanche instability and risk. In this way, mechanics and thermodynamics play a major role in the system. After a punctual validation at the location of a snow weather station and in order to describe the great variability of the snow pack and the avalanche risk in a massif, the MEPRA expert system was connected with a meteorological analysis system, SAFRAN and a numerical model to simulate the snow cover CROCUS. Then, every day, a MEPRA expert analysis is carried out in different locations with different orientations, slopes and altitudes. Its results were used successfully during the Winter Olympic Games of Albertville and by avalanche forecasters during the 92/93 winter season. The daily avalanche risks

  16. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  17. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    NASA Astrophysics Data System (ADS)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  18. High-speed, high-voltage pulse generation using avalanche transistor.

    PubMed

    Yong-Sheng, Gou; Bai-Yu, Liu; Yong-Lin, Bai; Jun-Jun, Qin; Xiao-Hong, Bai; Bo, Wang; Bing-Li, Zhu; Chuan-Dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design. PMID:27250452

  19. High-speed, high-voltage pulse generation using avalanche transistor

    NASA Astrophysics Data System (ADS)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  20. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-07-07

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity.

  1. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  2. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  3. Geometrical properties of avalanches in self-organized critical models of solar flares.

    PubMed

    McIntosh, Scott W; Charbonneau, Paul; Bogdan, Thomas J; Liu, Han-Li; Norman, James P

    2002-04-01

    We investigate the geometrical properties of avalanches in self-organized critical models of solar flares. Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward comparing these properties to those inferred from spatially and temporally resolved flare observations, we consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions, and the two-dimensional projections of the latter. The nature of the relationship between the avalanching volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of avalanches can bring into agreement hitherto discrepant results of observational analyses based on simple, nonfractal geometries for the flaring volume.

  4. Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram

    2014-05-01

    In this work, we evaluate the avalanche effect and bit independence properties of the double random phase encoding (DRPE) algorithm in the Fourier and Fresnel domains. Experimental results show that DRPE has excellent bit independence characteristics in both the Fourier and Fresnel domains. However, DRPE achieves better avalanche effect results in the Fresnel domain than in the Fourier domain. DRPE gives especially poor avalanche effect results in the Fourier domain when only one bit is changed in the plaintext or in the encryption key. Despite this, DRPE shows satisfactory avalanche effect results in the Fresnel domain when any other number of bits changes in the plaintext or in the encryption key. To the best of our knowledge, this is the first report on the avalanche effect and bit independence behaviors of optical encryption approaches for bit units.

  5. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. PMID:26151674

  6. Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors.

    PubMed

    Senanayake, Pradeep; Hung, Chung-Hong; Farrell, Alan; Ramirez, David A; Shapiro, Joshua; Li, Chi-Kang; Wu, Yuh-Renn; Hayat, Majeed M; Huffaker, Diana L

    2012-12-12

    We demonstrate a nanopillar (NP) device structure for implementing plasmonically enhanced avalanche photodetector arrays with thin avalanche volumes (∼ 310 nm × 150 nm × 150 nm). A localized 3D electric field due to a core-shell PN junction in a NP acts as a multiplication region, while efficient light absorption takes place via surface plasmon polariton Bloch wave (SPP-BW) modes due to a self-aligned metal nanohole lattice. Avalanche gains of ∼216 at 730 nm at -12 V are obtained. We show through capacitance-voltage characterization, temperature-dependent breakdown measurements, and detailed device modeling that the avalanche region is on the order of the ionization path length, such that dead-space effects become significant. This work presents a clear path toward engineering dead space effects in thin 3D-confined multiplication regions for high performance avalanche detectors for applications in telecommunications, sensing and single photon detection.

  7. Snow-avalanche hazard forecasting in the Krkonoše Mountains, Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Pavlasek, Jiri; Juras, Roman; Klimes, Jan; Klose, Zbynek; Balek, Jan; Roubinek, Jiri; Taborik, Petr; Hajek, Petr

    2014-05-01

    The Krkonoše Mts., with the highest peak at 1602 m, are the highest mountains in the Czech Republic. This middle-mountain range covers an area of 454 km2 and includes 53 permanent avalanche paths. Despite its low altitude Krkonoše experience considerably high avalanche activity, even causing fatalities. Unfortunately, and so far, the local authorities do not have a professional tool for avalanche forecasting available. Within the framework of a project devoted to preparation of a tool for snow avalanche hazard forecasting an analysis of historical datasets was performed including weather and snow condition data covering more than 1100 avalanche events in the last 50 years. HR-DEM from airborne LiDAR was used to get accurate slope and terrain characteristics, which were used for calculation of a release susceptibility map using ANN method. Afterwards and regional runout susceptibility was calculated employing Flow-R code (http://www.flow-r.org) and information from the regression analysis of avalanche runout length. This "static" information about avalanche hazard is then being coupled with snow distribution and stability models in order to assess the snow-avalanche hazard in near-real time. For the snow distribution modelling are being tested two models - Alpine 3D and newly developed spatial distributed HBV-ETH model. It is planned that the forecasting system will be employed as a public avalanche alert system for the Krkonoše Mts. and consequently will be extended for the whole Czechia under the patronage of the Mountain Rescue Service, an organization responsible for the public snow-avalanche hazard forecasting. The system will use forecasted ALADIN weather data.

  8. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.

    PubMed

    Amon, Daniel L; Niculescu, Tatiana; Utter, Brian C

    2013-07-01

    We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θ(c) and the resulting angle of repose θ(r) are broadly distributed with an approximate power-law distribution of avalanches θ(c)-θ(r) for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θ(c)≈45° and θ(r)≈39°) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.

  9. Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Casteller, A.; Christen, M.; Villalba, R.; Martínez, H.; Stöckli, V.; Leiva, J. C.; Bartelt, P.

    2008-05-01

    The damage caused by snow avalanches to property and human lives is underestimated in many regions around the world, especially where this natural hazard remains poorly documented. One such region is the Argentinean Andes, where numerous settlements are threatened almost every winter by large snow avalanches. On 1 September 2002, the largest tragedy in the history of Argentinean mountaineering took place at Cerro Ventana, Northern Patagonia: nine persons were killed and seven others injured by a snow avalanche. In this paper, we combine both numerical modeling and dendrochronological investigations to reconstruct this event. Using information released by local governmental authorities and compiled in the field, the avalanche event was numerically simulated using the avalanche dynamics programs AVAL-1D and RAMMS. Avalanche characteristics, such as extent and date were determined using dendrochronological techniques. Model simulation results were compared with documentary and tree-ring evidences for the 2002 event. Our results show a good agreement between the simulated projection of the avalanche and its reconstructed extent using tree-ring records. Differences between the observed and the simulated avalanche, principally related to the snow height deposition in the run-out zone, are mostly attributed to the low resolution of the digital elevation model used to represent the valley topography. The main contributions of this study are (1) to provide the first calibration of numerical avalanche models for the Patagonian Andes and (2) to highlight the potential of textit{Nothofagus pumilio} tree-ring records to reconstruct past snow-avalanche events in time and space. Future research should focus on testing this combined approach in other forested regions of the Andes.

  10. Spatiotemporal chaotic unjamming and jamming in granular avalanches

    PubMed Central

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment – a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  11. Spatiotemporal chaotic unjamming and jamming in granular avalanches.

    PubMed

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment - a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  12. Scale-free avalanche dynamics in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Ispanovity, Pater Dusan; Laurson, Lasse; Zaiser, Michael; Zapperi, Stefano; Groma, Istvan; Alava, Mikko

    2015-03-01

    We investigate the properties of strain bursts (dislocation avalanches) occurring during plastic deformation of crystalline matter using two dimensional discrete dislocation dynamics (DDD). We perform quasistatic stress-controlled simulations with three DDD models differing in the spatiotemporal discretization and the mobility law assumed for individual dislocations. We find that each model exhibits identical avalanche dynamics with the following properties: (i) strain burst sizes follow a power law distribution characterized by an exponent τ ~ 1 . 0 and (ii) the distribution in truncated at a cutoff that diverges with increasing system size at any applied stress level. It has been proposed earlier that plastic yielding can be described in terms of a continuous phase transition of depinning type and its critical point is at the yield stress. We will demonstrate, however, that our results are inconsistent with cutoff scaling in depinning systems (like magnetic domain walls or earthquakes) and that the system behaves as critical at every stress level. We, therefore, conclude that in the models studied plastic yielding cannot be associated with a continuous phase transition. Financial supports of the Hungarian Scientific Research Fund (OTKA) under Contract Numbers PD-105256 and K-105335 and of the European Commission under Grant Agreement No. CIG-321842 are acknowledged.

  13. From an electron avalanche to the lightning discharge

    NASA Astrophysics Data System (ADS)

    Zalikhanov, B. Zh.

    2016-01-01

    The goal of this work is to describe qualitatively the physics of processes which begin with an electron avalanche and finish in a lightning discharge. A streamer model is considered that is based on studies of the recently discovered processes occurring in the prestreamer region. The investigation and analysis of these processes enabled making the conclusion that they are, in essence, the attendant processes, which ensure the electron avalanche-to-streamer transition, and may be interpreted as a manifestation of properties of a double charge layer exposed to the external electric field. The pressing problems of physical processes which form a lightning discharge are considered from the standpoint of new ideas about the mechanism of the streamer formation and growth. Causes of the emergence of coherent super-high-frequency radiation of a leader and the neutron production in a lightning discharge are revealed that have not been explained so far in the theory of gas discharge. Based also on new ideas about the lightning discharge, a simple ball-lightning model, providing answers to almost allquestions formulated from numerous observations on the behavior of ball lightning, is offered, and the need of a new design of lightning protection instead of the traditional rod is discussed.

  14. Avalanche of stimulated forward scattering in high harmonic generation.

    PubMed

    Serrat, Carles; Roca, David; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2016-04-18

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit an essential characteristic, namely the input signal during the propagation in the amplifier medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth. We perform a theoretical study motivated and supported by experimental data on a He gas amplifier driven by intense 30-fs-long laser pulses and seeded with attosecond pulse trains generated in a separated Ne gas jet. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of the avalanche effect in the amplification of extreme ultraviolet attosecond pulse trains. We theoretically separate and identify different physical processes taking part in the interaction and we demonstrate that X-ray parametric amplification dominates over others. In particular, we identify strong-field mediated intrapulse X-ray parametric processes as decisive for amplification at the single-atom level. We confirm that the amplification takes place at photon energies where the amplifier is seeded and when the seed pulses are perfectly synchronized with the driving strong field in the amplifier. Furthermore, propagation effects, phase matching and seed synchronization can be exploited to tune the amplified spectral range within the seed bandwidth. PMID:27137242

  15. Anterior capsulotomy with a pulsed-electron avalanche knife

    PubMed Central

    Palanker, Daniel; Nomoto, Hiroyuki; Huie, Philip; Vankov, Alexander; Chang, David F.

    2009-01-01

    PURPOSE To evaluate a new pulsed-electron avalanche knife (PEAK) design for creating a continuous curvilinear capsulorhexis (CCC) and compare the CCC with a mechanical capsulorhexis. SETTING Department of Ophthalmology, Stanford University, Stanford, California, USA. METHODS In this study, CCCs were created in freshly enucleated bovine eyes and in rabbit eyes in vivo. The cutting velocity was adjusted by controlling the burst repetition rate, voltage amplitude, and burst duration. Tissue samples were fixed and processed for histology and scanning electron microscopy (SEM) immediately after surgery. RESULTS The study included 50 bovine eyes and 10 rabbit eyes. By adjusting the electrosurgical waveforms, gas-bubble formation was minimized to permit good surgical visualization. The optimum voltage level was determined to be ±410 V with a burst duration of 20 μs. Burst repetition rate, continuously adjustable from 20 to 200 Hz with footpedal control, allowed the surgeon to vary linear cutting velocity up to 2.0 mm/second. Histology and SEM showed that the pulsed-electron avalanche knife produced sharp-edged capsule cutting without radial nicks or tears. CONCLUSIONS The pulsed-electron probe duplicated the surgical feel of a 25-gauge cystotome and created a histologically smooth capsule cut. PMID:20117716

  16. Characterization of midwave infrared InSb avalanche photodiode

    SciTech Connect

    Abautret, J. Evirgen, A.; Perez, J. P.; Christol, P.; Rothman, J.; Cordat, A.

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  17. Tuned critical avalanche scaling in bulk metallic glasses

    SciTech Connect

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

  18. Spatiotemporal chaotic unjamming and jamming in granular avalanches.

    PubMed

    Wang, Ziwei; Zhang, Jie

    2015-01-30

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment - a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations.

  19. Tuned critical avalanche scaling in bulk metallic glasses

    DOE PAGES

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  20. Active microrheology in active matter systems: Mobility, intermittency, and avalanches.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2015-03-01

    We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition.

  1. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-08-12

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  2. Supershort avalanche electron beam in SF6 and krypton

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  3. Relativistic electron avalanches as a thunderstorm discharge competing with lightning

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.; Smith, David M.; Dwyer, Joseph R.; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K.

    2015-08-01

    Gamma-ray `glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by >=9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  4. An Atomically Layered InSe Avalanche Photodetector.

    PubMed

    Lei, Sidong; Wen, Fangfang; Ge, Liehui; Najmaei, Sina; George, Antony; Gong, Yongji; Gao, Weilu; Jin, Zehua; Li, Bo; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel; Halas, Naomi J

    2015-05-13

    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices.

  5. Enhanced Avalanche Ionization by RF Fields Creating an Ultracold Plasma

    NASA Astrophysics Data System (ADS)

    Robinson, M. P.; Gallagher, T. F.; Laburthe Tolra, B.; Pillet, P.

    2001-05-01

    Ultracold plasmas have been shown to evolve from initially frozen Rydberg gases held in magneto-optical traps.(M.P. Robinson, B. Laburthe Tolra, Michael W. Noel, T.F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85), 4466 (2000) We report the enhancement of the avalanche ionization process by application of radiofrequency fields. An initial slow ionization rate is observed in the Rydberg sample due to black body ionization and ionizing collisions with hot Rydberg atoms. This produces an overall posititve space charge of cold ions as the hot electrons leave the sample. Once a threshold density of positive charges is built up, the hot electrons become trapped to the sample, leading to avalance ionization due to electron-Rydberg collisions. The mechanism of the ionization remains unclear. However, the application of radiofrequency fields, in the 1 V/cm, 100 MHz range, dramatically enhances the rate of avalanche ionization without changing the threshold density at which it occurs. Apparently, the limiting parameter is the rate of collisional ionization of Rydberg atoms by electrons.

  6. Silicon avalanche pixel sensor for high precision tracking

    NASA Astrophysics Data System (ADS)

    D'Ascenzo, N.; Marrocchesi, P. S.; Moon, C. S.; Morsani, F.; Ratti, L.; Saveliev, V.; Savoy Navarro, A.; Xie, Q.

    2014-03-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of the large track occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS processes and integration of processing electronics.

