Science.gov

Sample records for avena coleoptile elongation

  1. The outer epidermis of Avena and maize coleoptiles is not a unique target for auxin in elongation growth

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1991-01-01

    A controversy exists as to whether or not the outer epidermis in coleoptiles is a unique target for auxin in elongation growth. The following evidence indicates that the outer epidermis is not the only auxin-responsive cell layer in either Avena sativa L. or Zea mays L. coleoptiles. Coleoptile sections from which the epidermis has been removed by peeling elongate in response to auxin. The magnitude of the response is similar to that of intact sections provided the incubation solution contains both auxin and sucrose. The amount of elongation is independent of the amount of epidermis removed. Sections of oat coleoptiles from which the epidermis has been removed from one side are nearly straight after 22 h in auxin and sucrose, despite extensive growth of the sections. These data indicate that the outer epidermis is not a unique target for auxin in elongation growth, at least in Avena and maize coleoptiles.

  2. A dual role of turgor pressure in auxin-induced cell elongation in Avena coleoptiles.

    PubMed

    Cleland, R

    1967-06-01

    1. Auxin-induced wall loosening, as measured by the Instron extensometer technique, and the conversion of wall loosening into extension, as measured by cell elongation, differ in their relationship to turgor pressure (TP). Wall loosening can occur at any TP greater than zero while rapid cell extension only occurs when the TP exceeds a critical value (Pc). 2. The amount of auxin-induced increase in wall extensibility is proportional to the turgor pressure in the region between Pc and zero. In the absence of auxin, wall extensibility decreases slightly when TP exceeds Pc. 3. A reassessment of the turgor pressure of intact Avena coleoptiles has shown that it is greater than Pc. The TP of intact Avena coleoptiles is sufficient to permit turgor-driven cell elongation to occur. 4. It is proposed that wall extension involves two steps, each of which requires turgor pressure. Covalent bonds which render the wall rigid are broken only when the wall is under tension and when auxin is present in the tissue. Extension of the wall then requires that hydrogen bonding between polymers be broken by a TP in excess of Pc.

  3. Bound Indoleacetic Acid in Avena Coleoptiles 1

    PubMed Central

    Winter, Alan; Thimann, Kenneth V.

    1966-01-01

    When C14 carboxyl indoleacetic acid (IAA) is transported through Avena coleoptile sections a fraction of the activity becomes bound. The nature of this bound IAA has been investigated. Upon extraction with solvents and chromatography a substance having the RF of IAA in 4 solvents was detected. No evidence could be found for the formation of indoleacetyl conjugates. In pea stem sections subjected to a similar experimental regime good evidence was obtained for the occurrence of conjugates. When IAA was supplied exogenously to coleoptile sections floating in solutions the occurrence of conjugates was shown to be dependent on the presence of the primary leaf. In its absence no conjugates could be detected. On grinding coleoptile sections and subsequent centrifugation at 240 × g the radioactivity was found to be in the tissue fraction as opposed to the supernatant. The radioactivity cannot be removed from the tissue by extraction with water, buffer solution or treatment with ribonuclease. It is readily removed by 10% urea, crystalline trypsin and chymotrypsin. It is therefore concluded that IAA becomes bound to a protein. Bound IAA does not appear to be able to cause growth in Avena coleoptile sections. PMID:16656259

  4. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  5. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  6. Characteristics and implications of prolonged fusicoccin-induced growth of Avena coleoptile sections

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1994-01-01

    A study has been made of the prolonged growth of Avena coleoptile sections in response to fusicoccin (FC), a phytotoxin that promotes apoplastic acidification. The final amount of FC-induced growth is a function of the FC concentration. Removal of the epidermis speeds up the initial rate of elongation and shortens the duration of the response, without affecting the total amount of extension. A suboptimal FC concentration (7 x 10(-8) M) which induces the same rate of proton excretion as does optimal indoleacetic acid (IAA) (1 x 10(-5) M), causes elongation which is 60-75% of that induced by IAA in 4 h or 50-65% in 7 h. This suggests that acid-induced extension could make a major contribution to auxin-induced growth for at least 7 h.

