Science.gov

Sample records for avatar-mediated networking increasing

  1. Avatar-Mediated Networking: Increasing Social Presence and Interpersonal Trust in Net-Based Collaborations

    ERIC Educational Resources Information Center

    Bente, Gary; Ruggenberg, Sabine; Kramer, Nicole C.; Eschenburg, Felix

    2008-01-01

    This study analyzes the influence of avatars on social presence, interpersonal trust, perceived communication quality, nonverbal behavior, and visual attention in Net-based collaborations using a comparative approach. A real-time communication window including a special avatar interface was integrated into a shared collaborative workspace.…

  2. Avatar-Mediated Home Safety Assessments: Piloting a Virtual Objective Structured Clinical Examination Station

    PubMed Central

    Andrade, Allen D.; Cifuentes, Pedro; Oliveira, Marcelo C.; Anam, Ramanakumar; Roos, Bernard A.; Ruiz, Jorge G.

    2011-01-01

    Background Avatars and virtual worlds offer medical educators new approaches to assess learners' competency in home-safety assessments that are less time-consuming and more flexible than traditional home visits. We sought to evaluate the feasibility and acceptability of implementing an avatar-mediated, 3-dimensional (3-D) home simulation as a virtual objective structured clinical examination station for geriatric medicine fellows. Methods We developed a 3-D home simulation in the virtual world Second Life (Linden Lab, San Francisco, CA) containing 50 safety hazards that could affect the safety of an elderly person at home. Eight geriatric medicine fellows participated in a 16-station objective structured clinical examination, with one station assigned to the 15-minute 3-D virtual world simulation, where the fellow's “home visit” was performed by navigating his or her avatar in the virtual world simulation. The fellows were instructed to find the home safety hazards in the simulated environment and then provide specific written recommendations. Two reviewers independently scored the fellows' written findings against an inventory-based checklist. Results The geriatric medicine fellows scored a mean of 43% ± SD 9 on the inventory-based checklist. The scoring of the 2 reviewers showed a high interrater reliability (88%). Six of the 8 participants (75%) rated the simulation as “excellent.” Four of the 5 women (80%) and none of the 3 men (20%) participating in the virtual objective structured clinical examination needed navigation assistance in the 3-D virtual house. Conclusion The 3-D, avatar-based, virtual geriatric home safety objective structured clinical examination is a practical and acceptable alternative to the traditional home safety visits in an objective structured clinical examination setting. PMID:23205205

  3. Minimal Increase Network Coding for Dynamic Networks.

    PubMed

    Zhang, Guoyin; Fan, Xu; Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.

  4. Minimal Increase Network Coding for Dynamic Networks

    PubMed Central

    Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211

  5. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    PubMed

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.

  6. Pruning to Increase Taylor Dispersion in Physarum polycephalum Networks

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Alim, Karen; Andrew, Natalie; Pringle, Anne; Brenner, Michael P.

    2016-10-01

    How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology—pruning in the foraging state—causes a large increase in effective dispersion throughout the network. By comparison, changes in the hierarchy of tube radii result in smaller and more localized differences. Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.

  7. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  8. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  9. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  10. Specific non-monotonous interactions increase persistence of ecological networks.

    PubMed

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  11. Specific non-monotonous interactions increase persistence of ecological networks

    PubMed Central

    Yan, Chuan; Zhang, Zhibin

    2014-01-01

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies. PMID:24478300

  12. Interspecies translation of disease networks increases robustness and predictive accuracy.

    PubMed

    Anvar, Seyed Yahya; Tucker, Allan; Vinciotti, Veronica; Venema, Andrea; van Ommen, Gert-Jan B; van der Maarel, Silvere M; Raz, Vered; 't Hoen, Peter A C

    2011-11-01

    Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms.

  13. Increases in New Social Network Ties are Associated with Increased Cohesion among Intervention Participants

    PubMed Central

    Gesell, Sabina B.; Barkin, Shari L.; Sommer, Evan C.; Thompson, Jessica R.; Valente, Thomas W.

    2016-01-01

    Objective Many behavior change programs are delivered in group settings to manage implementation costs and to foster support and interactions among group members to facilitate behavior change. Understanding the group dynamics that evolve in group settings (e.g., weight management, Alcoholics Anonymous) is important, yet rarely measured. This paper examined the relationship between social network ties and group cohesion in a group-based intervention to prevent obesity in children. Method The data reported are process measures from an ongoing community-based randomized controlled trial. 305 parents with a child (3-6 years) at risk of developing obesity were assigned to an intervention that taught parents healthy lifestyles. Parents met weekly for 12 weeks in small consistent groups. Two measures were collected at weeks 3 and 6: a social network survey (people in the group with whom one discusses healthy lifestyles); and the validated Perceived Cohesion Scale (Bollen & Hoyle, 1990). We used lagged random and fixed effects regression models to analyze the data. Results Cohesion increased from 6.51 to 6.71 (t=4.4, p<0.01). Network nominations tended to increase over the 3-week period in each network. In the combined discussion and advice network, the number of nominations increased from 1.76 to 1.95 (z=2.59, p<0.01). Cohesion at week 3 was the strongest predictor of cohesion at week 6 (b=0.55, p<0.01). Number of new network nominations at week 6 was positively related to cohesion at week 6 (b=0.06, p<.01). In sum, being able to name new network contacts was associated with feelings of cohesion. Conclusion This is the first study to demonstrate how network changes affect perceived group cohesion within a behavioral intervention. Given that many behavioral interventions occur in group settings, intentionally building new social networks could be promising to augment desired outcomes. PMID:26286298

  14. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  15. Increasing revenue through idea generation at University Health Network.

    PubMed

    Alcia, Lisa

    2013-01-01

    To enhance products and services provided to researchers and generate external revenue, research operations at the University Health Network implemented an ideation revenue generation framework for evaluation of product ideas for launch to external market. The framework consists of coordinated cross-functional teamwork in idea development and formal evaluation by research operations senior management based on standard criteria. The framework accelerates launch to market of products and services, facilitates due diligence review, increases staff competencies and engagement, and helps foster innovative thinking.

  16. On increasing network lifetime in body area networks using global routing with energy consumption balancing.

    PubMed

    Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil

    2012-09-26

    Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.

  17. Transient dynamics increasing network vulnerability to cascading failures.

    PubMed

    Simonsen, Ingve; Buzna, Lubos; Peters, Karsten; Bornholdt, Stefan; Helbing, Dirk

    2008-05-30

    We study cascading failures in networks using a dynamical flow model based on simple conservation and distribution laws. It is found that considering the flow dynamics may imply reduced network robustness compared to previous static overload failure models. This is due to the transient oscillations or overshooting in the loads, when the flow dynamics adjusts to the new (remaining) network structure. The robustness of networks showing cascading failures is generally given by a complex interplay between the network topology and flow dynamics.

  18. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    PubMed

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  19. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  20. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  1. Increasing the efficiency of a neural network through unlearning

    NASA Astrophysics Data System (ADS)

    Van Hemmen, J. L.; Ioffe, L. B.; Kühn, R.; Vaas, M.

    1990-02-01

    It has been suggested that dream (REM) sleep leads to unlearning of parasitic or spurious states. Here we present the results of an extensive numerical study of unlearning in a network of formal neurons (Ising spins) whose activity may vary. Our results are threefold. First, unlearning greatly improves the performance of the network; e.g., the storage capacity may be more than quadrupled. Second, the optimal number of unlearning steps (“dreams”) does not depend on the activity. Third, using the simplest form of Hebbian learning, the network can store and retrieve patterns whose activity differs. A microscopic picture of the underlying processes is presented.

  2. Increasing capacity of baseband digital data communication networks

    DOEpatents

    Frankel, Robert S.; Herman, Alexander

    1985-01-01

    This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.

  3. Increasing capacity of baseband digital data communication networks

    DOEpatents

    Frankel, R.S.; Herman, A.

    This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.

  4. Homeostatic structural plasticity increases the efficiency of small-world networks.

    PubMed

    Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen

    2014-01-01

    In networks with small-world topology, which are characterized by a high clustering coefficient and a short characteristic path length, information can be transmitted efficiently and at relatively low costs. The brain is composed of small-world networks, and evolution may have optimized brain connectivity for efficient information processing. Despite many studies on the impact of topology on information processing in neuronal networks, little is known about the development of network topology and the emergence of efficient small-world networks. We investigated how a simple growth process that favors short-range connections over long-range connections in combination with a synapse formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal network topology. Interestingly, we found that small-world networks benefited from homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest paths through the network. Efficiency particularly increased as small-world networks approached the desired level of electrical activity. Ultimately, homeostatic small-world networks became almost as efficient as random networks. The increase in efficiency was caused by the emergent property of the homeostatic growth process that neurons started forming more long-range connections, albeit at a low rate, when their electrical activity was close to the homeostatic set-point. Although global network topology continued to change when neuronal activities were around the homeostatic equilibrium, the small-world property of the network was maintained over the entire course of development. Our results may help understand how complex systems such as the brain could set up an efficient network topology in a self-organizing manner. Insights from our work may also lead to novel techniques for constructing large-scale neuronal networks by self-organization.

  5. Increasing social capital via local networks: analysis in the context of a surgical practice.

    PubMed

    Thakur, Anjani; Yang, Isaac; Lee, Michael Y; Goel, Arpan; Ashok, Ashwin; Fonkalsrud, Eric W

    2002-09-01

    The relationship between social capital (support, trust, patient awareness, and increased practice revenue) and local networks (university hospital) in communities has received little attention. The development of computer-based communication networks (social networks) has added a new dimension to the argument, posing the question of whether local networks can (re-)create social capital in local communities. This relationship is examined through a review of the literature on local networks and social capital and a surgeon's practice management from 1990 to 2001 with respect to repair of pectus chest deformities. With respect to pectus repair there was a consistent but small number of new referrals (15-20 new patients/year), lack of patient awareness (eight to 12 self-referred patients/year), and modest practice revenue. Since the inception of an Internet website (social network) dedicated to pectus repair in 1996 there has been increased social participation (n = 630 hits/year to the website); facilitation of spread of information through E-mail messages (n = 430 messages/year); and a greater participation of groups such as women, minorities, adults, and those with disability (n = 120 patients/year). The dissemination of information via the local network has also allowed an "outward movement" with increased participation by interconnecting communities (n = 698,300 global Internet participants based on statistical ratios). We conclude that local networks have enhanced social networks providing new grounds for the development of relationships based on choice and shared interest.

  6. SWNT nano-engineered networks strongly increase charge transport in P3HT.

    PubMed

    Boulanger, Nicolas; Yu, Junchun; Barbero, David R

    2014-10-21

    We demonstrate the formation of arrays of 3D nanosized networks of interconnected single-wall carbon nanotubes (SWNTs) with well defined dimensions in a poly-3-hexylthiophene (P3HT) thin film. These novel nanotube nano-networks produce efficient ohmic charge transport, even at very low nanotube loadings and low voltages. An increase in conductivity between one and two orders of magnitude is observed compared to a random network. The formation of these nano-engineered networks is compatible with large area imprinting and roll to roll processes, which makes it highly desirable for opto-electronic and energy conversion applications using carbon nanotubes.

  7. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  8. Soluble mediators released by acute myeloid leukemia cells increase capillary-like networks.

    PubMed

    Hatfield, Kimberley J; Evensen, Lasse; Reikvam, Håkon; Lorens, James B; Bruserud, Øystein

    2012-12-01

    Increased bone marrow angiogenesis is seen in several hematological malignancies, including acute myeloid leukemia (AML). We used a co-culture assay of endothelial and vascular smooth muscle cells (vSMC) to investigate the effects of AML-conditioned medium on capillary networks. We investigated primary AML cells derived from 44 unselected patients and observed that for a large subset of patients, the constitutive cytokine release by the leukemic cells stimulated endothelial cell organization into capillary-like networks, while there were only minor or no effects for other patients. We analyzed the constitutive AML cell release of 31 cytokines for all the patients and performed a hierarchical cluster analysis of the cytokine profile which identified two major patient subsets that differed in their ability to enhance capillary-like networks; increased capillary-like networks was then associated with high constitutive release of several cytokines and especially high levels of several pro-angiogenic chemokines. Significantly increased network formation was not seen for any of the 11 acute lymphoblastic leukemia patients investigated. The cytokine response by activated normal T cells inhibited endothelial network formation in our in vitro model of angiogenesis and activated normal monocytes had only a minor influence on tube formation. Our study shows that AML-derived cytokines can induce the organization of endothelial cells into vessel-like structures.

  9. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    PubMed Central

    Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter

    2015-01-01

    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796

  10. Post-crystallization increases in the mechanical strength of self-assembled fibrillar networks is due to an increase in network supramolecular ordering

    NASA Astrophysics Data System (ADS)

    Rogers, Michael A.; Wright, Amanda J.; Marangoni, Alejandro G.

    2008-11-01

    Fibre-fibre interactions strongly influence the elastic properties of an organogel and are of critical importance to the ability of the network to entrain liquid oil. At 30 °C, there was a significant decrease in the storage modulus in time due to a decrease in the amount of crystalline material (i.e. a decrease in the free induction decay (FID) amplitude) and order of crystalline material (i.e. an increase in the FID T2 relaxation time (i.e. a measure of proton mobility)). Conversely, at 5 °C, there was an increase in G' in time but no changes were observed in both the amount of crystalline material and its order. This increase in G' was accompanied by a significant increase in the enthalpy of melt and the melting temperature, which translated to a significant increase in the entropy of melt of the system. This decrease in the absolute entropy of the system in time probably arose due to an increase in the number of van der Waals interactions between 12-hydroxystearic acid fibres. Hence the increased order of the system is due to the fibre-fibre interactions which results in a significant increase in G' in time at 5 °C.

  11. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.

    PubMed

    Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H

    2017-02-01

    Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.

  12. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis.

    PubMed

    Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D

    2014-09-01

    Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.

  13. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation

  14. Frontotemporal Network Connectivity during Memory Encoding Is Increased with Aging and Disrupted by Beta-Amyloid

    PubMed Central

    Jagust, William J.

    2013-01-01

    Approximately 30% of cognitively normal older adults harbor brain β-amyloid (Aβ), a prominent feature of Alzheimer's disease associated with neural alterations and episodic memory decline. We examined how aging and Aβ deposition affect neural function during memory encoding of visual scenes using functional magnetic resonance imaging (fMRI) in humans. Thirty-six cognitively normal older people underwent fMRI scanning, and positron emission tomography with [11C] Pittsburgh compound B to measure fibrillar brain Aβ; 15 young subjects were studied with fMRI. Older adults without Aβ deposition showed reduced regional brain activation (compared with young subjects) with decreased task-independent functional connectivity between parahippocampal gyrus and prefrontal cortex. In this network, task-related connectivity was increased compared with young subjects, and the degree of connectivity was related to memory performance. In contrast, older individuals with Aβ deposition showed no such increased task-related network connectivity, but did display increased regional activity unassociated with performance. These findings suggest that network connectivity plays a significant role in compensating for reduced regional activity during successful memory encoding in aging without Aβ deposition, while in those with Aβ this network compensation fails and is accompanied by inefficient regional hyperactivation. PMID:24259567

  15. Rapid increase in fish numbers follows creation of world's largest marine reserve network.

    PubMed

    Russ, Garry R; Cheal, Alistair J; Dolman, Andrew M; Emslie, Michael J; Evans, Richard D; Miller, Ian; Sweatman, Hugh; Williamson, David H

    2008-06-24

    No-take marine reserves (NTMRs) are much advocated as a solution to managing marine ecosystems, protecting exploited species and restoring natural states of biodiversity [1,2]. Increasingly, it is becoming clear that effective marine conservation and management at ecosystem and regional scales requires extensive networks of NTMRs [1,2]. The world's largest network of such reserves was established on Australia's Great Barrier Reef (GBR) in 2004. Closing such a large area to all fishing has been socially and politically controversial, making it imperative that the effectiveness of this new reserve network be assessed. Here we report evidence, first, that the densities of the major target species of the GBR reef line fisheries were significantly higher in the new NTMRs, compared with fished sites, in just two years; and second, that the positive differences were consistent for multiple marine reserves over an unprecedented spatial scale (>1,000 km).

  16. Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tymvios, Filippos; Michaelides, Silas; Retalis, Adrianos; Katsanos, Dimitrios; Lelieveld, Jos

    2016-08-01

    The use of high resolution rainfall datasets is an alternative way of studying climatological regions where conventional rain measurements are sparse or not available. Starting in 1981 to near-present, the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset incorporates a 5km×5km resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis, severe events and seasonal drought monitoring. The aim of this work is to further increase the resolution of the rainfall dataset for Cyprus to 1km×1km, by correlating the CHIRPS dataset with elevation information, the NDVI index (Normalized Difference Vegetation Index) from satellite images at 1km×1km and precipitation measurements from the official raingauge network of the Cyprus' Department of Meteorology, utilizing Artificial Neural Networks. The Artificial Neural Networks' architecture that was implemented is the Multi-Layer Perceptron (MLP) trained with the back propagation method, which is widely used in environmental studies. Seven different network architectures were tested, all with two hidden layers. The number of neurons ranged from 3 to10 in the first hidden layer and from 5 to 25 in the second hidden layer. The dataset was separated into a randomly selected training set, a validation set and a testing set; the latter is independently used for the final assessment of the models' performance. Using the Artificial Neural Network approach, a new map of the spatial analysis of rainfall is constructed which exhibits a considerable increase in its spatial resolution. A statistical assessment of the new spatial analysis was made using the rainfall ground measurements from the raingauge network. The assessment indicates that the methodology is promising for several applications.

  17. Grey matter networks in people at increased familial risk for schizophrenia.

    PubMed

    Tijms, Betty M; Sprooten, Emma; Job, Dominic; Johnstone, Eve C; Owens, David G C; Willshaw, David; Seriès, Peggy; Lawrie, Stephen M

    2015-10-01

    Grey matter brain networks are disrupted in schizophrenia, but it is still unclear at which point during the development of the illness these disruptions arise and whether these can be associated with behavioural predictors of schizophrenia. We investigated if single-subject grey matter networks were disrupted in a sample of people at familial risk of schizophrenia. Single-subject grey matter networks were extracted from structural MRI scans of 144 high risk subjects, 32 recent-onset patients and 36 healthy controls. The following network properties were calculated: size, connectivity density, degree, path length, clustering coefficient, betweenness centrality and small world properties. People at risk of schizophrenia showed decreased path length and clustering in mostly prefrontal and temporal areas. Within the high risk sample, the path length of the posterior cingulate cortex and the betweenness centrality of the left inferior frontal operculum explained 81% of the variance in schizotypal cognitions, which was previously shown to be the strongest behavioural predictor of schizophrenia in the study. In contrast, local grey matter volume measurements explained 48% of variance in schizotypy. The present results suggest that single-subject grey matter networks can quantify behaviourally relevant biological alterations in people at increased risk for schizophrenia before disease onset.

  18. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network

    PubMed Central

    Alhindi, T.; Zhang, Z.; Ruelens, P.; Coenen, H.; Degroote, H.; Iraci, N.; Geuten, K.

    2017-01-01

    A key question regarding protein evolution is how proteins adapt to the dynamic environment in which they function and how in turn their evolution shapes the protein interaction network. We used extant and resurrected ancestral plant MADS-domain transcription factors to understand how SEPALLATA3, a protein with hub and glue properties, evolved and takes part in network organization. Although the density of dimeric interactions was saturated in the network, many new interactions became mediated by SEPALLATA3 after a whole genome triplication event. By swapping SEPALLATA3 and its ancestors between dimeric networks of different ages, we found that the protein lost the capacity of promiscuous interaction and acquired specificity in evolution. This was accompanied with constraints on conformations through proline residue accumulation, which made the protein less flexible. SHORT VEGETATIVE PHASE on the other hand (non-hub) was able to gain protein-protein interactions due to a C-terminal domain insertion, allowing for a larger interaction interface. These findings illustrate that protein interaction evolution occurs at the level of conformational dynamics, when the binding mechanism concerns an induced fit or conformational selection. Proteins can evolve towards increased specificity with reduced flexibility when the complexity of the protein interaction network requires specificity. PMID:28337996

  19. [Medication in a physicians network: modern treatment with no increase in costs?].

    PubMed

    Wunder, S; Brune, K

    2005-04-07

    Practice networks are intended to improve drug treatment and render it more economical. To check whether these aims can be realized, two groups of physicians were observed over a period of two years. The first group stemmed from the Practice Network Nuremberg North (PNN), the other comprised a group of physicians in Augsburg similarly structured in terms of prescriptions, specialties and patients. A comparison was made of the application and costs of drugs for the following four different indications: bronchial asthma, diabetes mellitus, hypertension and osteoporosis. Within the practice network a mild increase in costswas observed forall four indications. This was in part explained by the increased used of modern, more expensive drugs, although savings were also achieved by a more liberal use of more economical, patent-free medications. No improvement in treatment outcome was seen, since prescription in accordance with recommended guidelines would have required the use of other drugs. Evaluation of treatment qualitywas not an aim of this study. Overall, the potentials in terms of improved and simultaneously more economical chemotherapy expected from the establishment of a practice network were not fully utilized. Perhaps the conclusion of a modified agreement Quality and Efficiency (QaE, 2003) might result in improved prescribing through evidence-based medicine, and greater savings.

  20. Increasing Susceptibility of the Global Network of Food Trade to Climate Disturbances

    NASA Astrophysics Data System (ADS)

    Puma, M. J.; Bose, S.; Chon, S.; Cook, B.

    2013-12-01

    Globalization of agriculture through trade liberalization has led to a dramatic transformation of the global network of food trade. The many benefits of this globalization include greater and more efficient global agricultural production, reduced variability of regional and global food supplies, and savings in global water resources. However, a potential hidden cost is an increasingly fragile network that is more susceptible to shocks or disruptions. Recent studies suggest that complex systems, like the global food trade network, may have architectural features typically associated with the existence of tipping points and susceptibility to collapse. Here we present evidence that this global agricultural network is increasingly connected, homogeneous, and in a state where network nodes (here countries) can flip between alternate states. We use production and trade data from 1986 to 2009 to identify shifts in national self sufficiency and to quantify changes in connectivity and homogeneity of the wheat, maize and rice trade. We then simulate the possible impacts of climate and crop-disease disruptions, which could potentially trigger a global food crisis through an export-restriction-induced domino effect. Changes in self-sufficiency ratio (SSR) over time for various country groups. The SSR is computed based on production and trade of cereals and starchy roots. (Top row) Time series of SSR for the Group of Eight + Five (G8+5) countries. The '+ Five' refers to the five leading emerging economies in the world. (Bottom row) Boxplots of average SSR over two periods (1986-1990 and 2005-2009) for countries designated as 'Annex I' and 'Least Developed Countries' (LDC) by the United Nations.

  1. Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty.

    PubMed

    Rietschel, Jeremy C; Miller, Matthew W; Gentili, Rodolphe J; Goodman, Ronald N; McDonald, Craig G; Hatfield, Bradley D

    2012-05-01

    Excessive increases in task difficulty typically result in marked attenuation of cognitive-motor performance. The psychomotor efficiency hypothesis suggests that poor performance is mediated by non-essential neural activity and cerebral cortical networking (inefficient cortical dynamics). This phenomenon may underlie the inverse relationship between excessive task difficulty and performance. However, investigation of the psychomotor efficiency hypothesis as it relates to task difficulty has not been conducted. The present study used electroencephalography (EEG) to examine cerebral cortical dynamics while participants were challenged with both Easy and Hard conditions during a cognitive-motor task (Tetris(®)). In accord with the psychomotor efficiency hypothesis, it was predicted that with increases in task difficulty, participants would demonstrate greater 'neural effort,' as indexed by EEG spectral power and cortical networking (i.e., EEG coherence) between the premotor (motor planning) region and sensory, executive, and motor regions. Increases in neural activation and cortical networking were observed during the Hard condition relative to the Easy condition, thus supporting the psychomotor efficiency hypothesis. To further determine the unique contributions of cognitive versus sensory-motor demands, a control experiment was conducted in which cognitive demand was increased while sensory-motor demand was held constant. This experiment revealed that regionally specific neural activation was influenced by changes in cognitive demand, whereas cortical networking to the motor planning region was sensitive only to changes in sensory-motor demand. Crucially, the present study is the first, to our knowledge, to characterize the separate impact of cognitive versus sensory-motor demands on cerebral cortical dynamics. The findings further inform the dynamics of the cortical processes that underlie the quality of cognitive-motor performance particularly with regard to task

  2. Frequent Surfing on Social Health Networks is Associated With Increased Knowledge and Patient Health Activation

    PubMed Central

    Grosberg, Dafna; Grinvald, Haya; Reuveni, Haim

    2016-01-01

    Background The advent of the Internet has driven a technological revolution that has changed our lives. As part of this phenomenon, social networks have attained a prominent role in health care. A variety of medical services is provided over the Internet, including home monitoring, interactive communications between the patient and service providers, and social support, among others. This study emphasizes some of the practical implications of Web-based health social networks for patients and for health care systems. Objective The objective of this study was to assess how participation in a social network among individuals with a chronic condition contributed to patient activation, based on the Patient Activation Measure (PAM). Methods A prospective, cross-sectional survey with a retrospective component was conducted. Data were collected from Camoni, a Hebrew-language Web-based social health network, participants in the diabetes mellitus, pain, hypertension, and depression/anxiety forums, during November 2012 to 2013. Experienced users (enrolled at least 6 months) and newly enrolled received similar versions of the same questionnaire including sociodemographics and PAM. Results Among 686 participants, 154 of 337 experienced and 123 of 349 newly enrolled completed the questionnaire. Positive correlations (P<.05) were found between frequency and duration of site visits and patient activation, social relationships, and chronic disease knowledge. Men surfed longer than women (χ²3=10.104, P<.05). Experienced users with diabetes surfed more than those with other illnesses and had significantly higher PAM scores (mean, M=69.3, standard deviation, SD=19.1, PAM level 4; Z=−4.197, P<.001) than new users (M=62.8, SD=18.7, PAM level 3). Disease knowledge directly predicted PAM for all users (β=.26 and .21, respectively). Frequency and duration of social health network use were correlated with increased knowledge about a chronic disease. Experienced surfers had higher PAM

  3. THE DYT1 CARRIER STATE INCREASES ENERGY DEMAND IN THE OLIVOCEREBELLAR NETWORK

    PubMed Central

    Zhao, Yu; Sharma, Nutan; LeDoux, Mark S.

    2011-01-01

    DYT1 dystonia is caused by a GAG deletion in TOR1A, the gene which encodes torsinA. Gene expression studies in rodents and functional imaging studies in humans suggest that DYT1 dystonia may be a network disorder of neurodevelopmental origin. To generate high resolution metabolic maps of DYT1 dystonia and pinpoint dysregulated network elements, we performed 2-deoxyglucose autoradiography and cytochrome oxidase (CO) histochemistry in transgenic mice expressing human mutant (hMT1) torsinA and wild-type littermates. In comparison with controls, hMT1 mice showed increased glucose utilization (GU) in the inferior olive (IO) medial nucleus (IOM), IO dorsal accessory nucleus and substantia nigra compacta, and decreased GU in the medial globus pallidus (MGP) and lateral globus pallidus. The hMT1 mice showed increased CO activity in the IOM and Purkinje cell layer of cerebellar cortex, and decreased CO activity in the caudal caudate-putamen, substantia nigra reticulata and MGP. These findings suggest that (1) the DYT1 carrier state increases energy demand in the olivocerebellar network and (2) the IO may be a pivotal node for abnormal basal ganglia-cerebellar interactions in dystonia. PMID:21241782

  4. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    PubMed

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  5. Decreased activity with increased background network efficiency in amnestic MCI during a visuospatial working memory task.

    PubMed

    Lou, Wutao; Shi, Lin; Wang, Defeng; Tam, Cindy W C; Chu, Winnie C W; Mok, Vincent C T; Cheng, Sheung-Tak; Lam, Linda C W

    2015-09-01

    Recent studies have demonstrated the working memory impairment in patients with amnestic mild cognitive impairment (aMCI). However, the neurophysiological basis of the working memory deficit in aMCI is poorly understood. The aim of this study was to explore the abnormal activity during encoding and recognition procedures, as well as the reorganization of the background network maintaining the working memory state in aMCI. Using event-related fMRI during a visuospatial working memory task with three recognition difficulty levels, the task-related activations and network efficiency of the background network in 17 aMCI patients and 19 matched controls were investigated. Compared with cognitively healthy controls, patients with aMCI showed significantly decreased activity in the frontal and visual cortices during the encoding phase, while during the recognition phase, decreased activity was detected in the frontal, parietal, and visual regions. In addition, increased local efficiency was also observed in the background network of patients with aMCI. The results suggest patients with aMCI showed impaired encoding and recognition functions during the visuospatial working memory task, and may pay more effort to maintain the cognitive state. This study extends our understanding of the impaired working memory function in aMCI and provides a new perspective to investigate the compensatory mechanism in aMCI.

  6. Higher Physical Activity Is Associated with Increased Attentional Network Connectivity in the Healthy Elderly

    PubMed Central

    Kim, Geon Ha; Im, Kiho; Kwon, Hunki; Seo, Sang Won; Ye, Byoung Seok; Cho, Hanna; Noh, Young; Lee, Jong Min; Kim, Sung Tae; Park, Sang Eon; Kim, Hojeong; Hwang, Jung Won; Kang, Sue J.; Jeong, Jee Hyang; Na, Duk L.

    2016-01-01

    The purpose of this study was to demonstrate the potential alterations in structural network properties related to physical activity (PA) in healthy elderly. We recruited 76 elderly individuals with normal cognition from Samsung Medical Center in Seoul, Korea. All participants underwent the Cambridge Neuropsychological Test Automated Battery and 3.0T brain magnetic resonance imaging (MRI). Participants were subdivided into quartiles according to the International Physical Activity Questionnaire scores, which represents the amount of PA. Through graph theory based analyses, we compared global and local network topologies according to PA quartile. The higher PA group demonstrated better performance in speed processing compared to the lower PA group. Regional nodal strength also significantly increased in the higher PA group, which involved the bilateral middle frontal, bilateral inferior parietal, right medial orbitofrontal, right superior, and middle temporal gyri. These results were further replicated when the highest and the lowest quartile groups were compared in terms of regional nodal strengths and local efficiency. Our findings that the regional nodal strengths associated with the attentional network were increased in the higher PA group suggest the preventive effects of PA on age-related cognitive decline, especially in attention. PMID:27597826

  7. Higher Physical Activity Is Associated with Increased Attentional Network Connectivity in the Healthy Elderly.

    PubMed

    Kim, Geon Ha; Im, Kiho; Kwon, Hunki; Seo, Sang Won; Ye, Byoung Seok; Cho, Hanna; Noh, Young; Lee, Jong Min; Kim, Sung Tae; Park, Sang Eon; Kim, Hojeong; Hwang, Jung Won; Kang, Sue J; Jeong, Jee Hyang; Na, Duk L

    2016-01-01

    The purpose of this study was to demonstrate the potential alterations in structural network properties related to physical activity (PA) in healthy elderly. We recruited 76 elderly individuals with normal cognition from Samsung Medical Center in Seoul, Korea. All participants underwent the Cambridge Neuropsychological Test Automated Battery and 3.0T brain magnetic resonance imaging (MRI). Participants were subdivided into quartiles according to the International Physical Activity Questionnaire scores, which represents the amount of PA. Through graph theory based analyses, we compared global and local network topologies according to PA quartile. The higher PA group demonstrated better performance in speed processing compared to the lower PA group. Regional nodal strength also significantly increased in the higher PA group, which involved the bilateral middle frontal, bilateral inferior parietal, right medial orbitofrontal, right superior, and middle temporal gyri. These results were further replicated when the highest and the lowest quartile groups were compared in terms of regional nodal strengths and local efficiency. Our findings that the regional nodal strengths associated with the attentional network were increased in the higher PA group suggest the preventive effects of PA on age-related cognitive decline, especially in attention.

  8. Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder

    PubMed Central

    Cerliani, Leonardo; Mennes, Maarten; Thomas, Rajat M.; Di Martino, Adriana; Thioux, Marc; Keysers, Christian

    2016-01-01

    Importance Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks. Objectives To compare the intrinsic functional connectivity between brain networks in a large sample of individuals with ASD and typically developing control subjects and to estimate to what extent group differences would predict autistic traits and reflect different developmental trajectories. Design, Setting, and Participants We studied 166 male individuals (mean age, 17.6 years; age range, 7-50 years) diagnosed as having DSM-IV-TR autism or Asperger syndrome and 193 typical developing male individuals (mean age, 16.9 years; age range, 6.5-39.4 years) using resting-state functional magnetic resonance imaging (MRI). Participants were matched for age, IQ, head motion, and eye status (open or closed) in the MRI scanner. We analyzed data from the Autism Brain Imaging Data Exchange (ABIDE), an aggregated MRI data set from 17 centers, made public in August 2012. Main Outcomes and Measures We estimated correlations between time courses of brain networks extracted using a data-driven method (independent component analysis). Subsequently, we associated estimates of interaction strength between networks with age and autistic traits indexed by the Social Responsiveness Scale. Results Relative to typically developing control participants, individuals with ASD showed increased functional connectivity between primary sensory networks and subcortical networks (thalamus and basal ganglia) (all t ≥ 3.13, P < .001 corrected). The strength of

  9. Report: Improved Management Practices Needed to Increase Use of Exchange Network

    EPA Pesticide Factsheets

    Report #2007-P-00030, August 20, 2007. EPA established a partnership with the Exchange Network’s governance bodies to assist them with accomplishing Network initiatives, more improvements are needed to ensure Network partners fully utilize the Network.