  7. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-01-01

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500. PMID:26263880

  8. Active microrheology in active matter systems: Mobility, intermittency, and avalanches.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2015-03-01

    We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition. PMID:25871116

  9. Development and characterization of CMOS avalanche photodiode arrays

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Christian, James F.; Augustine, Frank L.; Squillante, Michael R.; Entine, Gerald

    2005-04-01

    Avalanche photodiode (APD) arrays fabricated by using complementary metal-oxide-semiconductor (CMOS) fabrication technology offer the possibility of combining these high sensitivity detectors with cost effective, on-board, complementary circuitry. Using CMOS techniques, Radiation Monitoring Devices has developed prototype pixels with active diameters ranging from 5 to 60 microns and with measured quantum efficiencies of up to 65%. The prototype CMOS APD pixel designs support both proportional and Geiger modes of photo-detection. When operating in Geiger mode, these APD"s act as single-optical-photon-counting detectors that can be used for time-resolved measurements under signal-starved conditions. We have also designed and fabricated CMOS chips that contain not only the APD pixels, but also associated circuitry for both actively and passively quenching the self-propagating Geiger avalanche. This report presents the noise and timing performance for the prototype CMOS APD pixels in both the proportional and Geiger modes of operation. It compares the quantum efficiency and dark-count rate of different pixel designs as a function of the applied bias and presents a discussion of the maximum count rates that is obtained with each of the two types of quenching circuits for operating the pixel in Geiger mode. Preliminary data on the application of the APD pixels to laser ranging and fluorescent lifetime measurement is also presented.

  10. Active microrheology in active matter systems: Mobility, intermittency, and avalanches

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition.

  11. Risk analysis for dry snow slab avalanche release by skier triggering

    NASA Astrophysics Data System (ADS)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles

  12. New Analysis Techniques for Avalanches in a Conical Bead Pile with Cohesion

    NASA Astrophysics Data System (ADS)

    Tieman, Catherine; Lehman, Susan

    2015-03-01

    Avalanche statistics and pile geometry for 3 mm steel spheres dropped on a conical bead pile were studied at different drop heights and different cohesion strengths. The pile is initially built on a circular base and is subsequently slowly driven by adding one bead at a time to the apex of the pile. We investigate the dynamic response of the pile by recording avalanches off the pile over the course of tens of thousands of bead drops. The level of cohesion is tuned through use of an applied uniform magnetic field. Changes in the pile mass and geometry were investigated to determine the effect of cohesion and drop height on the angle of repose. The angle of repose increased with cohesion strength, and decreased somewhat for higher drop heights. The packing density of beads is expected to decrease as magnetic cohesion increases, but for our 20 000-bead pile, this effect has not been observed. The proportion of beads removed from the pile by different avalanche sizes was also calculated. Although larger avalanches are much rarer occurrences, they carry away a larger fraction of the total avalanched mass than small avalanches. As the pile cohesion increases, the number of small and medium avalanches decreases so that this mass loss distribution shifts more strongly to large sizes.

  13. Avalanche situation in Turkey and back-calculation of selected events

    NASA Astrophysics Data System (ADS)

    Aydın, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-01-01

    In Turkey, an average of 24 people dies in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea Region where high mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European and American countries. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS combined with a Digital Elevation Model (DEM)-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, flow velocities, impact pressure and flow height.

  14. Avalanche Survival After Rescue With the RECCO Rescue System: A Case Report.

    PubMed

    Grasegger, Katharina; Strapazzon, Giacomo; Procter, Emily; Brugger, Hermann; Soteras, Inigo

    2016-06-01

    We report a case of survival of a completely buried avalanche victim after being located with the radar-based RECCO Rescue System. In the winter of 2015, 2 off-piste skiers were completely buried in an avalanche near the secured ski area in Baqueira Beret, Spain. The first victim was located with the RECCO Rescue System in less than 35 minutes and was alive and conscious at extrication. This system emits radio waves and requires a specific reflector. It is a portable device that is used by more than 600 rescue organizations worldwide, especially in secured ski areas. The device should be brought to the avalanche site together with electronic avalanche transceivers, a probing team, and avalanche dogs. In the hands of experienced professionals, the device may allow rapid location of victims not carrying an electronic avalanche transceiver. Although it is not the first successful extrication of a victim with the RECCO Rescue System, it is the first case published in the medical literature and is intended to encourage data collection and to increase our understanding of the effectiveness of this device in avalanche rescue. PMID:27116920

  15. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  16. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    SciTech Connect

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes, and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.

  17. Kinetic modelling of runaway electron avalanches in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R. S.; Saint-Laurent, F.; Vlainic, M.

    2015-09-01

    Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128-202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker-Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355-62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally, the

  18. Measurement of electrical avalanches and optical radiation near solid insulators in high pressure (up to 0. 3 MPa) nitrogen gas

    SciTech Connect

    Mahajan, S.M. ); Sudarshan, T.S. )

    1991-03-01

    Electron and ion avalanches have been recorded near a variety of insulators (plexiglas, teflon, high-density polyethylene, low-density polyethylene, polypropylene, delrin, polyvinyl chloride, and nylon) in nitrogen gas at pressures of 0.1, 0.2, and 0.3 MPa. With the exception of nylon, suppression of avalanches has been observed in the presence of insulators. In addition to electron and ion avalanches, simultaneous measurement of optical radiation associated with an electron avalanche was successfully carried out. Qualitative explanations have been provided for the suppression of avalanches near most insulators and an anomalous growth of avalanches near nylon insulators. Photoemission from nylon surfaces appears to be responsible for the enhanced growth of avalanches near nylon insulators. More precise measurements of optical radiation are needed to better understand the electron-photon interactions near a solid insulator in a gaseous dielectric medium.

  19. Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.

    2004-01-01

    In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.

  20. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    NASA Astrophysics Data System (ADS)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  1. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  2. Application of LANDSAT data to delimitation of avalanche hazards in Montane, Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H. (Principal Investigator); Ives, J. D.; Summer, R.

    1976-01-01

    The author has identified the following significant results. Photointerpretation of individual avalanche paths on single band black and white LANDSAT images is greatly hindered by terrain shadows and the low spatial resolution of the LANDSAT system. Maps produced in this way are biased towards the larger avalanche paths that are under the most favorable illumination conditions during imaging; other large avalanche paths, under less favorable illumination, are often not detectable and the smaller paths, even those defined by sharp trimlines, are only rarely identifiable.

  3. Modeling the gain and bandwidth of submicron active layer n+-i-p+ avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Majumder, Kanishka; Das, N. R.

    2012-10-01

    The electron initiated avalanche gain and bandwidth are calculated for thin submicron GaAs n+-i-p+ avalanche photodiode. A model is used to estimate the avalanche build-up of carriers in the active multiplication layer considering the dead-space effect. In the model, the carriers are identified both by their energy and position in the multiplication region. The excess energy of the carriers above threshold is assumed to be equally distributed among the carriers generated after impact ionization. The gain versus bias and bandwidth versus gain characteristics of the device are also demonstrated for different active layer thicknesses of the APD.

  4. Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.

    PubMed

    Girardi-Schappo, M; Kinouchi, O; Tragtenberg, M H R

    2013-08-01

    Many different kinds of noise are experimentally observed in the brain. Among them, we study a model of noisy chemical synapse and obtain critical avalanches for the spatiotemporal activity of the neural network. Neurons and synapses are modeled by dynamical maps. We discuss the relevant neuronal and synaptic properties to achieve the critical state. We verify that networks of functionally excitable neurons with fast synapses present power-law avalanches, due to rebound spiking dynamics. We also discuss the measuring of neuronal avalanches by subsampling our data, shedding light on the experimental search for self-organized criticality in neural networks.

  5. Two-threshold model for scaling laws of noninteracting snow avalanches

    USGS Publications Warehouse

    Faillettaz, J.; Louchet, F.; Grasso, J.-R.

    2004-01-01

    A two-threshold model was proposed for scaling laws of noninteracting snow avalanches. It was found that the sizes of the largest avalanches just preceding the lattice system were power-law distributed. The proposed model reproduced the range of power-law exponents observe for land, rock or snow avalanches, by tuning the maximum value of the ratio of the two failure thresholds. A two-threshold 2D cellular automation was introduced to study the scaling for gravity-driven systems.

  6. Spatially Extended Avalanches in a Hysteretic Capillary Condensation System: Superfluid {sup {bold 4}}He in Nuclepore

    SciTech Connect

    Lilly, M.P.; Wootters, A.H.; Hallock, R.B.

    1996-11-01

    Capacitive studies of hysteretic capillary condensation of superfluid {sup 4}He in Nuclepore have shown that the initial draining of the pores occurs over a small range of the chemical potential with avalanches present as groups of pores drain. In the work reported here, the avalanches in this system are shown to be nonlocal events which involve pores distributed at low density across the entire sample. The nonlocal avalanche behavior is shown to be enabled by the presence of a superfluid film connection among the pores. {copyright} {ital 1996 The American Physical Society.}

  7. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  8. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  9. Correcting for accidental correlations in saturated avalanche photodiodes.

    PubMed

    Grieve, J A; Chandrasekara, R; Tang, Z; Cheng, C; Ling, A

    2016-02-22

    In this paper we present a general method for estimating rates of accidental coincidence between a pair of single photon detectors operated within their saturation regimes. By folding the effects of recovery time of both detectors and the detection circuit into an "effective duty cycle" we are able to accomodate complex recovery behaviour at high event rates. As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated with detector saturation. We show that by post-processing using the updated model, we observe an improvement in polarization correlation visibility from 88.7% to 96.9% in our experimental dataset. This technique will be useful in improving the signal-to-noise ratio in applications which depend on coincidence measurements, especially in situations where rapid changes in flux may cause detector saturation. PMID:26907016

  10. Avalanche photodiode based time-of-flight mass spectrometry

    SciTech Connect

    Ogasawara, Keiichi Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  11. Solutions to heavy ion induced avalanche burnout in power devices

    NASA Astrophysics Data System (ADS)

    Wrobel, Theodore F.; Beutler, David E.

    1992-12-01

    A review of normal breakdown and current induced avalanche (CIA) breakdown mechanisms in silicon power transistors is presented. The applicability of the CIA model to heavy ion induced burnout is shown, and solutions to CIA in silicon power semiconductors are given. It is noted that solving the problem of CIA burnout in npn bipolar and n-channel DMOS devices is, at best, difficult. Several techniques of hardening these devices to the effects of heavy ion, dose-rate induced failure, and any other condition producing CIA are discussed. The most effective techniques are those that minimize the emitter current injection by reducing the emitter injection efficiency or making the parasitic bipolar more difficult to turn on. However, it is believed that the simplest solution to the problem is to use pnp bipolar and p-channel DMOS devices whenever possible.

  12. Design, fabrication, and characterization of InSb avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Abautret, J.; Evirgen, A.; Perez, J. P.; Christol, P.; Rouvié, A.; Cluzel, R.; Cordat, A.; Rothman, J.

    2013-12-01

    In this communication, the potentiality of InSb material as an avalanche photodiode (APD) device is investigated. Current density-voltage (J-V) characteristics at 77K of InSb pin photodiodes were simulated by using ATLAS software from SILVACO, in dark conditions and under illumination. In order to validate parameter values used for the modeling, theoretical J-V results were compared with experimental measurements performed on InSb diodes fabricated by molecular beam epitaxy. Next, assuming a multiplication process only induced by the electrons (e-APD), different designs of separate absorption and multiplication (SAM) APD structure were theoretically investigated and the first InSb SAM APD structure with 1μm thick multiplication layer was then fabricated and characterized.

  13. Universality of slip avalanches in flowing granular matter

    PubMed Central

    Denisov, D. V.; Lörincz, K. A.; Uhl, J. T.; Dahmen, K. A.; Schall, P.

    2016-01-01

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation. PMID:26883071

  14. Design and characterization of avalanche photodiodes in submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Pancheri, L.; Bendib, T.; Dalla Betta, G.-F.; Stoppa, D.

    2014-03-01

    The fabrication of Avalanche Photodiodes (APDs) in CMOS processes can be exploited in several application domains, including telecommunications, time-resolved optical detection and scintillation detection. CMOS integration allows the realization of systems with a high degree of parallelization which are competitive with hybrid solutions in terms of cost and complexity. In this work, we present a linear-mode APD fabricated in a 0.15μm process, and report its gain and noise characterization. The experimental observations can be accurately predicted using Hayat dead-space noise model. Device simulations based on dead-space model are then used to discuss the current status and the perspectives for the integration of high-performance low-noise devices in standard CMOS processes.

  15. Silicon technologies for arrays of Single Photon Avalanche Diodes

    PubMed Central

    Ceccarelli, Francesco; Rech, Ivan; Ghioni, Massimo

    2016-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/near-infrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure. PMID:27761058

  16. Rapid sequestration of rock avalanche deposits within glaciers.

    PubMed

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V

    2015-01-01

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.

  17. Universality of slip avalanches in flowing granular matter.

    PubMed

    Denisov, D V; Lörincz, K A; Uhl, J T; Dahmen, K A; Schall, P

    2016-02-17

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation.

  18. Systematic afterpulsing-estimation algorithms for gated avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Wiechers, Carlos; Ramírez-Alarcón, Roberto; Muñiz-Sánchez, Oscar R.; Yépiz, Pablo Daniel; Arredondo-Santos, Alejandro; Hirsch, Jorge G.; U'Ren, Alfred B.

    2016-09-01

    We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts which actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms which we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms which we propose here can complement technologies designed for the reduction of afterpulsing.

  19. Elastic-plastic-brittle transitions and avalanches in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-01-31

    A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

  20. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  1. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  2. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Musienko, Y.; Renker, D.

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1×1 mm 2. The properties of this device have been measured and will be reported.

  3. On the avalanche generation of runaway electrons during tokamak disruptions

    SciTech Connect

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-08-15

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model.

  4. Studies of avalanche photodiodes for scintillating fibre tracking readout

    SciTech Connect

    Fenker, H; Thomas, J

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ``Geiger Mode`` have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed.

  5. Systematic afterpulsing-estimation algorithms for gated avalanche photodiodes.

    PubMed

    Wiechers, Carlos; Ramírez-Alarcón, Roberto; Muñiz-Sánchez, Oscar R; Yépiz, Pablo Daniel; Arredondo-Santos, Alejandro; Hirsch, Jorge G; U'Ren, Alfred B

    2016-09-10

    We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts that actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead-time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms that we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms that we propose here can complement technologies designed for the reduction of afterpulsing. PMID:27661361

  6. Universality of slip avalanches in flowing granular matter.

    PubMed

    Denisov, D V; Lörincz, K A; Uhl, J T; Dahmen, K A; Schall, P

    2016-01-01

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation. PMID:26883071

  7. Strain Discontinuity, Avalanche, and Memory in Carbon Nanotube Serpentine Systems.

    PubMed

    Müssnich, Lucas C P A M; Chacham, Hélio; Soares, Jaqueline S; Barbosa Neto, Newton M; Shadmi, Nitzan; Joselevich, Ernesto; Cançado, Luiz Gustavo; Jorio, Ado

    2015-09-01

    This work addresses the problem of how a nano-object adheres to a supporting media. The case of study are the serpentine-like structures of single-wall carbon nanotubes (SWNTs) grown on vicinal crystalline quartz. We develop in situ nanomanipulation and confocal Raman spectroscopy in such systems, and to explain the results, we propose a dynamical equation in which static friction is treated phenomenologically and implemented as cutoff for velocities, via Heaviside step function and an adhesion force tensor. We demonstrate that the strain profiles observed along the SWNTs are due to anisotropic adhesion, adhesion discontinuities, strain avalanches, and memory effects. The equation is general enough to make predictions for various one- and two-dimensional nanosystems adhered to a supporting media. PMID:26226057

  8. Geiger-mode Avalanche Photodiodes for High Time Resolution Astrophysics

    NASA Astrophysics Data System (ADS)

    Phelan, Don; Morrison, Alan P.