  7. Comparison of the lipid composition of oat root and coleoptile plasma membranes. [Avena sativa L

    SciTech Connect

    Sandstrom, R.P. ); Cleland, R.E. )

    1989-07-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole % phospholipid, 25 mole % glycolipid, and 25 mole % free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole %, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  8. Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium.

    PubMed

    Galland, Paul

    2002-09-01

    The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work. PMID:12244443

  9. Osmoregulation in the Avena coleoptile in relation to auxin and growth

    SciTech Connect

    Stevenson, T.T.; Cleland, R.E.

    1981-04-01

    A study has been made of the effects of auxin and growth on the ability of Avena coleoptile sections to osmoregulate, i.e., to take up solutes so as to maintain their osmotic concentration, turgor pressure, and growth rate. The high auxin-induced growth rate of Avena coleoptiles is maintained when cells are provided sucrose, glucose, NaCl, or KCl as a source of absorbable solutes, but not when 2-deoxy-O-glucose or 3-O-methyl-O-glucose is used. In the absence of auxin, cells take up solutes from a 2% sucrose solution and the osmotic concentration increases. Solute uptake is not stimulated by auxin when growth is inhibited osmotically or by calcium ions. Solute uptake appears to have two components: a basal rate, independent of auxin or growth, and an additional uptake which is proportional to growth. Osmoregulation of sections may be limited by the rate of entry of solutes into the tissue rather than by their rate of uptake into the cells.

  10. Calcium bridges are not load-bearing cell-wall bonds in Avena coleoptiles

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1989-01-01

    I examined the ability of frozen-thawed Avena sativa L. coleoptile sections under applied load to extend in response to the calcium chelators ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin II). Addition of 5 mM EGTA to weakly buffered (0.1 mM, pH 6.2) solutions of 2(N-morpholino) ethanesulfonic acid (Mes) initiated rapid extension and wall acidification. When the buffer strength was increased (e.g. from 20 to 100 mM Mes, pH 6.2) EGTA did not initiate extension nor did it cause wall acidification. At 5 mM Quin II failed to stimulate cell extension or wall acidification at all buffer molarities tested (0.1 to 100 mM Mes). Both chelators rapidly and effectively removed Ca2+ from Avena sections. These data indicate that Ca2+ chelation per se does not result in loosening of Avena cells walls. Rather, EGTA promotes wall extension indirectly via wall acidification.

  11. Gravitropic responses of the Avena coleoptile in space and on clinostats. I. Gravitropic response thresholds

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Johnsson, A.; Heathcote, D.

    1995-01-01

    We conducted a series of gravitropic experiments on Avena coleoptiles in the weightlessness environment of Spacelab. The purpose was to test the threshold stimulus, reciprocity rule and autotropic reactions to a range of g-force stimulations of different intensities and durations The tests avoided the potentially complicating effects of earth's gravity and the interference from clinostat ambiguities. Using slow-speed centrifuges, coleoptiles received transversal accelerations in the hypogravity range between 0.l and 1.0 g over periods that ranged from 2 to 130 min. All responses that occurred in weightlessness were compared to clinostat experiments on earth using the same apparatus. Characteristic gravitropistic response patterns of Atuena were not substantially different from those observed in ground-based experiments. Gravitropic presentation times were extrapolated. The threshold at 1.0 g was less than 1 min (shortest stimulation time 2 min), in agreement with values obtained on the ground. The least stimulus tested, 0.1 g for 130 min, produced a significant response. Therefore the absolute threshold for a gravitropic response is less than 0.1 g.