  10. Energy-aware Gateway Selection for increasing the lifetime of Wireless Body Area Sensor Networks.

    PubMed

    Bayilmis, Cuneyt; Younis, Mohamed

    2012-06-01

    A Wireless Body Area Sensor Network (WBASN) is composed of a set of sensor nodes, placed on, near or within a human body. WBASNs opt to continuously monitor the health conditions of individuals under medical risk, e.g., elders and chronically ill people, without keeping them in a hospital or restraining their motion. A WBASN needs to stay connected to local or wide area networks using wireless technologies in order to send sensor readings to a medical center. The WBASN nodes are implanted within the human body and would thus have limited energy supply. Since the mission of the WBASN is very critical, increasing the lifetime of nodes is essential in order to maintain both practicality and effectiveness. This paper presents a new Gateway Selection Algorithm (GSA) that factors in the use of energy harvesting technologies and dynamically picks the most suitable WBASN node that serves as a gateway to other wireless networks. The goal of GSA is to balance the load among the nodes by adaptively changing the gateway node in WBASN depending on the energy reserve of nodes. Computer modeling and simulations of the proposed GSA are carried out using OPNET. The simulation results demonstrate the effectiveness of the proposed GSA approach.

  11. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    PubMed

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  12. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    PubMed Central

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  13. Simulation study on effects of signaling network structure on the developmental increase in complexity

    SciTech Connect

    Keranen, Soile V.E.

    2003-04-02

    The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions than on the increase in numbers of regulatory genes.

  14. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution.

    PubMed

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-03-24

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy.

  15. Leveraging modern climatology to increase adaptive capacity across protected area networks

    USGS Publications Warehouse

    Davison, J.E.; Graumlich, L.J.; Rowland, E.L.; Pederson, G.T.; Breshears, D.D.

    2012-01-01

    Human-driven changes in the global environment pose an increasingly urgent challenge for the management of ecosystems that is made all the more difficult by the uncertain future of both environmental conditions and ecological responses. Land managers need strategies to increase regional adaptive capacity, but relevant and rapid assessment approaches are lacking. To address this need, we developed a method to assess regional protected area networks across biophysically important climatic gradients often linked to biodiversity and ecosystem function. We plot the land of the southwestern United States across axes of historical climate space, and identify landscapes that may serve as strategic additions to current protected area portfolios. Considering climate space is straightforward, and it can be applied using a variety of relevant climate parameters across differing levels of land protection status. The resulting maps identify lands that are climatically distinct from existing protected areas, and may be utilized in combination with other ecological and socio-economic information essential to collaborative landscape-scale decision-making. Alongside other strategies intended to protect species of special concern, natural resources, and other ecosystem services, the methods presented herein provide another important hedging strategy intended to increase the adaptive capacity of protected area networks. ?? 2011 Elsevier Ltd.

  16. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing

    PubMed Central

    Klapwijk, Eduard T.; Goddings, Anne-Lise; Heyes, Stephanie Burnett; Bird, Geoffrey; Viner, Russell M.; Blakemore, Sarah-Jayne

    2015-01-01

    There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13 years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person’s mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls. PMID:23998674

  17. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing.

    PubMed

    Klapwijk, Eduard T; Goddings, Anne-Lise; Burnett Heyes, Stephanie; Bird, Geoffrey; Viner, Russell M; Blakemore, Sarah-Jayne

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person's mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls.

  18. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children.

    PubMed

    Kurth, Salome; Dean, Douglas C; Achermann, Peter; O'Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C L; LeBourgeois, Monique K

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children's developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question.

  19. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  20. An evolving Mars telecommunications network to enable exploration and increase science data return

    NASA Technical Reports Server (NTRS)

    Edwards, Chad; Komarek, Tomas A.; Noreen, Gary K.; Wilson, Gregory R.

    2003-01-01

    The coming decade of Mars exploration involves a variety of unique telecommunications challenges. Increasing spatial and spectral resolution of in situ science instruments drive the need for increased bandwidth. At the same time, many innovative and low-cost in situ mission concepts are enabled by energy-efficient relay communications. In response to these needs, the Mars Exploration Program has established a plan for an evolving orbital infrastructure that can provide enhancing and enabling telecommunications services to future Mars missions. We will present the evolving capabilities of this network over the coming decade in terms of specific quantitative metrics such as data volume per sol and required lander energy per Gb of returned data for representative classes of Mars exploration spacecraft.

  1. Increased maternal nutrition alters development of the appetite-regulating network in the brain.

    PubMed

    Muhlhausler, B S; Adam, C L; Findlay, P A; Duffield, J A; McMillen, I C

    2006-06-01

    Individuals exposed to an increased nutrient supply before birth have a high risk of becoming obese children and adults. It has been proposed that exposure of the fetus to high maternal nutrient intake results in permanent changes within the central appetite regulatory network. No studies, however, have investigated the impact of increased maternal nutrition on the appetite regulatory network in species in which this network develops before birth, as in the human. In the present study, pregnant ewes were fed a diet which provided 100% (control, n = 8) or approximately 160% (well-fed, n = 8) of metabolizable energy requirements. Ewes were allowed to lamb spontaneously, and lambs were sacrificed at 30 days of postnatal age. All fat depots were dissected and weighed, and expression of the appetite-regulating neuropeptides and the leptin receptor (OBRb) were determined by in situ hybridization. Lambs of well-fed ewes had higher glucose (Glc) concentrations during early postnatal life (F = 5.93, P<0.01) and a higher relative subcutaneous (s.c.) fat mass at 30 days of age (34.9+/-4.7 g/kg vs. 22.8+/-3.3 g/kg; P<0.05). The hypothalamic expression of pro-opiomelanocortin was higher in lambs of well-fed ewes (0.48+/-0.09 vs. 0.28+/-0.04, P<0.05). In lambs of overnourished mothers, but not in controls, the expression of OBRb was inversely related to total relative fat mass (r2 = 0.50, P = 0.05, n = 8), and the direct relationship between the expression of the central appetite inhibitor CART and fat mass was lost. The expression of neuropeptide Y and AGRP was inversely related to total relative fat mass (NPY, r2 = 0.28, P<0.05; agouti-related peptide, r2 = 0.39, P<0.01). These findings suggest that exposure to increased nutrition before birth alters the responses of the central appetite regulatory system to signals of increased adiposity after birth.

  2. An Online Social Network to Increase Walking in Dog Owners: A Randomized Trial

    PubMed Central

    Schneider, Kristin L.; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C.

    2014-01-01

    PURPOSE Encouraging dog walking may increase physical activity in dog owners. This cluster randomized controlled trial investigated whether a social networking website (Meetup™) could be used to deliver a multi-component dog walking intervention to increase physical activity. METHODS Sedentary dog owners (n=102) participated. Eight neighborhoods were randomly assigned to the Meetup condition (Meetup) or a condition where participants received monthly emails with content from the American Heart Association on increasing physical activity (AHA). The Meetup intervention was delivered over 6 months and consisted of newsletters, dog walks, community events and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking and feasibility of the intervention. RESULTS Mixed model analyses examined change from baseline to post-intervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (p=0.04, d=0.28), with no differences by condition. The time x condition interaction was significant for the perceived outcomes of dog walking (p=0.04, d=0.40), such that the Meetup condition reported an increase in the perceived positive outcomes of dog walking, whereas the AHA condition did not. Social support, sense of community and dog walking barriers did not significantly change. Meetup logins averaged 58.38 per week (SD=11.62). Within two months of the intervention ending, organization of the Meetup groups transitioned from study staff to Meetup members. CONCLUSION Results suggest that a Meetup group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup group and facilitate greater connection among dog owners. PMID:25003777

  3. 3-way Networks: Application of Hypergraphs for Modelling Increased Complexity in Comparative Genomics

    PubMed Central

    Weighill, Deborah A; Jacobson, Daniel A

    2015-01-01

    We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes. PMID:25815802

  4. 3-way Networks: Application of Hypergraphs for Modelling Increased Complexity in Comparative Genomics

    DOE PAGES

    Weighill, Deborah A.; Jacobson, Daniel A.

    2015-03-27

    Herein we present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes.

  5. Does Posting Facebook Status Updates Increase or Decrease Loneliness? An Online Social Networking Experiment.

    PubMed

    Deters, Fenne Große; Mehl, Matthias R

    2013-09-01

    Online social networking is a pervasive but empirically understudied phenomenon. Strong public opinions on its consequences exist but are backed up by little empirical evidence and almost no causally-conclusive, experimental research. The current study tested the psychological effects of posting status updates on Facebook using an experimental design. For one week, participants in the experimental condition were asked to post more than they usually do, whereas participants in the control condition received no instructions. Participants added a lab "Research Profile" as a Facebook friend allowing for the objective documentation of protocol compliance, participants' status updates, and friends' responses. Results revealed (1) that the experimentally-induced increase in status updating activity reduced loneliness, (2) that the decrease in loneliness was due to participants feeling more connected to their friends on a daily basis and (3) that the effect of posting on loneliness was independent of direct social feedback (i.e. responses) by friends.

  6. Does Posting Facebook Status Updates Increase or Decrease Loneliness? An Online Social Networking Experiment

    PubMed Central

    Deters, Fenne große; Mehl, Matthias R.

    2013-01-01

    Online social networking is a pervasive but empirically understudied phenomenon. Strong public opinions on its consequences exist but are backed up by little empirical evidence and almost no causally-conclusive, experimental research. The current study tested the psychological effects of posting status updates on Facebook using an experimental design. For one week, participants in the experimental condition were asked to post more than they usually do, whereas participants in the control condition received no instructions. Participants added a lab “Research Profile” as a Facebook friend allowing for the objective documentation of protocol compliance, participants’ status updates, and friends’ responses. Results revealed (1) that the experimentally-induced increase in status updating activity reduced loneliness, (2) that the decrease in loneliness was due to participants feeling more connected to their friends on a daily basis and (3) that the effect of posting on loneliness was independent of direct social feedback (i.e. responses) by friends. PMID:24224070

  7. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding.

    PubMed

    Pedersen, Mangor; Omidvarnia, Amir H; Walz, Jennifer M; Jackson, Graeme D

    2015-01-01

    Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications.

  8. Finding the Sweet Spot: Network Structures and Processes for Increased Knowledge Mobilization

    ERIC Educational Resources Information Center

    Briscoe, Patricia; Pollock, Katina; Campbell, Carol; Carr-Harris, Shasta

    2015-01-01

    The use of networks in public education is one of many knowledge mobilization (KMb) strategies utilized to promote evidence-based research into practice. However, challenges exist in the ability to mobilize knowledge through networks. The purpose of this paper is to explore how networks work. Data were collected from virtual discussions for an…

  9. Support or competition? How online social networks increase physical activity: A randomized controlled trial.

    PubMed

    Zhang, Jingwen; Brackbill, Devon; Yang, Sijia; Becker, Joshua; Herbert, Natalie; Centola, Damon

    2016-12-01

    To identify what features of online social networks can increase physical activity, we conducted a 4-arm randomized controlled trial in 2014 in Philadelphia, PA. Students (n = 790, mean age = 25.2) at an university were randomly assigned to one of four conditions composed of either supportive or competitive relationships and either with individual or team incentives for attending exercise classes. The social comparison condition placed participants into 6-person competitive networks with individual incentives. The social support condition placed participants into 6-person teams with team incentives. The combined condition with both supportive and competitive relationships placed participants into 6-person teams, where participants could compare their team's performance to 5 other teams' performances. The control condition only allowed participants to attend classes with individual incentives. Rewards were based on the total number of classes attended by an individual, or the average number of classes attended by the members of a team. The outcome was the number of classes that participants attended. Data were analyzed using multilevel models in 2014. The mean attendance numbers per week were 35.7, 38.5, 20.3, and 16.8 in the social comparison, the combined, the control, and the social support conditions. Attendance numbers were 90% higher in the social comparison and the combined conditions (mean = 1.9, SE = 0.2) in contrast to the two conditions without comparison (mean = 1.0, SE = 0.2) (p = 0.003). Social comparison was more effective for increasing physical activity than social support and its effects did not depend on individual or team incentives.

  10. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    PubMed

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  11. Use of social network sites and instant messaging does not lead to increased offline social network size, or to emotionally closer relationships with offline network members.

    PubMed

    Pollet, Thomas V; Roberts, Sam G B; Dunbar, Robin I M

    2011-04-01

    The effect of Internet use on social relationships is still a matter of intense debate. This study examined the relationships between use of social media (instant messaging and social network sites), network size, and emotional closeness in a sample of 117 individuals aged 18 to 63 years old. Time spent using social media was associated with a larger number of online social network "friends." However, time spent using social media was not associated with larger offline networks, or feeling emotionally closer to offline network members. Further, those that used social media, as compared to non-users of social media, did not have larger offline networks, and were not emotionally closer to offline network members. These results highlight the importance of considering potential time and cognitive constraints on offline social networks when examining the impact of social media use on social relationships.

  12. Operational network improvements and increased reporting in the NOA (Greece) seismicity catalog.

    NASA Astrophysics Data System (ADS)

    Chouliaras, Gerasimos; Melis, Nikolaos; Drakatos, Georgios; Makropoulos, Konstantinos

    2013-04-01

    Earthquake catalogues are the basic product of seismology and of extreme importance for the assessment of seismic hazard. These data sets contain both, natural and man-made, changes. For example, seismological networks may improve their detection ability by the addition of more stations, by changing station locations for a better signal to noise condition and by improving the signal processing and analysis of seismic events. These man-made artifacts are apparent changes of the seismicity rate in earthquake catalogues and they mask the determination of real tectonic seismicity patterns. The earthquake catalog of the Institute of Geodynamics of the National Observatory of Athens (NOA) is the most detailed data set available for the Greek area containing more than 150,000 events since 1964. During this 49 year period, many changes occurred in the processing, analysis and reporting procedures, as well as changes in the configuration and infrastructure of the seismological network, however the method of the magnitude determination remained undisturbed. In February 2011 major improvements were implemented in the standard procedure for analysis and reporting at NOA and most important was the change in the method and procedure for the earthquake magnitude determination. In this investigation we will demonstrate the artificial seismicity increase in the earthquake catalog of NOA due to the recent improvements in the analysis and reporting. The results indicate a significant change in the magnitude of completeness of the earthquake catalog from a value of Mc~3 prior to 2011, to a value of Mc~2 after February 1st, 2011, mainly attributed to the registration of significantly larger number of events of smaller magnitudes. In order to maintain the homogeneity of the magnitudes reported throughout the NOA catalog, synthetic frequency-magnitude distributions are employed to determine the required conversion constants.

  13. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man

  14. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man

  15. Federal Parity Law Associated With Increased Probability Of Using Out-Of-Network Substance Use Disorder Treatment Services

    PubMed Central

    McGinty, Emma E.; Busch, Susan H.; Stuart, Elizabeth A.; Huskamp, Haiden A.; Gibson, Teresa B.; Goldman, Howard H.; Barry, Colleen L.

    2015-01-01

    The Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 requires commercial insurers providing group coverage for substance use disorder services to offer benefits for those services at a level equal to those for medical or surgical benefits. Unlike previous parity policies instituted for federal employees and in individual states, the law extends parity to out-of-network services. We conducted an interrupted time-series analysis using insurance claims from large self-insured employers to evaluate whether federal parity was associated with changes in out-of-network treatment for 525,620 users of substance use disorder services. Federal parity was associated with an increased probability of using out-of-network services, an increased average number of out-of-network outpatient visits, and increased average total spending on out-of-network services among users of those services. Our findings were broadly consistent with the contention of federal parity proponents that extending parity to out-of-network services would broaden access to substance use disorder care obtained outside of plan networks. PMID:26240247

  16. Increasing CAD system efficacy for lung texture analysis using a convolutional network

    NASA Astrophysics Data System (ADS)

    Tarando, Sebastian Roberto; Fetita, Catalin; Faccinetto, Alex; Brillet, Pierre-Yves

    2016-03-01

    The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. For the large majority of CAD systems, such classification relies on a two-dimensional analysis of axial CT images. In a previously developed CAD system, we proposed a fully-3D approach exploiting a multi-scale morphological analysis which showed good performance in detecting diseased areas, but with a major drawback consisting of sometimes overestimating the pathological areas and mixing different type of lung patterns. This paper proposes a combination of the existing CAD system with the classification outcome provided by a convolutional network, specifically tuned-up, in order to increase the specificity of the classification and the confidence to diagnosis. The advantage of using a deep learning approach is a better regularization of the classification output (because of a deeper insight into a given pathological class over a large series of samples) where the previous system is extra-sensitive due to the multi-scale response on patient-specific, localized patterns. In a preliminary evaluation, the combined approach was tested on a 10 patient database of various lung pathologies, showing a sharp increase of true detections.

  17. Temporal dynamics of a commensal network of cavity-nesting vertebrates: increased diversity during an insect outbreak.

    PubMed

    Cockle, Kristina L; Martin, Kathy

    2015-04-01

    Network analysis offers insight into the structure and function of ecological communities, but little is known about how empirical networks change over time during perturbations. "Nest webs" are commensal networks that link secondary cavity-nesting vertebrates (e.g., bluebirds, ducks, and squirrels, which depend on tree cavities for nesting) with the excavators (e.g., woodpeckers) that produce cavities. In central British Columbia, Canada, Northern Flicker (Colaptes auratus) is considered a keystone excavator, providing most cavities for secondary cavity-nesters. However, roles of species in the network, and overall network architecture, are expected to vary with population fluctuations. Many excavator species increased in abundance in association with a pulse of food (adult and larval beetles) during an outbreak of mountain pine beetle (Dendroctonus ponderosae), which peaked in 2003-2004. We studied nest-web dynamics from 1998 to 2011 to determine how network architecture changed during this resource pulse. Cavity availability increased at the onset of the beetle outbreak and peaked in 2005. During and after the outbreak, secondary cavity-nesters increased their use of cavities made by five species of beetle-eating excavators, and decreased their use of flicker cavities. We found low link turnover, with 74% of links conserved from year to year. Nevertheless, the network increased in evenness and diversity of interactions, and declined slightly in nestedness and niche overlap. These patterns remained evident seven years after the beetle outbreak, suggesting a legacy effect. In contrast to previous snapshot studies of nest webs, our dynamic approach reveals how the role of each cavity producer, and thus quantitative network architecture, can vary over time. The increase in interaction diversity with the beetle outbreak adds to growing evidence that insect outbreaks can increase components of biodiversity in forest ecosystems at various temporal scales. The observed

  18. Glutamine triggers long-lasting increase in striatal network activity in vitro.

    PubMed

    Fleischer, Wiebke; Theiss, Stephan; Schnitzler, Alfons; Sergeeva, Olga

    2017-04-01

    Accumulation of ammonium and glutamine in blood and brain is a key factor in hepatic encephalopathy (HE) - a neuropsychiatric syndrome characterized by various cognitive and motor deficits. MRI imaging identified abnormalities notably in the basal ganglia of HE patients, including its major input station, the striatum. While neurotoxic effects of ammonia have been extensively studied, glutamine is primarily perceived as "detoxified" form of ammonia. We applied ammonium and glutamine to striatal and cortical cells from newborn rats cultured on microelectrode arrays. Glutamine, but not ammonium significantly increased spontaneous spike rate with a long-lasting excitation outlasting washout. This effect was more prominent in striatal than in cortical cultures. Calcium imaging revealed that glutamine application caused a rise in intracellular calcium that depended both on system A amino acid transport and activation of ionotropic glutamate receptors. This pointed to downstream glutamate release that was triggered by intracellular glutamine. Using an enzymatic assay kit we confirmed glutamine-provoked glutamate release from striatal cells. Real-time PCR and immunocytochemistry demonstrated the presence of vesicular glutamate transporters (VGLUT1 and VGLUT2) necessary for synaptic glutamate release in striatal neurons. We conclude that extracellular glutamine is taken up by neurons, triggers synaptic release of glutamate which is then taken up by astrocytes and again converted to glutamine. This feedback-loop causes a sustained long-lasting excitation of network activity. Thus, apart from ammonia also its "detoxified" form glutamine might be responsible for the neuropsychiatric symptoms in HE.

  19. Proximity data-loggers increase the quantity and quality of social network data.

    PubMed

    Ryder, Thomas B; Horton, Brent M; van den Tillaart, Mike; Morales, Juan De Dios; Moore, Ignacio T

    2012-12-23

    Social network analysis is an ideal quantitative tool for advancing our understanding of complex social behaviour. However, this approach is often limited by the challenges of accurately characterizing social structure and measuring network heterogeneity. Technological advances have facilitated the study of social networks, but to date, all such work has focused on large vertebrates. Here, we provide proof of concept for using proximity data-logging to quantify the frequency of social interactions, construct weighted networks and characterize variation in the social behaviour of a lek-breeding bird, the wire-tailed manakin, Pipra filicauda. Our results highlight how this approach can ameliorate the challenges of social network data collection and analysis by concurrently improving data quality and quantity.

  20. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Smecker-Hane, Tammy A.

    2016-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.In 6 years, the CAMPARE program has sent 62 students, >85% from underrepresented groups, to conduct summer research at one of twelve major research institutions in California, Arizona, and Wyoming. The graduation rate among CAMPARE scholars is 97%, and of the 37 CAMPARE scholars who have graduated with a Bachelor's degree, almost 60% (21) have completed or are pursuing graduate education in astronomy or a related field, at institutions including UCLA, USC, UC Riverside, Stanford, Univ. of Rochester, Georgia Tech, Kent State, Indiana Univ., Univ. of Oregon, Syracuse, and the Fisk-Vanderbilt Master's-to-PhD program. The Cal-Bridge program is a CSU-UC Bridge program comprised of faculty form 5 University of California (UC), 8 California State University (CSU), and 8 California Community College (CCC) campuses in Southern California. Cal-Bridge provides much deeper mentoring and professional development experiences over the last two years of undergraduate and first year of graduate school to students from this diverse network of higher education institutions. Cal-Bridge Scholars benefit from financial support, intensive, joint mentoring by CSU and UC faculty, professional development workshops, and exposure to research opportunities at the participating UC campuses.

  1. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion.

    PubMed

    Toussay, Xavier; Basu, Kaustuv; Lacoste, Baptiste; Hamel, Edith

    2013-02-20

    The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and β-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.

  2. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high

  3. The Alzheimer Structural Connectome: Changes in Cortical Network Topology with Increased Amyloid Plaque Burden

    PubMed Central

    Guidon, Arnaud; Doraiswamy, P. Murali; Roy Choudhury, Kingshuk; Liu, Chunlei; Petrella, Jeffrey R.

    2014-01-01

    ), independent of brain region. For every 0.1-unit increase in florbetapir SUVr, there was a 14% decrease in strength, an 11% decrease in weighted local efficiency, and a 9% decrease in weighted clustering coefficient, regardless of the analyzed cortical region or, in the case of weighted local efficiency and clustering coefficient, diagnostic group. Conclusion Increased amyloid burden, as measured with florbetapir PET imaging, is related to changes in the topology of the large-scale cortical network architecture of the brain, as measured with graph theoretical metrics of DTI tractography, even in the preclinical stages of AD. © RSNA, 2014 Online supplemental material is available for this article. PMID:24865310

  4. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study

    PubMed Central

    Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions. PMID:26158464

  5. COPD Hospitalization Risk Increased with Distinct Patterns of Multiple Systems Comorbidities Unveiled by Network Modeling

    PubMed Central

    Lee, Young Ji; Boyd, Andrew D.; Li, Jianrong ‘John’; Gardeux, Vincent; Kenost, Colleen; Saner, Don; Li, Haiquan; Abraham, Ivo; Krishnan, Jerry A.; Lussier, Yves A.

    2014-01-01

    Earlier studies on hospitalization risk are largely based on regression models. To our knowledge, network modeling of multiple comorbidities is novel and inherently enables multidimensional scoring and unbiased feature reduction. Network modeling was conducted using an independent validation design starting from 38,695 patients, 1,446,581 visits, and 430 distinct clinical facilities/hospitals. Odds ratios (OR) were calculated for every pair of comorbidity using patient counts and compared their tendency with hospitalization rates and ED visits. Network topology analyses were performed, defining significant comorbidity associations as having OR≥5 & False-Discovery-Rate≤10−7. Four COPD-associated comorbidity sub-networks emerged, incorporating multiple clinical systems: (i) metabolic syndrome, (ii) substance abuse and mental disorder, (iii) pregnancy-associated conditions, and (iv) fall-related injury. The latter two have not been reported yet. Features prioritized from the network are predictive of hospitalizations in an independent set (p<0.004). Therefore, we suggest that network topology is a scalable and generalizable method predictive of hospitalization. PMID:25954392

  6. Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation

    PubMed Central

    Washington, Stuart D.; VanMeter, John W.

    2015-01-01

    The default mode network (DMN) supports self-referential thought processes important for successful socialization including: theory-of-mind, episodic memory, and prospection. Connectivity between DMN's nodes, which are distributed between the frontal, temporal, and parietal lobes, change with age and may continue changing into adulthood. We have previously explored the maturation of functional connections in the DMN as they relate to autism spectrum disorder (ASD) in children 6 to 18 years of age. In this chapter, we refine our earlier study of DMN functional maturation by focusing on the development of inter-nodal connectivity in a larger pool of typically developing people 6 to 25 years of age (mean = 13.22 years ± 5.36 s.d.; N = 36; 42% female). Correlations in BOLD activity (Fisher's Z) between ROIs revealed varying strengths of functional connectivity between regions, the strongest of which was between the left and right inferior parietal lobules or IPLs (Z = 0.62 ± 0.25 s.d.) and the weakest of which was between the posterior cingulate cortex (PCC) and right middle temporal gyrus or MTG (Z = 0.06 ± 0.22 s.d.). Further, connectivity between two pairs of DMN nodes significantly increased as a quadratic function of age (p < 0.05), specifically the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and PCC nodes and the left IPL and right MTG nodes. The correlation between ACC/mPFC ↔ PCC connectivity and age was more significant than the correlation between left IPL ↔ right MTG connectivity and age by more than an order of magnitude. We suggest that these changes in functional connectivity in part underlie the introspective mental changes known to commonly occur between the preadolescent and adult years. A range of neurological and psychological conditions that hamper social interactions, from ASD to psychopathy, may be marked by deviations from this maturational trajectory. PMID:26236149

  7. The Worldviews Network: Innovative Strategies for Increasing Climate and Ecological Literacy in Your Community

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Yu, K.; McConville, D.; Sickler, J.; "Irving, Lindsay", L. S.; Gardiner, N.; Hamilton, H.

    2011-12-01

    Informal science Institutions (ISI) are in the unique position to convene and support community dialogues surrounding local ecological impacts of global change. The Worldviews Network-a collaboration between museums, scientists, and community-based organizations-is developing and testing innovative approaches for promoting and encouraging ecological literacy with the American public. In this session, we will share strategies for sparking and sustaining dialogue and action in local communities through high-impact visual presentations and real-world examples of successful projects that are increasing the healthy functioning of regional and global ecosystems. Educating the public about interconnected global change issues can be a daunting task. ISIs can help communities by facilitating dialogues about realistic and regionally relevant approaches for systemically addressing global challenges. Managing the complexity of these challenges requires going far beyond the standard prescriptions for behavior change; it requires inspiring participants with positive examples of system-wide solutions as well as actively involving the audience in scientifically informed design processes. This session will demonstrate how you can implement and sustain these community dialogues, using real-world examples from our partners' national events. We present visualization story templates and a model for facilitating dialogues that can be adapted at your institution. Based on video and written assessment feedback from visitors of our first Worldviews events, we will present initial evaluation findings about the impact that these strategies are having on our audiences and ISI partners. These findings show that engaging the public and NGO partners in sustainability and design dialogues is a powerful way to maintain the relevance of ISIs within their communities.

  8. Increasing the coverage area through relay node deployment in long term evolution advanced cellular networks

    NASA Astrophysics Data System (ADS)

    Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.

    2015-05-01

    Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.

  9. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Smecker-Hane, Tammy A.

    2017-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, creating a national impact on their numbers successfully pursuing a PhD in the field.In 7 years, the CAMPARE program has sent 80 students, >80% from underrepresented groups, to conduct summer research at one of 14 major research institutions throughout the country. The graduation rate among CAMPARE scholars is 98%, and of the CAMPARE scholars who have graduated with a Bachelor’s degree, more than 60% have completed or are pursuing graduate education in astronomy or a related field, at institutions including UCLA, UC Riverside, UC Irvine, UC Santa Barbara, USC, Stanford, Univ. of Arizona, Univ. of Washington, and the Fisk-Vanderbilt Master’s-to-PhD program.Now entering its third year, the Cal-Bridge program is a CSU-UC Bridge program comprised of over 75 physics and astronomy faculty from 5 University of California (UC), 9 California State University (CSU), and 14 California Community College (CCC) campuses in Southern California. In the first three years, 22 Cal-Bridge Scholars have been selected, including 11 Hispanic, 3 African-American and 8 female students, 5 of whom are from URM groups. Nineteen (19) of the 22 Cal-Bridge Scholars are first-generation college students. The entire first cohort of 4 Cal-Bridge scholars was accepted to one or more PhD programs in astronomy or physics, including UC Irvine, UC Santa Cruz, UC Davis, Michigan State, and Georgia State Universities. The second cohort of 8 Cal-Bridge scholars is applying to graduate schools this fall.Cal-Bridge provides much deeper mentoring and professional development experiences over the last two years of undergraduate and first year of graduate school to students from this diverse network of higher

  10. Efficacy of Peer Networks to Increase Social Connections among High School Students with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Hochman, Julia M.; Carter, Erik W.; Bottema-Beutel, Kristen; Harvey, Michelle N.; Gustafson, Jenny R.

    2015-01-01

    Although peer interaction takes on increased salience during adolescence, such social connections remain elusive for many high school students with autism spectrum disorder (ASD). This social isolation can be particularly prevalent within unstructured school contexts. In this study, we examined the effects of a lunchtime peer network intervention…

  11. The Use of Peer Networks to Increase Communicative Acts of Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kamps, Debra; Mason, Rose; Thiemann-Bourque, Kathy; Feldmiller, Sarah; Turcotte, Amy; Miller, Todd

    2014-01-01

    Peer networks including social groups using typical peers, scripted instruction, visual text cues, and reinforcement were examined with students with autism spectrum disorders (ASD). A multiple baseline design across four participants was used to measure students' use of communication acts with peers during free play following instruction. Peer…

  12. WATERS Network: Increasing Vertical Collaboration within Hydrology Research and Education Communities

    NASA Astrophysics Data System (ADS)

    Eschenbach, E. A.; Johnson, J.; Brus, C.; Carlson, P.; Giammar, D.; Grauer, B.; Hotaling, L.; Oguntimein, G.; Safferman, S.; Seiler, E.; Wentling, T.

    2006-12-01

    The WATer and Environmental Research Systems (WATERS) Network is envisioned to be a networked infrastructure of environmental field facilities that will establish a national environmental observatory and engineering analysis network to facilitate a more collaborative approach to addressing the challenges of large-scale human-stressed environmental systems. WATERS will transform our scientific understanding of how water quantity, quality and related components of the hydrologic cycle are impacted by natural and human influences by providing easily accessible real time environmental data and analysis tools to engineers, scientists, educators and policymakers. These tools include knowledge networks, a collaborative environmental modeling environment, maintenance of a real time data collection network, and a cybercollaboratory. WATERS will greatly enhance opportunities for the integration of research and education at all levels by facilitating collaboration between all the following groups: K-12 students and educators, university students and faculty and community, government, and industry stakeholders. The goal of facilitating collaboration is to strive for an evolution of educational reform objectives covering delivery of instruction, learning outcomes, and teacher/instructor training and professional development. WATERS will facilitate this advancement by providing: 1) A mechanism for communication and collaboration between educators, researchers and students via new and existing communication tools such as chat boards, blogs, etc; 2) A visually oriented data retrieval system/search engine for users to locate and collect relevant documents, images, and other forms of knowledge that exist in the public domain; 3) Access to real time data and analytical tools for discovery purposes by students from K-12 through graduate audiences; 4) A repository of lesson plans, learning activities, and learning materials that allows resource sharing; and 5) Professional development

  13. Smaller, Scale-Free Gene Networks Increase Quantitative Trait Heritability and Result in Faster Population Recovery

    PubMed Central

    Malcom, Jacob W.

    2011-01-01

    One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental change. Here I propose that we can link the details of the genetic architecture of a quantitative trait—i.e., the number of underlying genes and their relationships in a network—to population recovery rates by way of heritability. I test this hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear genotype-phenotype map, 16–256 genes underlying the trait, and a variety of mutation and recombination rates and degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology, the width of the fitness function, pre-change additive variance, and certain interactions account for ∼75% of the variance in population recovery times after a sudden environmental change. These results suggest that not only the amount of additive variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment. PMID:21347400

  14. Method and computer product to increase accuracy of time-based software verification for sensor networks

    DOEpatents

    Foo Kune, Denis [Saint Paul, MN; Mahadevan, Karthikeyan [Mountain View, CA

    2011-01-25

    A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

  15. The ESWN network as a platform to increase international collaboration between women in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Braker, Gesche; Wang, Yiming; Glessmer, Mirjam; Kirchgaessner, Amelie

    2014-05-01

    The Earth Science Women's Network (ESWN; ESWNonline.org) is an international peer-mentoring network of women in the Earth Sciences, many in the early stages of their careers. ESWN's mission is to promote career development, build community, provide opportunities for informal mentoring and support, and facilitate professional collaborations. This has been accomplished via email and a listserv, on Facebook, at in-person networking events, and at professional development workshops. In an effort to facilitate international connections among women in the Earth Sciences, ESWN has developed a password protected community webpage supported by AGU and a National Science Foundation ADVANCE grant where members can create an online presence and interact with each other. For example, groups help women to connect with co-workers or center around a vast array of topics ranging from research interests, funding opportunities, work-life balance, teaching, scientific methods, and searching for a job to specific challenges faced by women in the earth sciences. Members can search past discussions and share documents like examples of research statements, useful interview materials, or model recommendation letters. Over the last 10 years, ESWN has grown by word of mouth to include more than 1600 members working on all 7 continents. ESWN also offers professional development workshops at major geologic conferences around the world and at ESWN-hosted workshops mostly exclusively throughout the United States. In 2014, ESWN offers a two day international workshop on communication and networking skills and career development. Women working in all disciplines of Earth Sciences from later PhD level up to junior professors in Europe are invited to the workshop that will be held in Kiel, Germany. The workshop offers participants an individual personality assessment and aims at providing participants with improved communication and networking skills. The second focus will be to teach them how to

  16. Network dysfunction during associative learning in schizophrenia: Increased activation, but decreased connectivity: an fMRI study.