    Geiger-mode Avalanche Photodiodes (GM-APDs) are establishing themselves as potential candidates for the broad temporal range covered in high time resolution astrophysics (HTRA). These detectors have already been employed in astronomical instrumentation and significant results have been obtained to date. Their high time resolution and quantum efficiency make these single photon event counting detectors ideal for observations of stochastic phenomena, and ultimately for extreme HTRA observations. In this chapter, we review the technology and to illustrate their potential we briefly touch on specific science goals and astronomical applications. We then focus on the fabrication and characterisation of GM-APDs, and discuss the development and challenges posed in designing array devices.

  9. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    PubMed Central

    Privitera, Simona; Tudisco, Salvatore; Lanzanò, Luca; Musumeci, Francesco; Pluchino, Alessandro; Scordino, Agata; Campisi, Angelo; Cosentino, Luigi; Finocchiaro, Paolo; Condorelli, Giovanni; Mazzillo, Massimo; Lombardo, Salvo; Sciacca, Emilio

    2008-01-01

    Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs). Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  10. Advanced active quenching circuits for single-photon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  11. Gravitational wet-avalanche pressure on pylon-like structures

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; Faug, Thierry; Köhler, Anselm; Baroudi, Djebar; Fischer, Jan-Thomas; Thibert, Emmanuel

    2016-04-01

    Low-speed wet-avalanches exert hydrostatic forces on structures which are surface-dependent, however neither the pressure amplification experienced by smaller structure has been quantified and the causes of the amplification understood. In particular, recent wet-snow avalanche pressure measurements, performed with small cells at the "Vallée the la Sionne" test site, indicate significantly higher pressures than those considered by engineering guidelines and common practice rules based only on the contribution of inertial forces. In order to gain a deeper understanding and investigate the relevance of these measurements for structural design, we analyze data collected at the "Vallée the la Sionne" on obstacles of different shapes and dimensions. We show that, the pressure measured on a 1 m2 pressure plate is, on average, 1.8 times smaller than the pressure measured on a 0.008 m2 piezoelectric cell, installed on a 0.60 m wide pylon, and 2.9 times smaller than the pressure measured on a 0.0125 m2 cantilever sensor, extending freely into the snow. The different pressures encountered by the different obstacles is quantitatively explained with a granular force model, assuming the formation of a mobilized volume of snow granules extending from the obstacle upstream. The results underscore the fundamental influence of the dimension of the sensor and the obstacle on pressures. Our study highlights the difficulties that appear in the estimation of forces in the gravitational flow regime, for which force amplification may be caused by this mobilized volume at the scale of the whole structure, but also by plastic wedges, or small dead zones, at the scale of the sensor mounted on a wider structure.

  12. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  13. Avalanche-to-streamer transition near hydrometeors in thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    In the early phase of lightning initiation, streamers must form near water droplets and or ice crystals, collectively called hydrometeors, as it is generally believed that the electric fields in a thunderstorm are below classical breakdown [1]. The hydrometeors, due to their dielectric property, electrically polarize and will enhance the thunderstorm electric field in localized areas just outside the surface, potentially above breakdown. Available electrons, from for example a cosmic ray event, are drawn towards the positive side of the polarized hydrometeor. Some electrons reach the localized area above breakdown, while oxygen molecules have absorbed others. In the area above breakdown electrons begin to multiply in number, creating electron avalanches towards the surface, leaving positive ions behind. This results in a charge separation, which potentially can initiate a positive streamer. The final outcome however strongly depends on several parameters, such as the strength of the thunderstorm electric field, the size and shape of the hydrometeor and the initial amount of electrons. In our letter [1] we introduced a dimensionless quantity M that we call the Meek number, based on the historical and well-used Reather-Meek criterion [2], as a measure of how likely it is to create an avalanche-to-streamer transition near a hydrometeor. Results from simulations showed that streamers can start in a field of only 15% of breakdown from large elongated shaped hydrometeors. Now we extended and generalized our method to arbitrary shaped hydrometeors and we take into account that potentially several electrons can reach the area above breakdown. Due to these effects we can predict smaller hydrometeors to be able to start streamers. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, U., Buitink, S., Scholten, O., & Trinh, G. T. N. (2015). Prediction of lightning inception by large ice particles and extensive air showers. Physical review letters, 115

  14. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.

  15. Avalanche criticality during compression of porcine cortical bone of different ages

    NASA Astrophysics Data System (ADS)

    Baró, Jordi; Shyu, Peter; Pang, Siyuan; Jasiuk, Iwona M.; Vives, Eduard; Salje, Ekhard K. H.; Planes, Antoni

    2016-05-01

    Crack events developed during uniaxial compression of cortical bones cut from femurs of developing pigs of several ages (4, 12, and 20 weeks) generate avalanches. These avalanches have been investigated by acoustic emission analysis techniques. The avalanche energies are power-law distributed over more than four decades. Such behavior indicates the absence of characteristic scales and suggests avalanche criticality. The statistical distributions of energies and waiting times depend on the pig age and indicate that bones become stronger, but less ductile, with increasing age. Crack propagation is equally age-dependent. Older pigs show, on average, larger cracks with a time distribution similar to those of aftershocks in earthquakes, while younger pigs show only statistically independent failure events.

  16. Analytical Solutions Involving Shock Waves for Testing Debris Avalanche Numerical Models

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi; Roberts, Stephen Gwyn

    2012-10-01

    Analytical solutions to debris avalanche problems involving shock waves are derived. The debris avalanche problems are described in two different coordinate systems, namely, the standard Cartesian and topography-linked coordinate systems. The analytical solutions can then be used to test debris avalanche numerical models. In this article, finite volume methods are applied as the numerical models. We compare the performance of the finite volume method with reconstruction of the conserved quantities based on stage, height, and velocity to that of the conserved quantities based on stage, height, and momentum for solving the debris avalanche problems involving shock waves. The numerical solutions agree with the analytical solution. In addition, both reconstructions lead to similar numerical results. This article is an extension of the work of Mangeney et al. (Pure Appl Geophys 157(6-8):1081-1096, 2000).

  17. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam. PMID:23002751

  18. Application of a New Rheological Model to Rock Avalanches: An SPH Approach

    NASA Astrophysics Data System (ADS)

    Manzanal, D.; Drempetic, V.; Haddad, B.; Pastor, M.; Martin Stickle, M.; Mira, P.

    2016-06-01

    Rock avalanches move large volumes of material causing a highly destructive power over large areas. In these events, it is possible to monitor the evolution of slopes but failure cannot be always prevented. For this reason, modelling of the propagation phase provides engineers with fundamental information regarding speed, track, runout and depth. From these data, it is possible to perform a better risk assessment and propose mitigation measures to reduce the potential hazard of specific area. The purpose of this paper is to present a depth integrated, SPH model, which can be used to simulate real rock avalanches and to assess the influence of the rheology on the avalanche properties. The paper compares the performance of different rheological models to reproduce the track, runout and depth of the final deposit for both, scale test and real events such as Frank and Thurwiesier rock avalanches. These sets of benchmarks provide information on the proposed model accuracy and limitations.

  19. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass.

    PubMed

    Chen, S H; Chan, K C; Wang, G; Wu, F F; Xia, L; Ren, J L; Li, J; Dahmen, K A; Liaw, P K

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.

  20. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  1. Statistics of avalanches in the self-organized criticality state of a Josephson junction

    SciTech Connect

    Matizen, E. V.; Martynets, V. G. Bezverkhii, P. P.

    2010-08-15

    Magnetic flux avalanches in Josephson junctions that include superconductor-insulator-superconductor (SIS) tunnel junctions and are magnetized at temperatures lower than approximately 5 K have been studied in detail. Avalanches are of stochastic character and appear when the magnetic field penetration depth {lambda} into a junction becomes equal to the length a of the Josephson junction with a decrease in the temperature. The statistical properties of such avalanches are presented. The size distribution of the avalanches is a power law with a negative noninteger exponent about unity, indicating the self-organized criticality state. The self-organized criticality state is not observed in Josephson junctions with a superconductor-normal metal-superconductor (SNS) junction.

  2. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Wells, G. L.

    1988-01-01

    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  3. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-01-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids. PMID:26912191

  4. Avalanche effect and bit independence behaviors of double random phase encoding schemes

    NASA Astrophysics Data System (ADS)

    Sultana, Nishat; Moon, Inkyu

    2016-06-01

    In this paper, we present an overview of the avalanche and bit independence characteristics of double random phase encoding (DRPE) scheme in the virtual optical domains. DRPE apparently demonstrates outstanding bit independence property in both the Fourier and Fresnel domains. Experimental results validate that the DRPE performance in Fresnel domain surpasses the DRPE in Fourier domain by showing better avalanche effect characteristics. The avalanche effect result is remarkably poor for the DRPE in Fourier domain when only one bit of the plaintext or encryption key is altered. In contrast, DRPE in Fresnel domain shows adequate avalanche effect results regardless of how many numbers of bits are altered in the plaintext or in the encryption key.

  5. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  6. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  7. Avalanche criticality during compression of porcine cortical bone of different ages.

    PubMed

    Baró, Jordi; Shyu, Peter; Pang, Siyuan; Jasiuk, Iwona M; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2016-05-01

    Crack events developed during uniaxial compression of cortical bones cut from femurs of developing pigs of several ages (4, 12, and 20 weeks) generate avalanches. These avalanches have been investigated by acoustic emission analysis techniques. The avalanche energies are power-law distributed over more than four decades. Such behavior indicates the absence of characteristic scales and suggests avalanche criticality. The statistical distributions of energies and waiting times depend on the pig age and indicate that bones become stronger, but less ductile, with increasing age. Crack propagation is equally age-dependent. Older pigs show, on average, larger cracks with a time distribution similar to those of aftershocks in earthquakes, while younger pigs show only statistically independent failure events.

  8. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Xiaoli, Tian; Shuojin, Lu; Hongyu, Zhou; Yangjun, Zhu; Zhengsheng, Han

    2013-03-01

    The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching (UIS) conditions is measured. This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT, which occur at different current conditions. The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor, which leads to the deterioration of the avalanche reliability of power MOSFETs. However, the results of the IGBT show two different failure behaviors. At high current mode, the failure behavior is similar to the power MOSFETs situation. But at low current mode, the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result.

  9. Investigation of the avalanche photodiodes for the CMS electromagnetic calorimeter operated at high gain

    NASA Astrophysics Data System (ADS)

    Deiters, K.; Diemoz, M.; Godinovic, N.; Ingram, Q.; Longo, E.; Montecchi, M.; Musienko, Y.; Nicol, S.; Patel, B.; Renker, D.; Reucroft, S.; Rusack, R.; Sakhelashvili, T.; Singovski, A.; Soric, I.; Swain, J.; Vikas, P.

    2001-04-01

    Avalanche Photodiodes (APD) with improved characteristics were developed by Hamamatsu Photonics for the Electromagnetic Calorimeter of the CMS experiment. This report presents measurements of the latest generation of APDs, which are capable to operate at high gains (˜2000).

  10. Two-threshold model for scaling laws of noninteracting snow avalanches.

    PubMed

    Faillettaz, Jerome; Louchet, Francois; Grasso, Jean-Robert

    2004-11-12

    The sizes of snow slab failure that trigger snow avalanches are power-law distributed. Such a power-law probability distribution function has also been proposed to characterize different landslide types. In order to understand this scaling for gravity-driven systems, we introduce a two-threshold 2D cellular automaton, in which failure occurs irreversibly. Taking snow slab avalanches as a model system, we find that the sizes of the largest avalanches just preceding the lattice system breakdown are power-law distributed. By tuning the maximum value of the ratio of the two failure thresholds our model reproduces the range of power-law exponents observed for land, rock, or snow avalanches. We suggest this control parameter represents the material cohesion anisotropy. PMID:15600971

  11. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass.

    PubMed

    Chen, S H; Chan, K C; Wang, G; Wu, F F; Xia, L; Ren, J L; Li, J; Dahmen, K A; Liaw, P K

    2016-01-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids. PMID:26912191

  12. Avalanche criticality during compression of porcine cortical bone of different ages.

    PubMed

    Baró, Jordi; Shyu, Peter; Pang, Siyuan; Jasiuk, Iwona M; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2016-05-01

    Crack events developed during uniaxial compression of cortical bones cut from femurs of developing pigs of several ages (4, 12, and 20 weeks) generate avalanches. These avalanches have been investigated by acoustic emission analysis techniques. The avalanche energies are power-law distributed over more than four decades. Such behavior indicates the absence of characteristic scales and suggests avalanche criticality. The statistical distributions of energies and waiting times depend on the pig age and indicate that bones become stronger, but less ductile, with increasing age. Crack propagation is equally age-dependent. Older pigs show, on average, larger cracks with a time distribution similar to those of aftershocks in earthquakes, while younger pigs show only statistically independent failure events. PMID:27300967

  13. Syn and post- emplacement transformations of the Misti (Peru) volcanic debris avalanches into lahars

    NASA Astrophysics Data System (ADS)

    Bernard, K.; Van Wyk de Vries, B.; Thouret, J.

    2012-12-01

    We identify stratigraphic, sedimentological and structural variations in lithofacies of debris-avalanche deposits from El Misti volcano in the Quebrada San Lazaro and Río Chili Valley, near the city of Arequipa (south Peru), to determine lithofacies transformations. We describe the internal process associated to the external conditions acting on debris-avalanche deposits in order to assess stages of transformations from the proximal to distal debris-avalanche deposits and the associated epiclastic deposits. Syn-emplacement transformations inside the volcanic debris-avalanche deposits in the upper course of the Rio Chili Valley: within a few meters, the proximal block facies of the sheared debris-avalanche deposit is transformed at the contact of the ash-rich alluvial deposits in thick units comprising a strongly sheared base of the deposit, then stratified matrix dominated beds with normally sorted boulders aligned with the beds. This is interpreted as the effect of strong shearing inside the confined and proximal debris avalanche during motion, which generated a localised stretching near the base of the deposit and the bulking of the thin water saturated basal layers: the bearing capacity of the matrix debris- avalanche is modified, the block facies has been transformed in a stratified matrix facies. The transformations by bulking along a strong sheared contact contribute to reduce the run-out distance of the debris avalanches in the Río Chili valley. Post-deposition evolutions of the debris-avalanche deposits in the Quebrada San Lazaro: in the upper course of the valley, the landslides in the debris- avalanche deposits related to water circulation destabilise the covering scree and volcanic colluvium dipping at 70°. The fragmentation and sorting due to gravity and water are the external processes which separate matrix and block elements; This is the first stage of transformation. The remobilisation of these separated fractions into lahars transforms this

  14. On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain

    NASA Astrophysics Data System (ADS)

    Goykhman, Ilya; Sassi, Ugo; Desiatov, Boris; Mazurski, Noa; Milana, Silvia; de Fazio, Domenico; Eiden, Anna; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel; Ferrari, Andrea C.