  12. Gravitropic responses of the Avena coleoptile in space and on clinostats. I. Gravitropic response thresholds.

    PubMed

    Brown, A H; Chapman, D K; Johnsson, A; Heathcote, D

    1995-09-01

    We conducted a series of gravitropic experiments on Avena coleoptiles in the weightlessness environment of Spacelab. The purpose was to test the threshold stimulus, reciprocity rule and autotropic reactions to a range of g-force stimulations of different intensities and durations The tests avoided the potentially complicating effects of earth's gravity and the interference from clinostat ambiguities. Using slow-speed centrifuges, coleoptiles received transversal accelerations in the hypogravity range between 0.l and 1.0 g over periods that ranged from 2 to 130 min. All responses that occurred in weightlessness were compared to clinostat experiments on earth using the same apparatus. Characteristic gravitropistic response patterns of Atuena were not substantially different from those observed in ground-based experiments. Gravitropic presentation times were extrapolated. The threshold at 1.0 g was less than 1 min (shortest stimulation time 2 min), in agreement with values obtained on the ground. The least stimulus tested, 0.1 g for 130 min, produced a significant response. Therefore the absolute threshold for a gravitropic response is less than 0.1 g.

  13. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  14. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.

    PubMed

    Kutschera, Ulrich; Wang, Zhi-Yong

    2016-01-01

    The shoot of grass coleoptiles consists of the mesocotyl, the node, and the coleoptile (with enclosed primary leaf). Since the 1930s, it is known that auxin (indole-3-acetic acid, IAA), produced in the tip of the coleoptile, is the central regulator of turgor-driven organ growth. Fifty years ago, it was discovered that antibiotics that suppress protein biosynthesis, such as cycloheximide, inhibit auxin (IAA)-induced cell elongation in excised sections of coleoptiles and stems. Based on such inhibitor studies, the concept of "growth-limiting proteins (GLPs)" emerged that was subsequently elaborated and modified. Here, we summarize the history of this idea with reference to IAA-mediated shoot elongation in maize (Zea mays) seedlings and recent studies on the molecular mechanism underlying auxin action in Arabidopsis thaliana. In addition, the analysis of light-induced inhibition of shoot elongation in intact corn seedlings is discussed. We propose a concept to account for the GLP-mediated epidermal wall-loosening process in coleoptile segments and present a more general model of growth regulation in intact maize seedlings. Quantitative proteomic and genomic studies led to a refinement of the classic "GLP concept" to explain phytohormone-mediated cell elongation at the molecular level (i.e., the recently proposed theory of a "central growth regulation network," CGRN). Novel data show that mesocotyl elongation not only depends on auxin but also on brassinosteroids (BRs). However, the biochemical key processes that regulate the IAA/BR-mediated loosening of the expansion-limiting epidermal wall(s) have not yet been elucidated. PMID:25772679

  15. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.

    PubMed

    Kutschera, Ulrich; Wang, Zhi-Yong

    2016-01-01

    The shoot of grass coleoptiles consists of the mesocotyl, the node, and the coleoptile (with enclosed primary leaf). Since the 1930s, it is known that auxin (indole-3-acetic acid, IAA), produced in the tip of the coleoptile, is the central regulator of turgor-driven organ growth. Fifty years ago, it was discovered that antibiotics that suppress protein biosynthesis, such as cycloheximide, inhibit auxin (IAA)-induced cell elongation in excised sections of coleoptiles and stems. Based on such inhibitor studies, the concept of "growth-limiting proteins (GLPs)" emerged that was subsequently elaborated and modified. Here, we summarize the history of this idea with reference to IAA-mediated shoot elongation in maize (Zea mays) seedlings and recent studies on the molecular mechanism underlying auxin action in Arabidopsis thaliana. In addition, the analysis of light-induced inhibition of shoot elongation in intact corn seedlings is discussed. We propose a concept to account for the GLP-mediated epidermal wall-loosening process in coleoptile segments and present a more general model of growth regulation in intact maize seedlings. Quantitative proteomic and genomic studies led to a refinement of the classic "GLP concept" to explain phytohormone-mediated cell elongation at the molecular level (i.e., the recently proposed theory of a "central growth regulation network," CGRN). Novel data show that mesocotyl elongation not only depends on auxin but also on brassinosteroids (BRs). However, the biochemical key processes that regulate the IAA/BR-mediated loosening of the expansion-limiting epidermal wall(s) have not yet been elucidated.