    PubMed

    Wadehra, Sunali; Pruitt, Patrick; Murphy, Eric R; Diwadkar, Vaibhav A

    2013-08-01

    Schizophrenia (SCZ) is characterized by disordered activation and disordered connectivity, yet few fMRI studies have convergently investigated both. Here, we compared differences in activation and connectivity between SCZ and controls (HC). Twenty-two subjects (18≤age≤35yrs) participated in a paired-associative learning task, a behavioral domain particularly dependent on fronto-hippocampal connectivity and of relevance to the schizophrenia diathesis. Activation differences were assessed using standard approaches. Seed-based connectivity differences were compared using Psychophysiological Interaction (PPI) with a hippocampus-based seed. SCZ evinced significantly increased activation, but significantly decreased connectivity with the hippocampus across a cortical-striatal learning network. These results assess potentially complementary patterns of network dysfunction in schizophrenia: increased activation suggests inefficient responses relating to functional specialization; decreased connectivity suggests impaired integration of functional signals between regions. Inefficiency and dysconnection appear to collectively characterize functional deficits in schizophrenia.

  17. Age-Related Increases in Long-Range Connectivity in Fetal Functional Neural Connectivity Networks In Utero

    PubMed Central

    Thomason, Moriah E.; Grove, Lauren E.; Lozon, Tim A.; Vila, Angela M.; Ye, Yongquan; Nye, Matthew J.; Manning, Janessa H.; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S.; Romero, Roberto

    2015-01-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development. PMID:25284273

  18. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero.

    PubMed

    Thomason, Moriah E; Grove, Lauren E; Lozon, Tim A; Vila, Angela M; Ye, Yongquan; Nye, Matthew J; Manning, Janessa H; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto

    2015-02-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  19. Artificial Neural Network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance.

    PubMed

    Casson, Alexander J

    2014-01-01

    Workload classification-the determination of whether a human operator is in a high or low workload state to allow their working environment to be optimized-is an emerging application of passive Brain-Computer Interface (BCI) systems. Practical systems must not only accurately detect the current workload state, but also have good temporal performance: requiring little time to set up and train the classifier, and ensuring that the reported performance level is consistent and predictable over time. This paper investigates the temporal performance of an Artificial Neural Network based classification system. For networks trained on little EEG data good classification accuracies (86%) are achieved over very short time frames, but substantial decreases in accuracy are found as the time gap between the network training and the actual use is increased. Noise-enhanced processing, where artificially generated noise is deliberately added to the testing signals, is investigated as a potential technique to mitigate this degradation without requiring the network to be re-trained using more data. Small stochastic resonance effects are demonstrated whereby the classification process gets better in the presence of more noise. The effect is small and does not eliminate the need for re-training, but it is consistent, and this is the first demonstration of such effects for non-evoked/free-running EEG signals suitable for passive BCI.

  20. Neural network learning control of robot manipulators using gradually increasing task difficulty

    SciTech Connect

    Sanger, T.D. )

    1994-06-01

    Trajectory Extension Learning is an incremental method for training an artificial neural network to approximate the inverse dynamics of a robot manipulator. Training data near a desired trajectory is obtained by slowly varying a parameter of the trajectory from a region of easy solvability of the inverse dynamics toward the desired behavior. The parameter can be average speed, path shape, feedback gain, or any other controllable variable. As learning proceeds, an approximate solution to the local inverse dynamics for each value of the parameter is used to guide learning for the next value of the parameter. Convergence conditions are given for two variations on the algorithm. Examples are shown of application to a real 2-joint direct drive robot arm and a simulated 3-joint redundant arm, both using simulated equilibrium point control.

  1. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?

    PubMed

    Bingham, Marcus A; Simard, Suzanne W

    2011-11-01

    Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO(2) concentration ([CO(2)]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO(2)], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO(2)]. Transfer of (13)C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D(2)O) transfer increased with MN potential under ambient [CO(2)]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO(2)] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change.

  2. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?

    PubMed Central

    Bingham, Marcus A; Simard, Suzanne W

    2011-01-01

    Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO2 concentration ([CO2]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO2], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO2]. Transfer of 13C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D2O) transfer increased with MN potential under ambient [CO2]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO2] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change. PMID:22393502

  3. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  4. An Affordance Network for Engagement: Increasing Parent and Family Agency in an Early Childhood Education Setting

    ERIC Educational Resources Information Center

    Clarkin-Phillips, Jeanette; Carr, Margaret

    2012-01-01

    Research from the United Kingdom suggests that early childhood centres that operate from a multi or integrated service model, offering opportunities for parents to attend to a range of their needs and aspirations, increase the ability and the inclination of families to engage with their child's learning at the early childhood centre. Integrated…

  5. Increasing Health Research Literacy through Outreach and Networking: Why Translational Research Should Matter to Communities

    ERIC Educational Resources Information Center

    Dwyer-White, Molly; Choate, Celeste; Markel, Dorene S

    2015-01-01

    Background: Increasingly clinical and health research awareness is a priority for health and medical research communities. Translational research, including the prevention and treatment of conditions, relies upon proper funding as well as public participation in research studies. This requires executing more effective communication strategies to…

  6. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle

    PubMed Central

    Hussey, Sophie E.; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, José de Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-01-01

    Aims/hypothesis Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Methods Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic–hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Results Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3,p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of nuclear factor of light polypeptide gene enhancer in B cells inhibitor α (p = 0.09). The muscle content of most diacyglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. Conclusions/interpretation A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin

  7. A Remedy for Network Operators against Increasing P2P Traffic: Enabling Packet Cache for P2P Applications

    NASA Astrophysics Data System (ADS)

    Nakao, Akihiro; Sasaki, Kengo; Yamamoto, Shu

    We observe that P2P traffic has peculiar characteristics as opposed to the other type of traffic such as web browsing and file transfer. Since they exploit swarm effect — a multitude of end points downloading the same content piece by piece nearly at the same time, thus, increasing the effectiveness of caching — the same pieces of data end up traversing the network over and over again within mostly a short time window. In the light of this observation, we propose a network layer packet-level caching for reducing the volume of emerging P2P traffic, transparently to the P2P applications — without affecting operations of the P2P applications at all — rather than banning it, restricting it, or modifying P2P systems themselves. Unlike the other caching techniques, we aim to provide as generic a caching mechanism as possible at network layer — without knowing much detail of P2P application protocols — to extend applicability to arbitrary P2P protocols. Our preliminary evaluation shows that our approach is expected to reduce a significant amount of P2P traffic transparently to P2P applications.

  8. Increased functional connectivity between the default mode and salience networks in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Posner, Jonathan; Song, Inkyung; Lee, Seonjoo; Rodriguez, Carolyn I; Moore, Holly; Marsh, Rachel; Blair Simpson, H

    2017-02-01

    Deficits in attention have been implicated in Obsessive-Compulsive Disorder (OCD), yet their neurobiological bases are poorly understood. In unmedicated adults with OCD (n = 30) and healthy controls (n = 32), they used resting state functional connectivity MRI (rs-fcMRI) to examine functional connectivity between two neural networks associated with attentional processes: the default mode network (DMN) and the salience network (SN). They then used path analyses to examine putative relationships across three variables of interest: DMN-SN connectivity, attention, and OCD symptoms. In the OCD compared with healthy control participants, there was significantly reduced inverse connectivity between the anterior medial prefrontal cortex (amPFC) and the anterior insular cortex, regions within the DMN and SN, respectively. In OCD, reduced inverse DMN-SN connectivity was associated with both increased OCD symptom severity and decreased sustained attention. Path analyses were consistent with a potential mechanistic explanation: OCD symptoms are associated with an imbalance in DMN-SN networks that subserve attentional processes and this effect of OCD on DMN-SN connectivity is associated with decreased sustained attention. This work builds upon a growing literature suggesting that reduced inverse DMN-SN connectivity may represent a trans-diagnostic marker of attentional processes and suggests a potential mechanistic account of the relationship between OCD and attention. Reduced inverse DMN-SN connectivity may be an important target for treatment development to improve attention in individuals with OCD. Hum Brain Mapp 38:678-687, 2017. © 2016 Wiley Periodicals, Inc.

  9. INCREASE - an Integrated Network on Climate Change REsearch Activities on Shrubland Ecosystems

    NASA Astrophysics Data System (ADS)

    Kappel Schmidt, Inger; Steenberg Larsen, Klaus; Beier, Claus; Tietema, Albert; Emmett, Bridget; De Angelis, Paolo; Duce, Pierpaolo; Cesaraccio, Carla; Spano, Donatella; Kroel-Dulay, Gyuri; Jones, Davey

    2013-04-01

    Climate change poses a serious challenge for the scientific communities to develop new concepts for research and modeling to provide better and more realistic answers and predictions of what the impact will be. INCREASE is an EU-funded research infrastructure based upon large scale field experiments with non-intrusive manipulations of temperature and precipitation since 1999. The experiments are placed in vulnerable scrubland ecosystems across Europe. Shrubland ecosystems were chosen because they represent an important natural resource, which are known to be sensitive to observed changes in environmental pressures. The experiments combine 2 different approaches to study climate effects on ecosystems. The first approach is known as "space for time" substitution, where the long term effect of a pressure on an ecosystem at any particular site is studied by moving to another site along temperature and precipitation gradients. This was done by carrying out the same studies in comparable ecosystems in UK, Denmark, the Netherlands, Hungary, Spain and Italy - which are naturally exposed to large differences in the climatic conditions. The other approach applied is "ecosystem manipulations", which means that the ecosystem is exposed to the changes in the field by realistic manipulations of temperature and water and in one experiment in combination with CO2. This combination of gradients and experimental manipulation increases the potential for evaluating the generality of the observed responses to the changes in the climatic drivers. Within INCREASE we improve the technology and methodology for studies of climate change effects on European shrublands and stimulate collaboration within the scientific community around climate manipulation experiments. In addition, data and results from the research infrastructures were collected into an integrated database (INCREASE DB) with the aim to improve capacities in the protection, management and storage of data and to provide a web

  10. Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network

    NASA Astrophysics Data System (ADS)

    Butler, T.; Vermeylen, F.; Lehmann, C. M.; Likens, G. E.; Puchalski, M.

    2016-12-01

    Data from bi-weekly passive samplers from 18 of the longest operating National Atmospheric Deposition Program's (NADP) Ammonia Monitoring Network (AMoN) sites (most operating from 2008 to 2015) show that concentrations of NH3 have been increasing (p-value < 0.0001) over large regions of the USA. This trend is occurring at a seasonal and annual level of aggregation. Using random coefficient models (RCM), the mean slope for the 18 sites combined shows an increase of NH3 concentration of +7% per year, with a 95% confidence interval (C.I.) from +5% to +9% per year. Travel blank corrected data using the same approach show increasing NH3 concentrations of +9% (95% C.I. +5% to +13%) per year. During a comparable period (2008-2014) NADP precipitation chemistry sites in the same regions show significant increasing (p-value = 0.0001) precipitation NH4+ concentrations trends for all sites combined of +5% (95% C.I. +3% to +7%) per year. Emissions inventory data for the study period show nearly constant rates of NH3 emissions, but large reductions in NOx and SO2 emissions. Seasonal air quality data from the Clean Air Status and Trends Network (CASTNET) sites in these regions show significant declines in atmospheric particulate SO42- and NH4+, and particulate NO3- plus HNO3 (total NO3-) during the same period. Less formation of acidic SO4 and NO3, due to reduced SO2 and NOx emissions, provide less substrate to interact with NH3 and form particulate ammonium species. Thus, concentrations of NH3 can increase in the atmosphere even if emissions remain constant. A likely result may be more localized deposition of NH3, as opposed to the more long-range transport and deposition of ammonium nitrate (NH4NO3) and sulfate (NH4)2SO4). Additionally, the spatial distribution of wet and dry acidic deposition will be impacted.

  11. Shear stress paradigm for perinatal fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow.

    PubMed

    Ghorishi, Zahra; Milstein, Jay M; Poulain, Francis R; Moon-Grady, Anita; Tacy, Theresa; Bennett, Stephen H; Fineman, Jeffery R; Eldridge, Marlowe W

    2007-06-01

    Congenital heart disease with increased blood flow commonly leads to the development of increased pulmonary vascular reactivity and pulmonary arterial hypertension by mechanisms that remain unclear. We hypothesized a shear stress paradigm of hemodynamic reactivity and network remodeling via the persistence and/or exacerbation of a fetal diameter bifurcation phenotype [parent diameter d(0) and daughters d(1) >or= d(2) with alpha < 2 in (d(1)/d(0))(alpha) + (d(2)/d(0))(alpha) and area ratio beta < 1 in beta = (d(1)(2)+ d(2)(2))/ d(0)(2)] that mechanically acts as a high resistance magnifier/shear stress amplifier to blood flow. Evidence of a hemodynamic influence on network remodeling was assessed with a lamb model of high-flow-induced secondary pulmonary hypertension in which an aortopulmonary graft was surgically placed in one twin in utero (Shunt twin) but not in the other (Control twin). Eight weeks after birth arterial casts were made of the left pulmonary arterial circulation. Bifurcation diameter measurements down to 0.010 mm in the Shunt and Control twins were then compared with those of an unoperated fetal cast. Network organization, cumulative resistance, and pressure/shear stress distributions were evaluated via a fractal model whose dimension D(0) approximately alpha delineates hemodynamic reactivity. Fetus and Control twin D(0) differed: fetus D(0)=1.72, a high-resistance/shear stress amplifying condition; control twin D(0) = 2.02, an area-preserving transport configuration. The Shunt twin (D(0)=1.72) maintained a fetal design but paradoxically remodeled diameter geometry to decrease cumulative resistance relative to the Control twin. Our results indicate that fetal/neonatal pulmonary hemodynamic reactivity remodels in response to shear stress, but the response to elevated blood flow and pulmonary hypertension involves the persistence and exacerbation of a fetal diameter bifurcation phenotype that facilitates endothelial dysfunction/injury.

  12. Decreased anticipated pleasure correlates with increased salience network resting state functional connectivity in adolescents with depressive symptomatology.

    PubMed

    Rzepa, Ewelina; McCabe, Ciara

    2016-11-01

    Previous studies have found dysfunctional resting state functional connectivity (RSFC) in depressed patients. Examining RSFC might aid biomarker discovery for depression. However RSFC in young people at risk of depression has yet to be examined. 35 healthy adolescents (13-18 yrs old.) were recruited. 17 scoring high on the Mood and Feelings Questionnaire (MFQ > 27 (High Risk: HR), and 18 scoring low on the MFQ < 15 (Low Risk: LR) matched on age and gender. We selected seed regions in the salience network (SN: amygdala and pregenual anterior cingulate cortex (pgACC)) and the central executive network (CEN: dorsal medial prefrontal cortex (dmPFC)). Mood and anhedonia measures were correlated with brain connectivity. We found decreased RSFC in the HR group between the amygdala and the pgACC and hippocampus and precuneus. We also found decreased RSFC in the HR group between the pgACC and the putamen and between the dmPFC and the precuneus. The pgACC RSFC with the insula/orbitofrontal cortex correlated inversely with the anticipation of pleasure in all subjects. Increased RSFC was observed between the pgACC and the prefrontal cortex and the amygdala and the temporal pole in the HR group compared to the LR group. Our findings are the first to show that adolescents with depression symptoms have dysfunctional RSFC between seeds in the SN and CEN with nodes in the Default Mode Network. As increased connectivity between the pgACC and the insula correlated with decreased ability to anticipate pleasure, we suggest this might be mechanism underlying the risk of experiencing anhedonia, a suggested biomarker for depression.

  13. Network-based rehabilitation increases formal support of frail elderly home-dwelling persons in Finland: randomised controlled trial.

    PubMed

    Ollonqvist, Kirsi; Aaltonen, Tuula; Karppi, Sirkka-Liisa; Hinkka, Katariina; Pöntinen, Seppo

    2008-03-01

    The AGE study is a national randomised, long-term, multicentre research project aimed at comparing a new network-based rehabilitation programme with the use of standard health and social services. The use of home help services is associated with increasing age, living alone and having difficulties with activities of daily living. During a rehabilitation intervention the elderly participants' need for care can be assessed. The focus of this paper is to investigate the possible effects of the network-based rehabilitation programme on the use of informal and formal support among home-dwelling elderly at a high risk of long-term institutionalisation. The randomised controlled trial with a 12-month follow-up was implemented in 7 rehabilitation centres and 41 municipalities in Finland. The participants were recruited between January and October 2002. A total of 708 home-dwelling persons aged 65 years or older with progressively decreasing functional capacity and at the risk of being institutionalised within 2 years participated. Persons with acute or progressive diseases or poor cognitive capacity (Mini Mental State Examination<18 points), and those who had participated in any inpatient rehabilitation during the preceding 5 years, were excluded. Participants were randomly allocated to the intervention group (n=343) or to the control group (n=365). The intervention consisted of a network-based rehabilitation programme specifically designed for frail elderly people. Main outcome measures included the help received from relatives and municipal or private services. The use of municipal services increased more in the intervention group (P<0.05) than in the control group. Support from relatives decreased in the control group. The rehabilitees' ability to manage with daily activities decreased and they received additional help; hence, in this respect the rehabilitation model seems successful. A longer follow-up within the still ongoing AGE study is needed to verify whether the

  14. Network meta-analysis to evaluate the effectiveness of interventions to increase the uptake of smoke alarms.

    PubMed

    Cooper, Nicola J; Kendrick, Denise; Achana, Felix; Dhiman, Paula; He, Zhimin; Wynn, Persephone; Le Cozannet, Elodie; Saramago, Pedro; Sutton, Alex J

    2012-01-01

    This study is the first known to use network meta-analysis to simultaneously evaluate the effectiveness of interventions to increase the prevalence of functioning smoke alarms in households with children. The authors identified 24 primary studies from a systematic review of reviews and of more recently published primary studies, of which 23 (17 randomized controlled trials and 6 nonrandomized comparative studies) were included in 1 of the following 2 network meta-analyses: 1) possession of a functioning alarm: interventions that were more "intensive" (i.e., included components providing equipment (with or without fitting), home inspection, or both, in addition to education) generally were more effective. The intervention containing all of the aforementioned components was identified as being the most likely to be the most effective (probability (best) = 0.66), with an odds ratio versus usual care of 7.15 (95% credible interval: 2.40, 22.73); 2) type of battery-powered alarms: ionization alarms with lithium batteries were most likely to be the best type for increasing functioning possession (probability (best) = 0.69). Smoke alarm promotion programs should ensure they provide the combination of interventions most likely to be effective.

  15. Increased network centrality as markers of relapse risk in nicotine-dependent individuals treated with varenicline.

    PubMed

    Shen, Zhujing; Huang, Peiyu; Wang, Chao; Qian, Wei; Yang, Yihong; Zhang, Minming

    2017-04-03

    Identifying smokers at high risk of relapse could improve the effectiveness of cessation therapies. Although altered regional brain function in smokers has been reported, whether the whole-brain functional organization differs smokers with relapse vulnerability from others remains unclear. Thus, the goal of this study is to investigate the baseline functional connectivity differences between relapsers and quitters. Using resting-state fMRI, we acquired images from 57 smokers prior to quitting attempts. After 12-week treatment with varenicline, smokers were divided into relapsers (n=36) and quitters (n=21) (quitter: continuously abstinent for weeks 9-12). The smoking cessation outcomes were cross-validated by self-reports and expired carbon monoxide. We then used eigenvector centrality (EC) mapping to identify the functional connectivity differences between relapsers and quitters. When compared to quitters, increased EC in the right dorsolateral prefrontal cortex (DLPFC), left middle temporal gyrus (MTG) and cerebellum anterior lobe was observed in relapsers. In addition, a logistic regression analysis of EC data (with DLPFC, MTG and cerebellum included) predicted relapse with 80.7% accuracy. These findings suggest that the DLPFC, MTG and cerebellum may be important substrates of smoking relapse vulnerability. The data also suggest that relapse-vulnerable smokers can be identified before quit attempts, which could enable personalized treatment and improve smoking cessation outcomes.

  16. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  17. Transparent and accurate reporting increases reliability, utility, and impact of your research: reporting guidelines and the EQUATOR Network.

    PubMed

    Simera, Iveta; Moher, David; Hirst, Allison; Hoey, John; Schulz, Kenneth F; Altman, Douglas G

    2010-04-26

    Although current electronic methods of scientific publishing offer increased opportunities for publishing all research studies and describing them in sufficient detail, health research literature still suffers from many shortcomings. These shortcomings seriously undermine the value and utility of the literature and waste scarce resources invested in the research. In recent years there have been several positive steps aimed at improving this situation, such as a strengthening of journals' policies on research publication and the wide requirement to register clinical trials.The EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network is an international initiative set up to advance high quality reporting of health research studies; it promotes good reporting practices including the wider implementation of reporting guidelines. EQUATOR provides free online resources http://www.equator-network.org supported by education and training activities and assists in the development of robust reporting guidelines. This paper outlines EQUATOR's goals and activities and offers suggestions for organizations and individuals involved in health research on how to strengthen research reporting.

  18. Transparent and accurate reporting increases reliability, utility, and impact of your research: reporting guidelines and the EQUATOR Network

    PubMed Central

    2010-01-01

    Although current electronic methods of scientific publishing offer increased opportunities for publishing all research studies and describing them in sufficient detail, health research literature still suffers from many shortcomings. These shortcomings seriously undermine the value and utility of the literature and waste scarce resources invested in the research. In recent years there have been several positive steps aimed at improving this situation, such as a strengthening of journals' policies on research publication and the wide requirement to register clinical trials. The EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network is an international initiative set up to advance high quality reporting of health research studies; it promotes good reporting practices including the wider implementation of reporting guidelines. EQUATOR provides free online resources http://www.equator-network.org supported by education and training activities and assists in the development of robust reporting guidelines. This paper outlines EQUATOR's goals and activities and offers suggestions for organizations and individuals involved in health research on how to strengthen research reporting. PMID:20420659

  19. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

    PubMed Central

    Franceschi, M; Lucignani, G; Del Sole, A; Grana, C; Bressi, S; Minicucci, F; Messa, C; Canevini, M P; Fazio, F

    1995-01-01

    Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge. PMID:7561924

  20. Impulsivity is Associated with Increased Metabolism in the Fronto-Insular Network in Parkinson’s Disease

    PubMed Central

    Tahmasian, Masoud; Rochhausen, Luisa; Maier, Franziska; Williamson, Kim L.; Drzezga, Alexander; Timmermann, Lars; Van Eimeren, Thilo; Eggers, Carsten

    2015-01-01

    Various neuroimaging studies demonstrated that the fronto-insular network is implicated in impulsive behavior. We compared glucose metabolism (as a proxy measure of neural activity) among 24 patients with Parkinson’s disease (PD) who presented with low or high levels of impulsivity based on the Barratt Impulsiveness Scale 11 (BIS) scores. Subjects underwent 18-fluorodeoxyglucose positron emission tomography (FDG-PET) and the voxel-wise group difference of FDG-metabolism was analyzed in Statistical Parametric Mapping (SPM8). Subsequently, we performed a partial correlation analysis between the FDG-metabolism and BIS scores, controlling for covariates (i.e., age, sex, severity of disease and levodopa equivalent daily doses). Voxel-wise group comparison revealed higher FDG-metabolism in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and right insula in patients with higher impulsivity scores. Moreover, there was a positive correlation between the FDG-metabolism and BIS scores. Our findings provide evidence that high impulsivity is associated with increased FDG-metabolism within the fronto-insular network in PD. PMID:26648853

  1. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.

    PubMed

    Deslauriers, Johnathan; Ansado, Jennyfer; Marrelec, Guillaume; Provost, Jean-Sébastien; Joanette, Yves

    2017-02-15

    Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality.

  2. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks.

    PubMed

    Hatanaka, Yusuke; Hojo, Yasushi; Mukai, Hideo; Murakami, Gen; Komatsuzaki, Yoshimasa; Kim, Jonghyuk; Ikeda, Muneki; Hiragushi, Ayako; Kimoto, Tetsuya; Kawato, Suguru

    2015-09-24

    Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory.

  3. Increase of Power System Survivability with the Decision Support Tool CRIPS Based on Network Planning and Simulation Program PSS®SINCAL

    NASA Astrophysics Data System (ADS)

    Schwaegerl, Christine; Seifert, Olaf; Buschmann, Robert; Dellwing, Hermann; Geretshuber, Stefan; Leick, Claus

    The increased interconnection and automation of critical infrastructures enlarges the complexity of the dependency structures and - as consequence - the danger of cascading effects, e.g. causing area-wide blackouts in power supply networks that are currently after deregulation operated closer to their limits. New tools or an intelligent combination of existing approaches are required to increase the survivability of critical infrastructures. Within the IRRIIS project the expert system CRIPS was developed based on network simulations realised with PSS®SINCAL, an established tool to support the analysis and planning of electrical power, gas, water or heat networks. CRIPS assesses the current situation in power supply networks analysing the simulation results of the physical network behaviour and recommends corresponding decisions.

  4. No Pet or Their Person Left Behind: Increasing the Disaster Resilience of Vulnerable Groups through Animal Attachment, Activities and Networks.

    PubMed

    Thompson, Kirrilly; Every, Danielle; Rainbird, Sophia; Cornell, Victoria; Smith, Bradley; Trigg, Joshua

    2014-05-07

    Increased vulnerability to natural disasters has been associated with particular groups in the community. This includes those who are considered de facto vulnerable (children, older people, those with disabilities etc.) and those who own pets (not to mention pets themselves). The potential for reconfiguring pet ownership from a risk factor to a protective factor for natural disaster survival has been recently proposed. But how might this resilience-building proposition apply to vulnerable members of the community who own pets or other animals? This article addresses this important question by synthesizing information about what makes particular groups vulnerable, the challenges to increasing their resilience and how animals figure in their lives. Despite different vulnerabilities, animals were found to be important to the disaster resilience of seven vulnerable groups in Australia. Animal attachment and animal-related activities and networks are identified as underexplored devices for disseminating or 'piggybacking' disaster-related information and engaging vulnerable people in resilience building behaviors (in addition to including animals in disaster planning initiatives in general). Animals may provide the kind of innovative approach required to overcome the challenges in accessing and engaging vulnerable groups. As the survival of humans and animals are so often intertwined, the benefits of increasing the resilience of vulnerable communities through animal attachment is twofold: human and animal lives can be saved together.

  5. Distractibility during retrieval of long-term memory: domain-general interference, neural networks and increased susceptibility in normal aging.

    PubMed

    Wais, Peter E; Gazzaley, Adam

    2014-01-01

    The mere presence of irrelevant external stimuli results in interference with the fidelity of details retrieved from long-term memory (LTM). Recent studies suggest that distractibility during LTM retrieval occurs when the focus of resource-limited, top-down mechanisms that guide the selection of relevant mnemonic details is disrupted by representations of external distractors. We review findings from four studies that reveal distractibility during episodic retrieval. The approach cued participants to recall previously studied visual details when their eyes were closed, or were open and irrelevant visual information was present. The results showed a negative impact of the distractors on the fidelity of details retrieved from LTM. An fMRI experiment using the same paradigm replicated the behavioral results and found that diminished episodic memory was associated with the disruption of functional connectivity in whole-brain networks. Specifically, network connectivity supported recollection of details based on visual imagery when eyes were closed, but connectivity declined in the presence of visual distractors. Another experiment using auditory distractors found equivalent effects for auditory and visual distraction during cued recall, suggesting that the negative impact of distractibility is a domain-general phenomenon in LTM. Comparisons between older and younger adults revealed an aging-related increase in the negative impact of distractibility on retrieval of LTM. Finally, a new study that compared categorization abilities between younger and older adults suggests a cause underlying age-related decline of visual details in LTM. The sum of our findings suggests that cognitive control resources, although limited, have the capability to resolve interference from distractors during tasks of moderate effort, but these resources are overwhelmed when additional processes associated with episodic retrieval, or categorization of complex prototypes, are required.

  6. No Pet or Their Person Left Behind: Increasing the Disaster Resilience of Vulnerable Groups through Animal Attachment, Activities and Networks

    PubMed Central

    Thompson, Kirrilly; Every, Danielle; Rainbird, Sophia; Cornell, Victoria; Smith, Bradley; Trigg, Joshua

    2014-01-01

    Simple Summary The potential for reconfiguring pet ownership from a risk factor to a protective factor for natural disaster survival has been recently proposed. But how might this resilience-building proposition apply to members of the community who are already considered vulnerable? This article addresses this important question by synthesizing information about what makes seven particular groups vulnerable, the challenges to increasing their resilience and how animals figure in their lives. It concludes that animal attachment could provide a novel conduit for accessing, communicating with and motivating vulnerable people to engage in resilience building behaviors that promote survival and facilitate recovery. Abstract Increased vulnerability to natural disasters has been associated with particular groups in the community. This includes those who are considered de facto vulnerable (children, older people, those with disabilities etc.) and those who own pets (not to mention pets themselves). The potential for reconfiguring pet ownership from a risk factor to a protective factor for natural disaster survival has been recently proposed. But how might this resilience-building proposition apply to vulnerable members of the community who own pets or other animals? This article addresses this important question by synthesizing information about what makes particular groups vulnerable, the challenges to increasing their resilience and how animals figure in their lives. Despite different vulnerabilities, animals were found to be important to the disaster resilience of seven vulnerable groups in Australia. Animal attachment and animal-related activities and networks are identified as underexplored devices for disseminating or ‘piggybacking’ disaster-related information and engaging vulnerable people in resilience building behaviors (in addition to including animals in disaster planning initiatives in general). Animals may provide the kind of innovative approach required

  7. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy.

    PubMed

    Schubert, Veit

    2014-01-01

    RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.

  8. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  9. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    USGS Publications Warehouse

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  10. Exotic Plant Infestation Is Associated with Decreased Modularity and Increased Numbers of Connectors in Mixed-Grass Prairie Pollination Networks

    PubMed Central

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots and Convolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvense and the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested networks

  11. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight

    PubMed Central

    Melasch, J; Rullmann, M; Hilbert, A; Luthardt, J; Becker, GA; Patt, M; Villringer, A; Arelin, K; Meyer, PM; Lobsien, D; Ding, Y-S; Müller, K; Sabri, O; Hesse, S; Pleger, B

    2016-01-01

    OBJECTIVES The neurobiological mechanisms linking obesity to emotional distress remain largely undiscovered. METHODS In this pilot study, we combined positron emission tomography, using the norepinephrine transporter (NET) tracer [11C]-O-methylreboxetine, with functional connectivity magnetic resonance imaging, the Beck depression inventory (BDI), and the impact of weight on quality of life-Lite questionnaire (IWQOL–Lite), to investigate the role of norepinephrine in the severity of depression (BDI), as well as in the loss of emotional well-being with body weight (IWQOL–Lite). RESULTS In a small group of lean-to-morbidly obese individuals (n = 20), we show that an increased body mass index (BMI) is related to a lowered NET availability within the hypothalamus, known as the brain’s homeostatic control site. The hypothalamus displayed a strengthened connectivity in relation to the individual hypothalamic NET availability to the anterior insula/frontal operculum, as well as the medial orbitofrontal cortex, assumed to host the primary and secondary gustatory cortex, respectively (n = 19). The resting-state activity in these two regions was correlated positively to the BMI and IWQOL–Lite scores, but not to the BDI, suggesting that the higher the resting-state activity in these regions, and hence the higher the BMI, the stronger the negative impact of the body weight on the individual’s emotional well-being was. CONCLUSIONS This pilot study suggests that the loss in emotional well-being with weight is embedded within the central norepinephrine network. PMID:26620766

  12. Only connect--the role of PLHIV group networks in increasing the effectiveness of Ugandan HIV services.

    PubMed

    Hodgson, Ian; Nakiyemba, Alice; Seeley, Janet; Bitira, David; Gitau-Mburu, D

    2012-01-01

    In recent years, Uganda has experienced rapid growth in networked groups of people living with HIV (PLHIV) who provide support, engage in advocacy, treatment and care and raise the profile of HIV in the public domain. This qualitative study focused the benefits of joining a networked group, relationships between groups, impact of networked groups on the community and shaping private and public experience living with HIV. Data were collected from two Ugandan districts, using semi-structured interviews, focus group discussions (FGDs), observation and reviews of group records and archives. Respondents (n=46) were adults living with HIV, and members of rural and urban PLHIV groups. Narratives from PLHIV (n=27) were gathered, and records from PLHIV group service-registers (n=20) reviewed. Key Informants (n=15) were purposively selected for interview, based on participation in PLHIV groups, utilisation of network services and their positions as key stakeholders. FGDs were held with network support agents (NSAs), members of PLHIV groups, and their leaders. Following qualitative analysis, findings suggest that for respondents, PLHIV networks enhance the impact and effectiveness of individual groups: the whole is greater than the sum of the parts. For groups, being part of a wider network allows for diversity of service delivery, and well-defined roles for individuals to participate in community support and sensitisation, with a reduction in the experience of stigma. We conclude that networking PLHIV groups is an effective strategy for improving the quality and reach of community-based HIV services. Governments should be encouraged to support networks and include them in policy-making at the national level. Local and regional groups should explore further ways to collaborate and expand support to PLHIV in Uganda.