    2016-05-01

    We report an on-chip integrated metal-graphene-silicon plasmonic Schottky photodetector with 85mA/W responsivity at 1.55 um and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain~2. This paves the way to graphene integrated silicon photonics.

  15. Some influences of rock strength and strain rate on propagation of rock avalanches

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  16. Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle

    PubMed Central

    Ribeiro, Tiago L.; Copelli, Mauro; Caixeta, Fábio; Belchior, Hindiael; Chialvo, Dante R.; Nicolelis, Miguel A. L.; Ribeiro, Sidarta

    2010-01-01

    Background Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. Methodology/Principal Findings To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. Conclusions/Significance Altogether, the

  17. Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland)

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Vockenhuber, Christof; Aaron, Jordan; Hajdas, Irka; Ivy-Ochs, Susan

    2016-09-01

    Large rock avalanches constitute a critical process modulating the evolution of alpine landscapes; however, the relatively infrequent occurrence of these high-magnitude events makes identifying underlying process controls challenging. Here we describe two rock avalanches in the Rinderhorn area of the Bernese Alps, Switzerland, providing new mapping of rock avalanche source areas and deposits, refined volume estimates for each event, runout modeling back-analyses, and absolute age constraint from cosmogenic 36Cl surface exposure dating. Results reveal that the Daubensee rock avalanche released ~ 4 million m3 of limestone sliding from the western crest of the Rinderhorn. Debris ran out across a Lateglacial moraine before reaching the valley bottom and spreading, leaving thin (on average 7 m) deposits across a broad area. The runout resulted in a Fahrböschung angle of 21°. Part of the deposit now lies beneath Lake Daubensee. The Klein Rinderhorn rock avalanche released ~ 37 million m3 of limestone along a dip-slope sliding plane, with a maximum runout distance of 4.3 km and estimated Fahrböschung angle of 14°. Deposits bulked to ~ 47 million m3 running up the opposing slope, with distinct hummocky morphology in the proximal area and a distal longitudinal flow ridge. These deposits were later modified and partly obscured by ice avalanches from the nearby Altels peak. Cosmogenic 36Cl surface exposure dating revealed nearly coincident ages for both rock avalanches of 9.8 ± 0.5 ka. The large lag time between local deglaciation and failure suggests that the events were not directly triggered by deglaciation. Rather, the concurrent exposure ages, also coinciding with the nearby Kander valley rock avalanche as well as paleoseismic records from nearby lakes, strongly suggest seismic triggering.

  18. Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge

    USGS Publications Warehouse

    Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris

    2006-01-01

    In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.

  19. Avalanches in One-Dimensional Piles with Different Types of Bases

    SciTech Connect

    Altshuler, E.; Ramos, O.; Martinez, C.; Flores, L. E.; Noda, C.

    2001-06-11

    We perform a systematic experimental study of the influence of the type of base on the avalanche dynamics of slowly driven 1D ball piles. The control of base details allows us to explore a wide spectrum of pile structures and dynamics. The scaling properties of the observed avalanche distributions suggest that self-organized critical behavior is approached as the {open_quotes}base-induced{close_quotes} disorder at the pile profile increases.

  20. Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2000-01-01

    Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (<25 m) around Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (<500 yr. B.P.) were traveling at velocities in the range of 50 to 100 meters per second, the kinetic energy of the avalanches at the point of impact with the ocean would have been between 1014 and 1015 joules. Although some of this energy would be dissipated through boundary interactions and momentum transfer between the avalanche and the sea, the initial wave should have possessed sufficient kinetic energy to do geomorphic work (erosion, sediment transport, formation of wave-cut features) on the coastline of lowwer Cook Inlet. Because widespread evidence of the effects of large waves cannot be found, it appears that the debris avalanches could not have been traveling very fast when they entered the sea, or they happened during low tide and displaced only small volumes of water. In light of these results, the hazard from volcanigenic tsunamis from Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.

  1. Is extracorporeal rewarming indicated in avalanche victims with unwitnessed hypothermic cardiorespiratory arrest?

    PubMed

    Mair, Peter; Brugger, Hermann; Mair, Birgit; Moroder, Luca; Ruttmann, Elfriede

    2014-12-01

    International guidelines recommend using extracorporeal rewarming in all hypothermic avalanche victims with prolonged cardiac arrest if they have patent airways and a plasma potassium level≤12 mmol/L. The aim of this study was to evaluate outcome data to determine if available experience with extracorporeal rewarming of avalanche victims supports this recommendation. At Innsbruck Medical University Hospital, 28 patients with hypothermic cardiac arrest following an avalanche accident were resuscitated using extracorporeal circulation. Of these patients, 25 were extricated from the snow masses with no vital signs and did not survive to hospital discharge. Three patients had witnessed cardiac arrest after extrication and a core temperature of 21.7°C, 22°C, and 24.0°C, two of whom survived long-term with full neurological recovery. A search of the literature revealed only one asystolic avalanche victim with unwitnessed hypothermic cardiac arrest (core temperature 19°C) surviving long-term. All other avalanche victims in the medical literature surviving prolonged hypothermic cardiac arrest suffered witnessed arrest after extrication with a core temperature below 24°C. Our results suggest that prognosis of hypothermic avalanche victims with unwitnessed asystolic cardiac arrest and a core temperature>24°C is extremely poor. Available outcome data do not support the use of extracorporeal rewarming in these patients.

  2. Avalanches and hysteresis in frustrated superconductors and XY spin-glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Auditya; Andreanov, Alexei; Mueller, Markus

    2014-03-01

    We study avalanches along the hysteresis loop of long-range interacting spin-glasses with continuous XY symmetry - which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T = 0 configurations of the XY phases, as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events, and study the correlation between the no n-linear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, sim ilarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin-glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law, but rather have a typical size which scales with the system size.

  3. Is extracorporeal rewarming indicated in avalanche victims with unwitnessed hypothermic cardiorespiratory arrest?

    PubMed

    Mair, Peter; Brugger, Hermann; Mair, Birgit; Moroder, Luca; Ruttmann, Elfriede

    2014-12-01

    International guidelines recommend using extracorporeal rewarming in all hypothermic avalanche victims with prolonged cardiac arrest if they have patent airways and a plasma potassium level≤12 mmol/L. The aim of this study was to evaluate outcome data to determine if available experience with extracorporeal rewarming of avalanche victims supports this recommendation. At Innsbruck Medical University Hospital, 28 patients with hypothermic cardiac arrest following an avalanche accident were resuscitated using extracorporeal circulation. Of these patients, 25 were extricated from the snow masses with no vital signs and did not survive to hospital discharge. Three patients had witnessed cardiac arrest after extrication and a core temperature of 21.7°C, 22°C, and 24.0°C, two of whom survived long-term with full neurological recovery. A search of the literature revealed only one asystolic avalanche victim with unwitnessed hypothermic cardiac arrest (core temperature 19°C) surviving long-term. All other avalanche victims in the medical literature surviving prolonged hypothermic cardiac arrest suffered witnessed arrest after extrication with a core temperature below 24°C. Our results suggest that prognosis of hypothermic avalanche victims with unwitnessed asystolic cardiac arrest and a core temperature>24°C is extremely poor. Available outcome data do not support the use of extracorporeal rewarming in these patients. PMID:25531463

  4. Precursory seismicity associated with frequent, large ice avalanches on Iliamna Volcano, Alaska, USA

    USGS Publications Warehouse

    Caplan-Auerbach, Jacqueline; Huggel, C.

    2007-01-01

    Since 1994, at least six major (volume>106 m3) ice and rock avalanches have occurred on Iliamna volcano, Alaska, USA. Each of the avalanches was preceded by up to 2 hours of seismicity believed to represent the initial stages of failure. Each seismic sequence begins with a series of repeating earthquakes thought to represent slip on an ice-rock interface, or between layers of ice. This stage is followed by a prolonged period of continuous ground-shaking that reflects constant slip accommodated by deformation at the glacier base. Finally the glacier fails in a large avalanche. Some of the events appear to have entrained large amounts of rock, while others comprise mostly snow and ice. Several avalanches initiated from the same source region, suggesting that this part of the volcano is particularly susceptible to failure, possibly due to the presence of nearby fumaroles. Although thermal conditions at the time of failure are not well constrained, it is likely that geothermal energy causes melting at the glacier base, promoting slip and culminating in failure. The frequent nature and predictable failure sequence of Iliamna avalanches makes the volcano an excellent laboratory for the study of ice avalanches. The prolonged nature of the seismic signal suggests that warning may one day be given for similar events occurring in populated regions.

  5. A solid-state amorphous selenium avalanche technology for low photon flux imaging applications

    PubMed Central

    Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2010-01-01

    Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217

  6. A Real Two-Phase Mechanical Model for Rock-Ice Avalanches

    NASA Astrophysics Data System (ADS)

    Pudasaini, S. P.; Krautblatter, M.

    2012-04-01

    Rock-ice avalanches in high mountain permafrost environments are a hazardous and poorly understood process. Their hazard potential derives from the large volume, high velocities, the potential entrainment of large amounts of rock-debris, ice, snow and water during the flow, high impact pressures, and unpredictable flow paths and deposition patterns. In contrast to the usual single-phase model of rock avalanches, the solid phase (ice) in rock-ice avalanches can transform to fluid (water or slurry) during the course of the debris-avalanche and fundamentally alter the multiple mechanical processes. We postulate that a real two-phase debris flow model could much better address the dynamic interaction of solid (rock and ice) and fluid (water, snow, slurry and fine particles) rather than a simple single-phase Voellmy- or Coulomb-type model. For this, we enhance the general two-phase debris flow model proposed by Pudasaini (2011) by additionally introducing two new mechanical aspects typical for the rock-ice avalanches: (a) the dynamic strength weakening including the internal fluidization and basal lubrication, as well as (b) the internal mass and momentum exchanges between the phases. In these models, the effective basal and internal friction angles are variable and are described in terms of evolving effective solid volume fraction (rock and ice), friction factors, volume fraction of the ice, true friction coefficients and the lubrication and fluidization factors. These factors are functions of several physical parameters and mechanical and dynamical variables, including the volume fractions of the solid, shear-rate and the normal stresses. Rock-ice avalanches are a unique scenario in geophysical mass flows, where phase exchange and material strength weakening occurs and can dominate the flow dynamics. Here, we present an innovative approach to model and simulate these two special aspects. Additionally, in the model, the inertial terms include the hydraulic pressure

  7. Substorm onset: Current sheet avalanche and stop layer

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  8. Monitoring snow avalanches in the medium range by a network of infrasonic arrays: first results

    NASA Astrophysics Data System (ADS)

    ulivieri, giacomo; marchetti, emanuele; ripepe, maurizio; durand, nathalie; frigo, barbara; chiambretti, igor; segor, valerio

    2013-04-01

    Monitoring of small-to-medium sized avalanches activity represents a crucial parameter to compare predictions and real effects. However, at present natural avalanche activity is mainly based on field observations, which have a limited range and are possible only during the daylight. Since 2009, the Department of Earth Sciences of University of Florence in collaboration with the Regione Valle d'Aosta is using the infrasonic array technology for near real-time monitoring of natural and artificial avalanche activity in the Alpine area. The results obtained during the last 3 years indicate that small-to-medium sized snow avalanches can be detected in the short-to-medium range distance (2-6 km). However, despite single array analysis allows to recognise many natural (microbarom, earthquakes, avalanches) and artificial (airplane, explosions) infrasound sources by using apparent velocity criterion, any unique identification and precise location of infrasonic sources is not possible without any additional information. In order to solve this problem, the monitoring system is upgraded by installing two additional arrays. In fact, a network of 3 arrays is operating since December 2012 around the MonteRosa and Cervino international ski resorts on the related massifs. Each infrasonic array consists of 4 infrasonic sensors deployed in triangular geometry and ~150 m of aperture. Data are sampled at 100 Hz and transmitted in real-time to Department of Earth Sciences in Florence for near real-time (<2 minutes) processing. The network has improved the capability in locating avalanches sources in a medium range distance (from 6 km to more than 10 km). In fact, the 3 arrays are covering an area of ~ 250 km2. Efficiency of source location and sensitivity of this infrasonic array network are tested by using artificial triggered avalanches: avalanches can now be located with a precision of ~ 1 km. Information on geographical position, origin time and infrasonic energy will be supplied to

  9. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    USGS Publications Warehouse

    Chadwick, W.W.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  10. Simple models for intermittent deformation and slip avalanches: from crystals to granular materials and earthquakes

    NASA Astrophysics Data System (ADS)

    Dahmen, K.; Ben-Zion, Y.; Uhl, J.

    2011-12-01

    Slowly sheared solid or densely packed granular materials often deform in an intermittent way with slip avalanches. The distribution of sizes follows often a power law over a broad range of sizes. In these cases, universal (i.e. detail-independent) scaling behavior governs the statistics of the slip-avalanches. Under some conditions, there are also "characteristic" statistics associated with enhanced occurrence of system-size events, and long-term mode switching between power law and characteristic behavior. These dynamic regimes can be understood with basic micromechanical model for deformation of solids with only two tuning parameter: weakening and dissipation of elastic stress transfer. For granular materials the packing fraction plays the role of the dissipation parameter and it sets the size of the largest slip avalanche. The model can reproduce observed stress-strain curves, power spectra of acoustic emissions, statistics of slip avalanches, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions for the power law exponents of the avalanche size distributions, durations, power spectra of acoustic emissions, and scaling functions are extracted using an analytical mean field theory and renormalization group tools. For granular materials a dynamic phase diagram with solid-like behavior and large slip avalanches at large packing fractions, and fluid-like behavior at lower packing fractions is obtained. The results agree with recent experimental observations and simulations of the statistics of dislocation dynamics in sheared crystals such as ice [1], slip avalanches in sheared granular materials [2], and avalanches in magnetic and fault systems [3,4]. [1] K. A. Dahmen, Y. Ben-Zion, and J.T. Uhl, "A micromechanical model for deformation in solids with universal predictions for stress strain curves and slip avalanches", Physical Review Letters 102, 175501/1-4 (2009). [2] K. A. Dahmen, Y

  11. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    PubMed Central

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  12. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  13. DEM modeling of flexible structures against granular material avalanches

    NASA Astrophysics Data System (ADS)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  14. Rapid sequestration of rock avalanche deposits within glaciers

    PubMed Central

    Dunning, Stuart A.; Rosser, Nicholas J.; McColl, Samuel T.; Reznichenko, Natalya V.