  16. Osmoregulation in the Avena coleoptile: control of solute uptake in peeled sections

    SciTech Connect

    Stevenson, T.T.; Cleland, R.E.

    1982-01-01

    Peeled Avena sativa coleoptile sections have been used to study the control of solute uptake under conditions where the uptake is not limited by the cuticular barrier. In the presence of 2% sucrose, auxin enhances the rate at which the total osmotic solutes increase, but this appears to be a response to the increased growth rate, inasmuch as the auxin effect is eliminated when growth is inhibited osmotically. When sections are incubated in sucrose or in 10 millimolar NaCl, the osmotic concentration increases until a plateau is reached after 8 to 24 hours. Auxin has no effect on the initial rate of increase in osmotic concentration. This difference in steady-state osmotic concentration is, in part, a response to auxin itself, as it persists when auxin-induced growth is inhibited osmotically. The upper limit for osmotic concentration does not appear to be determined by the turgor pressure, inasmuch as a combination of sucrose and NaCl gave a higher plateau osmotic concentration than did either solute alone. The authors suggest that the rate of solute uptake is determined by the availability of absorbable solutes and by the surface area exposed to the solutes. Each absorbable solute reaches a maximum internal concentration independent of other absorbable solutes; the steady-state osmotic concentration is simply the sum of these individual internal concentrations.

  17. Cell Wall Architecture of the Elongating Maize Coleoptile1

    PubMed Central

    Carpita, Nicholas C.; Defernez, Marianne; Findlay, Kim; Wells, Brian; Shoue, Douglas A.; Catchpole, Gareth; Wilson, Reginald H.; McCann, Maureen C.

    2001-01-01

    The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans (GAXs), and mixed-linkage β-glucans, together with smaller amounts of xyloglucans, glucomannans, pectins, and a network of polyphenolic substances. Chemical imaging by Fourier transform infrared microspectroscopy revealed large differences in the distributions of many chemical species between different tissues of the maize (Zea mays) coleoptile. This was confirmed by chemical analyses of isolated outer epidermal tissues compared with mesophyll-enriched preparations. Glucomannans and esterified uronic acids were more abundant in the epidermis, whereas β-glucans were more abundant in the mesophyll cells. The localization of β-glucan was confirmed by immunocytochemistry in the electron microscope and quantitative biochemical assays. We used field emission scanning electron microscopy, infrared microspectroscopy, and biochemical characterization of sequentially extracted polymers to further characterize the cell wall architecture of the epidermis. Oxidation of the phenolic network followed by dilute NaOH extraction widened the pores of the wall substantially and permitted observation by scanning electron microscopy of up to six distinct microfibrillar lamellae. Sequential chemical extraction of specific polysaccharides together with enzymic digestion of β-glucans allowed us to distinguish two distinct domains in the grass primary wall. First, a β-glucan-enriched domain, coextensive with GAXs of low degrees of arabinosyl substitution and glucomannans, is tightly associated around microfibrils. Second, a GAX that is more highly substituted with arabinosyl residues and additional glucomannan provides an interstitial domain that interconnects the β-glucan-coated microfibrils. Implications for current models that attempt to explain the biochemical and biophysical mechanism of wall loosening during cell growth are discussed. PMID:11598229

  18. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin

    NASA Technical Reports Server (NTRS)

    Veluthambi, K.; Poovaiah, B. W.

    1986-01-01

    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  19. [The influence of high pressure on the 3-indoleacetic-acid-induced curvature of Avena coleoptiles in the Went-test].

    PubMed

    Chrometzka, P

    1967-12-01

    1. High atmospheric pressure causes an increase of the 3-indoleacetic-acid-induced curvature of Avena coleoptiles in the Went-test, regardless of whether the applied gas is nitrogen, hydrogen, oxygen, or air. 2. The highest increase was caused by high pressure of oxygen, the lowest by lack of oxygen. 3. The high pressure effect was also observed with coleoptiles which were treated 20 hours prior to the test and which were then kept under normal pressure. 4. High pressure of oxygen for a long period (20 hours) had a poisonous effect on the coleoptiles. They ceased to grow. Preliminary studies have shown that the respiration is enhanced if the coleoptiles have been kept under high pressure. PMID:24554325

  20. Gravitropic responses of the Avena coleoptile in space and on clinostats. II. Is reciprocity valid?

    NASA Technical Reports Server (NTRS)

    Johnsson, A.; Brown, A. H.; Chapman, D. K.; Heathcote, D.; Karlsson, C.