  13. How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience.

    PubMed

    Kéfi, Sonia; Miele, Vincent; Wieters, Evie A; Navarrete, Sergio A; Berlow, Eric L

    2016-08-01

    Species are linked to each other by a myriad of positive and negative interactions. This complex spectrum of interactions constitutes a network of links that mediates ecological communities' response to perturbations, such as exploitation and climate change. In the last decades, there have been great advances in the study of intricate ecological networks. We have, nonetheless, lacked both the data and the tools to more rigorously understand the patterning of multiple interaction types between species (i.e., "multiplex networks"), as well as their consequences for community dynamics. Using network statistical modeling applied to a comprehensive ecological network, which includes trophic and diverse non-trophic links, we provide a first glimpse at what the full "entangled bank" of species looks like. The community exhibits clear multidimensional structure, which is taxonomically coherent and broadly predictable from species traits. Moreover, dynamic simulations suggest that this non-random patterning of how diverse non-trophic interactions map onto the food web could allow for higher species persistence and higher total biomass than expected by chance and tends to promote a higher robustness to extinctions.

  14. Mycelium-Like Networks Increase Bacterial Dispersal, Growth, and Biodegradation in a Model Ecosystem at Various Water Potentials

    PubMed Central

    Worrich, Anja; König, Sara; Miltner, Anja; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Wick, Lukas Y.

    2016-01-01

    Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and −1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and −0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials. PMID:26944849

  15. The Ibero American Network for Research on School Effectiveness and School Improvement: A Way To Increase Educational Quality and Equity.

    ERIC Educational Resources Information Center

    Murillo, F. Javier; Rincon, Lourdes Hernandez

    2002-01-01

    Describes the Ibero American network for research on school effectiveness and school improvement created in 2000 to improve the quality of education in Ibero American countries through the exchange of information among educational researchers and the dissemination of research results to school practitioners. (Contains 19 references.) (PKP)

  16. How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience

    PubMed Central

    Wieters, Evie A.; Navarrete, Sergio A.

    2016-01-01

    Species are linked to each other by a myriad of positive and negative interactions. This complex spectrum of interactions constitutes a network of links that mediates ecological communities’ response to perturbations, such as exploitation and climate change. In the last decades, there have been great advances in the study of intricate ecological networks. We have, nonetheless, lacked both the data and the tools to more rigorously understand the patterning of multiple interaction types between species (i.e., “multiplex networks”), as well as their consequences for community dynamics. Using network statistical modeling applied to a comprehensive ecological network, which includes trophic and diverse non-trophic links, we provide a first glimpse at what the full “entangled bank” of species looks like. The community exhibits clear multidimensional structure, which is taxonomically coherent and broadly predictable from species traits. Moreover, dynamic simulations suggest that this non-random patterning of how diverse non-trophic interactions map onto the food web could allow for higher species persistence and higher total biomass than expected by chance and tends to promote a higher robustness to extinctions. PMID:27487303

  17. Does Academic Apprenticeship Increase Networking Ties among Participants? A Case Study of an Energy Efficiency Training Program

    ERIC Educational Resources Information Center

    Hytönen, Kaisa; Palonen, Tuire; Lehtinen, Erno; Hakkarainen, Kai

    2014-01-01

    In order to address the requirements of future education in different fields of academic professional activity, a model called Academic Apprenticeship Education was initiated in Finland in 2009. The aim of this article is to analyse the development of expert networks in the context of a 1-year Academic Apprenticeship Education model in the field…

  18. Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA

    NASA Astrophysics Data System (ADS)

    Maxwell, Justin T.; Harley, Grant L.

    2016-10-01

    Understanding the historic variability in the hydroclimate provides important information on possible extreme dry or wet periods that in turn inform water management plans. Tree rings have long provided historical context of hydroclimate variability of the U.S. However, the tree-ring network used to create these countrywide gridded reconstructions is sparse in certain locations, such as the Midwest. Here, we increase (n = 20) the spatial resolution of the tree-ring network in southern Indiana and compare a summer (June-August) Palmer Drought Severity Index (PDSI) reconstruction to existing gridded reconstructions of PDSI for this region. We find both droughts and pluvials that were previously unknown that rival the most intense PDSI values during the instrumental period. Additionally, historical drought occurred in Indiana that eclipsed instrumental conditions with regard to severity and duration. During the period 1962-2004 CE, we find that teleconnections of drought conditions through the Atlantic Meridional Overturning Circulation have a strong influence (r = -0.60, p < 0.01) on secondary tree growth in this region for the late spring-early summer season. These findings highlight the importance of continuing to increase the spatial resolution of the tree-ring network used to infer past climate dynamics to capture the sub-regional spatial variability. Increasing the spatial resolution of the tree-ring network for a given region can better identify sub-regional variability, improve the accuracy of regional tree-ring PDSI reconstructions, and provide better information for climatic teleconnections.

  19. The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease

    PubMed Central

    Jeong, Phildu; Kim, Seon-Kyu; Kim, Seon-Young; Yan, Chunri; Seo, Sung Phil; Lee, Sang Keun; Kim, Jayoung; Kim, Wun-Jae

    2015-01-01

    Previous studies have shown that c-MET is overexpressed in cases of aggressive bladder cancer (BCa). Identification of crosstalk between c-MET and other RTKs such as AXL and PDGFR suggest that c-MET network genes (c-MET-AXL-PDGFR) may be clinically relevant to BCa. Here, we examine whether expression of c-MET network genes can be used to identify BCa patients at increased risk of developing aggressive disease. In vitro analysis, c-MET knockdown suppressed cell proliferation, invasion, and migration, and increased sensitivity to cisplatin-induced apoptosis. In addition, c-MET network gene (c-MET, AXL, and PDGFR) expression allowed discrimination of BCa tissues from normal control tissues and appeared to predict poor disease progression in non-muscle invasive BCa patients and poor overall survival in muscle invasive BCa patients. These results suggest that c-MET network gene expression is a novel prognostic marker for predicting which BCa patients have an increased risk of developing aggressive disease. These genes might be a useful marker for co-targeting therapy, and are expected to play an important role in improving both response to treatment and survival of BCa patients. PMID:26225770

  20. The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease.

    PubMed

    Kim, Young-Won; Yun, Seok Joong; Jeong, Phildu; Kim, Seon-Kyu; Kim, Seon-Young; Yan, Chunri; Seo, Sung Phil; Lee, Sang Keun; Kim, Jayoung; Kim, Wun-Jae

    2015-01-01

    Previous studies have shown that c-MET is overexpressed in cases of aggressive bladder cancer (BCa). Identification of crosstalk between c-MET and other RTKs such as AXL and PDGFR suggest that c-MET network genes (c-MET-AXL-PDGFR) may be clinically relevant to BCa. Here, we examine whether expression of c-MET network genes can be used to identify BCa patients at increased risk of developing aggressive disease. In vitro analysis, c-MET knockdown suppressed cell proliferation, invasion, and migration, and increased sensitivity to cisplatin-induced apoptosis. In addition, c-MET network gene (c-MET, AXL, and PDGFR) expression allowed discrimination of BCa tissues from normal control tissues and appeared to predict poor disease progression in non-muscle invasive BCa patients and poor overall survival in muscle invasive BCa patients. These results suggest that c-MET network gene expression is a novel prognostic marker for predicting which BCa patients have an increased risk of developing aggressive disease. These genes might be a useful marker for co-targeting therapy, and are expected to play an important role in improving both response to treatment and survival of BCa patients.

  1. A Qualitative Study to Examine Feasibility and Design of an Online Social Networking Intervention to Increase Physical Activity in Teenage Girls

    PubMed Central

    Van Kessel, Gisela; Kavanagh, Madeleine; Maher, Carol

    2016-01-01

    Background Online social networks present wide-reaching and flexible platforms through which to deliver health interventions to targeted populations. This study used a social marketing approach to explore teenage girls’ perceptions of physical activity and the potential use of online social networks to receive a physical activity intervention. Methods Six focus groups were conducted with 19 Australian teenage girls (ages 13 to 18 years) with varying levels of physical activity and socioeconomic status. A semi-structured format was used, with groups discussion transcribed verbatim. Content analysis identified emergent themes, with triangulation and memos used to ensure accuracy. Results Physical activity was most appealing when it emphasised sport, exercise and fitness, along with opportunities for socialisation with friends and self-improvement. Participants were receptive to delivery of a physical activity intervention via online social networks, with Facebook the most widely reported site. Participants commonly accessed online social networks via mobile devices and particularly smartphones. Undesirable features included promotion of physical activity in terms of walking; use of cartoon imagery; use of humour; and promotion of the intervention via schools, each of which were considered “uncool”. Participants noted that their parents were likely to be supportive of them using an online social networking physical activity intervention, particularly if not promoted as a weight loss intervention. Conclusion This study identified key features likely to increase the feasibility and retention of an online social networking physical activity intervention for teenage girls. Guidelines for the design of interventions for teenage girls are provided for future applications. PMID:26934191

  2. Increased Resting-State Functional Connectivity in the Cingulo-Opercular Cognitive-Control Network after Intervention in Children with Reading Difficulties.

    PubMed

    Horowitz-Kraus, Tzipi; Toro-Serey, Claudio; DiFrancesco, Mark

    2015-01-01

    Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old) were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group.

  3. Increased Resting-State Functional Connectivity in the Cingulo-Opercular Cognitive-Control Network after Intervention in Children with Reading Difficulties

    PubMed Central

    Horowitz-Kraus, Tzipi; Toro-Serey, Claudio; DiFrancesco, Mark

    2015-01-01

    Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old) were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group. PMID:26197049

  4. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  5. Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream

    NASA Astrophysics Data System (ADS)

    Kachhatiya, Vivek; Prince, Shanthi

    2016-12-01

    In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as "pay as you grow" network for both service providers and the users perspectives. Users are classified into two categories viz home

  6. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks (Invited)

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Hollinger, D. Y.; Bohrer, G.; Dragoni, D.; Munger, J. W.; Schmid, H. E.; Richardson, A. D.

    2013-12-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  7. Increased Substance Use and Risky Sexual Behavior among Migratory Homeless Youth: Exploring the Role of Social Network Composition

    ERIC Educational Resources Information Center

    Martino, Steven C.; Tucker, Joan S.; Ryan, Gery; Wenzel, Suzanne L.; Golinelli, Daniela; Munjas, Brett

    2011-01-01

    Travelers are a migratory subgroup of homeless youth who may be especially prone to engaging in risky behavior. This study compared the substance use and sexual behavior of young homeless travelers and non-travelers to evaluate the extent and possible sources of travelers' increased risk. Data came from face-to-face interviews with 419 homeless…

  8. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans

    PubMed Central

    Stephens, Francis B; Wall, Benjamin T; Marimuthu, Kanagaraj; Shannon, Chris E; Constantin-Teodosiu, Dumitru; Macdonald, Ian A; Greenhaff, Paul L

    2013-01-01

    Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of l-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n= 6) or 1.36 g l-carnitine + 80 g carbohydrate (Carnitine, n= 6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P < 0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P < 0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with ‘insulin signalling’, ‘peroxisome proliferator-activated receptor signalling’ and ‘fatty acid metabolism’ as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise. PMID:23818692

  9. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance.

    PubMed

    Scheeringa, René; Petersson, Karl Magnus; Oostenveld, Robert; Norris, David G; Hagoort, Peter; Bastiaansen, Marcel C M

    2009-02-01

    PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG-fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.

  10. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning

    PubMed Central

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Objective: Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. Methods: To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Results: Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Conclusions: Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning. PMID:25337240

  11. Increased Substance Use and Risky Sexual Behavior among Migratory Homeless Youth: Exploring the Role of Social Network Composition

    PubMed Central

    Martino, Steven C.; Tucker, Joan S.; Ryan, Gery; Wenzel, Suzanne L.; Golinelli, Daniela; Munjas, Brett

    2011-01-01

    Travelers are a migratory subgroup of homeless youth who may be especially prone to engaging in risky behavior. This study compared the substance use and sexual behavior of young homeless travelers and non-travelers to evaluate the extent and possible sources of travelers' increased risk. Data came from face-to-face interviews with 419 homeless youth (36.6% female, 34.0% white, 23.9% African American, and 20.0% Hispanic) between the ages of 13 and 24 years (M = 20.1 years, SD = 2.5) who were randomly sampled from 41 shelters, drop-in centers, and street sites in Los Angeles. Travelers were almost twice as likely as non-travelers to exhibit recent heavy drinking, 37% more likely to exhibit recent marijuana use, and five times as likely to have injected drugs. Travelers also had more recent sex partners and were more likely to report having casual or need-based sexual partners and combining sex with substance use. Mediation analyses suggest that travelers' deviant peer associations and disconnection to conventional individuals and institutions may drive their elevated substance use. Differences in sexual risk behaviors are likely attributable to demographic differences between the two groups. Overall, these differences between travelers and non-travelers suggest different service needs and the need for different service approaches. PMID:21400037

  12. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.

    PubMed

    Byon, Hye Ryung; Choi, Hee Cheul

    2006-02-22

    Highly sensitive single-walled carbon nanotube-field effect transistor (SWNT-FET) devices, which detect protein adsorptions and specific protein-protein interactions at 1 pM concentrations, have been achieved. The detection limit has been improved 104-fold compared to the devices fabricated by photolithography. The substantially increased sensitivity is mainly due to the increased Schottky contact area which accommodates relatively more numbers of proteins even at very low concentration. The augmented number of proteins adsorbed on a device induces instant modulation of the work function of metal contact electrodes, which eventually changes the conductance of the device. Such devices have been attained by addressing metal electrodes on network-type SWNTs using a shadow mask on a tilted angle sample stage. The shadow mask allows metals to penetrate underneath the mask efficiently, therefore forming a thin and wide Schottky contact area on SWNT channels.

  13. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    PubMed Central

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  14. Clinical significance of increased cerebellar default-mode network connectivity in resting-state patients with drug-naive somatization disorder

    PubMed Central

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Li, Lehua; Zhao, Jingping

    2016-01-01

    Abstract The cerebellum has been proven to be connected to the brain network, as in the default-mode network (DMN), among healthy subjects and patients with psychiatric disorders. However, whether or not abnormal cerebellar DMN connectivity exists and what its clinical significance is among drug-naive patients with somatization disorder (SD) at rest remain unclear. A total of 25 drug-naive patients with SD and 28 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, patients with SD showed increased left/right Crus I-left/right angular gyrus (AG) connectivity and Lobule IX-left superior medial prefrontal cortex (MPFC) connectivity. The FC values of the left/right Crus I-right AG connectivity of the patients were positively correlated with their scores in the somatization subscale of the symptom checklist-90 (Scl-90). A trend level of correlations was observed between the FC values of the left Crus I-left AG connectivity of the patients and their scores for the somatization subscale of Scl-90, as well as between the FC values of their Lobule IX-left superior MPFC connectivity and their scores for the Eysenck personality questionnaire (EPQ) extraversion. Our findings show the increased cerebellar DMN connectivity in patients with SD and therefore highlight the importance of the DMN in the neurobiology of SD. Increased cerebellar DMN connectivities are also correlated with their somatization severity and personality, both of which bear clinical significance. PMID:27428190

  15. Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest

    PubMed Central

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Wang, Guodong; Lyu, Hailong; Wu, Renrong; Chen, Jindong; Wang, Shuai; Li, Lehua; Zhao, Jingping

    2016-01-01

    Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis. PMID:27188233

  16. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    EPA Science Inventory

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  17. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006-2011.

    PubMed

    Li, Jinfeng; Lu, Keding; Lv, Wei; Li, Jun; Zhong, Liuju; Ou, Yubo; Chen, Duohong; Huang, Xin; Zhang, Yuanhang

    2014-01-01

    Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone (O3), NO2 and total oxidant (O(x)) were analyzed by both linear regression and cluster analysis. A fast increase of regional O3 concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O3 increase is accompanied by a correspondingly fast NO(x) reduction as indicated by a fast NO2 reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories--rural stations (non-urban) and suburban/urban stations. The O3 concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime (13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O3 production is mainly volatile organic compounds (VOC)-controlled. However, the photochemical O3 production is sensitive to both NO(x) and VOC for O3 pollution episode. Accordingly, it is expected that a combined NO(x) and VOC reduction will be helpful for the reduction of the O3 pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O3 pollution control.

  18. GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation: a potential neurogenetic pathway to panic disorder.

    PubMed

    Deckert, J; Weber, H; Villmann, C; Lonsdorf, T B; Richter, J; Andreatta, M; Arias-Vasquez, A; Hommers, L; Kent, L; Schartner, C; Cichon, S; Wolf, C; Schaefer, N; von Collenberg, C R; Wachter, B; Blum, R; Schümann, D; Scharfenort, R; Schumacher, J; Forstner, A J; Baumann, C; Schiele, M A; Notzon, S; Zwanzger, P; Janzing, J G E; Galesloot, T; Kiemeney, L A; Gajewska, A; Glotzbach-Schoon, E; Mühlberger, A; Alpers, G; Fydrich, T; Fehm, L; Gerlach, A L; Kircher, T; Lang, T; Ströhle, A; Arolt, V; Wittchen, H-U; Kalisch, R; Büchel, C; Hamm, A; Nöthen, M M; Romanos, M; Domschke, K; Pauli, P; Reif, A

    2017-02-07

    The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG-related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, P=3.3 × 10(-8); rs191260602, P=3.9 × 10(-8)). We followed up on this finding in a larger dimensional ACQ sample (N=2547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3845) and a case-control sample with the categorical phenotype PD/AG (Ncombined =1012) obtaining highly significant P-values also for GLRB single-nucleotide variants rs17035816 (P=3.8 × 10(-4)) and rs7688285 (P=7.6 × 10(-5)). GLRB gene expression was found to be modulated by rs7688285 in brain tissue, as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network, as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout mice demonstrated an agoraphobic phenotype. In conjunction with the clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, although functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.Molecular Psychiatry advance online publication, 7 February 2017; doi:10.1038/mp.2017.2.

  19. Piloting a Social Networks Strategy to Increase HIV Testing and Counseling Among Men Who Have Sex with Men in Greater Accra and Ashanti Region, Ghana.

    PubMed

    Girault, Philippe; Green, Kimberly; Clement, Nana Fosua; Rahman, Yussif Ahmed Abdul; Adams, Bashiru; Wambugu, Samuel

    2015-11-01

    The 2011 Ghana Men's Study identified a high prevalence of HIV among men who have sex with men (MSM) in Accra/Tema (34.4 %) and in Kumasi (13.6 %), whereas the HIV rate among MSM referred through peer educators (PEs) to HIV testing and counseling (HTC) services in these two sites was substantially lower (8.4 %). These findings raised questions about possible limitations of the peer-education strategy to reach high-risk MSM. Therefore, a pilot study was conducted to assess the feasibility of using a social network strategy (SNS) to identify and refer MSM to HTC services. Within 3 months, 166 MSM were reached and referred to HTC services: 62.7 % reported no recent exposure to PEs; 61.5 % were unaware of their recent HIV serostatus; and 32.9 % were newly diagnosed HIV positive. This pilot study suggests that an SNS could be an important strategy to reach MSM and to increase the uptake of HTC.

  20. Ventral Medial Thalamic Nucleus Promotes Synchronization of Increased High Beta Oscillatory Activity in the Basal Ganglia–Thalamocortical Network of the Hemiparkinsonian Rat

    PubMed Central

    Brazhnik, Elena; McCoy, Alex J.; Novikov, Nikolay; Hatch, Christina E.

    2016-01-01

    Loss of dopamine is associated with increased synchronization and oscillatory activity in the subthalamic nucleus and basal ganglia (BG) output nuclei in both Parkinson's disease (PD) patients and animal models of PD. We have previously observed substantial increases in spectral power in the 25–40 Hz range in LFPs recorded in the substantia nigra pars reticulata (SNpr) and motor cortex (MCx) in the hemiparkinsonian rat during treadmill walking. The current study explores the hypothesis that SNpr output entrains activity in the ventral medial thalamus (VM) in this frequency range after loss of dopamine, which in turn contributes to entrainment of the MCx and BG. Electrode bundles were implanted in MCx, SNpr, and VM of rats with unilateral dopamine cell lesions. Spiking and LFP activity were recorded during epochs of rest and walking on a circular treadmill. After dopamine cell lesion, 30–36 Hz LFP activity in the VM became more robust during treadmill walking and more coherent with LFP activity in the same range in MCx and SNpr. Infusion of the GABAA antagonist picrotoxin into the VM reduced both high beta power in MCx and SNpr and coherence between MCx and SNpr while temporarily restoring walking ability. Infusion of the GABAA agonist muscimol into the VM also reduced MCx–SNpr coherence and beta power but failed to improve walking. These results support the view that synchronized neuronal activity in the VM contributes to the emergence of high beta oscillations throughout the BG-thalamocortical network in the behaving parkinsonian rat. SIGNIFICANCE STATEMENT Parkinson's disease symptoms are associated with dramatic increases in synchronized beta range (15–35 Hz) oscillatory local field activity in several brain areas involved in motor control, but the mechanisms promoting this activity and its functional significance remain unresolved. This oscillatory activity can be recorded in awake behaving rats with unilateral dopamine cell lesions using chronically

  1. Placenta Peptide Can Protect Mitochondrial Dysfunction through Inhibiting ROS and TNF-α Generation, by Maintaining Mitochondrial Dynamic Network and by Increasing IL-6 Level during Chronic Fatigue

    PubMed Central

    Muluye, Rekik A.; Bian, Yuhong; Wang, Li; Alemu, Paulos N.; Cui, Huantian; Peng, Xiaofei; Li, Shanshan

    2016-01-01

    Background: Level of fatigue is related to the metabolic energy available to tissues and cells, mainly through mitochondrial respiration, as well fatigue is the most common symptom of poorly functioning mitochondria. Hence, dysfunction of these organelles may be the cause of the fatigue seen in Chronic fatigue (CF). Placenta has been used for treatment of fatigue and various disease, moreover peptides has known protect mitochondrial viability, and alleviate fatigue. These properties of placenta and peptides may link with its effect on mitochondria; therefore, it is highly important to investigate the effectiveness of placenta peptide on fatigue and mitochondrial dysfunction. Methods: After administration of sheep placenta peptide (SPP) for 1 month, mice’s were forced to swim till exhaustion for 90 min to induce chronic fatigue. Electron microscopic examination of skeletal muscle mitochondrial structure, tissue Malondialdehyde (MDA), mitochondrial SOD and serum inflammatory cytokines level were investigated in order to determine the potential effect of SPP on mitochondria during CF. Rat skeletal muscle (L6 cell) were also treated with different concentration of SPP to determine the effect of SPP on cell viability using Thiazoyl blue tetrazolium assay. Results: Our finding revealed that forced swimming induced fatigue model can cause mitochondrial damage through Reactive oxygen species (ROS) mediated lipid peroxidation and Tumor Necrosis factor alpha (TNF-α) elevation. Whereas SPP protected fatigue induced mitochondrial dysfunction through preventing ROS and TNF-α generation, by maintaining mitochondrial dynamic network and by increasing serum IL-6 level. Conclusion: SPP can protect damage in mitochondrial components which will allow proper functioning of mitochondria that will in turn inhibit progression of chronic fatigue. Therefore, SPP may represent a novel therapeutic advantage for preventing mitochondrial dysfunction in patients with chronic fatigue. PMID

  2. A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults

    PubMed Central

    Rajab, Ahmad S.; Crane, David E.; Middleton, Laura E.; Robertson, Andrew D.; Hampson, Michelle; MacIntosh, Bradley J.

    2014-01-01

    Habitual long term physical activity is known to have beneficial cognitive, structural, and neuro-protective brain effects, but to date there is limited knowledge on whether a single session of exercise can alter the brain’s functional connectivity, as assessed by resting-state functional magnetic resonance imaging (rs-fMRI). The primary objective of this study was to characterize potential session effects in resting-state networks (RSNs). We examined the acute effects of exercise on the functional connectivity of young healthy adults (N = 15) by collecting rs-fMRI before and after 20 min of moderate intensity aerobic exercise and compared this with a no-exercise control group (N = 15). Data were analyzed using independent component analysis, denoising and dual regression procedures. Regions of interest-based group session effect statistics were calculated in RSNs of interest using voxel-wise permutation testing and Cohen’s D effect size. Group analysis in the exercising group data set revealed a session effect in sub-regions of three sensorimotor related areas: the pre and/or postcentral gyri, secondary somatosensory area and thalamus, characterized by increased co-activation after exercise (corrected p < 0.05). Cohen’s D analysis also showed a significant effect of session in these three RSNs (p< 0.05), corroborating the voxel-wise findings. Analyses of the no-exercise dataset produced no significant results, thereby providing support for the exercise findings and establishing the inherent test–retest reliability of the analysis pipeline on the RSNs of interest. This study establishes the feasibility of rs-fMRI to localize brain regions that are associated with acute exercise, as well as an analysis consideration to improve sensitivity to a session effect. PMID:25177284

  3. Vulnerability of network of networks

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  4. Networking computers.

    PubMed

    McBride, D C

    1997-03-01

    This decade the role of the personal computer has shifted dramatically from a desktop device designed to increase individual productivity and efficiency to an instrument of communication linking people and machines in different places with one another. A computer in one city can communicate with another that may be thousands of miles away. Networking is how this is accomplished. Just like the voice network used by the telephone, computer networks transmit data and other information via modems over these same telephone lines. A network can be created over both short and long distances. Networks can be established within a hospital or medical building or over many hospitals or buildings covering many geographic areas. Those confined to one location are called LANs, local area networks. Those that link computers in one building to those at other locations are known as WANs, or wide area networks. The ultimate wide area network is the one we've all been hearing so much about these days--the Internet, and its World Wide Web. Setting up a network is a process that requires careful planning and commitment. To avoid potential pitfalls and to make certain the network you establish meets your needs today and several years down the road, several steps need to be followed. This article reviews the initial steps involved in getting ready to network.

  5. Why Network? Theoretical Perspectives on Networking

    ERIC Educational Resources Information Center

    Muijs, Daniel; West, Mel; Ainscow, Mel

    2010-01-01

    In recent years, networking and collaboration have become increasingly popular in education. However, there is at present a lack of attention to the theoretical basis of networking, which could illuminate when and when not to network and under what conditions networks are likely to be successful. In this paper, we will attempt to sketch the…

  6. Increasing aridity threats to Himalayan alpine ecosystems? A millenial history of hydroclimate from the Tibetan plateau derived from a δ18O tree-ring network

    NASA Astrophysics Data System (ADS)

    Griessinger, J.

    2015-12-01

    The Tibetan plateau (TP) plays an important role as an elevated heat source responsible for the establishment of the Asias monsoonal systems. Besides the Indian Summer Monsoon (ISM), also the East Asian Summer Monsoon (EASM) is triggering the regional precipitation regimes during the vegetation period from May to September. Within recent decades, fundamental climate changes on the southeastern part of the TP were detected leading to substantial changes within the regional hydrological budget and affecting local ecosystems. By using a spatial network of multicentennial to 1.5 millenial year old tree-ring δ18O time-series from the southeastern part of the TP, the regional climate history as well as the late Holocene monsoonal variability will be presented. Since the main climatically sensitive periods like the Medieval Warm Period and the Little Ice Age are displayed in all chronologies, their typical hydroclimatological characteristics and impacts will be discussed especially in regard to the recent warming trend on the TP and the responsible climatic triggers. Arising from these results, regional impacts and differences of the proposed hydrological changes will be discussed. In addition, first results of a comparison between proxy-based (δ18O) and model-based (re-analysis datasets) trajectory calculations will be presented, trying to give insights in the origin and impact of air masses for the most striking last three decades on the southeastern part of the TP.

  7. The Effect of Increased Frequency of Hemodialysis on Volume-Related Outcomes: A Secondary Analysis of the Frequent Hemodialysis Network Trials.

    PubMed

    Raimann, Jochen G; Chan, Christopher T; Daugirdas, John T; Depner, Tom; Gotch, Frank A; Greene, Tom; Kaysen, George A; Kliger, Alan S; Kotanko, Peter; Larive, Brett; Lindsay, Robert; Rocco, Michael V; Chertow, Glenn M; Levin, Nathan W

    2016-01-01

    In previous reports of the Frequent Hemodialysis Network trials, frequent hemodialysis (HD) reduced extracellular fluid (ECF) and left ventricular mass (LVM), with more pronounced effects observed among patients with low urine volume (UVol). We analyzed the effect of frequent HD on interdialytic weight gain (IDWG) and a time-integrated estimate of ECF load (TIFL). We also explored whether volume and sodium loading contributed to the change in LVM over the study period. Treatment effects on volume parameters were analyzed for modification by UVol and the dialysate-to-serum sodium gradient. Predictors of change in LVM were determined using linear regression. Frequent HD reduced IDWG and TIFL in the Daily Trial. Among patients with UVol <100 ml/day, reduction in TIFL was associated with LVM reduction. This suggests that achievement of better volume control could attenuate changes in LVM associated with mortality and cardiovascular morbidity. TIFL may prove more useful than IDWG alone in guiding HD practice. Video Journal Club 'Cappuccino with Claudio Ronco' at http://www.karger.com/?doi=441966.

  8. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties.

    PubMed

    Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K

    2015-01-01

    The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8-12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.

  9. Increased Putamen and Callosal Motor Subregion in Treatment-Naive Boys with Tourette Syndrome Indicates Changes in the Bihemispheric Motor Network

    ERIC Educational Resources Information Center

    Roessner, Veit; Overlack, Sebastian; Schmidt-Samoa, Carsten; Baudewig, Jurgen; Dechent, Peter; Rothenberger, Aribert; Helms, Gunther

    2011-01-01

    Background: Despite an increasing number of studies, findings of structural brain alterations in patients with Tourette syndrome are still inconsistent. Several confounders (comorbid conditions, medication, gender, age, IQ) might explain these discrepancies. In the present study, these confounders were excluded to identify differences in basal…

  10. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.

    PubMed

    Qi, Wenpeng; Zhao, Hongwei

    2015-09-21

    The water confined in nanotubes has been extensively studied, because of the potential usages in drug delivery and desalination. The radial distribution of the dielectric constant parallel along the nanotube axis was obtained by molecular dynamics simulations in a carbon nanotube and a nanotube with a very small van der Waals potential. The confined water was divided into two parts, the middle part water and the hydration water. In both cases, the hydrogen bond orientation of the middle water is isotropic, while the hydrogen bonds in hydration layers are apt to parallel along the nanotube axis. Therefore, the hydration water has higher dipole correlations increasing the dielectric constant along the nanotube axis.

  11. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis

    NASA Astrophysics Data System (ADS)

    Qi, Wenpeng; Zhao, Hongwei

    2015-09-01

    The water confined in nanotubes has been extensively studied, because of the potential usages in drug delivery and desalination. The radial distribution of the dielectric constant parallel along the nanotube axis was obtained by molecular dynamics simulations in a carbon nanotube and a nanotube with a very small van der Waals potential. The confined water was divided into two parts, the middle part water and the hydration water. In both cases, the hydrogen bond orientation of the middle water is isotropic, while the hydrogen bonds in hydration layers are apt to parallel along the nanotube axis. Therefore, the hydration water has higher dipole correlations increasing the dielectric constant along the nanotube axis.