    2015-01-01

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude–frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes. PMID:26286361

  15. Pore geometry, avalanching, and subsurface flow: A sand infiltration model

    NASA Astrophysics Data System (ADS)

    Leonardson, R.; Hunt, J. R.; Dietrich, W. E.

    2009-12-01

    The deposition of sand into gravel riverbeds has been well-documented, along with its negative impacts on developing salmon eggs and riverbank extraction for water supplies. Dam releases may be used on regulated rivers to flush the bed of fine sediment, but it is not generally known how deep the sand deposit extends or how much sand is there. One-dimensional (plane-bed) experiments consistently show that the depth of infiltration is a function of the sand and gravel grain size distributions and that the saturation sand fraction is near 8-10%. However, precise empirical relationships developed in individual studies do poorly at predicting the results of other experiments. Furthermore, no infiltration model includes the effect of flow conditions in the water column, although flow conditions clearly impact the deposit characteristics. We propose a mechanistic model for the infiltration of fine sediment and compare its predictions to the results of two recent infiltration experiments. This model is based on geometric arguments about pore and particle shape and five mechanisms: particle settling, particle capture, subsurface avalanching, average subsurface flow, and subsurface pressure fluctuations. The model successfully predicts for both experiments the fraction of sand deposited and the shape of that deposit as a function of depth.

  16. Capacity of avalanche-photodiode-detected pulse position modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, Jon; Ceniceros, Juan M.

    2000-05-01

    The capacity is determined for an optical channel employing Pulse Position Modulation (PPM) and an Avalanche PhotoDiode (APD) detector. This channel is different from the usual optical channel in that the detector output is characterized by a Webb-plus-Gaussian distribution, not a Poison distribution. The capacity is expressed as a function of the PPM order, slot width, laser dead time, average number of incident signal and background photons received, and APD parameters. Based on a system using a laser and detector proposed for X2000 second delivery, numerical results provide upper bounds on the data rate and level of background noise that the channel can support while operating at a given BER. For the particular case studied, the capacity-maximizing PPM order is near 2048 for nighttime reception and 16 for daytime reception. Reed-Solomon codes can handle background levels 2.3 to 7.6 dB below the ultimate level that can be handled by codes operating at the Shannon limit.

  17. Capacity of avalanche-photodiode-detected pulse position modulation

    NASA Astrophysics Data System (ADS)

    Chen, GuiFen; Yin, FuChang

    2002-08-01

    The capacity of channel is tha highest data rate it can reliably support.Whenever the data rate is less than the capacity of the channel, there exists an error-correcting code for the channel that has an output probability of error as small as desired, and coversely, whenever the data rate is more than the capacity the probability oferror is bounded away from zero. The capacity is determined an optical channel employing Pulse Position modulation (PPM) and an Avalanche Photodiode (APD) detector. The channel is different from the usual optical channel in that the detector output is characterized by a webb-plus-gaussian distribution, not a poisson distribution. The capacity is expressed as a funtion of the PPM order, solt width ,laser dead time , average number of incident singal and background photons received, and APD parameters. Based on a system using a laser and detector proposed for x2000 second delivery, numerical results provide upper bounds on the data rate and level of background noise that the channel can support while operating at a given BER For the particular case studied, the capacity-maximizing PPM order is near 2048 for nighttime reception and 16 for daytime reception. Reed-Solomon codes can hanndle backgroun levels 2.3 to 7.6 dB below the ultimate level that can be handled by codes operating at the Shannon limit.

  18. A New Positioning Algorithm for Position-Sensitive Avalanche Photodiodes.

    PubMed

    Zhang, Jin; Olcott, Peter D; Levin, Craig S

    2007-06-01

    We are using a novel position sensitive avalanche photodiode (PSAPD) for the construction of a high resolution positron emission tomography (PET) camera. Up to now most researchers working with PSAPDs have been using an Anger-like positioning algorithm involving the four corner readout signals of the PSAPD. This algorithm yields a significant non-linear spatial "pin-cushion" distortion in raw crystal positioning histograms. In this paper, we report an improved positioning algorithm, which combines two diagonal corner signals of the PSAPD followed by a 45° rotation to determine the X or Y position of the interaction. We present flood positioning histogram data generated with the old and new positioning algorithms using a 3 × 4 array of 2 × 2 × 3 mm(3) and a 3 × 8 array of 1 × 1 × 3 mm(3) of LSO crystals coupled to 8 × 8 mm(2) PSAPDs. This new algorithm significantly reduces the pin-cushion distortion in raw flood histogram image. PMID:24307743

  19. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  20. Avalanches in compressed porous SiO(2)-based materials.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Baró, Jordi; Illa, Xavier; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-08-01

    The failure dynamics in SiO(2)-based porous materials under compression, namely the synthetic glass Gelsil and three natural sandstones, has been studied for slowly increasing compressive uniaxial stress with rates between 0.2 and 2.8 kPa/s. The measured collapsed dynamics is similar to Vycor, which is another synthetic porous SiO(2) glass similar to Gelsil but with a different porous mesostructure. Compression occurs by jerks of strain release and a major collapse at the failure point. The acoustic emission and shrinking of the samples during jerks are measured and analyzed. The energy of acoustic emission events, its duration, and waiting times between events show that the failure process follows avalanche criticality with power law statistics over ca. 4 decades with a power law exponent ɛ≃ 1.4 for the energy distribution. This exponent is consistent with the mean-field value for the collapse of granular media. Besides the absence of length, energy, and time scales, we demonstrate the existence of aftershock correlations during the failure process.

  1. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.

    PubMed

    Milton, John G

    2012-07-01

    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena.

  2. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  3. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  4. Hot Spots from Dislocation Pile-up Avalanches

    NASA Astrophysics Data System (ADS)

    Armstrong, Ronald; Grise, William

    2005-07-01

    The model of hot spots developed at dislocation pile-up avalanches has been employed to explain both: greater drop- weight heights being required to initiate chemical decomposition of smaller crystals [1]; and, the susceptibility to shear banding of energetic and reference inert materials, for example, adiabatic shear banding in steel [2]. The evidence for RDX (cyclotrimethylenetrinitramine) is that few dislocations are needed in the pile-ups thus providing justification for assessing dynamic pile-up release on a numerical basis for few dislocation numbers [3]. For release from a viscous obstacle, previous and new computations lead to a local temperature plateau occurring at the origin of pile-up release [4], in line with the physical concept of a hot spot. [1] R.W. Armstrong, C.S. Coffey, V.F. DeVost and W.L. Elban, J. Appl. Phys. 68 (1990) 979. [2] R.W. Armstrong and F.J. Zerilli, Mech. Mater. 17 (1994) 319. [3] R.W. Armstrong, Proc. Eighth Intern. Seminar: New Trends in Research of Energetic Materials, April 19- 21, 2005, Pardubice, CZ. [4] W.R. Grise, NRC/AFOSR Summer Faculty Fellowship Program, AFRL/MNME, Eglin Air Force Base, FL, 2003.

  5. Rapid sequestration of rock avalanche deposits within glaciers.

    PubMed

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V

    2015-01-01

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes. PMID:26286361

  6. Foliage penetration optimization for Geiger-mode avalanche photodiode lidar

    NASA Astrophysics Data System (ADS)

    Johnson, Steven E.

    2013-05-01

    Geiger-mode avalanche photodiode (GMAPD) Lidar systems can be used to image targets that are partially concealed by foliage. This application of GMAPD Lidar is challenging because most APDs operating in Geiger- mode report only one range measurement per transmitted laser pulse. If a GMAPD makes a foliage range measurement, it cannot make a range measurement to a target concealed by the foliage. When too much laser energy is received, the vast majority of range measurements are from the foliage and only a small percentage are from the target. Some GMAPD Lidar systems can report their average detection probability during operation. The average detection probability, which is often called "P-det", is calculated over an array of GMAPDs, over multiple laser pulses, or over both. However, the detection probability does not distinguish between target range measurements, foliage range measurements, and noise events. In this paper, it is shown that when certain collection parameters are known, that the probability of detecting a target obscured by foliage can be maximized by selecting the appropriate "P-det". It is also shown that for a typical foliage penetration scenario where most of the reflected laser energy is from the foliage that operating with a "P-det" between 65% and 80% produces a near-maximum target detection probability.

  7. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  8. A simple Monte Carlo model for prediction of avalanche multiplication process in Silicon

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ng, J. S.; Tan, C. H.

    2012-08-01

    A Simple Monte Carlo model has been developed to model the avalanche characteristics of Silicon. Good agreement with experimental results from Silicon p+-i-n+ diodes with i-regions ranging from 0.082 to 0.26 μm, an n+-i-p+ diode with an i-region of 0.82 μm and a p+n diode was obtained. Therefore our model can be used to model the avalanche process in diodes with varying electric field profiles. We also studied the competing effects of the ratio of electron to hole ionization coefficients and the dead space on excess noise factor, by varying these parameters in our simulations of ideal p+-i-n+ diodes with avalanche regions width of 0.05 to 0.3 μm to cover the electric field range in the measured devices. As avalanche region width reduces from 0.3 to 0.05 μm, the electron to hole ionisation coefficient ratio decreases from 3.42 to 1.23 while the dead space to avalanche width ratio increases from 0.19 to 0.49 for electrons. The former increases the excess noise while the latter suppresses the avalanche noise such that on balance, a weak dependence of excess noise on the avalanche width for w < 0.3 μm was observed in these p+-i-n+ diodes, consistent with the excess noise results reported in thin Silicon p+-i-n+ diodes.

  9. Experimentally validated theoretical model of avalanche multiplication x-ray noise in amorphous selenium

    NASA Astrophysics Data System (ADS)

    Hunt, Dylan C.; Lui, Brian; Rowlands, John A.

    2000-04-01

    We are investigating active matrix flat panel x-ray detectors for real-time operation in the fluoroscopic exposure range. The typical exposure range for fluoroscopy is low, (0.1 - 10 (mu) R/frame). Hence the flat panel must be very sensitive to produce quantum noise limited images. The application of avalanche multiplication in amorphus selenium, ((alpha) -Se) is examined. Avalanche multiplication, M, can be used to increase signal size, potentially eliminating the quantum sink at low exposure levels. However, M greater than 1 also causes an overall degradation of DQE due to the addition of a new source of gain fluctuation noise. Using a linear cascaded systems model, this noise can be expressed as an additional avalanche Swank factor A(alpha ) in the expression for DQE(0) equals (eta) AsA(alpha ) where (eta) is the quantum efficiency, AS is the conventional conversion gain Swank factor. Depending upon the parameters, the value of A(alpha ) can vary from unity to less than 0.2. Our model was in agreement with experimentally observed values of A(alpha ) obtained using an imaging system (HARP) with (alpha) -Se layers capable of avalanche multiplication. The results indicate that a balance must be maintained between the improvement from avalanche multiplication to the amplifier noise limited part of the image, and the degradation effect it has on the quantum noise limited parts of the image. It also suggests that proper engineering of the avalanche layer can minimize, and perhaps eliminate, the additional noise fluctuations arising from avalanche multiplication of x-ray signals.

  10. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Deplus, Christine; Le Friant, Anne; Boudon, Georges; Komorowski, Jean-Christophe; Villemant, Benoit; Harford, Chloe; Ségoufin, Jacques; Cheminée, Jean-Louis

    2001-10-01

    Results from a recent marine geophysical survey demonstrate the importance of the process of flank collapse in the growth and evolution of volcanoes along an island arc. The Aguadomar cruise, aboard the French R/V L'Atalante, surveyed the flanks of the Lesser Antilles Arc between the islands of Montserrat and St. Lucia. Analysis of the data shows that flank collapse events occurred on active volcanoes all along the arc and resulted in debris avalanches, some of them being of large magnitude. The debris avalanche deposits display hummocky topography on the swath bathymetry, speckled pattern on backscatter images, hyperbolic facies on 3.5 kHz echosounder data and chaotic units on air gun seismic profiles. They extend from horseshoe-shaped structures previously identified on the subaerial part of the volcanoes. In the southern part of the arc, large-scale debris avalanche deposits were identified on the floor of the Grenada Basin west of active volcanoes on Dominica, Martinique and St. Lucia. The extent of debris avalanche deposits off Dominica is about 3500 km 2. The debris avalanches have resulted from major flank collapse events which may be mainly controlled by the large-scale structure of the island arc and the presence of the deep Grenada Basin. In the northern part of the arc, several debris avalanche deposits were also identified around the island of Montserrat. With smaller extent (20-120 km 2), they are present on the east, south and west submarine flanks of Soufriere Hills volcano which has been erupting since July 1995. Flank collapse is thus a recurrent process in the recent history of this volcano. The marine data are also relevant for a discussion of the transport mechanisms of debris avalanches on the seafloor surrounding a volcanic island arc.

  11. Development of solid-state avalanche amorphous selenium for medical imaging

    SciTech Connect

    Scheuermann, James R. Goldan, Amir H.; Zhao, Wei; Tousignant, Olivier; Léveillé, Sébastien

    2015-03-15

    Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.

  12. Rock-avalanche geomorphological and hydrological impact on an alpine watershed

    NASA Astrophysics Data System (ADS)

    Frattini, P.; Riva, F.; Crosta, G. B.; Scotti, R.; Greggio, L.; Brardinoni, F.; Fusi, N.

    2016-06-01

    Rock avalanches are large flow-like movements of fragmented rock that can cause extensive and rapid topographic changes, for which very few quantitative data are available. This paper analyses the geomorphological and hydrological impact of the 3 million m3 Thurwieser rock avalanche (2004, Italian Central Alps) by using Terrestrial Laser Scanner, airborne Lidar and GNSS data collected from 2005 to 2014. Sediment yield with respect to the normal valley regime, the dynamic and mass balance of affected glaciers, and the reorganization of superficial and groundwater flow networks are quantified. In the middle portion of the avalanche deposit, a natural sediment trap collected sediments from a new stream channel developed along the upper portion of the deposit and from a lateral drainage basin. This made possible to assess the 10-year impact of the rock avalanche on the sediment yield, which increased from about 120 to about 400 t km- 2·a- 1. The rock avalanche partially covered a glacier with a shallow debris layer that acted as a thermal insulator, limiting ice ablation and producing a 10-m high scarp between the free surface of the glacier and the debris-covered portion. A reduction of 75% of ice ablation was observed due to thermal insulation. The rock avalanche filled a tributary valley, splitting the original drainage basin in two. Under ordinary flows, seepage occurs within the avalanche deposit along the old valley axis. During high flow conditions, a new stream channel is activated along the middle and lower margin of the deposit, which has produced a new alluvial fan on the main valley floor. The fan evolution is described up to the present volume of about 2000 m3.

  13. Development of solid-state avalanche amorphous selenium for medical imaging

    PubMed Central

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-01-01

    Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel. PMID:25735277

  14. Avalanche characteristics of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Low, L. C.; You, A. H.; Andy, L. L. Y.; Cheang, P. L.