    1995-01-01

    Experiments were undertaken to determine if the reciprocity rule is valid for gravitropic responses of oat coleoptiles in the acceleration region below 1 g. The rule predicts that the gravitropic response should be proportional to the product of the applied acceleration and the stimulation time. Seedlings were cultivated on 1 g centrifuges and transferred to test centrifuges to apply a transverse g-stimulation. Since responses occurred in microgravity, the uncertainties about the validity of clinostat simulation of weightlessness was avoided. Plants at two stages of coleoptile development were tested. Plant responses were obtained using time-lapse video recordings that were analyzed after the flight. Stimulus intensities and durations were varied and ranged from 0.1 to 1.0 g and from 2 to 130 min, respectively. For threshold g-doses the reciprocity rule was obeyed. The threshold dose was of the order of 55 g s and 120 g s, respectively, for two groups of plants investigated. Reciprocity was studied also at bending responses which are from just above the detectable level to about 10 degrees. The validity of the rule could not be confirmed for higher g-doses, chiefly because the data were more variable. It was investigated whether the uniformity of the overall response data increased when the gravitropic dose was defined as (gm x t) with m-values different from unity. This was not the case and the reciprocity concept is, therefore, valid also in the hypogravity region. The concept of gravitropic dose, the product of the transverse acceleration and the stimulation time, is also well-defined in the acceleration region studied. With the same hardware, tests were done on earth where responses occurred on clinostats. The results did not contradict the reciprocity rule but scatter in the data was large.

  1. Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: a quantitative proteomic analysis.

    PubMed

    Kutschera, U; Deng, Z; Oses-Prieto, J A; Burlingame, A L; Wang, Z-Y

    2010-05-01

    The use of the grass coleoptile for the elucidation of the mechanism of cell elongation is a legacy of the classic experiments of Charles Darwin, who described this organ in 1880 as a "reddish sheath". In this study we quantified the growth of intact, etiolated rye (Secale cereale L.) seedlings and selected 3-day-old (growing) vs. 4-day-old (pierced) coleoptiles for a comparative analysis. Upon emergence of the reddish primary leaf on day 4 after sowing, growth slowed down by 70% and the sensitivity of the coleoptile to auxin (Indole-3-acetic acid) was lost, but turgor pressure was maintained. A quantitative comparison of the proteome (microsomal- and cytoplasmic protein fractions, respectively), using the two-dimensional difference gel electrophoresis (2-D DIGE)-technique, revealed that at least 28 proteins (spots) were differentially up- or down-regulated more than 1.5-fold. Eight of these proteins were identified by reverse-phase liquid chromatography-electrospray tandem mass spectrometry. Cessation of coleoptile growth was associated with the down-regulation (- 81 %) of subunit E of the vacuolar H(+)-ATPase (V-ATPase) and the up-regulation of enzymes involved in lignification (phenylalanine ammonia lyase) and wounding responses (xylanase inhibitor; two lipoxygenases). We conclude that the degradation of the V-ATPases, electrogenic proton pumps on the tonoplast and the membranes of the Golgi- dependent secretory pathway, may be the cause for the cessation of growth in turgid coleoptiles and the associated loss of auxin sensitivity. However, the intracellular signals that cause these proteomic changes have not yet been identified.

  2. Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport.