  12. Overexpression of BDNF Increases Excitability of the Lumbar Spinal Network and Leads to Robust Early Locomotor Recovery in Completely Spinalized Rats

    PubMed Central

    Ziemlińska, Ewelina; Kügler, Sebastian; Schachner, Melitta; Wewiór, Iwona; Czarkowska-Bauch, Julita; Skup, Małgorzata

    2014-01-01

    Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability. PMID:24551172

  13. Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments

    PubMed Central

    Bowen, Jennifer L.; Byrnes, Jarrett E. K.; Weisman, David; Colaneri, Cory

    2013-01-01

    Functional gene pyrosequencing is emerging as a useful tool to examine the diversity and abundance of microbes that facilitate key biogeochemical processes. One such process, denitrification, is of particular importance because it converts fixed nitrate (NO−3) to N2 gas, which returns to the atmosphere. In nitrogen limited salt marshes, removal of NO−3 prior to entering adjacent waters helps prevent eutrophication. Understanding the dynamics of salt marsh microbial denitrification is thus imperative for the maintenance of healthy coastal ecosystems. We used pyrosequencing of the nirS gene to examine the denitrifying community response to fertilization in experimentally enriched marsh plots. A key challenge in the analysis of sequence data derived from pyrosequencing is understanding whether small differences in gene sequences are ecologically meaningful. We applied a novel approach from information theory to determine that the optimal similarity level for clustering DNA sequences into OTUs, while still capturing the ecological complexity of the system, was 88%. With this clustering, phylogenetic analysis yielded 6 dominant clades of denitrifiers, the largest of which, accounting for more than half of all the sequences collected, had no close cultured representatives. Of the 638 OTUs identified, only 11 were present in all plots and no single OTU was dominant. We did, however, find a large number of specialist OTUs that were present only in a single plot. The high degree of endemic OTUs, while accounting for a large proportion of the nirS diversity in the plots, were found in lower abundance than the generalist taxa. The proportion of specialist taxa increased with increasing supply of nutrients, suggesting that addition of fertilizer may create conditions that expand the niche space for denitrifying organisms and may enhance the genetic capacity for denitrification. PMID:24348464

  14. Checking whether there is an increased risk of post-transplant lymphoproliferative disorder and other cancers with specific modern immunosuppression regimens in renal transplantation: Protocol for a network meta-analysis of randomized and observational studies

    PubMed Central

    2014-01-01

    Background Patients undergoing renal transplant procedures require multi-agent immunosuppressive regimens both short term (induction phase) and long term (maintenance phase) to minimize the risk of organ rejection. There are several drug classes and agents for immunosuppression. Use of these agents may increase the risk of different harms including not only infections, but also malignancies including post-transplant lymphoproliferative disorder. There is a need to identify which regimens minimize the risk of such outcomes. The objective of this systematic review and network meta-analysis of randomized and observational studies is to explore whether certain modern regimens of immunosuppression used to prevent organ rejection in renal transplant patients are associated with an increased risk of post-transplant lymphoproliferative disorder and other malignancies. Methods/design ‘Modern’ regimens were defined to be those evaluated in controlled studies beginning in 1990 or later. An electronic literature search of Medline, Embase and the Cochrane Central Register of Controlled Trials has been designed by an experienced information specialist and peer reviewed by a second information specialist. Study selection and data collection will be performed by two reviewers. The outcomes of interest will include post-transplant lymphoproliferative disorder and other incident forms of malignancy occurring in adult renal transplant patients. Network meta-analyses of data from randomized and observational studies will be performed where judged appropriate based on a review of the clinical and methodological features of included studies. A sequential approach to meta-analysis will be used to combine data from different designs. Discussion Our systematic review will include both single-agent and multi-agent modern pharmacotherapy regimens in patients undergoing renal transplantation. It will synthesize malignancy outcomes. Our work will also add to the development of methods for

  15. The Merit Computer Network

    ERIC Educational Resources Information Center

    Aupperle, Eric M.; Davis, Donna L.

    1978-01-01

    The successful Merit Computer Network is examined in terms of both technology and operational management. The network is fully operational and has a significant and rapidly increasing usage, with three major institutions currently sharing computer resources. (Author/CMV)

  16. The optimation of random network coding in wireless MESH networks

    NASA Astrophysics Data System (ADS)

    Pang, Chunjiang; Pan, Xikun

    2013-03-01

    In order to improve the efficiency of wireless mesh network transmission, this paper focused on the network coding technology. Using network coding can significantly increase the wireless mesh network's throughput, but it will inevitably increase the computational complexity to the network, and the traditional linear network coding algorithm requires the aware of the whole network topology, which is impossible in the ever-changing topology of wireless mesh networks. In this paper, we use a distributed network coding strategy: random network coding, which don't need to know the whole topology of the network. In order to decrease the computation complexity, this paper suggests an improved strategy for random network coding: Do not code the packets which bring no good to the whole transmission. In this paper, we list several situations which coding is not necessary. Simulation results show that applying these strategies can improve the efficiency of wireless mesh network transmission.

  17. Network Views

    ERIC Educational Resources Information Center

    Alexander, Louis

    2010-01-01

    The world changed in 2008. The financial crisis brought with it a deepening sense of insecurity, and the desire to be connected to a network increased. Throughout the summer and fall of 2008, events were unfolding with alarming rapidity. The Massachusetts Institute of Technology (MIT) Alumni Association wanted to respond to this change in the…

  18. Global Networking.

    ERIC Educational Resources Information Center

    Lynch, Clifford

    1997-01-01

    Discusses the state of the Internet. Highlights include the magnitude of the infrastructure, costs, its increasing pace, constraints in international links, provision of network capacity to homes and small businesses, cable television modems, political and cultural problems, the digital library concept, search engines, the failure of personal…

  19. Appetite - increased

    MedlinePlus

    ... Have you noticed any other symptoms such as anxiety, palpitations , increased thirst , vomiting , frequent urination , or unintentional weight gain? Tests that may be done include: Blood tests, ...

  20. An approach for modeling vulnerability of the network of networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Song, Bo; Zhang, Zhaojun; Liu, Haikuan

    2014-10-01

    In this paper, a framework is given to model the network of networks and to investigate the vulnerability of the network of networks subjected to failures. Because there are several redundant systems in infrastructure systems, the dependent intensity between two networks is introduced and adopted to discuss the vulnerability of the interdependent infrastructure networks subjected to failures. Shanghai electrified rail transit network is used to illustrate the feasibility and effectiveness of the proposed framework. Because the rail network is dependent on the power grid and communication network, the corresponding power grid and communication network are also included in this system. Meanwhile the failures to the power grid and communication network are utilized to investigate the vulnerability of the rail network. The results show that the rail network strongly depends on the power grid and weakly depends on the communication network, and the transport functionality loss of the rail network increases with the increase of dependent intensity. Meanwhile the highest betweenness node-based attack to the power grid and the largest degree node-based attack to the communication network can result in the most functionality losses to the rail network. Moreover, the functionality loss of the rail network has the smallest value when the tolerance parameter of the power grid equals 0.75 and the critical nodes of the power grid and communication network can be obtained by simulations.

  1. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  2. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  3. Extracting information from multiplex networks.

    PubMed

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ̃(S) for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  4. Groundwater data network interoperability

    USGS Publications Warehouse

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  5. Network Science

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László

    2016-07-01

    Preface; Personal introduction; 1. Introduction; 2. Graph theory; 3. Random networks; 4. The scale-free property; 5. The Barabási-Albert model; 6. Evolving networks; 7. Degree correlation; 8. Network robustness; 9. Communities; 10. Spreading phenomena; Index.

  6. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  7. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  8. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  9. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  10. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  11. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  12. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  13. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  14. Mixing navigation on networks

    NASA Astrophysics Data System (ADS)

    Zhou, Tao

    2008-05-01

    In this article, we propose a mixing navigation mechanism, which interpolates between random-walk and shortest-path protocol. The navigation efficiency can be remarkably enhanced via a few routers. Some advanced strategies are also designed: For non-geographical scale-free networks, the targeted strategy with a tiny fraction of routers can guarantee an efficient navigation with low and stable delivery time almost independent of network size. For geographical localized networks, the clustering strategy can simultaneously increase efficiency and reduce the communication cost. The present mixing navigation mechanism is of significance especially for information organization of wireless sensor networks and distributed autonomous robotic systems.

  15. Cognitive Network Neuroscience

    PubMed Central

    Medaglia, John D.; Lynall, Mary-Ellen; Bassett, Danielle S.

    2016-01-01

    Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience. PMID:25803596

  16. Branching toughens fibrous networks.

    PubMed

    Koh, C T; Oyen, M L

    2012-08-01

    Fibrous collagenous networks are not only stiff but also tough, due to their complex microstructures. This stiff yet tough behavior is desirable for both medical and military applications but it is difficult to reproduce in engineering materials. While the nonlinear hyperelastic behavior of fibrous networks has been extensively studied, the understanding of toughness is still incomplete. Here, we identify a microstructure mimicking the branched bundles of a natural type I collagen network, in which partially cross-linked long fibers give rise to novel combinations of stiffness and toughness. Finite element analysis shows that the stiffness of fully cross-linked fibrous networks is amplified by increasing the fibril length and cross-link density. However, a trade-off of such stiff networks is reduced toughness. By having partially cross-linked networks with long fibrils, the networks have comparable stiffness and improved toughness as compared to the fully cross-linked networks. Further, the partially cross-linked networks avoid the formation of kinks, which cause fibril rupture during deformation. As a result, the branching allows the networks to have stiff yet tough behavior.

  17. Cognitive network neuroscience.

    PubMed

    Medaglia, John D; Lynall, Mary-Ellen; Bassett, Danielle S

    2015-08-01

    Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.

  18. Network Kits.

    ERIC Educational Resources Information Center

    Falk, Howard

    1999-01-01

    Describes interconnection methods, speed, and comparative equipment costs of networking starter kits. These kits supply network-connection devices that plug into or connect to each computer that is part of a network; they may also provide interconnection cables and installation software needed to set up a network. Reviews 20 kits that use a…

  19. Network Solutions.

    ERIC Educational Resources Information Center

    Vietzke, Robert; And Others

    1996-01-01

    This special section explains the latest developments in networking technologies, profiles school districts benefiting from successful implementations, and reviews new products for building networks. Highlights include ATM (asynchronous transfer mode), cable modems, networking switches, Internet screening software, file servers, network management…

  20. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  1. Fluvial network organization imprints on microbial co-occurrence networks.

    PubMed

    Widder, Stefanie; Besemer, Katharina; Singer, Gabriel A; Ceola, Serena; Bertuzzo, Enrico; Quince, Christopher; Sloan, William T; Rinaldo, Andrea; Battin, Tom J

    2014-09-02

    Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.

  2. Networking standards

    NASA Technical Reports Server (NTRS)

    Davies, Mark

    1991-01-01

    The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.

  3. Deep space network energy program

    NASA Technical Reports Server (NTRS)

    Friesema, S. E.

    1980-01-01

    If the Deep Space Network is to exist in a cost effective and reliable manner in the next decade, the problems presented by international energy cost increases and energy availability must be addressed. The Deep Space Network Energy Program was established to implement solutions compatible with the ongoing development of the total network.

  4. Mexican High Energy Physics Network

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. C.; Napsuciale, M.; Pérez-Angón, M. A.

    2016-10-01

    The Mexican High Energy Physics Network is one of CONACYT's thematic research networks, created with the aim of increasing the communication and cooperation of the scientific and technology communities of Mexico in strategic areas. In this report we review the evolution, challenges, achievements and opportunities faced by the network.

  5. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  6. Increased Spreading Activation in Depression

    ERIC Educational Resources Information Center

    Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria

    2011-01-01

    The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…

  7. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation.

  8. Future Optical Networks

    NASA Astrophysics Data System (ADS)

    O'Mahony, Michael J.; Politi, Christina; Klonidis, Dimitrios; Nejabati, Reza; Simeonidou, Dimitra

    2006-12-01

    This paper presents views on the future of optical networking. A historical look at the emergence of optical networking is first taken, followed by a discussion on the drivers pushing for a new and pervasive network, which is based on photonics and can satisfy the needs of a broadening base of residential, business, and scientific users. Regional plans and targets for optical networking are reviewed to understand which current approaches are judged important. Today, two thrusts are driving separate optical network infrastructure models, namely 1) the need by nations to provide a ubiquitous network infrastructure to support all the future services and telecommunication needs of residential and business users and 2) increasing demands by the scientific community for networks to support their requirements with respect to large-scale data transport and processing. This paper discusses these network models together with the key enabling technologies currently being considered for future implementation, including optical circuit, burst and packet switching, and optical code-division multiplexing. Critical subsystem functionalities are also reviewed. The discussion considers how these separate models might eventually merge to form a global optical network infrastructure.

  9. Code 672 observational science branch computer networks

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  10. The robustness of interdependent clustered networks

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing; Shao, Shuai; Wang, Huijuan; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo

    2013-01-01

    It was recently found that cascading failures can cause the abrupt breakdown of a system of interdependent networks. Using the percolation method developed for single clustered networks by Newman (Phys. Rev. Lett., 103 (2009) 058701), we develop an analytical method for studying how clustering within the networks of a system of interdependent networks affects the system's robustness. We find that clustering significantly increases the vulnerability of the system, which is represented by the increased value of the percolation threshold pc in interdependent networks.

  11. What Is the Potential Impact on the Department of Defense (DOD) Military Treatment Facility (MTF) Pharmacies due to the Increased Copays and the Disenrollment of a Retail Pharmacy from the TRICARE Network?

    DTIC Science & Technology

    2012-12-14

    beneficiaries that do not live within 40 miles, which is considered the DoD MTF catchment area , of the DoD MTF will choose the TRICARE Retail Pharmacy Network...This study should also include the number of patients in the catchment area and those that live outside the catchment area . This will provide insight...RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19b. PHONE NUMBER (include area code) (U) (U) (U) (U) 143 Standard Form 298 (Rev. 8-98

  12. Network Basics.

    ERIC Educational Resources Information Center

    Tennant, Roy

    1992-01-01

    Explains how users can find and access information resources available on the Internet. Highlights include network information centers (NICs); lists, both formal and informal; computer networking protocols, including international standards; electronic mail; remote log-in; and file transfer. (LRW)

  13. Network neuroscience.

    PubMed

    Bassett, Danielle S; Sporns, Olaf

    2017-02-23

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

  14. Network science.

    PubMed

    Barabási, Albert-László

    2013-03-28

    Professor Barabási's talk described how the tools of network science can help understand the Web's structure, development and weaknesses. The Web is an information network, in which the nodes are documents (at the time of writing over one trillion of them), connected by links. Other well-known network structures include the Internet, a physical network where the nodes are routers and the links are physical connections, and organizations, where the nodes are people and the links represent communications.

  15. Online social support networks.

    PubMed

    Mehta, Neil; Atreja, Ashish

    2015-04-01

    Peer support groups have a long history and have been shown to improve health outcomes. With the increasing familiarity with online social networks like Facebook and ubiquitous access to the Internet, online social support networks are becoming popular. While studies have shown the benefit of these networks in providing emotional support or meeting informational needs, robust data on improving outcomes such as a decrease in health services utilization or reduction in adverse outcomes is lacking. These networks also pose unique challenges in the areas of patient privacy, funding models, quality of content, and research agendas. Addressing these concerns while creating patient-centred, patient-powered online support networks will help leverage these platforms to complement traditional healthcare delivery models in the current environment of value-based care.

  16. Integrated Networks.

    ERIC Educational Resources Information Center

    Robinovitz, Stewart

    1987-01-01

    A strategy for integrated data and voice networks implemented at the University of Michigan is described. These networks often use multi-technologies, multi-vendors, and multi-transmission media that will be fused into a single integrated network. Transmission media include twisted-pair wire, coaxial cable, fiber optics, and microwave. (Author/MLW)

  17. Volatiles Which Increase Magma Viscosity

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2015-12-01

    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  18. Superelastic networks

    SciTech Connect

    Obukhov, S.P.; Rubinstein, M.; Colby, R.H.

    1993-12-31

    This paper discusses the elastic modulus, swelling, and deswelling behavior of networks as a function of their concentration and the preparation state. Based on these results, the authors expect that networks prepared by crosslinking long chains at low concentration, followed by removal of solvent, will have superelastic properties - the deswollen networks will have low modulus and will be capable of stretching by enormous amounts without breaking. This is because deswelling introduces only temporary entanglements. These temporary entanglements change the static configuration of the network strands. The authors discuss the non-Gaussian nature of these strands and the linear viscoelastic response of the superelastic networks.

  19. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-03-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  20. Vehicle-network development on a communications-network testbed

    NASA Astrophysics Data System (ADS)

    Rapanotti, John L.

    2006-05-01

    Light armoured vehicles will rely on sensors, on-board computing and digital wireless communications to achieve improved performance and survivability. Constrained by low latency response to threats, individual vehicles will share sensory information with other platoon vehicles benefiting from a flexible, dynamic, self-adapting network environment. As sensor and computing capability increases, network communications will become saturated. To understand the operational requirements for these future vehicle networks, the High Capacity Technical Communications Network (HCTCN) Low Bandwidth Testbed (LBTB) has been developed to provide a simulated environment for the radios and candidate database and transmission protocols selected. These concepts and approach to network communications will be discussed in the paper.

  1. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  2. Reciprocity of weighted networks

    PubMed Central

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation. PMID:24056721

  3. Patterns in randomly evolving networks: Idiotypic networks

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    2003-03-01

    We present a model for the evolution of networks of occupied sites on undirected regular graphs. At every iteration step in a parallel update, I randomly chosen empty sites are occupied and occupied sites having occupied neighbor degree outside of a given interval (tl,tu) are set empty. Depending on the influx I and the values of both lower threshold and upper threshold of the occupied neighbor degree, different kinds of behavior can be observed. In certain regimes stable long-living patterns appear. We distinguish two types of patterns: static patterns arising on graphs with low connectivity and dynamic patterns found on high connectivity graphs. Increasing I patterns become unstable and transitions between almost stable patterns, interrupted by disordered phases, occur. For still larger I the lifetime of occupied sites becomes very small and network structures are dominated by randomness. We develop methods to analyze the nature and dynamics of these network patterns, give a statistical description of defects and fluctuations around them, and elucidate the transitions between different patterns. Results and methods presented can be applied to a variety of problems in different fields and a broad class of graphs. Aiming chiefly at the modeling of functional networks of interacting antibodies and B cells of the immune system (idiotypic networks), we focus on a class of graphs constructed by bit chains. The biological relevance of the patterns and possible operational modes of idiotypic networks are discussed.

  4. The Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Israel, David

    2017-01-01

    The definition and development of the next generation space communications and navigation architecture is underway. The primary goals are to remove communications and navigations constraints from missions and to enable increased autonomy. The Space Mobile Network (SMN) is an architectural concept that includes new technology and operations that will provide flight systems with an similar user experience to terrestrial wireless mobile networks. This talk will describe the SMN and its proposed new features, such as Disruption Tolerant Networking (DTN), optical communications, and User Initiated Services (UIS).

  5. Breakdown of interdependent directed networks

    PubMed Central

    Liu, Xueming; Stanley, H. Eugene; Gao, Jianxi

    2016-01-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős–Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  6. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  7. Fixed Access Network Sharing

    NASA Astrophysics Data System (ADS)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  8. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    Call for Papers: Optical Access Networks

    Guest Editors Jun Zheng, University of Ottawa Nirwan Ansari, New Jersey Institute of Technology

    Submission Deadline: 1 June 2005

    Background

    With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the

  9. A dynamic network model for interbank market

    NASA Astrophysics Data System (ADS)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  10. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  11. OPTIMAL NETWORK TOPOLOGY DESIGN

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  12. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  13. Network reliability

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1985-01-01

    Network control (or network management) functions are essential for efficient and reliable operation of a network. Some control functions are currently included as part of the Open System Interconnection model. For local area networks, it is widely recognized that there is a need for additional control functions, including fault isolation functions, monitoring functions, and configuration functions. These functions can be implemented in either a central or distributed manner. The Fiber Distributed Data Interface Medium Access Control and Station Management protocols provide an example of distributed implementation. Relative information is presented here in outline form.

  14. Innovation Networks

    NASA Astrophysics Data System (ADS)

    Pyka, Andreas; Scharnhorst, Andrea

    The idea for this book started when we organized a topical workshop entitled "Innovation Networks - New Approaches in Modeling and Analyzing" (held in Augsburg, Germany in October 2005), under the auspices of Exystence, a network of excellence funded in the European Union's Fifth Framework Program. Unlike other conferences on innovation and networks, however, this workshop brought together scientists from economics, sociology, communication science, science and technology studies, and physics. With this book we aim to build further on a bridge connecting the bodies of knowledge on networks in economics, the social sciences and, more recently, statistical physics.

  15. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network 'purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  16. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network `purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  17. Network aware distributed applications

    SciTech Connect

    Agarwal, Deborah; Tierney, Brian L.; Gunter, Dan; Lee, Jason; Johnston, William

    2001-02-04

    Most distributed applications today manage to utilize only a small percentage of the needed and available network bandwidth. Often application developers are not aware of the potential bandwidth of the network, and therefore do not know what to expect. Even when application developers are aware of the specifications of the machines and network links, they have few resources that can help determine why the expected performance was not achieved. What is needed is a ubiquitous and easy-to-use service that provides reliable, accurate, secure, and timely estimates of dynamic network properties. This service will help advise applications on how to make use of the network's increasing bandwidth and capabilities for traffic shaping and engineering. When fully implemented, this service will make building currently unrealizable levels of network awareness into distributed applications a relatively mundane task. For example, a remote data visualization application could choose between sending a wireframe, a pre-rendered image, or a 3-D representation, based on forecasts of CPU availability and power, compression options, and available bandwidth. The same service will provide on-demand performance information so that applications can compare predicted with actual results, and allow detailed queries about the end-to-end path for application and network tuning and debugging.

  18. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  19. Actively stressed marginal networks.

    PubMed

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-12-07

    We study the effects of motor-generated stresses in disordered three-dimensional fiber networks using a combination of a mean-field theory, scaling analysis, and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of nonaffine strain fluctuations as a susceptibility to motor stress.

  20. Network Flows

    DTIC Science & Technology

    1988-12-01

    Researchers have suggested other solution strategies, using ideas from nonlinear progamming for solving this general separable convex cost flow problems. Some...plane methods and branch and bound procedures of integer programming, primal-dual methods of linear and nonlinear programming, and polyhedral methods...Combinatorial Optimization: Networks and Matroids), Bazaraa and Jarvis [1978] (Linear Programming and Network Flows), Minieka [1978] (Optimization Algorithms for

  1. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  2. Cross-disciplinary detection and analysis of network motifs.

    PubMed

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary's karate club network, and co-purchase of political books network can be classified into a superfamily.

  3. Control of Large-Scale Boolean Networks via Network Aggregation.

    PubMed

    Zhao, Yin; Ghosh, Bijoy K; Cheng, Daizhan

    2016-07-01

    A major challenge to solve problems in control of Boolean networks is that the computational cost increases exponentially when the number of nodes in the network increases. We consider the problem of controllability and stabilizability of Boolean control networks, address the increasing cost problem by partitioning the network graph into several subnetworks, and analyze the subnetworks separately. Easily verifiable necessary conditions for controllability and stabilizability are proposed for a general aggregation structure. For acyclic aggregation, we develop a sufficient condition for stabilizability. It dramatically reduces the computational complexity if the number of nodes in each block of the acyclic aggregation is small enough compared with the number of nodes in the entire Boolean network.

  4. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-02-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  5. Technological Networks

    NASA Astrophysics Data System (ADS)

    Mitra, Bivas

    The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. However, recent years have witnessed a substantial new movement in network research. The focus of the research is shifting away from the analysis of small graphs and the properties of individual vertices or edges to consideration of statistical properties of large scale networks. This new approach has been driven largely by the availability of technological networks like the Internet [12], World Wide Web network [2], etc. that allow us to gather and analyze data on a scale far larger than previously possible. At the same time, technological networks have evolved as a socio-technological system, as the concepts of social systems that are based on self-organization theory have become unified in technological networks [13]. In today’s society, we have a simple and universal access to great amounts of information and services. These information services are based upon the infrastructure of the Internet and the World Wide Web. The Internet is the system composed of ‘computers’ connected by cables or some other form of physical connections. Over this physical network, it is possible to exchange e-mails, transfer files, etc. On the other hand, the World Wide Web (commonly shortened to the Web) is a system of interlinked hypertext documents accessed via the Internet where nodes represent web pages and links represent hyperlinks between the pages. Peer-to-peer (P2P) networks [26] also have recently become a popular medium through which huge amounts of data can be shared. P2P file sharing systems, where files are searched and downloaded among peers without the help of central servers, have emerged as a major component of Internet traffic. An important advantage in P2P networks is that all clients provide resources, including bandwidth, storage space, and computing power. In this chapter, we discuss these technological networks in detail. The review

  6. Optical Network Testbeds Workshop

    SciTech Connect

    Joe Mambretti

    2007-06-01

    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  7. Entropy and order in urban street networks

    PubMed Central

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-01-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time. PMID:24281305

  8. Topological Analysis of Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh

    2016-04-01

    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  9. Social network structures and bank runs

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Li, Jiaheng

    2016-05-01

    This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.

  10. Innovation network

    PubMed Central

    Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R.

    2016-01-01

    Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975–1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more. PMID:27681628

  11. Innovation network.

    PubMed

    Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R

    2016-10-11

    Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975-1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more.

  12. European Schoolnet: Enabling School Networking

    ERIC Educational Resources Information Center

    Scimeca, Santi; Dumitru, Petru; Durando, Marc; Gilleran, Anne; Joyce, Alexa; Vuorikari, Riina

    2009-01-01

    School networking is increasingly important in a globalised world, where schools themselves can be actors on an international stage. This article builds on the activities and experience of the longest established European initiative in this area, European Schoolnet (EUN), a network of 31 Ministries of Education. First, we offer an introduction…

  13. Editorial: Next Generation Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, Marco; Cincotti, Gabriella; Pizzinat, Anna; Vetter, Peter

    2015-12-01

    Over the past decade we have seen an increasing number of operators deploying Fibre-to-the-home (FTTH) solutions in access networks, in order to provide home users with a much needed network access upgrade, to support higher peak rates, higher sustained rates and a better and more uniform broadband coverage of the territory.

  14. Information Networking in Population Education.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    The rapidly increasing body of knowledge in population education has created the need for systematic and effective information services. Information networking entails sharing resources so that the information needs of all network participants are met. The goals of this manual are to: (1) instill in population education specialists a more…

  15. Learning about Networked Learning Communities

    ERIC Educational Resources Information Center

    Katz, Steven; Earl, Lorna

    2010-01-01

    In an effort to intentionally create the level of deep learning necessary for practitioners to make meaningful changes in their classrooms, professional networks are increasingly being promoted as mechanisms for knowledge creation that can lever the kinds of changes that make a difference for students. This paper explores the way networks function…

  16. An Investigation of Synchrony in Transport Networks

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Alexandrov, Natalia M.; Holroyd, Michael J.

    2007-01-01

    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue of a network's Laplacian matrix - a quantitative measure of network synchronizability - and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with the small eigenvalue are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks.

  17. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    PubMed

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks.

  18. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  19. Sentinel Network

    Cancer.gov

    The Sentinel Network is an integrated, electronic, national medical product safety initiative that compiles information about the safe and effective use of medical products accessible to patients and healthcare practitioners.

  20. Exchange Network

    EPA Pesticide Factsheets

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  1. Developer Network

    SciTech Connect

    2012-08-21

    NREL's Developer Network, developer.nrel.gov, provides data that users can access to provide data to their own analyses, mobile and web applications. Developers can retrieve the data through a Web services API (application programming interface). The Developer Network handles overhead of serving up web services such as key management, authentication, analytics, reporting, documentation standards, and throttling in a common architecture, while allowing web services and APIs to be maintained and managed independently.

  2. Predictive Habitat Modelling as a Tool to Assess the Change in Distribution and Extent of an OSPAR Priority Habitat under an Increased Ocean Temperature Scenario: Consequences for Marine Protected Area Networks and Management

    PubMed Central

    Gormley, Kate S. G.; Porter, Joanne S.; Bell, Michael C.; Hull, Angela D.; Sanderson, William G.

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in “future-proofing” conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as ‘good’ to ‘excellent’ on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of “most suitable”, “less suitable” and “unsuitable” habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of “most suitable” habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible “conservation management tool”. PMID:23894298

  3. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    PubMed

    Gormley, Kate S G; Porter, Joanne S; Bell, Michael C; Hull, Angela D; Sanderson, William G

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  4. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.

  5. Sentient networks

    SciTech Connect

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A better idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.

  6. Introduction to Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  7. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  8. Tinnitus: network pathophysiology-network pharmacology

    PubMed Central

    Elgoyhen, Ana B.; Langguth, Berthold; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus, the phantom perception of sound, is a prevalent disorder. One in 10 adults has clinically significant subjective tinnitus, and for one in 100, tinnitus severely affects their quality of life. Despite the significant unmet clinical need for a safe and effective drug targeting tinnitus relief, there is currently not a single Food and Drug Administration (FDA)-approved drug on the market. The search for drugs that target tinnitus is hampered by the lack of a deep knowledge of the underlying neural substrates of this pathology. Recent studies are increasingly demonstrating that, as described for other central nervous system (CNS) disorders, tinnitus is a pathology of brain networks. The application of graph theoretical analysis to brain networks has recently provided new information concerning their topology, their robustness and their vulnerability to attacks. Moreover, the philosophy behind drug design and pharmacotherapy in CNS pathologies is changing from that of “magic bullets” that target individual chemoreceptors or “disease-causing genes” into that of “magic shotguns,” “promiscuous” or “dirty drugs” that target “disease-causing networks,” also known as network pharmacology. In the present work we provide some insight into how this knowledge could be applied to tinnitus pathophysiology and pharmacotherapy. PMID:22291622

  9. Networks advocate for youth services.

    PubMed

    1998-01-01

    This article discusses the role of networks in promoting reproductive health for youth in Ghana. The Suhum-Kraboa-Coaltar Network and the New Juaben Network are situated in the eastern region of Ghana. These two programs advocate for client-centered programs and for policy change at every level. Since the 1994 ICPD Plan of Action, these networks have worked to increase and improve health services for youth and to improve cooperation between government and nongovernmental groups. These networks provide family planning, reproductive health (RH), and, most importantly, promotion of adolescent health. CEDPA realized that many organizations had the capacity to extend services to youth and to fulfill other mandates of the 1994 ICPD Program of Action. But, these organizations lacked advocacy and networking skills for effectively challenging community policies and programs. CEDPA, in collaboration with others, initiated the POLICY project in 1996 in Ghana. The aim was to create a supportive policy context for family planning and RH programs by formation of a participatory policy process. The POLICY project in Ghana helped networks develop advocacy plans targeted to local decision-makers. The aim was to increase funding for adolescent RH in district plans and budgets. The first action taken by the POLICY project was to conduct a survey, which found that 67% of adolescent females and 53% of adolescent males were sexually active. Only 10% used contraceptives. Advocacy did not increase funding but did result in a supportive network of policy-makers. There are POLICY projects in over 12 countries.

  10. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  11. Network management tools for a GPS datalink network

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic; Chauvin, Todd; Oliver, Gordon; Statman, Joseph

    1991-01-01

    The availability of GPS (Global Position Satellite) information in real-time via a datalink system is shown to significantly increase the capacity of flight test and training ranges in terms of missions supported. This increase in mission activity. imposes demands on mission planning in the range-operations environment. In this context, network management tools which can improve the capability of range personnel to plan, monitor, and control network resources, are of significant interest. The application of both simulation and artificial intelligence techniques is described to develop such network managements tools.

  12. Social networking and adolescents.

    PubMed

    Fuld, Gilbert L

    2009-04-01

    Online social networking is a 21st century innovation increasingly embraced by today's young people. It provides new opportunities for communication that expand an adolescent's world. Yet adults, often suspicious of new trends and technologies initially embraced by youth, often see these new environments as perilous places to visit. These fears have been accentuated by media hype, especially about sexual predators. How dangerous are they? Because the rush to go on these sites is a new phenomenon, research is as yet scant. This review explores current beliefs and knowledge about the dangers of social networking sites.

  13. Babylonian resistor networks

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.; Lipscombe, Trevor C.

    2012-05-01

    The ancient Babylonians had an iterative technique for numerically approximating the values of square roots. Their method can be physically implemented using series and parallel resistor networks. A recursive formula for the equivalent resistance Req is developed and converted into a nonrecursive solution for circuits using geometrically increasing numbers of identical resistors. As an example, 24 resistors R are assembled into a second-order network and Req/R is measured to equal \\sqrt 2 to better than 0.2%, as could be done in an introductory physics laboratory.

  14. Nested neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.

  15. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  16. Network motif identification in stochastic networks

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Tu, Zhidong; Chen, Ting; Sun, Fengzhu

    2006-06-01

    Network motifs have been identified in a wide range of networks across many scientific disciplines and are suggested to be the basic building blocks of most complex networks. Nonetheless, many networks come with intrinsic and/or experimental uncertainties and should be treated as stochastic networks. The building blocks in these networks thus may also have stochastic properties. In this article, we study stochastic network motifs derived from families of mutually similar but not necessarily identical patterns of interconnections. We establish a finite mixture model for stochastic networks and develop an expectation-maximization algorithm for identifying stochastic network motifs. We apply this approach to the transcriptional regulatory networks of Escherichia coli and Saccharomyces cerevisiae, as well as the protein-protein interaction networks of seven species, and identify several stochastic network motifs that are consistent with current biological knowledge. expectation-maximization algorithm | mixture model | transcriptional regulatory network | protein-protein interaction network

  17. Catastrophic cascade of failures in interdependent networks.

    PubMed

    Buldyrev, Sergey V; Parshani, Roni; Paul, Gerald; Stanley, H Eugene; Havlin, Shlomo

    2010-04-15

    Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.

  18. Behavioral Interpretations of Intrinsic Connectivity Networks

    ERIC Educational Resources Information Center

    Laird, Angela R.; Fox, P. Mickle; Eickhoff, Simon B.; Turner, Jessica A.; Ray, Kimberly L.; McKay, D. Reese; Glahn, David C.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.

    2011-01-01

    An increasingly large number of neuroimaging studies have investigated functionally connected networks during rest, providing insight into human brain architecture. Assessment of the functional qualities of resting state networks has been limited by the task-independent state, which results in an inability to relate these networks to specific…

  19. Global Electricity Trade Network: Structures and Implications.

    PubMed

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions.

  20. Global Electricity Trade Network: Structures and Implications

    PubMed Central

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  1. Structure and function of complex brain networks.

    PubMed

    Sporns, Olaf

    2013-09-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a "rich club," centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed.

  2. Synergistic stiffening in double-fiber networks.

    PubMed

    Rombouts, Wolf H; Giesbers, Marcel; van Lent, Jan; de Wolf, Frits A; van der Gucht, Jasper

    2014-04-14

    Many biological materials are composite structures, interpenetrating networks of different types of fibers. The composite nature of such networks leads to superior mechanical properties, but the origin of this mechanical synergism is still poorly understood. Here we study soft composite networks, made by mixing two self-assembling fiber-forming components. We find that the elastic moduli of the composite networks significantly exceed the sum of the moduli of the two individual networks. This mechanical enhancement is in agreement with recent simulations, where it was attributed to a suppression of non-affine deformation modes in the most rigid fiber network due to the reaction forces in the softer network. The increase in affinity also causes a loss of strain hardening and an increase in the critical stress and stain at which the network fails.