    2010-03-01

    The mean multiplication gain and excess noise factor of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes (HAPDs) are simulated. The ionization coefficients of electron and hole in bulk GaAs and Al 0.6Ga 0.4As are used in this model to study the role of heterojunction in reducing excess noise. The band-edge discontinuities at the conduction and valence bands are included in our model which may influence the number of carrier crossing the heterojunction and hence modifies the dead space in the HAPDs. The mean multiplication gain and excess noise factor with electron- and hole-initiated multiplication for 0.1 and 0.2 μm multiplication lengths in GaAs/Al 0.6Ga 0.4As HAPDs are shown. By considering the dead space effect, our model demonstrated a small noise mainly due to the localization of carrier ionization and the limited carrier feedback ionization at heterointerface. In our model, most of the ionizations occur in the first-initiated multiplication layer which reduces the randomness of carrier ionization and noise.

  15. Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Fahnestock, Robert K.

    1965-01-01

    In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.

  16. Optimal design of snow avalanche passive defence structure using reliability approach to quantify buildings vulnerability

    NASA Astrophysics Data System (ADS)

    Favier, P.; Bertrand, D.; Eckert, N.; Naaim, M.

    2012-04-01

    To protect elements at risk (humans, roads, houses, etc.) against snow avalanches, civil engineering structures, such as dams or mounds, are used. The design of such defence structures is done following a deterministic approach which considers European regulation. The minimization of expected total losses is an interesting alternative that generalizes cost-benefit approach to a continuous decision variable. For this purpose, not only the hazard magnitude but also the buildings vulnerability must be evaluated carefully. The aim of this work is therefore to combine state of the art sub-models for the probabilistic description of avalanche flows and the numerical evaluation of damages to buildings. We defined the risk as the expectation of the cost consequences of avalanches activity. Disposal consequences are quantified thanks to reliability methods. In this formulation, the accuracy of both the hazard estimation and the vulnerability calculation has to be consistent according to precision and computational costs. To do so, a numerical approach has been developed to evaluate the physical vulnerability of concrete buildings submitted to avalanche loadings. The ensuing application illustrates our approach. A reinforced concrete slab is considered to model the building with a finite element method. Reliability approach enables to produce a response spectrum of the structure against avalanche impact. Finally, vulnerability curves are built. Outcomes of the risk calculation are examined to find sensitivity on the optimal design of snow defence structures.

  17. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state

    PubMed Central

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001 PMID:26151674

  18. Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Chen, Wei; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-08-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generation.

  19. An analysis of the entrainment effect of dry debris avalanches on loose bed materials.

    PubMed

    Lu, Peng-Yuan; Yang, Xing-Guo; Xu, Fu-Gang; Hou, Tian-Xing; Zhou, Jia-Wen

    2016-01-01

    Substrate entrainment can greatly influence the mass movement process of a debris avalanche because it can enlarge the landslide volume and change the motion characteristics of the sliding masses. To study the interaction between debris avalanches and erodible substrate, physical modeling experiments varying in the mass of granular flow and substrate thickness were performed. The experimental results show that both the entrained materials and the maximum erosion depth are increased with increasing mass of the debris avalanche and decreasing substrate thickness. During the experiment, several tests were recorded using a high-speed digital camera with a frequency of 500 frames per second, so that the process of entrainment could be clearly observed. Combined with the experiment result and results of previous studies from predecessors, the entrainment mechanism during debris avalanches are analyzed and discussed. The entrainment effect of the sliding masses on the loose bed materials include basal abrasion and impact erosion of the avalanche front, the latter of which can contribute to the former by failing or yielding the erodible bed.

  20. Avalanche mediated devitrification in a glass of pseudo hard-spheres

    NASA Astrophysics Data System (ADS)

    Rosales-Pelaez, P.; Montero de Hijes, P.; Sanz, E.; Valeriani, C.

    2016-09-01

    By means of molecular dynamics we analyse several aspects of the avalanche-mediated mechanism for glass crystallization recently reported for hard sphere glasses (Sanz et al 2014 Proc. Natl Acad. Sci. 111 75). To investigate the role of inter-particle interaction softness on the devitrification path we use a continuous version of the hard-sphere potential: the pseudo-hard sphere potential (Jover et al 2012 J. Chem. Phys. 137 144505). We observe the same crystallization mechanism as in hard spheres. However, pseudo-hard sphere glasses crystallise earlier for a given density because the development of avalanches is eased by the small degree of overlapping allowed. We analyse the impact of density on the devitrification mechanism. When increasing the density, the avalanche mechanism becomes more evident and crystallisation is retarded due to a decrease of the avalanche emergence likelihood. To conclude, the observed avalanche-mediated mechanism and its density dependence do not substantially change with the employed simulation ensemble (constant volume versus constant pressure).

  1. A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes

    SciTech Connect

    Tokunaga, S.; Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-09-15

    We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasi-periodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime.

  2. Relativistic Runaway Electron Avalanches in the Presence of an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Liu, N.; Rassoul, H.; Briggs, M. S.

    2015-12-01

    Relativistic runaway electron avalanches are known to be produced inside the high electric field regions of thunderstorms. In this work, we include the effects of an external static magnetic field. Previous studies have shown that the magnetic field has a great influence on the electron motion at higher altitudes, e.g. Lehtinen et al., 1997, and Gurevich et al., 1996. This result proves important when studying phenomena such as Terrestrial Gamma-ray Flashes, and their effects on the upper atmosphere. Therefore, electron avalanche rates, feedback rates, and electron energy distribution functions will be analyzed and compared to the results of previous studies that did not include a magnetic field. The runaway electron avalanche model (REAM) is a Monte Carlo code that simulates the generation, interactions, and propagation of relativistic runaway electrons in air [Dwyer, 2003, 2004, 2007]. We use this simulation for varying strengths and angles between the electric and magnetic fields to calculate avalanche lengths and angular distribution functions of the relativistic runaway electrons. We will also show electron distribution functions in momentum space. Finally, we will discuss the important regimes for which the magnetic field becomes significant in studying the properties of runaway electron avalanches and relativistic feedback.

  3. A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation

    NASA Astrophysics Data System (ADS)

    Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim

    2016-02-01

    The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.

  4. An analysis of the entrainment effect of dry debris avalanches on loose bed materials.

    PubMed

    Lu, Peng-Yuan; Yang, Xing-Guo; Xu, Fu-Gang; Hou, Tian-Xing; Zhou, Jia-Wen

    2016-01-01

    Substrate entrainment can greatly influence the mass movement process of a debris avalanche because it can enlarge the landslide volume and change the motion characteristics of the sliding masses. To study the interaction between debris avalanches and erodible substrate, physical modeling experiments varying in the mass of granular flow and substrate thickness were performed. The experimental results show that both the entrained materials and the maximum erosion depth are increased with increasing mass of the debris avalanche and decreasing substrate thickness. During the experiment, several tests were recorded using a high-speed digital camera with a frequency of 500 frames per second, so that the process of entrainment could be clearly observed. Combined with the experiment result and results of previous studies from predecessors, the entrainment mechanism during debris avalanches are analyzed and discussed. The entrainment effect of the sliding masses on the loose bed materials include basal abrasion and impact erosion of the avalanche front, the latter of which can contribute to the former by failing or yielding the erodible bed. PMID:27652194

  5. Deposits of large volcanic debris avalanches at Mount St. Helens and Mount Shasta volcanoes

    SciTech Connect

    Glicken, H.

    1985-01-01

    Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material picked up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.

  6. Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland

    NASA Astrophysics Data System (ADS)

    Techel, F.; Zweifel, B.; Winkler, K.

    2015-09-01

    Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - bergportal.ch and camptocamp.org. Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the

  7. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    NASA Astrophysics Data System (ADS)

    Veitinger, Jochen; Sovilla, Betty

    2016-08-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significantly differ from its underlying, snow-free terrain. This may lead to different, and/or potentially larger release areas. To investigate this hypothesis, the relation between avalanche release area size, snow depth and surface roughness was investigated using avalanche observations of artificially triggered slab avalanches over a period of 15 years in a high-alpine field site. High-resolution, continuous snow depth measurements at times of avalanche release showed a decrease of mean surface roughness with increasing release area size, both for the bed surface and the snow surface before avalanche release. Further, surface roughness patterns in snow-covered winter terrain appeared to be well suited to demarcate release areas, suggesting an increase of potential release area size with greater snow depth. In this context, snow depth around terrain features that serve as potential delineation borders, such as ridges or trenches, appeared to be particularly relevant for release area size. Furthermore, snow depth measured at a nearby weather station was, to a considerable extent, related to potential release area size, as it was often representative of snow depth around those critical features where snow can accumulate over a long period before becoming susceptible to avalanche release. Snow depth - due to its link to surface roughness - could therefore serve as a highly useful variable with regard to potential release area definition for varying snow cover scenarios, as, for example, the avalanche

  8. Characterization of the artificially triggered avalanches in the MonterosaSki resort (North-western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Maggioni, Margherita; Brulport, A.; Freppaz, M.; Welf, A.; Purves, R.

    2010-05-01

    Artificially triggering methods are nowadays commonly used for avalanche prevention within ski-resorts. The knowledge of possible relations between the characteristics of the avalanche events and the snowpack and weather conditions might help to foresee the avalanche release probability after a favorable weather cycle. The forecast might be helped by models, like for example snowpack evolution models or nearest neighbor models. The latters are based on statistics performed on large databases where the avalanche events, together with the related snow and weather conditions, are well recorded. Within the Operational programme 'Italy - France (Alps - ALCOTRA)', Project "Gestion en sécurité des territories de montagne transfrontalière - Risk-Nat", from winter 2009-2010, in the MonterosaSki resort all the artificially triggered avalanches are registered with their characteristics (e.g. outline, type of avalanches, elevation, aspect), the triggering method (e.g. explosive, Daisy-Bell) and the snow and weather conditions. The aim of this project is to create a well documented database in order to perform some simple statistical analysis to find possible relation between the characteristics of the avalanches (e.g. type, size, run-out distance), the topography of the site (e.g. slope angle, aspect), snowpack condition (e.g. snow crystal type, snow temperature, density) and meteorological parameters (e.g. new snow, air temperature, wind). Moreover, the avalanche release method and the result of the triggering are recorded, in order to understand which are the most favorable conditions for avalanche release. This project is at its first operational winter, therefore in this work we present preliminary data concerning the study area, the methodology and the results from the first winter season, which might be useful to improve our knowledge about artificially triggered avalanches and to help the ski-piste security personnel to take decisions about the avalanche situation

  9. Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    unimportant, numerical solutions were obtained for the velocity distribution function and the resulting fields of concentration, particle and gas mean velocity, and particle shear stress for the steady two-dimensional saltation of spherical sand particles driven by a turbulent wind over a bed characterized by a simple relationship (the splash function) between the properties of incoming particles and those of the rebounding particles and other particles ejected fiom the bed. At the University of Rennes 1, experiments devoted to the characterization of the splash function for beds consisting of either random or ordered arrays of spheres in two- dimensions were completed. These indicated the role played by the packing geometry in the rebound and ejection of grains. Preliminary experiments on response of a three- dimensional collision bed to a collision with a single particle were performed. Data was taken with a single camera focused on the plane of collision. Here, for example, the decrease of the effective coefficient of restitution of the bed with an increase of the angle of incidence of the incoming particle has been measured. Other experiments on avalanches at Rennes studied the properties of the flows of particles that are responsible for the motion of the leeward side of a dune. In these, the dependence of the initiation of avalanches on the packing and depth of the particles was measured. Particle migration was studied in inclined flows of a binary mixture of disks and the mechanisms of diffision and segregation were isolated and characterized. The influence of side wall on dense, rapid inclined flows was measured and shown to be the reason why the angle of the free surface in such flows can exceed the static angle of repose. Future research will be devoted to a better understanding the transition between saltating (collisionless) and collisional flows as the wind speed the increases. This will involve the understanding of the evolution of the splash function as

  10. High-Operating-Temperature HgCdTe Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Baier, N.; Ballet, P.; Mollard, L.; Fournier, M.; Gout, J. S.; Chamonal, J.-P.

    2009-08-01

    In this communication we report the first results of electro-optical characterization of planar heterostructure HgCdTe avalanche photodiodes (APDs), which enables the operation of APDs at high gain, at low bias, and with low dark current and/or at high operating temperature (HOT). The APD is based on a heterostructure in which the photons are detected in a wide-band-gap layer, and the photoelectrons are amplified in a vertical junction in a confined narrow-gap layer. The dark diffusion current and thermal background sensitivity of the device are limited by using a thin narrow-band-gap amplification layer. In addition, the defect-limited dark current is also expected to be reduced due to the reduced volume of the narrow-band-gap depletion layer. The electro-optical performance was characterized at T = 80 K and T = 200 K for two devices with a nominal thickness of the amplification layer of w = 100 nm and 500 nm, realized in x Cd = 0.3 Hg-vacancy-doped layers grown by molecular-beam epitaxy (MBE). The measurements show an average gain of < M< = 10 at a reverse bias of 5 V, which is slightly reduced compared with a conventional APD with x Cd = 0.3. The thermal diffusion current measured at low reverse bias, V b = 0.1 V, and at T = 200 K is about 0.1 mA/cm2 to 0.3 mA/cm2, which is a factor of 50 lower than standard x Cd = 0.3 n-on- p APDs. The quantum efficiency due to absorption in the gain layer is high (QEpeak > 30%), although no antireflecting coating was used, indicating that the device can also be used for high-operating-temperature thermal detection.

  11. Avalanche photodiode with high responsivity in 0.35 μm CMOS

    NASA Astrophysics Data System (ADS)

    Gaberl, Wolfgang; Schneider-Hornstein, Kerstin; Enne, Reinhard; Steindl, Bernhard; Zimmermann, Horst

    2014-04-01

    The presented linear mode avalanche photodiode (APD) uses the standard layers and process steps available in the 0.35-μm Si bulk CMOS process. Due to a low-doped epitaxial layer with a resistivity of 664 Ω cm, a deep intrinsic zone is realized to enable a large depleted absorption region at already moderate bias voltages and therefore ensures a high low-voltage responsivity. In combination with avalanche gain at high bias voltages, this leads to an overall responsivity of 1.7×105 A/W at 1.1 nW optical input power and 670-nm wavelength. The maximum achieved avalanche gain was 4.94×105. The maximum -3 dB frequency of 700 MHz was measured at a reverse bias voltage of 30 V and an optical input power of 14.7 μW.

  12. New indices to characterize powder flow based on their avalanching behavior.

    PubMed

    Soh, Josephine L P; Liew, Celine V; Heng, Paul W S

    2006-02-01

    Use of powder avalanches in the study of flow properties of pharmaceutical excipients has yet to be popularized even though it is rather simple to use and yields comparatively reliable results. Commonly employed flow assessment methods include compressibility studies and shear cell and repose angle measurements. Though widely accepted, these methods are not without limitations and inadequacies. More often than not, experimental and environmental conditions lead to a considerable amount of variability in the results obtained. The primary objective of this current work is to propose two new indices, avalanche flow index (AFI) and cohesive interaction index (CoI) based on the avalanche flow behaviors of powders. Not only were these two indices able to describe the ease of powder flow but they also provided a simpler means of quantifying the extent of cohesive interactions within the powder mass without elaborate mathematical functions.