    PubMed

    Goldsmith, M H

    1966-01-01

    Acropetal and basipetal movement of indole-3-acetic acid through coleoptiles of Avena sativa L. was studied. Sections 10-mm long were supplied with either apical or basal sources containing C(14) carboxyl-labeled indoleacetic acid (10(-5)m). Anaerobic conditions inhibit metabolically dependent movement (transport) thus reducing basipetal but not acropetal movement. Total inhibition of basipetal transport abolishes the polarity of auxin uptake and movement. The nonpolar movement that remains in anaerobic sections is free diffusion with an average diffusion coefficient of approximately 1 x 10(-4) mm(2) per second. During an 8-hour diffusion, at least the first millimeter of the section comes to equilibrium at approximately the same concentration as the donor.Acropetal movement is probably by diffusion and is accompanied by an aerobic immobilization of indoleacetic acid that increases more than proportionally to concentration. Anaerobic conditions totally prevent this immobilization and reduce acropetal uptake but not the amount of indoleacetic acid moving into the upper parts of the section; there is, therefore, no evidence for acropetal transport. Polarity of auxin movement in aerobic coleoptile sections is achieved by strict basipetal transport of auxin. The basipetal transport may intensify the polarity by recycling auxin that is moving acropetally.

  3. Elongation growth of the leaf sheath base of Avena sativa seedlings: regulation by hormones and sucrose

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1991-01-01

    The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.

  4. Gravitropism and phototropism of oat coleoptiles: post-tropic autostraightening and tissue shrinkage during tropism.

    PubMed

    Tarui, Y; Iino, M

    1999-01-01

    We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30 degrees or 90 degrees for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 micromoles m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 micromoles m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 micromoles m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage. PMID:11542618

  5. Gravitropism and phototropism of oat coleoptiles: Post-tropic autostraightening and tissue shrinkage during tropism

    NASA Astrophysics Data System (ADS)

    Tarui, Y.; Iino, M.

    1999-01-01

    We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30° or 90° for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 μmol m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 μmol m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 μmol m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage.

  6. Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid

    NASA Technical Reports Server (NTRS)

    Daye, S.; Biro, R. L.; Roux, S. J.

    1984-01-01

    A treatment period as brief as 8 h in 10(-3) M EGTA completely blocks gravitropism in 70-80% of the treated coleoptiles of oats (Avena sativa L. cv. Garry) without inhibiting growth. Only about 10% of the plants perfused in water failed to exhibit gravitropism. Subsequent perfusion of EGTA-treated plants with calcium completely restores gravitropism; post-perfusion with water does not. After perfusion in water for 10 h, gravistimulated oat coleoptile segments show the same asymmetry of 45Ca distribution as reported earlier for non-perfused coleoptiles and sunflower hypocotyls. The degree of this asymmetry is reduced in those coleoptiles partially inhibited by perfusion in EGTA and is essentially absent in those coleoptiles completely inhibited by EGTA. The fact that calcium reverses the inhibitory effects of EGTA on gravitropism indicates that the inhibition was probably due to a reduction in the availability of free calcium required for one or more of the transduction steps of gravitropism.

  7. Gravitational Compensation and the Phototropic Response of Oat Coleoptiles 1

    PubMed Central

    Shen-Miller, J.; Gordon, S. A.

    1967-01-01

    Avena seedlings were germinated and grown while continuously rotated on the horizontal axis of a clinostat. The coleoptiles of these gravity-compensated plants were phototropically more responsive than those of plants rotated on a vertical axis. When the plants were compensated after unilateral irradiation, phototropic curvature of the shoot progressed for the next 6 hours, with the rate of curving decreasing about 3 hours after irradiation. The decrease in rate was less in the plants gravity-compensated before irradiation than in those vertically rotated. In the period 70 to 76 hours after planting, the growth rate of the compensated coleoptiles was significantly less than that of the vertically rotated seedlings. The greater phototropic curvature, the decreased growth rate, and the slower rate of straightening of the curved, compensated shoot can be correlated with several consequences of compensation: an increase in sensitivity to auxin, a lowering of auxin content in the coleoptile tip, and possibly, from an interaction between compensation and phototropic stimulation, an enhanced difference in auxin transport between the illuminated and shaded halves of the unilaterally irradiated shoot. The phototropic response of the vertically rotated seedling was significantly different from that of the vertical stationary, indicating the importance of vertically rotated controls in clinostat experiments. Images PMID:16656514