  3. Metabolic Networks

    NASA Astrophysics Data System (ADS)

    Palumbo, Maria Concetta; Farina, Lorenzo; Colosimo, Alfredo; Giuliani, Alessandro

    The use of the term `network' is more and more widespread in all fields of biology. It evokes a systemic approach to biological problems able to overcome the evident limitations of the strict reductionism of the past twenty years. The expectations produced by taking into considerations not only the single elements but even the intermingled `web' of links connecting different parts of biological entities, are huge. Nevertheless, we believe that the lack of consciousness that networks, beside their biological `likelihood', are modeling tools and not real entities, could be detrimental to the exploitation of the full potential of this paradigm. Like any modeling tool the network paradigm has a range of application going from situations in which it is particularly fit to situations in which its application can be largely misleading. In this chapter we deal with an aspect of biological entities that is particularly fit for the network approach: the intermediate metabolism. This fit derives both from the existence of a privileged formalization in which the relative role of nodes (metabolites) and arches (enzymes) is immediately suggested by the system architecture. Here we will discuss some applications of both graph theory based analysis and multidimensional statistics method to metabolic network studies with the emphasis on the derivation of biologically meaningful information.

  4. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  5. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  6. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  7. Network Structure and City Size

    PubMed Central

    Levinson, David

    2012-01-01

    Network structure varies across cities. This variation may yield important knowledge about how the internal structure of the city affects its performance. This paper systematically compares a set of surface transportation network structure variables (connectivity, hierarchy, circuity, treeness, entropy, accessibility) across the 50 largest metropolitan areas in the United States. A set of scaling parameters are discovered to show how network size and structure vary with city size. These results suggest that larger cities are physically more inter-connected. Hypotheses are presented as to why this might obtain. This paper then consistently measures and ranks access to jobs across 50 US metropolitan areas. It uses that accessibility measure, along with network structure variables and city size to help explain journey-to-work time and auto mode share in those cities. A 1 percent increase in accessibility reduces average metropolitan commute times by about 90 seconds each way. A 1 percent increase in network connectivity reduces commute time by 0.1 percent. A 1 percent increase in accessibility results in a 0.0575 percent drop in auto mode share, while a 1 percent increase in treeness reduces auto mode share by 0.061 percent. Use of accessibility and network structure measures is important for planning and evaluating the performance of network investments and land use changes. PMID:22253764

  8. The Social Network Classroom

    NASA Astrophysics Data System (ADS)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  9. Knowledge spillover processes as complex networks

    NASA Astrophysics Data System (ADS)

    Konno, Tomohiko

    2016-11-01

    We introduce the model of knowledge spillover on networks. Knowledge spillover is a major source of economic growth; and is a representative externality in economic phenomena. We show that the model has the following four characteristics: (1) the long-run growth rate is not relevant to the mean degree, but is determined by the mean degree of the nearest neighbors; (2) the productivity level of a firm is proportional to the degree of the firm; (3) the long-run growth rate increases with the increasing heterogeneity of the network; and (4) of three representative networks, the largest growth rate is in scale-free networks and the least in regular networks.

  10. Detecting Change in Longitudinal Social Networks

    DTIC Science & Technology

    2011-01-01

    marketing campaigns and media on social behavior. Initial Construct populations, social and knowledge networks, can be hypothetical or real (Carley...patent data bases, phone-networks, email- based-networks, social- media networks and more. Page 6 of 37 Current methods of change detection in...CUSUM C Sta measured fo o be successf Average Bet ct either incre or each socia g increases in the data for fective for ch ork. tistic Over Tim

  11. A User Driven Dynamic Circuit Network Implementation

    SciTech Connect

    Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

    2008-10-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  12. Synchronization between two coupled complex networks.

    PubMed

    Li, Changpin; Sun, Weigang; Kurths, Jürgen

    2007-10-01

    We study synchronization for two unidirectionally coupled networks. This is a substantial generalization of several recent papers investigating synchronization inside a network. We derive analytically a criterion for the synchronization of two networks which have the same (inside) topological connectivity. Then numerical examples are given which fit the theoretical analysis. In addition, numerical calculations for two networks with different topological connections are presented and interesting synchronization and desynchronization alternately appear with increasing value of the coupling strength.

  13. Network dismantling

    PubMed Central

    Braunstein, Alfredo; Dall’Asta, Luca; Semerjian, Guilhem; Zdeborová, Lenka

    2016-01-01

    We study the network dismantling problem, which consists of determining a minimal set of vertices in which removal leaves the network broken into connected components of subextensive size. For a large class of random graphs, this problem is tightly connected to the decycling problem (the removal of vertices, leaving the graph acyclic). Exploiting this connection and recent works on epidemic spreading, we present precise predictions for the minimal size of a dismantling set in a large random graph with a prescribed (light-tailed) degree distribution. Building on the statistical mechanics perspective, we propose a three-stage Min-Sum algorithm for efficiently dismantling networks, including heavy-tailed ones for which the dismantling and decycling problems are not equivalent. We also provide additional insights into the dismantling problem, concluding that it is an intrinsically collective problem and that optimal dismantling sets cannot be viewed as a collection of individually well-performing nodes. PMID:27791075

  14. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    packet- switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an...network devices and create a functioning packet- switch network. network design , network topology, packet- switching networks, routing protocols, data... switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an

  15. Using Target Network Modelling to Increase Battlespace Agility

    DTIC Science & Technology

    2013-06-01

    Social constructivism as it is used here to explain battlespace complexity, is defined as the view that the material world shapes and is shaped by human...all situational understandings for determining military actions as being socially constructed realities and constantly subjected to change. How...all, apparent realities are only social constructs and are therefore subject to change. It claims that there is no absolute truth and that the way

  16. The Relative Ineffectiveness of Criminal Network Disruption

    NASA Astrophysics Data System (ADS)

    Duijn, Paul A. C.; Kashirin, Victor; Sloot, Peter M. A.

    2014-02-01

    Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in secrecy, data-driven knowledge concerning the effectiveness of different criminal network disruption strategies is very limited. By combining computational modeling and social network analysis with unique criminal network intelligence data from the Dutch Police, we discovered, in contrast to common belief, that criminal networks might even become `stronger', after targeted attacks. On the other hand increased efficiency within criminal networks decreases its internal security, thus offering opportunities for law enforcement agencies to target these networks more deliberately. Our results emphasize the importance of criminal network interventions at an early stage, before the network gets a chance to (re-)organize to maximum resilience. In the end disruption strategies force criminal networks to become more exposed, which causes successful network disruption to become a long-term effort.

  17. The Relative Ineffectiveness of Criminal Network Disruption

    PubMed Central

    Duijn, Paul A. C.; Kashirin, Victor; Sloot, Peter M. A.

    2014-01-01

    Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in secrecy, data-driven knowledge concerning the effectiveness of different criminal network disruption strategies is very limited. By combining computational modeling and social network analysis with unique criminal network intelligence data from the Dutch Police, we discovered, in contrast to common belief, that criminal networks might even become ‘stronger’, after targeted attacks. On the other hand increased efficiency within criminal networks decreases its internal security, thus offering opportunities for law enforcement agencies to target these networks more deliberately. Our results emphasize the importance of criminal network interventions at an early stage, before the network gets a chance to (re-)organize to maximum resilience. In the end disruption strategies force criminal networks to become more exposed, which causes successful network disruption to become a long-term effort. PMID:24577374

  18. The relative ineffectiveness of criminal network disruption.

    PubMed

    Duijn, Paul A C; Kashirin, Victor; Sloot, Peter M A

    2014-02-28

    Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in secrecy, data-driven knowledge concerning the effectiveness of different criminal network disruption strategies is very limited. By combining computational modeling and social network analysis with unique criminal network intelligence data from the Dutch Police, we discovered, in contrast to common belief, that criminal networks might even become 'stronger', after targeted attacks. On the other hand increased efficiency within criminal networks decreases its internal security, thus offering opportunities for law enforcement agencies to target these networks more deliberately. Our results emphasize the importance of criminal network interventions at an early stage, before the network gets a chance to (re-)organize to maximum resilience. In the end disruption strategies force criminal networks to become more exposed, which causes successful network disruption to become a long-term effort.

  19. Network Physiology: Mapping Interactions Between Networks of Physiologic Networks

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Bartsch, Ronny P.

    The human organism is an integrated network of interconnected and interacting organ systems, each representing a separate regulatory network. The behavior of one physiological system (network) may affect the dynamics of all other systems in the network of physiologic networks. Due to these interactions, failure of one system can trigger a cascade of failures throughout the entire network. We introduce a systematic method to identify a network of interactions between diverse physiologic organ systems, to quantify the hierarchical structure and dynamics of this network, and to track its evolution under different physiologic states. We find a robust relation between network structure and physiologic states: every state is characterized by specific network topology, node connectivity and links strength. Further, we find that transitions from one physiologic state to another trigger a markedly fast reorganization in the network of physiologic interactions on time scales of just a few minutes, indicating high network flexibility in response to perturbations. This reorganization in network topology occurs simultaneously and globally in the entire network as well as at the level of individual physiological systems, while preserving a hierarchical order in the strength of network links. Our findings highlight the need of an integrated network approach to understand physiologic function, since the framework we develop provides new information which can not be obtained by studying individual systems. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

  20. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  1. Resistive Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed text on resistive networks was developed under contract with the United States Office of Education as part of a series of materials for use in an electrical engineering sequence. It is to be used in conjunction with other materials and with other short texts in the series, this one being Number 3. (DH)

  2. Beyond Networking.

    ERIC Educational Resources Information Center

    Carmel, Michael

    1981-01-01

    Discusses the new relationships between libraries and their users with reference to the worldwide medical information networks which have developed through the influence of the U.S. National Library of Medicine. Consideration is given to the new roles librarians will have to assume. (Author/LLS)

  3. Knowledge Networks

    ERIC Educational Resources Information Center

    McLeod, Scott

    2008-01-01

    The blogosphere and the Internet are both examples of complex, self-organizing networks. So too is the world of academic publishing. Some faculty members are prolific article and book writers. Their publications often are hubs, or even superhubs, in the scholarly literature, cited regularly by others. Some scholars might just be nodes, with…

  4. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.

    2014-08-01

    The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.

  5. Vulnerability of complex networks under path-based attacks

    NASA Astrophysics Data System (ADS)

    Pu, Cun-Lai; Cui, Wei

    2015-02-01

    We investigate vulnerability of complex networks including model networks and real-world networks subject to path-based attacks. Specifically, we remove approximately the longest simple path from a network iteratively until there are no paths left in the network. We propose two algorithms, the random augmenting approach (RPA) and the Hamilton-path based approach (HPA), for finding the approximately longest simple path in a network. Results demonstrate that steps of longest-path attacks increase with network density linearly for random networks, while exponentially increasing for scale-free networks. The more homogeneous the degree distribution is, the more fragile the network, which is different from the previous results of node or edge attacks. HPA is generally more efficient than RPA in the longest-path attacks of complex networks. These findings further help us understand the vulnerability of complex systems, better protect complex systems, and design more tolerant complex systems.

  6. Network vulnerability assessment using Bayesian networks

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Man, Hong

    2005-03-01

    While computer vulnerabilities have been continually reported in laundry-list format by most commercial scanners, a comprehensive network vulnerability assessment has been an increasing challenge to security analysts. Researchers have proposed a variety of methods to build attack trees with chains of exploits, based on which post-graph vulnerability analysis can be performed. The most recent approaches attempt to build attack trees by enumerating all potential attack paths, which are space consuming and result in poor scalability. This paper presents an approach to use Bayesian network to model potential attack paths. We call such graph as "Bayesian attack graph". It provides a more compact representation of attack paths than conventional methods. Bayesian inference methods can be conveniently used for probabilistic analysis. In particular, we use the Bucket Elimination algorithm for belief updating, and we use Maximum Probability Explanation algorithm to compute an optimal subset of attack paths relative to prior knowledge on attackers and attack mechanisms. We tested our model on an experimental network. Test results demonstrate the effectiveness of our approach.

  7. Roles of mixing patterns in the network reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Liang, Guang; Fu, Jia-Qi; Han, Jing-Ti; Liu, Jian-Guo

    2016-11-01

    Compressive sensing is an effective way to reconstruct the network structure. In this paper, we investigate the effect of the mixing patterns, measured by the assortative coefficient, on the performance of network reconstruction. First, we present a model to generate networks with different assortativity coefficients, then we reconstruct the network structure by using the compressive sensing method. The experimental results show that when the assortativity coefficient r =0.2 , the accuracy of the network reconstruction reaches the maximum value, which suggests that the compressive sensing is more effective for uncovering the links of social networks. Moreover, the accuracy of the network reconstruction will be higher as the network size increases.

  8. Roles of mixing patterns in the network reconstruction.

    PubMed

    Guo, Qiang; Liang, Guang; Fu, Jia-Qi; Han, Jing-Ti; Liu, Jian-Guo

    2016-11-01

    Compressive sensing is an effective way to reconstruct the network structure. In this paper, we investigate the effect of the mixing patterns, measured by the assortative coefficient, on the performance of network reconstruction. First, we present a model to generate networks with different assortativity coefficients, then we reconstruct the network structure by using the compressive sensing method. The experimental results show that when the assortativity coefficient r=0.2, the accuracy of the network reconstruction reaches the maximum value, which suggests that the compressive sensing is more effective for uncovering the links of social networks. Moreover, the accuracy of the network reconstruction will be higher as the network size increases.

  9. Reliability of Wireless Sensor Networks

    PubMed Central

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  10. Recent advancements towards green optical networks

    NASA Astrophysics Data System (ADS)

    Davidson, Alan; Glesk, Ivan; Buis, Adrianus; Wang, Junjia; Chen, Lawrence

    2014-12-01

    Recent years have seen a rapid growth in demand for ultra high speed data transmission with end users expecting fast, high bandwidth network access. With this rapid growth in demand, data centres are under pressure to provide ever increasing data rates through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present technology based on well-established CMOS technology is becoming increasingly difficult to scale and consequently data networks are struggling to satisfy current network demand. In this paper the interrelated issues of electronic scalability, power consumption, limited copper interconnect bandwidth and the limited speed of CMOS electronics will be explored alongside the tremendous bandwidth potential of optical fibre based photonic networks. Some applications of photonics to help alleviate the speed and latency in data networks will be discussed.

  11. Increased intracranial pressure

    MedlinePlus

    ... brain. Many conditions can increase intracranial pressure. Common causes include: Aneurysm rupture and subarachnoid hemorrhage Brain tumor Encephalitis Head injury Hydrocephalus (increased fluid around ...

  12. Excitable scale free networks

    NASA Astrophysics Data System (ADS)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  13. Metabolic networks are almost nonfractal: a comprehensive evaluation.

    PubMed

    Takemoto, Kazuhiro

    2014-08-01

    Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.

  14. Self-organized Collaboration Network Model Based on Module Emerging

    NASA Astrophysics Data System (ADS)

    Yang, Hongyong; Lu, Lan; Liu, Qiming

    Recently, the studies of the complex network have gone deep into many scientific fields, such as computer science, physics, mathematics, sociology, etc. These researches enrich the realization for complex network, and increase understands for the new characteristic of complex network. Based on the evolvement characteristic of the author collaboration in the scientific thesis, a self-organized network model of the scientific cooperation network is presented by module emerging. By applying the theoretical analysis, it is shown that this network model is a scale-free network, and the strength degree distribution and the module degree distribution of the network nodes have the same power law. In order to make sure the validity of the theoretical analysis for the network model, we create the computer simulation and demonstration collaboration network. By analyzing the data of the network, the results of the demonstration network and the computer simulation are consistent with that of the theoretical analysis of the model.

  15. Metabolic networks are almost nonfractal: A comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro

    2014-08-01

    Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.

  16. Network traffic anomaly prediction using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  17. Increasing Accuracy and Increasing Tension in Ho

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy L.

    2017-01-01

    The Hubble Constant, Ho, provides a measure of the current expansion rate of the universe. In recent decades, there has been a huge increase in the accuracy with which extragalactic distances, and hence Ho, can be measured. While the historical factor-of-two uncertainty in Ho has been resolved, a new discrepancy has arisen between the values of Ho measured in the local universe, and that estimated from cosmic microwave background measurements, assuming a Lambda cold dark matter model. I will review the advances that have led to the increase in accuracy in measurements of Ho, as well as describe exciting future prospects with the James Webb Space Telescope (JWST) and Gaia, which will make it feasible to measure extragalactic distances at percent-level accuracy in the next decade.

  18. The Southern Kansas Seismic Network

    NASA Astrophysics Data System (ADS)

    Terra, F. M.

    2015-12-01

    Historically aseismic Harper and Sumner counties in Southern Kansas experienced a dramatic increase in seismicity beginning in early 2014, coincident with the development of new oil production in the Mississippi Lime Play. In order to better understand the potential relationships between seismicity and oil development, the USGS installed a real-time telemetered seismic network in cooperation with the Kansas Geological Survey, the Kansas Corporation Commission, the Kansas Department of Health and Environment, Harper County, and the Oklahoma Geological Survey. The network began operation in March 2014 with an initial deployment of 5 NetQuakes accelerometers and by July 2014 had expanded to include 10 broadband sites. The network currently has 14 stations, all with accelerometers and 12 with broadband seismometers. The network has interstation spacing of 15 - 25 km and typical azimuthal gap of 80 for well-located events. Data are continuously streamed to IRIS at 200 samples per second from most sites. Earthquake locations are augmented with additional stations from the USGS National Network, Oklahoma Geological Survey Seismic Network, Kansas Seismic Monitoring Network and the Enid Oklahoma Network. Since the spring of 2014 over 7500 earthquakes have been identified with data from this network, 1400 of which have been manually timed and cataloged. Focal depths for earthquakes typically range between 2 and 7 km. The catalog is available at earthquake.usgs.gov/earthquakes/search/ under network code 'Ismpkansas'. The network recorded the largest known earthquake in Harper County, Mw 4.3, on October 2, 2014 and in Sumner County, Mw 4.9, on November 12, 2014. Recorded ground motions at the epicenter of the October earthquake were 0.70 g (PGA) and 12 cm/s (PGV). These high ground motion values agree with near-source recordings made by other USGS temporary deployments in the U. S. midcontinent, indicating a significant shaking hazard from such shallow, moderate

  19. Time dissemination in the Hydro Quebec network

    NASA Technical Reports Server (NTRS)

    Missout, G.; Lefrancois, W.; Laroche, L.

    1979-01-01

    The ever increasing complexity of electrical networks combined with the increasing cost of power losses during a network failure has led public utilities to become equipped with more powerful and precise tools for pinpointing the causes of such a fault. Hydro Quebec has developed and is now using a time dissemination system which uses a modified IRIG B code transmitted on its own telecommunication network. The reasons for using such a system and the way it was carried out are discrete.

  20. Increases in Network Ties Are Associated with Increased Cohesion among Intervention Participants

    ERIC Educational Resources Information Center

    Gesell, Sabina B.; Barkin, Shari L.; Sommer, Evan C.; Thompson, Jessica R.; Valente, Thomas W.

    2016-01-01

    Objective: Many behavior change programs are delivered in group settings to manage implementation costs and to foster support and interactions among group members in order to facilitate behavior change. Understanding the group dynamics that evolve in group settings (e.g., weight management, Alcoholics Anonymous) is important, yet rarely measured.…

  1. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  2. Modeling the Citation Network by Network Cosmology

    PubMed Central

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well. PMID:25807397

  3. Modeling the citation network by network cosmology.

    PubMed

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  4. Heterogeneous force network in 3D cellularized collagen networks.

    PubMed

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-10-25

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml(-1) are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  5. Heterogeneous force network in 3D cellularized collagen networks

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-12-01

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  6. RNEDE: Resilient Network Design Environment

    SciTech Connect

    Venkat Venkatasubramanian, Tanu Malik, Arun Giridh; Craig Rieger; Keith Daum; Miles McQueen

    2010-08-01

    Modern living is more and more dependent on the intricate web of critical infrastructure systems. The failure or damage of such systems can cause huge disruptions. Traditional design of this web of critical infrastructure systems was based on the principles of functionality and reliability. However, it is increasingly being realized that such design objectives are not sufficient. Threats, disruptions and faults often compromise the network, taking away the benefits of an efficient and reliable design. Thus, traditional network design parameters must be combined with self-healing mechanisms to obtain a resilient design of the network. In this paper, we present RNEDEa resilient network design environment that that not only optimizes the network for performance but tolerates fluctuations in its structure that result from external threats and disruptions. The environment evaluates a set of remedial actions to bring a compromised network to an optimal level of functionality. The environment includes a visualizer that enables the network administrator to be aware of the current state of the network and the suggested remedial actions at all times.

  7. Dynamical detection of network communities.

    PubMed

    Quiles, Marcos G; Macau, Elbert E N; Rubido, Nicolás

    2016-05-09

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  8. Metabolic networks: beyond the graph.

    PubMed

    Bernal, Andrés; Daza, Edgar

    2011-06-01

    Drugs are devised to enter into the metabolism of an organism in order to produce a desired effect. From the chemical point of view, cellular metabolism is constituted by a complex network of reactions transforming metabolites one in each other. Knowledge on the structure of this network could help to develop novel methods for drug design, and to comprehend the root of known unexpected side effects. Many large-scale studies on the structure of metabolic networks have been developed following models based on different kinds of graphs as the fundamental image of the reaction network. Graphs models, however, comport wrong assumptions regarding the structure of reaction networks that may lead into wrong conclusions if they are not taken into account. In this article we critically review some graph-theoretical approaches to the analysis of centrality, vulnerability and modularity of metabolic networks, analyzing their limitations in estimating these key network properties, consider some proposals explicit or implicitly based on directed hypergraphs regarding their ability to overcome these issues, and review some recent implementation improvements that make the application of these models in increasingly large networks a viable option.

  9. Dynamical detection of network communities

    PubMed Central

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-01-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance. PMID:27158092

  10. Maximal switchability of centralized networks

    NASA Astrophysics Data System (ADS)

    Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu

    2016-08-01

    We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.

  11. Dynamical detection of network communities

    NASA Astrophysics Data System (ADS)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  12. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  13. Network gravity

    NASA Astrophysics Data System (ADS)

    Lombard, John

    2017-01-01

    We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a term playing the role of a positive definite cosmological constant as a regulator for nondegenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in developing the program.

  14. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  15. ASCR Science Network Requirements

    SciTech Connect

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  16. Experimental fault characterization of a neural network

    NASA Technical Reports Server (NTRS)

    Tan, Chang-Huong

    1990-01-01

    The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.

  17. Optical network survivability beyond the core

    NASA Astrophysics Data System (ADS)

    Medard, Muriel

    2002-07-01

    Optical network Survivability in the backbone, or core, network has been an active area of research. As optics move closer to the edge and to end users, the core network is now used not only to provide connections across a wide area,but also to provide connections for local and metropolitan area networks (LANs and MANs). While optical backbone networks are generally concerned with providing end-to-end circuits based upon whole wavelengths, optical LANS and MANs generally provide shared access to a small number of wavelengths. In this paper, we consider the issue of robustness for optical access networks built as overlays on optical mesh networks. The problem of optical access network robustness is that of maintaining connectivity among nodes of the access networks after a link (or possibly node). We survey three methods of providing robustness to optical access networks. The first method consists of building access networks as covers of rings. The second method builds folded bus overlays and use a combination of optical switches and electronic routers to provide reliability. The third generalizes the concept of buses to build tree-based robust collection and distribution routes over mesh networks. Optical access networks are beginning to be deployed at the edge of the optical backbone network to support access by the high-end users that drive increased bandwidth demands. This development in the applications of optical networking poses new challenges in the areas of medium access, topology design and network management. In this article, we survey access network architectures and outline the issues associated with providing reliability for these architectures.

  18. Stochastic resonance in feedforward acupuncture networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  19. Thermoelectric properties of WS2 nanotube networks

    NASA Astrophysics Data System (ADS)

    Kawai, Hideki; Sugahara, Mitsunari; Okada, Ryotaro; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-01-01

    We report the thermoelectric properties of WS2 nanotube networks. By using electrolyte-gating techniques, we turned on a conducting channel in the macroscopic networks of WS2 nanotubes in both the hole and electron regions and evaluated the thermoelectric properties of the networks. We manipulated the P- and N-type Seebeck coefficients in the WS2 nanotube networks by changing the shifts in the gate voltage potentials. The power factor of the WS2 nanotube networks increased as the gate voltage shifted and exhibited a high thermoelectric performance approaching that of single-crystalline WS2 flakes.

  20. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  1. Increased head circumference

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003305.htm Increased head circumference To use the sharing features on this page, please enable JavaScript. Increased head circumference is when the measured distance around the ...

  2. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  3. [Networks in cognitive research].

    PubMed

    Pléh, Csaba

    2012-01-01

    This review paper starts from discussing two models of network research: one starting from general networks, the other starting from the Ego. Ego based researches are characterized starting form the model of Dunbar as presenting networks of different size and intimacy, both in real and virtual networks. Researches into the personality determinants of networks mainly shows the effects of extroversion. The future of network research indicates a trend towards relating personal, conceptual, and neural networks.

  4. Communications Network

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Multi-Compatible Network Interface Unit (MCNIU) is intended to connect the space station's communications and tracking, guidance and navigation, life support, electric power, payload data, hand controls, display consoles and other systems, and also communicate with diverse processors. Honeywell is now marketing MCNIU commercially. It has applicability in certain military operations or civil control centers. It has nongovernment utility among large companies, universities and research organizations that transfer large amounts of data among workstations and computers. *This product is no longer commercially available.

  5. Networks in Buildings: Which Path Forward?

    SciTech Connect

    Nordman, Bruce

    2008-08-17

    To date, digital networks have principally been installed for connecting information technology devices, with more modest use in consumer electronics, security, and large building control systems. The next 20 years will see much greater deployment of networks in buildings of all types, and across all end uses. Most of these are likely to be introduced primarily for reasons other than energy efficiency, and add energy use for network interfaces and network products. Widespread networking could easily lead to increased energy use, and experience with IT and CE networks suggests this may be likely. Active engagement by energy efficiency professionals in the architecture and design of future networks could lead to their being a large and highly cost-effective tool for efficiency. However, network standards are complex and take many years to develop and negotiate so that lack of action on this in the near term may foreclose important opportunities for years or decades to come. Digital networks need to be common globally, providing another challenge to building systems and elements that are more commonly designed only for national or regional markets. Key future networks are lighting, climate control, and security/presence. This paper reviews some examples of past network designs and use and the lessons they hold for future building networks. It also highlights key needed areas for research, policy, and standards development.

  6. Aging and functional brain networks

    SciTech Connect

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  7. VLSI implementation of neural networks.

    PubMed

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  8. Social Networking: Boundaries and Limits Part 1: Ethics

    ERIC Educational Resources Information Center

    Aragon, Antonette; AlDoubi, Suzan; Kaminski, Karen; Anderson, Sharon K.; Isaacs, Nelda

    2014-01-01

    The number of educators, administrators, and institutions that utilize social networking has increased dramatically. Many have adopted social networking in order to be up-to-date and connected with their students' learning beyond the boundaries of the classroom. However, this increase in the use of social networking in academia presents many…

  9. Increasingly minimal bias routing

    DOEpatents

    Bataineh, Abdulla; Court, Thomas; Roweth, Duncan

    2017-02-21

    A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).

  10. TELECOM 1 multiservices network

    NASA Astrophysics Data System (ADS)

    Lombard, D.; Ramat, P.; Rancy, F.

    The main objectives of the TELECOM 1 French domestic satellite project are to set up a business communication network which is to carry a wide range of digital services including data, voice, and pictures between a number of small earth stations located on the subscribers' premises. The parallel development of terrestrial specialized services networks has enabled the fitting of the TELECOM 1 network with high interworking capabilities with these networks. It has also allowed TELECOM 1 to be designed as the basis of the Future Integrated Services Digital Network. The TELECOM 1 network consists of the terrestrial network, the satellite network, and the maintenance network. Various elements which include the terrestrial network; the satellite network, and its modulation, TDMA frame and terminals; the System Management Center; the signalling system; and the demand assignment operation which are involved in the operation of the multiservices network are presented. The TELECOM 1 network evolution until 1990 through the rapid development of the ISDN is discussed.

  11. Robustness of a Network of Networks

    NASA Astrophysics Data System (ADS)

    Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo

    2012-02-01

    Network research has been focused on studying the properties of a single isolated network, which rarely exists. We develop a general analytical framework for studying percolation of n interdependent networks. We illustrate our analytical solutions for three examples: (i) For any tree of n fully dependent Erdos-R'enyi (ER) networks, each of average degree k, we find that the giant component P∞=p[1-(-kP∞)]^n where 1 - p is the initial fraction of removed nodes. This general result coincides for n = 1 with the known second-order phase transition for a single network. For any n>1 cascading failures occur and the percolation becomes an abrupt first-order transition. (ii) For a starlike network of n partially interdependent ER networks, P∞ depends also on the topology--in contrast to case (i). (iii) For a looplike network formed by n partially dependent ER networks, P∞ is independent of n.

  12. Multiple crossbar network: Integrated supercomputing framework

    SciTech Connect

    Hoebelheinrich, R. )

    1989-01-01

    At Los Alamos National Laboratory, site of one of the world's most powerful scientific supercomputing facilities, a prototype network for an environment that links supercomputers and workstations is being developed. Driven by a need to provide graphics data at movie rates across a network from a Cray supercomputer to a Sun scientific workstation, the network is called the Multiple Crossbar Network (MCN). It is intended to be coarsely grained, loosely coupled, general-purpose interconnection network that will vastly increase the speed at which supercomputers communicate with each other in large networks. The components of the network are described, as well as work done in collaboration with vendors who are interested in providing commercial products. 9 refs.

  13. Epidemics in Interconnected Small-World Networks

    PubMed Central

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability. PMID:25799143

  14. Increasing situational awareness using smartphones

    NASA Astrophysics Data System (ADS)

    Boddhu, Sanjay K.; Williams, Robert L.; Wasser, Edward; Kode, Niranjan

    2012-06-01

    In recent years, the United States Armed Services and various law enforcement agencies have shown increasing interest in evaluating the feasibility of using smartphones and hand-held devices as part of the standard gear for its personnel, who are actively engaged on battlefield or in crime-prone areas. The primary motive driving analysis efforts to employ smartphone-based technologies is the prospect of the increased "Situational Awareness" achievable thru a digitally connected network of armed personnel. Personnel would be equipped with customized smart applications that use the device's sensors (GPS, camera, compass, etc...) to sense the hostile environments as well as enabling them to perform collaborative tasks to effectively complete a given mission. In this vein, as part of the Summer At The Edge (SATE) program, a group of student interns under the guidance of mentors from Qbase and AFRL, have employed smartphones and built three smart applications to tackle three real-world scenarios: PinPoint, IStream, and Cooperative GPS. This paper provides implementation details for these prototype applications, along with the supporting visualization and sensor cloud platforms and discusses results obtained from field testing of the same. Further, the paper concludes by providing the implications of the present work and insights into future work.

  15. Privacy Amplification with Social Networks

    NASA Astrophysics Data System (ADS)

    Nagaraja, Shishir

    There are a number of scenarios where users wishing to communicate, share a weak secret. Often, they are also part of a common social network. Connections (edges) from the social network are represented as shared link keys between participants (vertices). We propose mechanisms that utilise the graph topology of such a network, to increase the entropy of weak pre-shared secrets. Our proposal is based on using random walks to identify a chain of common acquaintances between Alice and Bob, each of which contribute entropy to the final key. Our mechanisms exploit one-wayness and convergence properties of Markovian random walks to, firstly, maximize the set of potential entropy contributors, and second, to resist any contribution from dubious sources such as Sybill sub-networks.

  16. Integrating power utility telecommunication networks

    SciTech Connect

    Luque, J.; Gonzalo, F.

    1996-04-01

    Rapid technological advances within the telecommunication sector and the power sector`s ever-increasing needs for information and transmission services have led utilities to use heterogeneous telecommunication networks, grouping together equipment from various manufacturers and technologies. Management of such networks is difficult and fragmented, often employing proprietary systems. As part of its Research Electrotechnical Program, the Spanish Ministry of Industry and Energy financed the development of a system for integrated expert management of power utility telecommunication networks. The NOMOS (Greek for law or custom) system offers many benefits, the most significant of which are: integration of subsystems; application of expert system technology for fault management; and use of existing standards within the sector. This article takes a look at the reasons why integrated network management is needed, describes aspects of the integration process and the expert system, and points out the most significant elements that make use of internationally accepted standards.

  17. National law enforcement telecommunications network

    NASA Technical Reports Server (NTRS)

    Reilly, N. B.; Garrison, G. W.; Sohn, R. L.; Gallop, D. L.; Goldstein, B. L.

    1975-01-01

    Alternative approaches are analyzed to a National Law Enforcement Telecommunications Network (NALECOM) designed to service all state-to-state and state-to-national criminal justice communications traffic needs in the United States. Network topology options were analyzed, and equipment and personnel requirements for each option were defined in accordance with NALECOM functional specifications and design guidelines. Evaluation criteria were developed and applied to each of the options leading to specific conclusions. Detailed treatments of methods for determining traffic requirements, communication line costs, switcher configurations and costs, microwave costs, satellite system configurations and costs, facilities, operations and engineering costs, network delay analysis and network availability analysis are presented. It is concluded that a single regional switcher configuration is the optimum choice based on cost and technical factors. A two-region configuration is competitive. Multiple-region configurations are less competitive due to increasing costs without attending benefits.

  18. Royalty Earnings Increase 12%.

    ERIC Educational Resources Information Center

    Nicklin, Julie L.