  13. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.

    1990-05-01

    Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.

  14. Transient and steady-state dark current mechanisms in amorphous selenium avalanche radiation detectors

    SciTech Connect

    Kabir, M. Z.; Imam, Safayat-Al

    2013-04-15

    A theoretical model for describing bias-dependent transient and steady-state behaviors of dark current in amorphous selenium (a-Se) avalanche detector structures has been developed. The analytical model considers bulk thermal generation current from mid-gap sates, transient carrier depletion, and carrier injection from the electrodes incorporating avalanche multiplication. The proposed physics-based dark current model is compared with the published experimental results on three potential a-Se avalanche detector structures. The steady-state dark current is the minimum for the structures that have effective blocking layers for both holes and electrons. The transient decay time to reach a plateau decreases considerably with increasing electric field.

  15. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  16. Avalanches and Dimensional Reduction Breakdown in the Critical Behavior of Disordered Systems

    NASA Astrophysics Data System (ADS)

    Tarjus, Gilles; Baczyk, Maxime; Tissier, Matthieu

    2013-03-01

    We investigate the connection between a formal property of the critical behavior of several disordered systems, known as “dimensional reduction,” and the presence in these systems at zero temperature of collective events known as “avalanches.” Avalanches generically produce nonanalyticities in the functional dependence of the cumulants of the renormalized disorder. We show that this leads to a breakdown of the dimensional reduction predictions if and only if the fractal dimension characterizing the scaling properties of the avalanches is exactly equal to the difference between the dimension of space and the scaling dimension of the primary field. This is proven by combining scaling theory and the functional renormalization group. We therefore clarify the puzzle of why dimensional reduction remains valid in random field systems above a nontrivial dimension (but fails below), always applies to the statistics of branched polymer, and is always wrong in elastic models of interfaces in a random environment.

  17. Scaling behavior of individual barkhausen avalanches in nucleation-mediated magnetization reversal processes

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, Dong-Hyun; Shin, Sung-Chul

    2009-11-09

    We report the scaling behavior of Barkhausen avalanches along the hysteresis loop of a CoCrPt alloy film with perpendicular magnetic anisotropy for every field step of 200 Oe. Individual Barkhausen avalanches are directly observed via high-resolution soft X-ray microscopy with a spatial resolution of 15 nm. The Barkhausen avalanches exhibit a power-law scaling behavior, where the scaling exponent of the power-law distribution drastically changes from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the applied magnetic field approaches the coercivity of the CoCrPt film. We infer that this is due to the coupling of adjacent domains.

  18. Avalanches and dimensional reduction breakdown in the critical behavior of disordered systems.

    PubMed

    Tarjus, Gilles; Baczyk, Maxime; Tissier, Matthieu

    2013-03-29

    We investigate the connection between a formal property of the critical behavior of several disordered systems, known as "dimensional reduction," and the presence in these systems at zero temperature of collective events known as "avalanches." Avalanches generically produce nonanalyticities in the functional dependence of the cumulants of the renormalized disorder. We show that this leads to a breakdown of the dimensional reduction predictions if and only if the fractal dimension characterizing the scaling properties of the avalanches is exactly equal to the difference between the dimension of space and the scaling dimension of the primary field. This is proven by combining scaling theory and the functional renormalization group. We therefore clarify the puzzle of why dimensional reduction remains valid in random field systems above a nontrivial dimension (but fails below), always applies to the statistics of branched polymer, and is always wrong in elastic models of interfaces in a random environment.

  19. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana

    NASA Technical Reports Server (NTRS)

    Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.

    1990-01-01

    Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.

  20. Avalanches in 2D dislocation systems: plastic yielding is not depinning.

    PubMed

    Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J

    2014-06-13

    We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ=1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.

  1. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    PubMed

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm. PMID:27557187

  2. Dynamical critical behavior in a cellular model of superconducting vortex avalanches

    NASA Astrophysics Data System (ADS)

    Vadakkan, Tegy John

    Bak, Tang, and Wiesenfeld showed that certain driven dissipative systems with many degrees of freedom organize into a critical state characterized by avalanche dynamics and power law distribution of avalanche sizes and durations. They called this phenomenon self-organized criticality and sandpile became the prototype of such dynamical systems. Universality in these systems is not yet well established. Forty years ago, de Gennes noted that the Bean state in a type-II superconductor is similar to a sandpile. Motivated by strong experimental evidences, Bassler and Paczuski (BP) proposed a 2D sandpile model to study self-organization in the dynamics of vortices in superconductors. In this dissertation, the effect of anisotropy in the vortex-vortex interaction, stochasticity in the vortex toppling rule, and the configuration of the pinning centers on the scaling properties of the avalanches in the BP model is studied. Also, universality in the cellular model of vortex dynamics is investigated.

  3. Full-depth avalanches and soil erosion: an experimental site in NW Italy

    NASA Astrophysics Data System (ADS)

    Ceaglio, Elisabetta; Freppaz, Michele; Maggioni, Margherita; Filippa, Gianluca; Godone, Danilo; Zanini, Ermanno

    2010-05-01

    In the future the combined effect of changes in climate and land use could contribute to the intensification of soil erosion, related to snowpack movements as snow gliding and full-depth avalanches. Often, with particular meteorological conditions, the snow movement along a slope is associated with erosion and transport of the upper soil horizons, with the release of significant amount of material in the runout zone. Moreover the chemical composition of the snow in the deposition zone is usually different from the snow in the starting zone, revealing a potential release of ionic species mainly by the organic debris transported by the avalanche itself. The aim of this work is to characterize the quantity and quality of the material released by full-depth avalanches in the deposition zone. The study area is located in Aosta Valley (NW-Italy), on a SW exposed avalanche path, running from 2000 m a.s.l. of the triggering zone to 1200 m a.s.l. of the deposition zone. At this site, snow gliding and glide cracks, generally followed by full-depth avalanches, have been frequently observed. In the starting area, two plots located at the same elevation, slope and aspect, but with different soil moisture content, are equipped with moisture and temperature sensors, located at different depth in the soil, at the snow-soil interface and in the basal snowpack layer, and with glide shoes. The recorded data are related to the snow physical properties, measured by periodical investigations. In the deposition area, after a full-depth avalanche event occurred in March 2009, the mixed material was collected through snow avalanche coring, and a snow pit was dug in the deposit, in order to evaluate the quantity and the distribution of the material transported by the avalanche. First results show that the average density of the snow in the deposition zone was 624 kg m-3. The solid material was distributed mainly in the upper 5 cm of the avalanche deposit, with a mean concentration of the

  4. Metal frame as local protection of superconducting films from thermomagnetic avalanches

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Vestgârden, J. I.; Chaudhuri, S.; Maasilta, I. J.; Galperin, Y. M.; Johansen, T. H.

    2016-03-01

    Thermomagnetic avalanches in superconducting films propagating extremely fast while forming unpredictable patterns, represent a serious threat for the performance of devices based on such materials. It is shown here that a normal-metal frame surrounding a selected region inside the film area can provide efficient protection from the avalanches during their propagation stage. Protective behavior is confirmed by magneto-optical imaging experiments on NbN films equipped with Cu and Al frames, and also by performing numerical simulations. Experimentally, it is found that while conventional flux creep is not affected by the frames, the dendritic avalanches are partially or fully screened by them. The level of screening depends on the ratio of the sheet conductance of the metal and the superconductor in the resistive state, and for ratios much larger than unity the screening is very efficient.

  5. Fractal multiplication of electron avalanches and streamers: new mechanism of electrical breakdown?

    NASA Astrophysics Data System (ADS)

    Ficker, T.

    2007-12-01

    Long-lasting problems concerning peculiar statistical behaviour of high populated electron avalanches have been analysed. These avalanches are precursors of streamer breakdown in gases. The present streamer theory fails in explaining severe systematic deviations from the Furry statistics that is believed to be a governing statistical law. Such a deviated behaviour of high populated avalanches seems to be a consequence of a special pre-breakdown mechanism that is rather different from that known so far in discharge physics. This analysis tends towards formulating a modified theoretical concept supplementing the streamer theory by a new statistical view of pre-streamer states. The correctness of the concept is corroborated by a series of experiments.

  6. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  7. Forecasting for natural avalanches during spring opening of Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, Blase; Lundy, Chris

    2004-01-01

    The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.

  8. Dynamic monitoring of avalanches and barchan dune morphology change at different timescales

    NASA Astrophysics Data System (ADS)

    Nield, Joanna; Wiggs, Giles; Baddock, Matthew; Hipondoka, Martin

    2016-04-01

    Aeolian dune morphology responds dynamically to changing wind conditions. The lee slope avalanche dynamics of dunes are particularly sensitive to prior morphological conditions as well as the varying intensity and duration characteristics of sand transport events. Here we use terrestrial laser scanning (TLS) to measure dune surface change over minutes, hours, a week and a year during conditions of variable approach flow resulting in considerable lee slope reworking. Several different avalanche patterns are recognised that can be related to slope characteristics, wind direction and slope reworking. We find that during oblique winds, horn reworking can reduce the lee slope angle. When the dominant, formative winds of the barchan return, the reworked lee slope, perpendicular to the prior oblique wind, takes longer to start avalanching. In the central region of the dune, avalanche frequency and the extent of lee slope reworking depends on wind speed. Under high winds from the dominant direction, there is continual erosion near the dune brink central area, due to the exceedance of a critical angle of repose, whilst under weaker winds the frequency of grainfall sedimentation and avalanches diminishes and net deposition in the brink area is more common. During the week of measurements, changes to the crest-brink area and lee slope form are considerable, based on the reworking of the slope by avalanche events, and this ultimately influences the dune migration rate. Over the course of a year, we demonstrate that the shape of the barchan stoss and lee slopes can change significantly, whilst the overall dune size and general planform is maintained. Our findings help elucidate dune mobility mechanics and pattern modifications at the wind storm event scale.

  9. A simple lattice model for the effect of voids on slip avalanches in sheared granular materials

    NASA Astrophysics Data System (ADS)

    Dahmen, K.; Ben-Zion, Y.; Uhl, J. T.

    2009-12-01

    It is well known that densely packed granular materials respond to slow shear with slip avalanches. Experiments and simulations show that the avalanche statistics depend strongly on the granular volume fraction v and grain shape related properties [1]. Previous studies have focused on force chain properties [2-6]. Here we use a mean field technique to construct an analytic model of the universal (i.e. detail-independent) slip avalanche statistics. For large v, and small frictional weakening ɛ, the model predicts solid-like behavior, with power-law avalanche size distributions and universal exponents and scaling functions. For large v and large ɛ it predicts mode switching between stick slip behavior and power law avalanche size distributions. For small v it predicts fluid-like flow. The results are presented in a (v, ɛ) phase diagram. They agree with published experiments [6-10] and simulations [2-4]. They complement recent studies on static properties, such as the shear modulus as a function of v near the jamming transition [2-4,7-10]. References: [1] V. Frette et al., “Avalanche Dynamics in a Pile of Rice”, Nature 379, 49-52 (1996). [2] E. Aharonov and D. Sparks, “Rigidity phase transition in granular packings”, Phys. Rev E, 60, 6890-6896 (1999). [3] E. Aharonov and D. Sparks, “Stick-slip motion in simulated granular layers”, J. Geophys. Res, 109, B09306 (2004). [4] E. Aharonov and D. Sparks, “Shear profiles and localization in simulations of granular materials”, Phys. Rev. E 65, 051302/1-12 (2002). [5] M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, and P. Claudin, “Jamming, Force Chains, and Fragile Matter”, Phys. Rev. Lett., 81, 1841 (1998) and references therein. [6

  10. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.

    PubMed

    Pasquale, V; Massobrio, P; Bologna, L L; Chiappalone, M; Martinoia, S

    2008-06-01

    Dissociated cortical neurons from rat embryos cultured onto micro-electrode arrays exhibit characteristic patterns of electrophysiological activity, ranging from isolated spikes in the first days of development to highly synchronized bursts after 3-4 weeks in vitro. In this work we analyzed these features by considering the approach proposed by the self-organized criticality theory: we found that networks of dissociated cortical neurons also generate spontaneous events of spreading activity, previously observed in cortical slices, in the form of neuronal avalanches. Choosing an appropriate time scale of observation to detect such neuronal avalanches, we studied the dynamics by considering the spontaneous activity during acute recordings in mature cultures and following the development of the network. We observed different behaviors, i.e. sub-critical, critical or super-critical distributions of avalanche sizes and durations, depending on both the age and the development of cultures. In order to clarify this variability, neuronal avalanches were correlated with other statistical parameters describing the global activity of the network. Criticality was found in correspondence to medium synchronization among bursts and high ratio between bursting and spiking activity. Then, the action of specific drugs affecting global bursting dynamics (i.e. acetylcholine and bicuculline) was investigated to confirm the correlation between criticality and regulated balance between synchronization and variability in the bursting activity. Finally, a computational model of neuronal network was developed in order to interpret the experimental results and understand which parameters (e.g. connectivity, excitability) influence the distribution of avalanches. In summary, cortical neurons preserve their capability to self-organize in an effective network even when dissociated and cultured in vitro. The distribution of avalanche features seems to be critical in those cultures displaying

  11. A two-phase mechanical model for rock-ice avalanches

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Krautblatter, Michael

    2014-10-01

    Rock-ice avalanche events are among the most hazardous natural disasters in the last century. In contrast to rock avalanches, the solid phase (ice) can transform to fluid during the course of the rock-ice avalanche and fundamentally alter mechanical processes. A real two-phase debris flow model could better address the dynamic interaction of solid (rock and ice) and fluid (water, snow, slurry, and fine particles) than presently used single-phase Voellmy- or Coulomb-type models. We present a two-phase model capable of performing dynamic strength weakening due to internal fluidization and basal lubrication and internal mass and momentum exchanges between the phases. Effective basal and internal friction angles are variable and correspond to evolving effective solid volume fraction, friction factors, volume fraction of the ice, true friction coefficients, and lubrication and fluidization factors. Benchmark numerical simulations demonstrate that the two-phase model can explain dynamically changing frictional properties of rock-ice avalanches that occur internally and along the flow path. The interphase mass and momentum exchanges are capable of demonstrating the mechanics of frontal surge head and multiple other surges in the debris body. This is an observed phenomenon in a real two-phase debris flow, but newly simulated here by applying the two-phase mass flow model. Mass and momentum exchanges between the phases and the associated internal and basal strength weakening control the exceptional long runout distances, provide a more realistic simulation especially during the critical initial and propagation stages of avalanche, and explain the exceptionally high and dynamically changing mobility of rock-ice avalanches.