    1997-01-01

    Royalties paid to universities in 1995 increased 12% over the previous year. The increase is attributed in part to federal legislation allowing institutions to patent inventions and discoveries resulting from federally-funded research. Data are based on a survey of 127 universities holding 4,272 licenses generating royalties. Licensing income and…

  19. Percolation of interdependent networks with intersimilarity

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Zhou, Dong; Zhang, Rui; Han, Zhangang; Rozenblat, Céline; Havlin, Shlomo

    2013-11-01

    Real data show that interdependent networks usually involve intersimilarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent [Parshani Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/92/68002 92, 68002 (2010)]. For example, the coupled worldwide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines, exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the other network, we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results of Parshani suggest that intersimilarity has considerable effects on reducing the cascading failures; however, a theoretical understanding of this effect on the cascading process is currently missing. Here we map the cascading process with intersimilarity to a percolation of networks composed of components of common links and noncommon links. This transforms the percolation of intersimilar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an Erdős-Rényi (ER) network with the average degree K, and the two networks of noncommon links are also ER networks. We show for a fully coupled pair of ER networks, that for any K⩾0, although the cascade is reduced with increasing K, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random network systems.

  20. Identifying changes in the support networks of end-of-life carers using social network analysis.

    PubMed

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital.

  1. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  2. Fiber Optic Tactical Local Network (FOTLAN)

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.

    1991-01-01

    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  3. New solutions for climate network visualization

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Buschmann, Stefan; Donges, Jonathan F.; Marwan, Norbert

    2016-04-01

    An increasing amount of climate and climate impact research methods deals with geo-referenced networks, including energy, trade, supply-chain, disease dissemination and climatic tele-connection networks. At the same time, the size and complexity of these networks increases, resulting in networks of more than hundred thousand or even millions of edges, which are often temporally evolving, have additional data at nodes and edges, and can consist of multiple layers even in real 3D. This gives challenges to both the static representation and the interactive exploration of these networks, first of all avoiding edge clutter ("edge spagetti") and allowing interactivity even for unfiltered networks. Within this presentation, we illustrate potential solutions to these challenges. Therefore, we give a glimpse on a questionnaire performed with climate and complex system scientists with respect to their network visualization requirements, and on a review of available state-of-the-art visualization techniques and tools for this purpose (see as well Nocke et al., 2015). In the main part, we present alternative visualization solutions for several use cases (global, regional, and multi-layered climate networks) including alternative geographic projections, edge bundling, and 3-D network support (based on CGV and GTX tools), and implementation details to reach interactive frame rates. References: Nocke, T., S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski: Review: Visual analytics of climate networks, Nonlinear Processes in Geophysics, 22, 545-570, doi:10.5194/npg-22-545-2015, 2015

  4. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  5. Air Traffic Network Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.

  6. Functional brain network efficiency predicts intelligence.

    PubMed

    Langer, Nicolas; Pedroni, Andreas; Gianotti, Lorena R R; Hänggi, Jürgen; Knoch, Daria; Jäncke, Lutz

    2012-06-01

    The neuronal causes of individual differences in mental abilities such as intelligence are complex and profoundly important. Understanding these abilities has the potential to facilitate their enhancement. The purpose of this study was to identify the functional brain network characteristics and their relation to psychometric intelligence. In particular, we examined whether the functional network exhibits efficient small-world network attributes (high clustering and short path length) and whether these small-world network parameters are associated with intellectual performance. High-density resting state electroencephalography (EEG) was recorded in 74 healthy subjects to analyze graph-theoretical functional network characteristics at an intracortical level. Ravens advanced progressive matrices were used to assess intelligence. We found that the clustering coefficient and path length of the functional network are strongly related to intelligence. Thus, the more intelligent the subjects are the more the functional brain network resembles a small-world network. We further identified the parietal cortex as a main hub of this resting state network as indicated by increased degree centrality that is associated with higher intelligence. Taken together, this is the first study that substantiates the neural efficiency hypothesis as well as the Parieto-Frontal Integration Theory (P-FIT) of intelligence in the context of functional brain network characteristics. These theories are currently the most established intelligence theories in neuroscience. Our findings revealed robust evidence of an efficiently organized resting state functional brain network for highly productive cognitions.

  7. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  8. Metropolitan area network support at Fermilab

    SciTech Connect

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  9. Increasing productivity: Another approach

    SciTech Connect

    Norton, F.J.

    1996-06-10

    An engineering information (EI) and information technology (IT) organization that must improve its productivity should work to further its business goals. This paper explores a comprehensive model for increasing EI/IT productivity by supporting organizational objectives.

  10. BCK Network of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; Antoniuk, Krill; Carini, Michael T.; Gelderman, Richard; Hammond, Benjamin; Hicks, Stacy; Laney, David; Shakhovskoy, David; Strolger, Louis-Gregory; Williams, Joshua

    2015-01-01

    The BCK network consists of three research grade telescopes: 0.6m (B) at the Bell Observatory near Western Kentucky University (WKU), 1.3m (C) at the Crimean Astrophysical Observatory and a 1.3m (K) at Kitt Peak National Observatory. The Bell Telescope is operated remotely from WKU while the Robotically Controlled Telescope (RCT) at Kitt Peak possesses an autonomous scheduler. The BCK telescopes are distributed longitudinally over 145º and can be used to observe continuously up to 21.2 hours/day. The network will be chiefly employed to observe variable stars, blazars and unpredictable celestial events.Because celestial objects with ground-based telescopes cannot be observed optically during the daytime, continuous ground-based astronomical observations are only possible via a network of longitudinally distributed telescopes. When the sun rises in Crimea after it sets at Bell, continuous observations are possible. This occurs for about six and ½ months per year - mid September to early April. A network is highly desirable for events that are not predictable for instance the appearance of supernovae, gamma-ray bursts, or undiscovered exoplanetsVariable stars are really only known in significant numbers to about 14 mag. But, as the magnitude increases the number of stars in any field increases very sharply, so there are many variable stars to discover at faint magnitude (m > 14). Discovering new variables makes great undergraduate student projects, a major component of astronomical research at WKU. In addition, pinning down the periods of variable stars is greatly facilitated with a network of telescopes.The BCK telescope network will also be used for monitoring the optical variability of blazars. The network provides increased coverage on daily variability timescales by minimizing interruptions due to weather and or mechanical problems at any one observatory and is used for obtaining continuous (12+ hours) of observations of rapid variability in blazars which would

  11. Lagged correlation networks

    NASA Astrophysics Data System (ADS)

    Curme, Chester

    Technological advances have provided scientists with large high-dimensional datasets that describe the behaviors of complex systems: from the statistics of energy levels in complex quantum systems, to the time-dependent transcription of genes, to price fluctuations among assets in a financial market. In this environment, where it may be difficult to infer the joint distribution of the data, network science has flourished as a way to gain insight into the structure and organization of such systems by focusing on pairwise interactions. This work focuses on a particular setting, in which a system is described by multivariate time series data. We consider time-lagged correlations among elements in this system, in such a way that the measured interactions among elements are asymmetric. Finally, we allow these interactions to be characteristically weak, so that statistical uncertainties may be important to consider when inferring the structure of the system. We introduce a methodology for constructing statistically validated networks to describe such a system, extend the methodology to accommodate interactions with a periodic component, and show how consideration of bipartite community structures in these networks can aid in the construction of robust statistical models. An example of such a system is a financial market, in which high frequency returns data may be used to describe contagion, or the spreading of shocks in price among assets. These data provide the experimental testing ground for our methodology. We study NYSE data from both the present day and one decade ago, examine the time scales over which the validated lagged correlation networks exist, and relate differences in the topological properties of the networks to an increasing economic efficiency. We uncover daily periodicities in the validated interactions, and relate our findings to explanations of the Epps Effect, an empirical phenomenon of financial time series. We also study bipartite community

  12. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  13. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  14. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  15. Homophyly/Kinship Model: Naturally Evolving Networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  16. Homophyly/Kinship Model: Naturally Evolving Networks.

    PubMed

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-19

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin's proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  17. Study of SSIN (Single Stage Interconnection Networks) Parallel Processing Interconnection Networks

    DTIC Science & Technology

    1988-10-31

    Processing Networks,----_ 𔄃 ABSTRACT (Continue on reverse if necessary and identify by bloc;umr.ber) The increase in dynamic average path length ( DAPL ...increase in dynamic average path length ( DAPL ) with network size is moderate while it is significantly less than log 2N , the number of stages needed in

  18. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.

  19. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  20. Enterprise network control and management: traffic flow models

    NASA Astrophysics Data System (ADS)

    Maruyama, William; George, Mark S.; Hernandez, Eileen; LoPresto, Keith; Uang, Yea

    1999-11-01

    The exponential growth and dramatic increase in demand for network bandwidth is expanding the market for broadband satellite networks. It is critical to rapidly deliver ubiquitous satellite communication networks that are differentiated by lower cost and increased Quality of Service (QoS). There is a need to develop new network architectures, control and management systems to meet the future commercial and military traffic requirements, services and applications. The next generation communication networks must support legacy and emerging network traffic while providing user negotiated levels of QoS. Network resources control algorithms must be designed to provide the guaranteed performance levels for voice, video and data having different service requirements. To evaluate network architectures and performance, it is essential to understand the network traffic characteristics.

  1. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    SciTech Connect

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  2. Computer Networks and Networking: A Primer.

    ERIC Educational Resources Information Center

    Collins, Mauri P.

    1993-01-01

    Provides a basic introduction to computer networks and networking terminology. Topics addressed include modems; the Internet; TCP/IP (Transmission Control Protocol/Internet Protocol); transmission lines; Internet Protocol numbers; network traffic; Fidonet; file transfer protocol (FTP); TELNET; electronic mail; discussion groups; LISTSERV; USENET;…

  3. The International Lunar Network

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    A new lunar science flight projects line has been introduced within NASA s Science Mission Directorate's (SMDs) proposed 2009 budget, including two new robotic missions designed to accomplish key scientific objectives and, when possible, provide results useful to the Exploration Systems Mission Directorate (ESMD) and the Space Operations Mission Directorate (SOMD) as those organizations grapple with the challenges of returning humans to the Moon. The first mission in this line will be the Lunar Reconnaissance Orbiter, an ESMD mission that will acquire key information for human return to the moon activities, which will transition after one year of operations to the SMD Lunar Science Program for a 2-year nominal science mission. The second mission, the Lunar Atmosphere and Dust Environment Explorer (LADEE) will be launch in 2011 along with the GRAIL Discovery mission to the moon. The third is delivery of two landed payloads as part of the International Lunar Network (ILN). This flight projects line provides a robust robotic lunar science program for the next 8 years and beyond, complements SMD s initiatives to build a robust lunar science community through R&A lines, and increases international participation in NASA s robotic exploration plans. The International Lunar Network is envisioned as a global lunar geophysical network, which fulfills many of the stated recommendations of the recent National Research Council report on The Scientific Context for Exploration of the Moon [2], but is difficult for any single space agency to accomplish on its own. The ILN would provide the necessary global coverage by involving US and international landed missions as individual nodes working together. Ultimately, this network could comprise 8-10 or more nodes operating simultaneously, while minimizing the required contribution from each space agency. Indian, Russian, Japanese, and British landed missions are currently being formulated and SMD is actively seeking partnership with

  4. Dynamics of Interaction of Neural Networks in the Course of EEG Alpha Biofeedback.

    PubMed

    Kozlova, L I; Bezmaternykh, D D; Mel'nikov, M E; Savelov, A A; Petrovskii, E D; Shtark, M B

    2017-03-31

    Brain EEG-fMRI activity was studied in subjects, who had successfully completed the EEG alpha stimulating training course (20 sessions): for 14 healthy men (20-35 years) three records were obtained in the feedback loop (biofeedback with EEG alpha rhythm with sound reinforcement): in the beginning, middle and at the end of the course. During alpha training, increased functional connectivity was revealed between precuneus network and anterior salience network, left executive control network, default mode network, primary visual network; anterior salience network and executive control network, visual-spatial network. The most prominent changes were found for precuneus network and anterior salience network, which could be due to their key role in the biofeedback phenomenon. Significant changes in functional connectivity were recorded for anterior salience network and precuneus network (synchronicity increased from the first to the third trial) and right and left executive control networks (weakening from the first to the second session.

  5. Parallel network simulations with NEURON.

    PubMed

    Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L

    2006-10-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.

  6. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  7. High speed all optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  8. Visualizing the Collective Learner through Decentralized Networks

    ERIC Educational Resources Information Center

    Castro, Juan Carlos

    2015-01-01

    Understandings of decentralized networks are increasingly used to describe a way to structure curriculum and pedagogy. It is often understood as a structural model to organize pedagogical and curricular relationships in which there is no center. While this is important it also bears introducing into the discourse that decentralized networks are…

  9. 77 FR 43567 - Medical Area Body Network

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... COMMISSION 47 CFR Parts 2 and 95 Medical Area Body Network AGENCY: Federal Communications Commission. ACTION... Medical Body Area Network (``MBAN'') coordinator(s) for the 2360-2390 MHz band. Although the ] Commission... multiple MBAN coordinators could delay coordination and compromise accuracy, as well as increase costs...

  10. Entrepreneurial Idea Identification through Online Social Networks

    ERIC Educational Resources Information Center

    Lang, Matthew C.

    2010-01-01

    The increasing use of social network websites may signal a change in the way the next generation of entrepreneurs identify entrepreneurial ideas. An important part of the entrepreneurship literature emphasizes how vital the use of social networks is to entrepreneurial idea identification, opportunity recognition, and ultimately new venture…

  11. Knowledge Networks and Science Data Ecosystems.

    NASA Astrophysics Data System (ADS)

    Fox, P. A.

    2012-12-01

    In an era where results from inter-disciplinary science collaborations are widely sought after for assessement reports, and often policy development and decision making, the prospect of synthesizing and interpreting complex data from myriad sources has suddenly become daunting. Even more demanding is the increased need to explain science analysis results to non-specialists, or answer their questions. These multi-stakeholder networks are often poorly understood, or documented. Recent network developments for an NSF-funded Data Interoperability Network project (Integrated Ecosystem Assessments for Marine Ecosystems) have highlighted the importance of formally characterizing the network of people, organizations (together these are stakeholders), resources, relationships, etc. in addition to the data and information networks. Each stakeholder in a network (in particular the marine ecosystem community, broadly defined) is a repository of knowledge about her or his domain. Too often this knowledge is 'grey' (tacit) and not accessible in a way that questions of interest can be formulated, posed, answered and assessed. Knowledge networks provide representations of a look into a knowledge base with the goal of gaining insight and understanding into various attributes of a real network. A key aspect is that the relationships among the things in the network (e.g. Organization A has a memorandum of understanding with Organization B for personnel exchange, or Person B is director of Organization A and an advisory board member for Organization B). Simpler examples of knowledge networks, where there is only one or a few simple (less well defined relationships), are co-authorship networks in peer reviewed publication, or friends in a social network. The knowledge networks we seek here are richer and necessarily more complex. In this contribution, we present an approach to model such knowledge networks and discuss how they may begin to address the questions of the non-specialist in

  12. Modeling and Analysis of Modular Structure in Diverse Biological Networks.

    PubMed

    Bader, Al-Anzi; Sherif, Gerges; Noah, Olsman; Christopher, Ormerod; Georgios, Piliouras; John, Ormerod; Kai, Zinn

    2017-04-07

    Biological networks, like most engineered networks, are not the product of a singular design but rather are the result of a long process of refinement and optimization. Many large real-world networks are comprised of well-defined and meaningful smaller modules. While engineered networks are designed and refined by humans with particular goals in mind, biological networks are created by the selective pressures of evolution. In this paper, we seek to define aspects of network architecture that are shared among different types of evolved biological networks. First, we developed a new mathematical model, the Stochastic Block Model with Path Selection (SBM-PS) that simulates biological network formation based on the selection of edges that increase clustering. SBM-PS can produce modular networks whose properties resemble those of real networks. Second, we analyzed three real networks of very different types, and showed that all three can be fit well by the SBM-PS model. Third, we showed that modular elements within the three networks correspond to meaningful biological structures. The networks chosen for analysis were a proteomic network composed of all proteins required for mitochondrial function in budding yeast, a mesoscale anatomical network composed of axonal connections among regions of the mouse brain, and the connectome of individual neurons in the nematode C. elegans. We find that the three networks have common architectural features, and each can be divided into subnetworks with characteristic topologies that control specific phenotypic outputs.

  13. Robustness of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    2011-03-01

    In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of many interdependent networks. We will present a framework for understanding the robustness of interacting networks subject to such cascading failures and provide a basic analytic approach that may be useful in future studies. We present exact analytical solutions for the critical fraction of nodes that upon removal will lead to a failure cascade and to a complete fragmentation of two interdependent networks in a first order transition. Surprisingly, analyzing complex systems as a set of interdependent networks may alter a basic assumption that network theory has relied on: while for a single network a broader degree distribution of the network nodes results in the network being more robust to random failures, for interdependent networks, the broader the distribution is, the more vulnerable the networks become to random failure. We also show that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. These findings pose a significant challenge to the future design of robust networks that need to consider the unique properties of interdependent networks.

  14. Network Plus

    NASA Astrophysics Data System (ADS)

    Bender, Walter; Chesnais, Pascal

    1988-05-01

    Over the past several years, the Electronic Publishing Group at the MIT Media Laboratory has been conducting a family of media experiments which explore a new kind of broadcast: the distribution of data and computer programs rather than pre-packaged material. This broadcast is not directed to a human recipient, but to a local computational agent acting on his behalf. In response to instructions from both the broadcaster and the reader, this agent selects from the incoming data and presents it in a manner suggestive of traditional media. The embodiment of these media experiments is a news retrieval system where the news editor has been replaced by the personal computer. A variety of both local and remote databases which operate passively as well as interac-tively are accessed by "reporters." These "reporters" are actually software interfaces, which are programmed to gather news. Ideally, they are "broadcatching" that is to say, watching all broadcast television channels, listening to all radio transmissions, and reading all newspapers, magazines, and journals. 1 A possible consequence of the synthesis of media through active processing is the merger of newspapers and television (figure 1). The result is either a newspaper with illustrations which move 2 or, conversely, print as television output. The latter is the theme of Network Plus.

  15. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  16. Increased global financings

    SciTech Connect

    Anderson, J.

    1994-10-01

    The results of a financial rankings survey for the first half of 1994 show increased financial activity over the second half of 1993. More than $10.5 billion is reported by developers and financial firms for 62 transactions during 1994`s first six months.

  17. Productivity increases in science

    SciTech Connect

    Danko, J.E.; Young, J.K.; Molton, P.M.; Dirks, J.A.

    1993-02-01

    The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today's scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

  18. Productivity increases in science

    SciTech Connect

    Danko, J.E.; Young, J.K.; Molton, P.M.; Dirks, J.A.

    1993-02-01

    The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today`s scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

  19. Increasing mobile radiography productivity.

    PubMed

    Wong, Edward; Lung, Ngan Tsz; Ng, Kris; Jeor, Patrick

    2013-01-01

    Mobile radiography using computed radiography (CR) cassettes is a common equipment combination with a workflow bottleneck limited by location of CR readers. Advent of direct digital radiography (DDR) mobile x-ray machines removes this limitation by immediate image review and quality control. Through the use of key performance indicators (KPIs), the increase in efficiency can be quantified.

  20. The price of complexity in financial networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-09-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises.

  1. The price of complexity in financial networks

    PubMed Central

    May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-01-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises. PMID:27555583

  2. The price of complexity in financial networks.

    PubMed

    Battiston, Stefano; Caldarelli, Guido; May, Robert M; Roukny, Tarik; Stiglitz, Joseph E

    2016-09-06

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises.

  3. Network epidemiology and plant trade networks

    PubMed Central

    Pautasso, Marco; Jeger, Mike J.

    2014-01-01

    Models of epidemics in complex networks are improving our predictive understanding of infectious disease outbreaks. Nonetheless, applying network theory to plant pathology is still a challenge. This overview summarizes some key developments in network epidemiology that are likely to facilitate its application in the study and management of plant diseases. Recent surveys have provided much-needed datasets on contact patterns and human mobility in social networks, but plant trade networks are still understudied. Human (and plant) mobility levels across the planet are unprecedented—there is thus much potential in the use of network theory by plant health authorities and researchers. Given the directed and hierarchical nature of plant trade networks, there is a need for plant epidemiologists to further develop models based on undirected and homogeneous networks. More realistic plant health scenarios would also be obtained by developing epidemic models in dynamic, rather than static, networks. For plant diseases spread by the horticultural and ornamental trade, there is the challenge of developing spatio-temporal epidemic simulations integrating network data. The use of network theory in plant epidemiology is a promising avenue and could contribute to anticipating and preventing plant health emergencies such as European ash dieback. PMID:24790128

  4. The correlation of metrics in complex networks with applications in functional brain networks

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.

    2011-11-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.

  5. Network analyses in systems pharmacology

    PubMed Central

    Berger, Seth I.; Iyengar, Ravi

    2009-01-01

    Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications. Contact: ravi.iyengar@mssm.edu PMID:19648136

  6. A Primer on Campus Networks.

    ERIC Educational Resources Information Center

    Charp, Sylvia; Hines, Duffy

    1988-01-01

    Networking trends have accelerated the convergence of computers and communications. With this and the increasing need to share resources and information, educators are faced with many considerations concerning vendor selection, equipment compatibility, performance criteria, wire and cable specifications, and installation of selection systems to…

  7. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  8. [Network Research on Human Papillomavirus].

    PubMed

    Almeida-Gutiérrez, Eduardo; Paniagua, Ramón; Furuya, María ElenaYuriko

    2015-01-01

    In order to increase the research in important health questions at a national and institutional levels, the Human Papillomavirus Research Network of the Health Research Coordination of the Instituto Mexicano del Seguro Social offers this supplement with the purpose of assisting patients that daily look for attention due to the human papillomavirus or to cervical cancer.

  9. Evolution of the Lunar Network

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis C.; Miller, Ron

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept

  10. An Introduction to Social Network Data Analytics

    NASA Astrophysics Data System (ADS)

    Aggarwal, Charu C.

    The advent of online social networks has been one of the most exciting events in this decade. Many popular online social networks such as Twitter, LinkedIn, and Facebook have become increasingly popular. In addition, a number of multimedia networks such as Flickr have also seen an increasing level of popularity in recent years. Many such social networks are extremely rich in content, and they typically contain a tremendous amount of content and linkage data which can be leveraged for analysis. The linkage data is essentially the graph structure of the social network and the communications between entities; whereas the content data contains the text, images and other multimedia data in the network. The richness of this network provides unprecedented opportunities for data analytics in the context of social networks. This book provides a data-centric view of online social networks; a topic which has been missing from much of the literature. This chapter provides an overview of the key topics in this field, and their coverage in this book.

  11. WDM network and multicasting protocol strategies.

    PubMed

    Kirci, Pinar; Zaim, Abdul Halim

    2014-01-01

    Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM), it is easier to take the advantage of optical networks and optical burst switching (OBS) and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET) and Just In Time (JIT) reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  12. Threshold control of chaotic neural network.

    PubMed

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  13. Super-speed computer interfaces and networks

    SciTech Connect

    Tolmie, D.E.; St. John, W.; DuBois, D.H.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Research into super-speed computer interfaces has been directed towards identifying networking requirements from compute-intensive applications that are crucial to DOE programs. In particular, both the DOE Energy Research High Performance Computing Research Centers (HPCRC) and the DOE Defense Programs Accelerated Strategic Computing Initiative (ASCI) have planned applications that will require large increases in network bandwidth. This project was set up to help network researchers identify those networking requirements and to plan the development of such networks. Based on studies, research, and LANL-sponsored workshops, this project helped forge the beginnings for multi-gigabit/sec network research and developments that today is being lead by Los Alamos in the American National Standards Institute (ANSI) 6.4 gigabit/sec specification called HIPPI-6400.

  14. Topology control with IPD network creation games

    NASA Astrophysics Data System (ADS)

    Scholz, Jan C.; Greiner, Martin O. W.

    2007-06-01

    Network creation games couple a two-players game with the evolution of network structure. A vertex player may increase its own payoff with a change of strategy or with a modification of its edge-defined neighbourhood. By referring to the iterated prisoners dilemma (IPD) game we show that this evolutionary dynamics converges to network-Nash equilibria, where no vertex is able to improve its payoff. The resulting network structure exhibits a strong dependence on the parameter of the payoff matrix. Degree distributions and cluster coefficients are also strongly affected by the specific interactions chosen for the neighbourhood exploration. This allows network creation games to be seen as a promising artificial-social-systems approach for a distributive topology control of complex networked systems.

  15. Research and Development Trends of Car Networking

    NASA Astrophysics Data System (ADS)

    He, Wei; Li, Zhixiong; Xie, Guotao

    With the rapid development of the world economy, road transport has become increasingly busy. An unexpected incident would cause serious traffic disaster due to traffic accidents. To solve this problem, the intelligent transportation system (ITS), which is important for the health developments of the city transportation, has become a hot topic. The car networking provides a new way for intelligent transportation system. It can ensure intelligent control and monitoring of urban road with high performance. This paper described the concept of car networking and related technology both in oversea and domestic. The importance of car networking to achieve vehicle and details of the car networking related technologies were illustrated firstly. Then, attentions focus on the research nodus of the car networking. Lastly, the development trend of car networking research was discussed.

  16. Schizophrenia and abnormal brain network hubs.

    PubMed

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  17. Modeling information flow in biological networks.

    PubMed

    Kim, Yoo-Ah; Przytycki, Jozef H; Wuchty, Stefan; Przytycka, Teresa M

    2011-06-01

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.

  18. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  19. Neural Network Studies

    DTIC Science & Technology

    1993-07-01

    basic useful theorems and general rules which apply to neural networks (in ’Overview of Neural Network Theory’), studies of training time as the...The Neural Network , Bayes- Gaussian, and k-Nearest Neighbor Classifiers’), an analysis of fuzzy logic and its relationship to neural network (in ’Fuzzy

  20. Damselfly Network Simulator

    SciTech Connect

    2014-04-01

    Damselfly is a model-based parallel network simulator. It can simulate communication patterns of High Performance Computing applications on different network topologies. It outputs steady-state network traffic for a communication pattern, which can help in studying network congestion and its impact on performance.

  1. Engineering technology for networks

    NASA Technical Reports Server (NTRS)

    Paul, Arthur S.; Benjamin, Norman

    1991-01-01

    Space Network (SN) modeling and evaluation are presented. The following tasks are included: Network Modeling (developing measures and metrics for SN, modeling of the Network Control Center (NCC), using knowledge acquired from the NCC to model the SNC, and modeling the SN); and Space Network Resource scheduling.

  2. Designing Secure Library Networks.

    ERIC Educational Resources Information Center

    Breeding, Michael

    1997-01-01

    Focuses on designing a library network to maximize security. Discusses UNIX and file servers; connectivity to campus, corporate networks and the Internet; separation of staff from public servers; controlling traffic; the threat of network sniffers; hubs that eliminate eavesdropping; dividing the network into subnets; Switched Ethernet;…

  3. Energy Efficient Digital Networks

    SciTech Connect

    Lanzisera, Steven; Brown, Richard

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  4. Alarming increase in refugees.

    PubMed

    1992-01-01

    Over the past decade and half there has been an alarming worldwide increase in refugees. The total rose form 2.8 million in 1976 to 8.2 million in 1980, to 17.3 million in 1990. Africa's refugees rose from 1.2 million in 1976 to 5.6 million in 1990. Asia's increase over this period was much more rapid--from a mere 180,000 to 8 million. In the Americas the numbers more than trebled, from 770,000 to 2.7 million. Europe was the smallest increase, from 570,000 to 894,000. International law defines a refugee as someone outside of their own country, who has a well-founded fear of persecution because of their political or religious beliefs or ethnic origin, and who cannot turn to their own country for protection. Most refugees are genuine by this definition. The increase reflects, in part, fallout from the cold war. Ethiopia, Mozambique and Angola accounted for almost 1/2 of Africa's refugees; Afghanistan alone for 3/4 of Asia's total. They fled, for the most part, from 1 poor country into another, where they added to shortages of land and fuelwood, and intensified environmental pressure. Malawi, 1 of the poorest countries in the world, is sheltering perhaps as many as 750,000 refugees from the war in Mozambique. But among these refugees--especially among those who turned to the rich countries for asylum--were an increasing number of people who were not suffering political persecution. Driven out of their homes by the collapse of their environment or economic despair, and ready to take any means to get across borders, they are a new category: economic and environmental refugees. The most spectacular attempts hit the television screens: the Vietnamese boat people, ships festooned with Albanians. Behind the headlines there was a growing tide of asylum seekers. The numbers rose 10-fold in Germany from 1983 to 1990. In Switzerland they multiplied by 4 times. In Europe, as a whole, they grew from 71,000 in 1983 to an estimated 550,000 in 1990. In 1990 the numbers threatened to

  5. Epidemics on interconnected networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  6. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  7. Cascading load model in interdependent networks with coupled strength

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Li, Yun; Zheng, Qiaofang

    2015-07-01

    Considering the coupled strength between interdependent networks, we introduce a new method to define the initial load on an edge and propose a cascading load model in interdependent networks. We explore the robustness of the interdependent networks against cascading failures by two measures, i.e., the critical threshold βc quantifying the whole robustness of the interdependent networks to avoid the emergence of cascading failure, and the new proposed smallest capacity threshold βc,s quantifying the degree of the worst damage of the interdependent networks. We numerically find that the AL (high-degree nodes in network A connect high-degree ones in network B) link between two networks can greatly enhance the robust level of the interdependent networks against cascading failures. Especially we observe that the values of βc in the interdependent networks with both the DL (high-degree nodes in network A connect low-degree ones in network B) link and the RL (nodes in network A randomly connect ones in network B) link increase monotonically with the coupled strength, while the values of βc,s in the interdependent networks with three types of link patterns almost monotonically decreases with the coupled strength. In the interdependent networks with the AL, the value of βc first decreases and then increases with the coupled strength. We further explain this interesting phenomenon by a simple graph. In addition, we study the influence of the coupled strength on the efficiency of two attacks to destroy the interdependent networks. We find that, when the coupled strength between two networks is weaker, attacking the edges with the lower load is more easier to trigger the cascading propagation than attacking the nodes with the higher load, however, when the coupled strength in two networks is stronger, the case is on the contrary. Finally, we give reasonable explanations from the local perspective of the total capacity of all neighboring edges of a failed edge.

  8. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  9. Network Science Experimentation Vision

    DTIC Science & Technology

    2015-09-01

    is referred to here as a multi-genre composite network . Given that the term “ network ” is used in a multiplicity of ways in a variety of contexts...expertise, models, and tools in multiple domains. These areas of expertise include, but are not limited to, the following: • networks and network ...composite networks are there to support multiple missions. While this report focuses on experiments that involve a single mission, extending them to

  10. Consistency of heterogeneous synchronization patterns in complex weighted networks

    NASA Astrophysics Data System (ADS)

    Malagarriga, D.; Villa, A. E. P.; Garcia-Ojalvo, J.; Pons, A. J.

    2017-03-01

    Synchronization within the dynamical nodes of a complex network is usually considered homogeneous through all the nodes. Here we show, in contrast, that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in small networks. We also analyze consistency, defined as the persistence of coexistent synchronization patterns regardless of the initial conditions. Our results show that complex weighted networks display richer consistency than regular networks, suggesting why certain functional network topologies are often constructed when experimental data are analyzed.

  11. Privacy-Preserving Relationship Path Discovery in Social Networks

    NASA Astrophysics Data System (ADS)

    Mezzour, Ghita; Perrig, Adrian; Gligor, Virgil; Papadimitratos, Panos

    As social networks sites continue to proliferate and are being used for an increasing variety of purposes, the privacy risks raised by the full access of social networking sites over user data become uncomfortable. A decentralized social network would help alleviate this problem, but offering the functionalities of social networking sites is a distributed manner is a challenging problem. In this paper, we provide techniques to instantiate one of the core functionalities of social networks: discovery of paths between individuals. Our algorithm preserves the privacy of relationship information, and can operate offline during the path discovery phase. We simulate our algorithm on real social network topologies.

  12. Structure and Response in the World Trade Network

    NASA Astrophysics Data System (ADS)

    He, Jiankui; Deem, Michael W.

    2010-11-01

    We examine how the structure of the world trade network has been shaped by globalization and recessions over the last 40 years. We show that by treating the world trade network as an evolving system, theory predicts the trade network is more sensitive to recessionary shocks and recovers more slowly from them now than it did 40 years ago, due to structural changes in the world trade network induced by globalization. We also show that recession-induced change to the world trade network leads to an increased hierarchical structure of the global trade network for a few years after the recession.

  13. Using Social Networks to Create Powerful Learning Communities

    ERIC Educational Resources Information Center

    Lenox, Marianne; Coleman, Maurice

    2010-01-01

    Regular readers of "Computers in Libraries" are aware that social networks are forming increasingly important linkages to professional and personal development in all libraries. Live and virtual social networks have become the new learning playground for librarians and library staff. Social networks have the ability to connect those who are…

  14. File Transfer with Erasure Coding over Wireless Sensor Networks

    DTIC Science & Technology

    2009-03-01

    27 1. Onion Networks JAVA FEC Library ..............................................27 2. SNAIL Server Modifications...internet router , or some other device, the average person today is using wireless devices on an increasingly regular basis. A small subset of wireless...from Onion Networks were extremely helpful during this research [5]. 2. Medium Access Control for Wireless Sensor Networks One of the realizations

  15. Spousal Network Overlap as a Basis for Spousal Support

    ERIC Educational Resources Information Center

    Cornwell, Benjamin

    2012-01-01

    The role social network structure plays in facilitating flows of support between spouses is often overlooked. This study examined whether levels of support between spouses depended on the degree of overlap between spouses' networks. Network overlap may enhance spouses' support capacities by increasing their understanding of each other's support…

  16. Percolation of a general network of networks.

    PubMed

    Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo

    2013-12-01

    Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.

  17. Percolation of a general network of networks

    NASA Astrophysics Data System (ADS)

    Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Xu, Xiaoming; Havlin, Shlomo

    2013-12-01

    Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.

  18. Self-repairable polymeric networks: Synthesis and network design

    NASA Astrophysics Data System (ADS)

    Ghosh, Biswajit

    This dissertation describes the design, synthesis and development of a new class of polymeric networks that exhibit self-repairing properties under UV exposure. It consists of two parts: (a) modification and synthesis of oxetane (OXE), and oxolane (OXO) substituted chitosan (CHI) macromonomer, and (b) design, and synthesis of self-repairing polyurethane (PUR) networks consisting of modified chitosan. Unmodified CHI consisting of acetamide (-NHCOCH3), primary hydroxyl (-OH), and amine (-NH2) functional groups were reacted with OXE or OXO compounds under basic conditions in order to substitute the 1° --OH groups, and at the same time, convert -NHCOCH 3 functionalities into -NH2 groups, while maintaining their un-reacted form to generate OXE/OXO-substituted CHI macromonomer. These substituted CHI macromonomers were incorporated within the PUR backbone by reacting with trifunctional isocyanate in the presence of polyethylene glycol (PEG) and dibutyl tin dilaurate catalyst (DBTDL). Utilizing spectroscopic analysis combined with optical microscopy, these studies showed that the kinetics of self-repair depends on the stoichiometry of the individual entities as well as the time required for self-repairing to occur decrease with increasing OXE quantity within the network. Internal reflection infrared imaging (IRIRI) of OXE/OXO-CHI-PUR networks as well as Raman and Fourier transform IR (FT-IR) studies of OXE/OXO-CHI macromonomers revealed that cationic OXE/OXO ring opening, free radical polyurea (PUA)-to-PUR conversion, along with chair-to-boat conformational changes of CHI backbone are responsible for repairing the damaged network. The network remodeling process, investigated by utilizing micro-thermal analyzer (muTA), revealed that mechanical damage generates small fragments or oligomers within the scratch, therefore glass transition temperature (Tg) decreases, and under UV exposure cross-linking reactions propagate from the bottom of the scratch to the top resulting in

  19. Nonlinear growth: an origin of hub organization in complex networks

    PubMed Central

    Kaiser, Marcus

    2017-01-01

    Many real-world networks contain highly connected nodes called hubs. Hubs are often crucial for network function and spreading dynamics. However, classical models of how hubs originate during network development unrealistically assume that new nodes attain information about the connectivity (for example the degree) of existing nodes. Here, we introduce hub formation through nonlinear growth where the number of nodes generated at each stage increases over time and new nodes form connections independent of target node features. Our model reproduces variation in number of connections, hub occurrence time, and rich-club organization of networks ranging from protein–protein, neuronal and fibre tract brain networks to airline networks. Moreover, nonlinear growth gives a more generic representation of these networks compared with previous preferential attachment or duplication–divergence models. Overall, hub creation through nonlinear network expansion can serve as a benchmark model for studying the development of many real-world networks.

  20. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  1. Afloat Networks

    DTIC Science & Technology

    2012-03-01

    down our power grid system, to impact on our governmental system, to impact on our -- on Wall Street, on our financial systems, and to literally...systems, sensors, and increased power . - Unmanned systems in the air and water will employ greater autonomy and be fully integrated with their...Netgear 2% Linksys 2% Panasonic 3% Cisco 5% Alcatel 5% COMPAQ 6% Sun 8% Dell 9% HP 9% Unknown 38% Others 1% Windows XP, 5% Solaris 10, 10% Red Hat Linux

  2. Elenoside increases intestinal motility

    PubMed Central

    Navarro, E; Alonso, SJ; Navarro, R; Trujillo, J; Jorge, E

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaph-thalene lignan from Justicia hyssopifolia, on gastro-intestinal motility in vivo and in vitro in rats. METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses, intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanol-plant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg), cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2 x 10-4, 6.4 x 10-4 and 1.2 x 10-3 mol/L, and cisapride at 10-6 mol/L were investigated. RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase. Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride. CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs. Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain. PMID:17131476

  3. Networking: challenges for network centric operations

    NASA Astrophysics Data System (ADS)

    Stotts, Larry B.; Allen, John G.

    2004-11-01

    This paper examines some of the challenges facing the community in providing radio communications to enable information systems for military operations. We believe that much of the on-going/completed work is necessary, but not sufficient, to provide the military Network Centric Operations, which integrates military"s network centric enterprise with network centric warfare. Additional issues need to be addressed to better support battle commanders as well as decider-sensor-effecter linkages. We discuss a possible way ahead.

  4. Efficient, sparse biological network determination

    PubMed Central

    August, Elias; Papachristodoulou, Antonis

    2009-01-01

    data of L. lactis and is similar to the one found in the literature. Numerical methods based on Linear Programming can therefore help determine efficiently the network structure of biological systems from large data sets. The overall objective of this work is to provide methods to increase our understanding of complex biochemical systems, particularly through their interconnection and their non-equilibrium behavior. PMID:19236711

  5. Polymer networks: Modeling and applications

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan

    that at low sliding velocities, the friction decreases with an increase in the temperature. Overall, our findings improve the current understanding of the behavior of polymer networks in equilibrium and non-equilibrium conditions, which has important implications for synthesizing new drug delivery agents, designing tissue engineering systems, and developing novel methods for controlling the friction of elastomers.

  6. Slow poisoning and destruction of networks: edge proximity and its implications for biological and infrastructure networks.

    PubMed

    Banerjee, Soumya Jyoti; Sinha, Saptarshi; Roy, Soumen

    2015-02-01

    We propose a network metric, edge proximity, P(e), which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. The effects of removing edges with high P(e) might initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing strategies, the removal of edges by P(e) leads to a remarkable increase in the diameter and average shortest path length in undirected real and random networks till the first disconnection and well beyond. P(e) can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by P(e) causes notable efficiency loss in U.S. and European power grid networks. P(e) identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections and important portions of the neural and brain networks, respectively. Energy flow interactions identified by P(e) form the backbone of long food web chains. Finally, we scrutinize the potential of P(e) in edge controllability dynamics of directed networks.

  7. Slow poisoning and destruction of networks: Edge proximity and its implications for biological and infrastructure networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Sinha, Saptarshi; Roy, Soumen

    2015-02-01

    We propose a network metric, edge proximity, Pe, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. The effects of removing edges with high Pe might initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing strategies, the removal of edges by Pe leads to a remarkable increase in the diameter and average shortest path length in undirected real and random networks till the first disconnection and well beyond. Pe can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by Pe causes notable efficiency loss in U.S. and European power grid networks. Pe identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections and important portions of the neural and brain networks, respectively. Energy flow interactions identified by Pe form the backbone of long food web chains. Finally, we scrutinize the potential of Pe in edge controllability dynamics of directed networks.

  8. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    PubMed

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease.

  9. Reconstruction of transcriptional network from microarray data using combined mutual information and network-assisted regression.

    PubMed

    Wang, X-D; Qi, Y-X; Jiang, Z-L

    2011-03-01

    Many methods had been developed on inferring transcriptional network from gene expression. However, it is still necessary to design new method that discloses more detailed and exact network information. Using network-assisted regression, the authors combined the averaged three-way mutual information (AMI3) and non-linear ordinary differential equation (ODE) model to infer the transcriptional network, and to obtain both the topological structure and the regulatory dynamics. Synthetic and experimental data were used to evaluate the performance of the above approach. In comparison with the previous methods based on mutual information, AMI3 obtained higher precision with the same sensitivity. To describe the regulatory dynamics between transcription factors and target genes, network-assisted regression and regression without network, respectively, were applied in the steady-state and time series microarray data. The results revealed that comparing with regression without network, network-assisted regression increased the precision, but decreased the fitting goodness. Then, the authors reconstructed the transcriptional network of Escherichia coli and simulated the regulatory dynamics of genes. Furthermore, the authors' approach identified potential transcription factors regulating yeast cell cycle. In conclusion, network-assisted regression, combined AMI3 and ODE model, was a more precisely to infer the topological structure and the regulatory dynamics of transcriptional network from microarray data. [Includes supplementary material].

  10. Women’s Social Networks and Birth Attendant Decisions: Application of the Network-Episode Model

    PubMed Central

    Edmonds, Joyce K.; Hruschka, Daniel; Bernard, H. Russell; Sibley, Lynn

    2011-01-01

    This paper examines the association of women's social networks with the use of skilled birth attendants in uncomplicated pregnancy and childbirth in Matlab, Bangladesh. The Network-Episode Model was applied to determine if network structure variables (density / kinship homogeneity / strength of ties) together with network content (endorsement for or against a particular type of birth attendant) explain the type of birth attendant used by women above and beyond the variance explained by women's individual attributes. Data were collected by interviewing a representative sample of 246 women, 18–45 years of age, using survey and social network methods between October and December 2008. Logistic regression models were used to examine the associations. Results suggest that the structural properties of networks did not add to explanatory value but instead network content or the perceived advice of network members add significantly to the explanation of variation in service use. Testing aggregate network variables at the individual level extends the ability of the individual profile matrix to explain outcomes. Community health education and mobilization interventions attempting to increase demand for skilled attendants need to reflect the centrality of kinship networks to women in Bangladesh and the likelihood of women to heed the advice of their network of advisors with regard to place of birth. PMID:22196965

  11. Adoption of Social Networking in Education: A Study of the Use of Social Networks by Higher Education Students in Oman

    ERIC Educational Resources Information Center

    Al-Mukhaini, Elham M.; Al-Qayoudhi, Wafa S.; Al-Badi, Ali H.

    2014-01-01

    The use of social networks is a growing phenomenon, being increasingly important in both private and academic life. Social networks are used as tools to enable users to have social interaction. The use of social networks (SNs) complements and enhances the teaching in traditional classrooms. For example, YouTube, Facebook, wikis, and blogs provide…

  12. Structural Transitions in Densifying Networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.

    2016-11-01

    We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .

  13. Robustness of a Network of Networks

    NASA Astrophysics Data System (ADS)

    Gao, Jianxi; Buldyrev, Sergey V.; Havlin, Shlomo; Stanley, H. Eugene

    2011-11-01

    Network research has been focused on studying the properties of a single isolated network, which rarely exists. We develop a general analytical framework for studying percolation of n interdependent networks. We illustrate our analytical solutions for three examples: (i) For any tree of n fully dependent Erdős-Rényi (ER) networks, each of average degree k¯, we find that the giant component is P∞=p[1-exp⁡(-k¯P∞)]n where 1-p is the initial fraction of removed nodes. This general result coincides for n=1 with the known second-order phase transition for a single network. For any n>1 cascading failures occur and the percolation becomes an abrupt first-order transition. (ii) For a starlike network of n partially interdependent ER networks, P∞ depends also on the topology—in contrast to case (i). (iii) For a looplike network formed by n partially dependent ER networks, P∞ is independent of n.

  14. Weighted projected networks: Mapping hypergraphs to networks

    NASA Astrophysics Data System (ADS)

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  15. Improving network utilization over heterogeneous airborne networks

    NASA Astrophysics Data System (ADS)

    Griffin, Peter H.; Rickenbach, Brent L.; Rush, Jason A.

    2011-06-01

    Existing and future military networks vary widely in bandwidth and other network characteristics, potentially challenging deployment of services and applications across heterogeneous data links. To address this challenge, General Dynamics and Naval Research Laboratory created network services to allow applications to use wireless data links more efficiently. The basis for the network services are hooks into the data links and transport protocols providing status about the airborne networking environment. The network service can monitor heterogeneous data links on a platform and report on link availability and parameters such as latency and bandwidth. The network service then presents the network characteristics to other services and applications. These services and applications are then able to tune parameters and content based on network parameters. The technology has been demonstrated in several live-flight experiments sponsored by the United States Air Force and United States Navy. The technology was housed on several aircraft with a variety of data links ranging from directional, high-bandwidth systems to omnidirectional, medium-bandwidth systems to stable but low-bandwidth satellite systems. In each of these experiments, image and video data was successfully delivered over tactical data links that varied greatly in bandwidth and delay.

  16. Environmental Learning in Online Social Networks: Adopting Environmentally Responsible Behaviors

    ERIC Educational Resources Information Center

    Robelia, Beth A.; Greenhow, Christine; Burton, Lisa

    2011-01-01

    Online social networks are increasingly important information and communication tools for young people and for the environmental movement. Networks may provide the motivation for young adults to increase environmental behaviors by increasing their knowledge of environmental issues and of the specific actions they can take to reduce greenhouse gas…

  17. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  18. Wayfinding in Social Networks

    NASA Astrophysics Data System (ADS)

    Liben-Nowell, David

    With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.

  19. Network connectivity value.

    PubMed

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-02-23

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant.

  20. Social contagions on interdependent lattice networks

    NASA Astrophysics Data System (ADS)

    Shu, Panpan; Gao, Lei; Zhao, Pengcheng; Wang, Wei; Stanley, H. Eugene

    2017-03-01

    Although an increasing amount of research is being done on the dynamical processes on interdependent spatial networks, knowledge of how interdependent spatial networks influence the dynamics of social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on interdependent spatial networks composed of two identical two-dimensional lattices. We compare the dynamics of social contagion on networks with different fractions of dependency links and find that the density of final recovered nodes increases as the number of dependency links is increased. We use a finite-size analysis method to identify the type of phase transition in the giant connected components (GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the phase transition switches from second-order to first-order. In strong interdependent spatial networks with abundant dependency links, increasing the fraction of initial adopted nodes can induce the switch from a first-order to second-order phase transition associated with social contagion dynamics. In networks with a small number of dependency links, the phase transition remains second-order. In addition, both the second-order and first-order phase transition points can be decreased by increasing the fraction of dependency links or the number of initially-adopted nodes.

  1. Social contagions on interdependent lattice networks.

    PubMed

    Shu, Panpan; Gao, Lei; Zhao, Pengcheng; Wang, Wei; Stanley, H Eugene

    2017-03-16

    Although an increasing amount of research is being done on the dynamical processes on interdependent spatial networks, knowledge of how interdependent spatial networks influence the dynamics of social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on interdependent spatial networks composed of two identical two-dimensional lattices. We compare the dynamics of social contagion on networks with different fractions of dependency links and find that the density of final recovered nodes increases as the number of dependency links is increased. We use a finite-size analysis method to identify the type of phase transition in the giant connected components (GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the phase transition switches from second-order to first-order. In strong interdependent spatial networks with abundant dependency links, increasing the fraction of initial adopted nodes can induce the switch from a first-order to second-order phase transition associated with social contagion dynamics. In networks with a small number of dependency links, the phase transition remains second-order. In addition, both the second-order and first-order phase transition points can be decreased by increasing the fraction of dependency links or the number of initially-adopted nodes.

  2. Social contagions on interdependent lattice networks

    PubMed Central

    Shu, Panpan; Gao, Lei; Zhao, Pengcheng; Wang, Wei; Stanley, H. Eugene

    2017-01-01

    Although an increasing amount of research is being done on the dynamical processes on interdependent spatial networks, knowledge of how interdependent spatial networks influence the dynamics of social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on interdependent spatial networks composed of two identical two-dimensional lattices. We compare the dynamics of social contagion on networks with different fractions of dependency links and find that the density of final recovered nodes increases as the number of dependency links is increased. We use a finite-size analysis method to identify the type of phase transition in the giant connected components (GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the phase transition switches from second-order to first-order. In strong interdependent spatial networks with abundant dependency links, increasing the fraction of initial adopted nodes can induce the switch from a first-order to second-order phase transition associated with social contagion dynamics. In networks with a small number of dependency links, the phase transition remains second-order. In addition, both the second-order and first-order phase transition points can be decreased by increasing the fraction of dependency links or the number of initially-adopted nodes. PMID:28300198

  3. Increasing immunization coverage.

    PubMed

    Hammer, Lawrence D; Curry, Edward S; Harlor, Allen D; Laughlin, James J; Leeds, Andrea J; Lessin, Herschel R; Rodgers, Chadwick T; Granado-Villar, Deise C; Brown, Jeffrey M; Cotton, William H; Gaines, Beverly Marie Madry; Gambon, Thresia B; Gitterman, Benjamin A; Gorski, Peter A; Kraft, Colleen A; Marino, Ronald Vincent; Paz-Soldan, Gonzalo J; Zind, Barbara

    2010-06-01

    In 1977, the American Academy of Pediatrics issued a statement calling for universal immunization of all children for whom vaccines are not contraindicated. In 1995, the policy statement "Implementation of the Immunization Policy" was published by the American Academy of Pediatrics, followed in 2003 with publication of the first version of this statement, "Increasing Immunization Coverage." Since 2003, there have continued to be improvements in immunization coverage, with progress toward meeting the goals set forth in Healthy People 2010. Data from the 2007 National Immunization Survey showed that 90% of children 19 to 35 months of age have received recommended doses of each of the following vaccines: inactivated poliovirus (IPV), measles-mumps-rubella (MMR), varicella-zoster virus (VZB), hepatitis B virus (HBV), and Haemophilus influenzae type b (Hib). For diphtheria and tetanus and acellular pertussis (DTaP) vaccine, 84.5% have received the recommended 4 doses by 35 months of age. Nevertheless, the Healthy People 2010 goal of at least 80% coverage for the full series (at least 4 doses of DTaP, 3 doses of IPV, 1 dose of MMR, 3 doses of Hib, 3 doses of HBV, and 1 dose of varicella-zoster virus vaccine) has not yet been met, and immunization coverage of adolescents continues to lag behind the goals set forth in Healthy People 2010. Despite these encouraging data, a vast number of new challenges that threaten continued success toward the goal of universal immunization coverage have emerged. These challenges include an increase in new vaccines and new vaccine combinations as well as a significant number of vaccines currently under development; a dramatic increase in the acquisition cost of vaccines, coupled with a lack of adequate payment to practitioners to buy and administer vaccines; unanticipated manufacturing and delivery problems that have caused significant shortages of various vaccine products; and the rise of a public antivaccination movement that uses the

  4. Network Topologies Decoding Cervical Cancer

    PubMed Central

    Jalan, Sarika; Kanhaiya, Krishna; Rai, Aparna; Bandapalli, Obul Reddy; Yadav, Alok

    2015-01-01

    According to the GLOBOCAN statistics, cervical cancer is one of the leading causes of death among women worldwide. It is found to be gradually increasing in the younger population, specifically in the developing countries. We analyzed the protein-protein interaction networks of the uterine cervix cells for the normal and disease states. It was found that the disease network was less random than the normal one, providing an insight into the change in complexity of the underlying network in disease state. The study also portrayed that, the disease state has faster signal processing as the diameter of the underlying network was very close to its corresponding random control. This may be a reason for the normal cells to change into malignant state. Further, the analysis revealed VEGFA and IL-6 proteins as the distinctly high degree nodes in the disease network, which are known to manifest a major contribution in promoting cervical cancer. Our analysis, being time proficient and cost effective, provides a direction for developing novel drugs, therapeutic targets and biomarkers by identifying specific interaction patterns, that have structural importance. PMID:26308848

  5. World Input-Output Network

    PubMed Central

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  6. Small-world brain networks.

    PubMed

    Bassett, Danielle Smith; Bullmore, Ed

    2006-12-01

    Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.

  7. Stress increases periodontal inflammation

    PubMed Central

    RIVERA, CÉSAR; MONSALVE, FRANCISCO; SUAZO, IVÁN; BECERRA, JAVIERA

    2012-01-01

    This study aimed to examine the effect of chronic restraint stress (RS) on the severity of experimental periodontal disease in rats. A total of 32 male Sprague Dawley (SD) rats were divided into four groups: i) Rats receiving two treatment regimens, chronic stress induced by movement restriction in acrylic cylinders for 1–1.5 h daily and induction of experimental periodontal disease, using a nylon ligature which was placed around the first left mandibular molars (n=8); ii) induction of periodontal disease, without RS (n=8); iii) RS (n=8) and iv) control (n=8). After 15 days, blood samples were obtained, and blood glucose levels and the corticosterone concentration were measured as stress markers. The severity of periodontal disease was analyzed according to the level of gingival and bone inflammation, leading to compromise of the teeth involved. Chronic stress was induced with movement restriction (P≤0.05, Mann-Whitney U-test) and increased the severity (P≤0.05, Mann-Whitney U-test) of experimental perio dontal disease in rats, according to the level of gingival and bone inflammation around the first left mandibular molars. The results of the present study showed that RS modulates periodontal inflammation and that the rat model described herein is suitable for investigating the association between stress and periodontal disease. PMID:23226743

  8. Abductive networks applied to electronic combat

    NASA Astrophysics Data System (ADS)

    Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.

    1990-08-01

    A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since

  9. Thermoelectric properties of semiconductor nanowire networks

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate anmore » order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.« less

  10. Thermoelectric properties of semiconductor nanowire networks

    SciTech Connect

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.

  11. Noise-processing by signaling networks.

    PubMed

    Kontogeorgaki, Styliani; Sánchez-García, Rubén J; Ewing, Rob M; Zygalakis, Konstantinos C; MacArthur, Ben D

    2017-04-03

    Signaling networks mediate environmental information to the cell nucleus. To perform this task effectively they must be able to integrate multiple stimuli and distinguish persistent signals from transient environmental fluctuations. However, the ways in which signaling networks process environmental noise are not well understood. Here we outline a mathematical framework that relates a network's structure to its capacity to process noise, and use this framework to dissect the noise-processing ability of signaling networks. We find that complex networks that are dense in directed paths are poor noise processors, while those that are sparse and strongly directional process noise well. These results suggest that while cross-talk between signaling pathways may increase the ability of signaling networks to integrate multiple stimuli, too much cross-talk may compromise the ability of the network to distinguish signal from noise. To illustrate these general results we consider the structure of the signalling network that maintains pluripotency in mouse embryonic stem cells, and find an incoherent feedforward loop structure involving Stat3, Tfcp2l1, Esrrb, Klf2 and Klf4 is particularly important for noise-processing. Taken together these results suggest that noise-processing is an important function of signaling networks and they may be structured in part to optimize this task.

  12. Brain networks underlying novel metaphor production.

    PubMed

    Beaty, Roger E; Silvia, Paul J; Benedek, Mathias

    2017-02-01

    Metaphors are widely used to convey abstract concepts and emotions in the arts and everyday life. Neuroimaging research suggests that dynamic interactions among large-scale brain networks, including the default and executive control networks, support the production of such creative ideas. However, the extent to which these networks interact to support other forms of creative language production such as metaphor remains unknown. Using functional magnetic resonance imaging (fMRI), we explored this question by assessing functional interactions between brain regions during novel metaphor production. Whole-brain functional connectivity analysis revealed a distributed network associated with metaphor production, including several nodes of the default (precuneus and left angular gyrus; AG) and executive control (right intraparietal sulcus; IPS) networks. Seed-based analyses showed increased connectivity between these network hubs, and temporal connectivity analysis found early coupling of default (left AG) and salience (right anterior insula) regions that preceded later coupling of the left AG and left DLPFC, pointing to a potential switching mechanism underlying default and executive network interaction. The results extend recent work on the cooperative role of large-scale networks in creative cognition, and suggest that metaphor production involves similar brain network dynamics as other forms of goal-directed, self-generated cognition.

  13. Satellite networks for education

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Satellite based educational networking is discussed with particular attention given to the potential uses of communications satellites to help meet educational needs in the United states. Four major subject areas were covered; (1) characteristics and structure of networks, (2) definition of pressures within educational establishment that provide motivation for various types of networks, (3) examination of current educational networking status for educational radio and television, instructional television fixed services, inter- and intra-state educational communication networks, computer networks, and cable television for education, and (4) identification of possible satellite based educational telecommunication services and three alternatives for implementing educational satellite systems.

  14. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  15. Random walks on generalized Koch networks

    NASA Astrophysics Data System (ADS)

    Sun, Weigang

    2013-10-01

    For deterministically growing networks, it is a theoretical challenge to determine the topological properties and dynamical processes. In this paper, we study random walks on generalized Koch networks with features that include an initial state that is a globally connected network to r nodes. In each step, every existing node produces m complete graphs. We then obtain the analytical expressions for first passage time (FPT), average return time (ART), i.e. the average of FPTs for random walks from node i to return to the starting point i for the first time, and average sending time (AST), defined as the average of FPTs from a hub node to all other nodes, excluding the hub itself with regard to network parameters m and r. For this family of Koch networks, the ART of the new emerging nodes is identical and increases with the parameters m or r. In addition, the AST of our networks grows with network size N as N ln N and also increases with parameter m. The results obtained in this paper are the generalizations of random walks for the original Koch network.

  16. Neural networks optimally trained with noisy data

    NASA Astrophysics Data System (ADS)

    Wong, K. Y. Michael; Sherrington, David

    1993-06-01

    We study the retrieval behaviors of neural networks which are trained to optimize their performance for an ensemble of noisy example patterns. In particular, we consider (1) the performance overlap, which reflects the performance of the network in an operating condition identical to the training condition; (2) the storage overlap, which reflects the ability of the network to merely memorize the stored information; (3) the attractor overlap, which reflects the precision of retrieval for dilute feedback networks; and (4) the boundary overlap, which defines the boundary of the basin of attraction, and hence the associative ability for dilute feedback networks. We find that for sufficiently low training noise, the network optimizes its overall performance by sacrificing the individual performance of a minority of patterns, resulting in a two-band distribution of the aligning fields. For a narrow range of storage level, the network loses and then regains its retrieval capability when the training noise level increases, and we interpret that this reentrant retrieval behavior is related to competing tendencies in structuring the basins of attraction for the stored patterns. Reentrant behavior is also observed in the space of synaptic interactions, in which the replica symmetric solution of the optimal network destabilizes and then restabilizes when the training noise level increases. We summarize these observations by picturing training noises as an instrument for widening the basins of attractions of the stored patterns at the expense of reducing the precision of retrieval.

  17. Happiness is assortative in online social networks.

    PubMed

    Bollen, Johan; Gonçalves, Bruno; Ruan, Guangchen; Mao, Huina

    2011-01-01

    Online social networking communities may exhibit highly complex and adaptive collective behaviors. Since emotions play such an important role in human decision making, how online networks modulate human collective mood states has become a matter of considerable interest. In spite of the increasing societal importance of online social networks, it is unknown whether assortative mixing of psychological states takes place in situations where social ties are mediated solely by online networking services in the absence of physical contact. Here, we show that the general happiness, or subjective well-being (SWB), of Twitter users, as measured from a 6-month record of their individual tweets, is indeed assortative across the Twitter social network. Our results imply that online social networks may be equally subject to the social mechanisms that cause assortative mixing in real social networks and that such assortative mixing takes place at the level of SWB. Given the increasing prevalence of online social networks, their propensity to connect users with similar levels of SWB may be an important factor in how positive and negative sentiments are maintained and spread through human society. Future research may focus on how event-specific mood states can propagate and influence user behavior in "real life."

  18. Peeking Network States with Clustered Patterns

    SciTech Connect

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learning tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.

  19. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing i...

  20. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  1. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    SciTech Connect

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  2. Quantifying bicycle network connectivity.

    PubMed

    Lowry, Michael; Loh, Tracy Hadden

    2017-02-01

    The intent of this study was to compare bicycle network connectivity for different types of bicyclists and different neighborhoods. Connectivity was defined as the ability to reach important destinations, such as grocery stores, banks, and elementary schools, via pathways or roads with low vehicle volumes and low speed limits. The analysis was conducted for 28 neighborhoods in Seattle, Washington under existing conditions and for a proposed bicycle master plan, which when complete will provide over 700 new bicycle facilities, including protected bike lanes, neighborhood greenways, and multi-use trails. The results showed different levels of connectivity across neighborhoods and for different types of bicyclists. Certain projects were shown to improve connectivity differently for confident and non-confident bicyclists. The analysis showed a positive correlation between connectivity and observed utilitarian bicycle trips. To improve connectivity for the majority of bicyclists, planners and policy-makers should provide bicycle facilities that allow immediate, low-stress access to the street network, such as neighborhood greenways. The analysis also suggests that policies and programs that build confidence for bicycling could greatly increase connectivity.

  3. Wireless nanosensor network system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyukjun; Kegley, Lauren; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    Many types of wireless modules are being developed to enhance wireless performance with low power consumption, compact size, high data rates, and wide range coverage. However trade-offs must be taken into consideration in order to satisfy all aspects of wireless performance. For example, in order to increase the data rate and wide range coverage, power consumption should be sacrificed. To overcome these drawbacks, the paper presents a wireless client module which offers low power consumption along with a wireless receiver module that has the strength to provide high data rates and wide range coverage. Adopting Zigbee protocol in the wireless client module, the power consumption performance is enhanced so that it plays a part of the mobile device. On the other hand, the wireless receiver module, as adopting Zigbee and Wi-Fi protocol, provides high data rate, wide range coverage, and easy connection to the existing Internet network so that it plays a part of the portable device. This module demonstrates monitoring of gait analysis. The results show that the sensing data being measured can be monitored in any remote place with access to the Internet network.

  4. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  5. Medical education practice-based research networks: Facilitating collaborative research

    PubMed Central

    Schwartz, Alan; Young, Robin; Hicks, Patricia J.; APPD LEARN, For

    2016-01-01

    Abstract Background: Research networks formalize and institutionalize multi-site collaborations by establishing an infrastructure that enables network members to participate in research, propose new studies, and exploit study data to move the field forward. Although practice-based clinical research networks are now widespread, medical education research networks are rapidly emerging. Aims: In this article, we offer a definition of the medical education practice-based research network, a brief description of networks in existence in July 2014 and their features, and a more detailed case study of the emergence and early growth of one such network, the Association of Pediatric Program Directors Longitudinal Educational Assessment Research Network (APPD LEARN). Methods: We searched for extant networks through peer-reviewed literature and the world-wide web. Results: We identified 15 research networks in medical education founded since 2002 with membership ranging from 8 to 120 programs. Most focus on graduate medical education in primary care or emergency medicine specialties. Conclusions: We offer four recommendations for the further development and spread of medical education research networks: increasing faculty development, obtaining central resources, studying networks themselves, and developing networks of networks. PMID:25319404

  6. Maintenance of cultural diversity: social roles, social networks, and cognitive networks.

    PubMed

    Abrams, Marshall

    2014-06-01

    Smaldino suggests that patterns that give rise to group-level cultural traits can also increase individual-level cultural diversity. I distinguish social roles and related social network structures and discuss ways in which each might maintain diversity. I suggest that cognitive analogs of "cohesion," a property of networks that helps maintenance of diversity, might mediate the effects of social roles on diversity.

  7. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  8. Parental Social Network and Child's Friendship Network.

    ERIC Educational Resources Information Center

    Uhlendorff, Harald; Oswald, Hans

    This study analyzed the relation between the friendship networks of parents and the peer networks of their children. Subjects were 255 second- through fifth-grade children of an inner-city primary school in the western part of Berlin, Germany, who were interviewed about friends. In the interview, children were asked to name other children with…

  9. Local area networking: Ames centerwide network

    NASA Technical Reports Server (NTRS)

    Price, Edwin

    1988-01-01

    A computer network can benefit the user by making his/her work quicker and easier. A computer network is made up of seven different layers with the lowest being the hardware, the top being the user, and the middle being the software. These layers are discussed.

  10. Untangling statistical and biological models to understand network inference: the need for a genomics network ontology.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias; Haibe-Kains, Benjamin

    2014-01-01

    In this paper, we shed light on approaches that are currently used to infer networks from gene expression data with respect to their biological meaning. As we will show, the biological interpretation of these networks depends on the chosen theoretical perspective. For this reason, we distinguish a statistical perspective from a mathematical modeling perspective and elaborate their differences and implications. Our results indicate the imperative need for a genomic network ontology in order to avoid increasing confusion about the biological interpretation of inferred networks, which can be even enhanced by approaches that integrate multiple data sets, respectively, data types.

  11. The deep space network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. The functions and facilities of the Deep Space Network are emphasized.

  12. The deep space network

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The functions and facilities of the Deep Space Network are considered. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported.

  13. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  14. Class network routing

    DOEpatents

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  15. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  16. The deep space network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A report is given of the Deep Space Networks progress in (1) flight project support, (2) tracking and data acquisition research and technology, (3) network engineering, (4) hardware and software implementation, and (5) operations.

  17. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Deep Space Network progress report is presented dealing with in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  18. Evolving networks-Using past structure to predict the future

    NASA Astrophysics Data System (ADS)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  19. Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Ishmael, Johnathan; Race, Nicholas

    Wireless Mesh Networks have emerged as an important technology in building next-generation networks. They are seen to have a range of benefits over traditional wired and wireless networks including low deployment costs, high scalability and resiliency to faults. Moreover, Wireless Mesh Networks (WMNs) are often described as being autonomic with self-* (healing and configuration) properties and their popularity has grown both as a research platform and as a commercially exploitable technology.

  20. Automatic Microwave Network Analysis.

    DTIC Science & Technology

    A program and procedure are developed for the automatic measurement of microwave networks using a Hewlett-Packard network analyzer and programmable calculator . The program and procedure are used in the measurement of a simple microwave two port network. These measurements are evaluated by comparing with measurements on the same network using other techniques. The programs...in the programmable calculator are listed in Appendix 1. The step by step procedure used is listed in Appendix 2. (Author)