  12. Developing an Experimental Simulation Method for Rock Avalanches: Fragmentation Behavior of Brittle Analogue Material

    NASA Astrophysics Data System (ADS)

    Thordén Haug, Øystein; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2013-04-01

    Gravitational mass movement on earth and other planets show a scale dependent behavior, of which the physics is not fully understood. In particular, the runout distance for small to medium sized landslides (volume < 106m3) can be predicted by a simple Coulomb friction law consistent with a constant kinetic coefficient of friction at the landslide base. This implies that the runout can be considered independent of volume. Large volume landslides (rock avalanches), however, show a dependence of runout on volume. This break in scaling behavior suggests that different dynamics control small and large landslides/rock avalanches. Several mechanisms have been proposed to explain this scale dependent behavior, but no consensus has been reached. Experimental simulations of rock avalanches usually involve transport of loose granular material down a chute. Though such granular avalanche models provide important insights into avalanche dynamics, they imply that the material fully disintegrate instantaneously. Observations from nature, however, suggests that a transition from solid to "liquid" occurs over some finite distance downhill, critically controlling the mobility and energy budget of the avalanche. Few experimental studies simulated more realistically the material failing during sliding and those were realized in a labscale centrifuge, where the range of volumes/scales is limited. To develop a new modeling technique to study the scale dependent runout behavior of rock avalanches, we designed, tested and verified several brittle materials allowing fragmentation to occur under normal gravity conditions. According to the model similarity theory, the analogue material must behave dynamically similar to the rocks in natural rock avalanches. Ideally, the material should therefore deform in a brittle manner with limited elastic and ductile strains up to a certain critical stress, beyond which the material breaks and deforms irreversibly. According to scaling relations derived

  13. Apparent Cooling Rate of 7°C per Hour in an Avalanche Victim.

    PubMed

    Ströhle, Mathias; Putzer, Gabriel; Procter, Emily; Paal, Peter

    2015-12-01

    Avalanche victims can become hypothermic within 35 minutes of snow burial. However, reported cooling rates for avalanche victims are highly variable and it is poorly understood how much cooling is influenced by general factors (body composition, clothing, ambient conditions, duration of burial, and metabolism), unknown inter-individual factors or other phenomena (e.g., afterdrop). We report an apparent cooling rate of ∼7°C in ∼60 minutes in a healthy backcountry skier who was rewarmed with forced air and warm fluids and was discharged after 2 weeks without neurological sequelae.

  14. Monte Carlo estimation of avalanche noise in thin p+-i-n+ GaAs diodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Li, K. F.; Rees, G. J.; David, J. P. R.; Robson, P. N.; Dunn, G. M.

    1998-01-01

    We use a Monte Carlo model to investigate the improvement of avalanche noise performance in thin p+-i-n+ GaAs diodes. The model predicts a decrease in avalanche noise as the multiplication length decreases from 1.0 to 0.05 μm, in good agreement with recent experimental measurements. Our simulations suggest that electron initiated multiplication in short devices has inherently reduced noise despite higher feedback from hole ionization, as compared to long devices. This low noise behavior results from the narrower ionization probability distribution and larger dead space effect as a higher operating electric field needed in short devices.

  15. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  16. SEMICONDUCTOR DEVICES: Off-state avalanche breakdown induced degradation in 20 V NLDMOS devices

    NASA Astrophysics Data System (ADS)

    Shifeng, Zhang; Koubao, Ding; Yan, Han; Chenggong, Han; Jiaxian, Hu; Bin, Zhang

    2010-09-01

    Degradation behaviors of 20 V NLDMOS operated under off-state avalanche breakdown conditions are presented. A constant current pulse stressing test is applied to the device. Two different degradation mechanisms are identified by analysis of electrical data, technology computer-aided design (TCAD) simulations and charge pumping measurements. The first mechanism is attributed to positive oxide-trapped charges in the N-type drift region, and the second one is due to decreased electron mobility upon interface state formation in the drift region. Both of the mechanisms are enhanced with increasing avalanche breakdown current.

  17. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    NASA Astrophysics Data System (ADS)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  18. On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain.

    PubMed

    Goykhman, Ilya; Sassi, Ugo; Desiatov, Boris; Mazurski, Noa; Milana, Silvia; de Fazio, Domenico; Eiden, Anna; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel; Ferrari, Andrea C

    2016-05-11

    We report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.

  19. Laser frequency upshift and self-defocusing under avalanche breakdown of air

    SciTech Connect

    Verma, Updesh; Sharma, A. K.

    2010-12-15

    A theoretical model of avalanche breakdown of air by a Gaussian laser beam and frequency upshift is developed. The laser beam, below the threshold for tunnel ionization, heats the seed electrons to high energy and initiates avalanche ionization of the air. The ensuing plasma density profile that has maximum on axis and falls off radially causes refraction divergence of the beam. The temporal evolution of plasma density causes self-phase modulation of the laser, causing frequency broadening and spectral emission in the visible.

  20. Dramatic role of critical current anisotropy on flux avalanches in MgB2 films.

    PubMed

    Albrecht, J; Matveev, A T; Strempfer, J; Habermeier, H-U; Shantsev, D V; Galperin, Y M; Johansen, T H

    2007-03-16

    Anisotropic penetration of magnetic flux in MgB(2) films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, the anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate perpendicular to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.

  1. Improved x-ray detection and particle identification with avalanche photodiodes

    SciTech Connect

    Diepold, Marc Franke, Beatrice; Götzfried, Johannes; Hänsch, Theodor W.; Krauth, Julian J.; Mulhauser, Françoise; Nebel, Tobias; Pohl, Randolf; Fernandes, Luis M. P.; Amaro, Fernando D.; Gouvea, Andrea L.; Monteiro, Cristina M. B.; Santos, Joaquim M. F. dos; Machado, Jorge; Amaro, Pedro; Santos, José Paulo; and others

    2015-05-15

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

  2. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the

  3. Avalanches and plasticity for colloids in a time dependent optical trap

    DOE PAGES

    Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles

    2015-08-25

    Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.

  4. Reaching the hydrodynamic regime in a Bose-Einstein condensate by suppression of avalanches

    SciTech Connect

    Stam, K. M. R. van der; Meppelink, R.; Vogels, J. M.; Straten, P. van der

    2007-03-15

    We report the realization of a Bose-Einstein condensate (BEC) in the hydrodynamic regime. The hydrodynamic regime is reached by evaporative cooling at a relatively low density suppressing the effect of avalanches. With the suppression of avalanches a BEC containing more than 10{sup 8} atoms is produced. The collisional opacity can be tuned from the collisionless regime to a collisional opacity of more than 2 by compressing the trap after condensation. In the collisional opaque regime a significant heating of the cloud at time scales shorter than half of the radial trap period is measured, which is a direct proof that the BEC is hydrodynamic.

  5. Avalanche properties in a transport model based on critical-gradient fluctuation dynamics

    SciTech Connect

    Garcia, L.; Carreras, B.A.

    2005-09-15

    A simple one-dimensional transport model based on critical-gradient fluctuation dynamics is applied to describe some of the properties of plasma-turbulence-induced transport. This model combines avalanche-like transport with diffusion. The particle flux is self-regulated by the stability properties of the fluctuations. A high-gradient edge region emerges where transport dynamics is close to marginal stability. In steady state, the core remains at the subcritical gradient. The avalanches change from quasiperiodic events triggered mostly near the edge region to intermittent transport events depending on the noise level of the particle source.

  6. Avalanches and force drops in displacement-driven compression of porous glasses

    NASA Astrophysics Data System (ADS)

    Navas-Portella, Víctor; Corral, Álvaro; Vives, Eduard

    2016-09-01

    Similarities between force-driven compression experiments of porous materials and earthquakes have been recently proposed. In this paper, we measure the acoustic emission during displacement-driven compression of a porous glass. The energy of acoustic-emission events shows that the failure process exhibits avalanche scale-invariance and therefore follows the Gutenberg-Richter law. The resulting exponents do not exhibit significant differences with respect the force-driven case. Furthermore, the force exhibits an avalanche-type behavior for which the force drops are power-law distributed and correlated with the acoustic emission events.

  7. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  8. Balance between excitation and inhibition controls the temporal organization of neuronal avalanches.

    PubMed

    Lombardi, F; Herrmann, H J; Perrone-Capano, C; Plenz, D; de Arcangelis, L

    2012-06-01

    Neuronal avalanches, measured in vitro and in vivo, exhibit a robust critical behavior. Their temporal organization hides the presence of correlations. Here we present experimental measurements of the waiting time distribution between successive avalanches in the rat cortex in vitro. This exhibits a nonmonotonic behavior not usually found in other natural processes. Numerical simulations provide evidence that this behavior is a consequence of the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods, both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms.

  9. On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain

    PubMed Central

    2016-01-01

    We report an on-chip integrated metal graphene–silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal–silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics. PMID:27053042

  10. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  11. Apparent Cooling Rate of 7°C per Hour in an Avalanche Victim.

    PubMed

    Ströhle, Mathias; Putzer, Gabriel; Procter, Emily; Paal, Peter

    2015-12-01

    Avalanche victims can become hypothermic within 35 minutes of snow burial. However, reported cooling rates for avalanche victims are highly variable and it is poorly understood how much cooling is influenced by general factors (body composition, clothing, ambient conditions, duration of burial, and metabolism), unknown inter-individual factors or other phenomena (e.g., afterdrop). We report an apparent cooling rate of ∼7°C in ∼60 minutes in a healthy backcountry skier who was rewarmed with forced air and warm fluids and was discharged after 2 weeks without neurological sequelae. PMID:26217979

  12. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition.

    PubMed

    Liu, Chen; Ferrero, Ezequiel E; Puosi, Francesco; Barrat, Jean-Louis; Martens, Kirsten

    2016-02-12

    We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving. PMID:26918998

  13. Circuit model for characterizing the nearly linear behavior of avalanche diodes in amplifier circuits

    NASA Technical Reports Server (NTRS)

    Penfield, P., Jr.; Peterson, D. F.; Steinbrecher, D. H.

    1972-01-01

    A nonlinear circuit model for avalanche diodes is proposed. The model was derived by assuming that the bias dependence of the elements in a known small-signal equivalent-circuit model for existing diodes arises in a manner consistent with the theory of an idealized Read-type device. The model contains a nonlinear R-L branch, a controlled source, and a linear depletion capacitance. The model is used in the nearly linear sense to predict intermodulation distortion and gain compression in avalanche diode amplifiers. Computed results for amplifiers with existing diodes are shown to be in good agreement with experiment.

  14. Debris avalanche triggered by sill intrusions in basaltic volcanoes (Piton des Neiges, La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.

    2014-12-01

    Debris avalanches derived from the flanks of volcanic islands are among the largest on Earth. Debris avalanches are rare, catastrophic destabilizations that still keep geologists debating about the mechanisms that initiate them and make them travel huge runout distances. To shed light on the trigger of such destabilizations, we studied the inland scar of a debris avalanche deposit cropping out at Piton des Neiges, a dormant and eroded basaltic volcano of La Réunion Island. The avalanche deposit rests on a pile of 50-70 sill intrusions with a shallow northward dip, i.e. toward the sea. We measured the anisotropy of magnetic susceptibility in a transect across the uppermost sill of the pile in contact with the avalanche deposit. This transect reveals a strongly asymmetric magnetic fabric, consistent with a north-directed shear movement of the upper intrusion wall. This suggests that the upper sill induced a co-intrusive shear displacement of the volcano flank toward the sea. The upper sill margin in contact with the avalanche is striated, showing that this intrusion is older than the avalanche. Striae indicate a northward direction of avalanche runout. The upper sill margin also displays a magmatic lineation consistent with a magma flow in the intrusion toward the north. There is thus a striking kinematic consistency between the directions of intrusion propagation and avalanche runout, both oriented toward the sea. From the above results, we propose that repeated sill intrusions, such as observed on Piton des Neiges, increase the instability of a volcanic edifice. Each injection induces an incremental slip of the overlying rock mass, which may eventually end up into a landslide. Sill intrusions associated with seaward displacements of volcano flank, such as inferred for the April 2007 eruption of Piton de la Fournaise (also in La Réunion), should therefore be considered as a potential trigger of debris avalanches.

  15. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  16. Using GIS and Google Earth for the creation of the Going-to-the-Sun Road Avalanche Atlas, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark

    2010-01-01

    Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.

  17. Development of a dual approach to assess powder flow from avalanching behavior.

    PubMed

    Lee, Y S; Poynter, R; Podczeck, F; Newton, J M

    2000-07-21

    The purposes of this investigation were to develop a method to evaluate flow properties of powders from avalanching tests and to detect similarities and relationships between these data and conventional powder flow properties. The API AeroFlow automated flowability analyzer was tested using 6 pharmaceutical excipients. Data were presented as mean time to avalanche (MTA), scatter, and a classification based on the type of motion of the powder bed. Powders were also characterized in terms of particle size, particle shape, loss of weight on drying, Carr's compressibility index, and critical orifice diameter to prevent ratholing. A dual approach, which combines visual observation of the type of motion of the powder bed in the rotating drum with numerical descriptors such as MTA and scatter, was found to be more accurate in the assessment of powder flow than the current practice of using only MTA and scatter values. Statistical analysis established that there are relationships and similarities between the ranking of powder flow properties obtained from the avalanching test and Carr's compressibility index and the critical orifice diameter. An interaction between particle size and shape, both influencing powder flow, when evaluated with these methods was found. The assessment of the flowability of powders on the basis of avalanching tests should include both the determination of numerical descriptors of flow such as MTA and scatter, and a determination of the type of motion of the powder bed in order to increase the sensitivity of the method to small changes in powder flow properties.

  18. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  19. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    DOE PAGES

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less

  20. Reliability analysis of an RC defense structure loaded by a dense snow avalanche pressure signal

    NASA Astrophysics Data System (ADS)

    Ousset, Isabelle; Bertrand, David; Limam, Ali; Naaïm, Mohamed

    2014-05-01

    To protect humans, roads or houses against snow avalanches, civil engineering structures are widely used. Designing these structures is still a challenge especially due to the uncertainties related to the loading developed by a snow avalanche. The case of the avalanche of Taconnaz (France), which occurred in 1999 and where important parts of the RC defense structure were destroyed, underlines the necessary to consider reliability approaches for the design of such structures. This paper proposes a reliability analysis of an L-shaped reinforced concrete (RC) protective structure subjected to a dense snow avalanche. A deterministic mechanical model, based on the finite element method, has been developed and allows describing the behavior of the structure. Next, a reliable model allows propagating uncertainties through the mechanical model and assessing the failure probability of the structure. The choices of random variables (the inputs) and their distributions, the failure criteria and the reliability methods are presented and discussed. Two criteria are considered: on the one hand, a local criterion defined in term of stress exceedence within concrete and steel, and on the other hand a global criterion defined in term of maximal displacement of the structure. Moreover, Kernel Smoothing and Monte-Carlo methods are used and compared to assess the failure probability and to derive fragility curves. These latter describe the failure probability of the structure according to the loading magnitude.