  8. Gravitropism of maize and rice coleoptiles: dependence on the stimulation angle.

    PubMed

    Iino, M; Tarui, Y; Uematsu, C

    1996-10-01

    Gravitropism of maize and rice coleoptiles was investigated with respect to its dependence on the angle of displacement or the initial stimulation angle (ISA). Close examination of curvature kinetics and the response to a drop in stimulation angle (SA) indicated that the gravtropic response during an early but substantial part of the curvature development is directly related to the ISA, there being no effect of the reduction of SA resulting from the curvature response itself. On the basis of this finding, the relationship between the steady SA and the curvature rate was determined. In maize, the curvature rate increased linearly with the sines of SAs up to an SA of 90 degrees. Rice coleoptiles, however, showed a saturation curve in the same range of SAs. The saturation profile was nearly identical between coleoptiles grown in air and those submerged in water, although the latter elongated much faster. Rice coleoptiles appeared to be far more sensitive to gravity than maize coleoptiles. It is concluded that the sensitivity to gravity, assessed through dependence on ISA, is a property inherent to a given gravitropic organ. Long-term measurements of curvature indicated that the coleoptiles bend back past the vertical. This overshooting was marked in submerged rice coleoptiles. PMID:11539324

  9. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  10. Osmoregulation by Oat Coleoptile Protoplasts (Effect of Auxin).

    PubMed Central

    Keller, C. P.; Van Volkenburgh, E.

    1996-01-01

    The effect of auxin on the physiology of protoplasts from growing oat (Avena sativa L.) coleoptiles was investigated. Protoplasts, isolated iso-osmotically from peeled oat coleoptile segments, were found to swell steadily over many hours. Incubated in 1 mM CaCl2, 10 mM KCl, 10 mM 2-(morpholino)ethanesulfonic acid/1,3-bis-[tris(hydroxymethyl)methylamino]propane, pH 6.5, and mannitol to 300 milliosmolal, protoplasts swelled 28.9% [plus or minus] 2.0 (standard error) after 6 h. Addition of 10 [mu]M indoleacetic acid (IAA) increased swelling to 41.1% [plus or minus] 2.1 (standard error) after 6 h. Swelling (in the absence of IAA) was partially dependent on K+ in the bath medium, whereas auxin-induced swelling was entirely dependent on K+. Replacement of mannitol in the bath by Glc increased swelling (in the absence of IAA) and eliminated auxin-induced swelling. Swelling with or without IAA was inhibited by osmotic shock and was completely reversed by 0.1 mM NaN3. Sodium orthovanadate, applied at 0.5 mM, only gradually inhibited swelling under various conditions but was most effective with protoplasts prepared from tissue preincubated in vanadate. Our data are interpreted to suggest that IAA increases the conductance of the plasma membrane to K+. PMID:12226237

  11. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism.

    PubMed

    Philippar, K; Fuchs, I; Luthen, H; Hoth, S; Bauer, C S; Haga, K; Thiel, G; Ljung, K; Sandberg, G; Bottger, M; Becker, D; Hedrich, R

    1999-10-12

    Auxin-induced growth of coleoptiles depends on the presence of potassium and is suppressed by K+ channel blockers. To evaluate the role of K+ channels in auxin-mediated growth, we isolated and functionally expressed ZMK1 and ZMK2 (Zea mays K+ channel 1 and 2), two potassium channels from maize coleoptiles. In growth experiments, the time course of auxin-induced expression of ZMK1 coincided with the kinetics of coleoptile elongation. Upon gravistimulation of maize seedlings, ZMK1 expression followed the gravitropic-induced auxin redistribution. K+ channel expression increased even before a bending of the coleoptile was observed. The transcript level of ZMK2, expressed in vascular tissue, was not affected by auxin. In patch-clamp studies on coleoptile protoplasts, auxin increased K+ channel density while leaving channel properties unaffected. Thus, we conclude that coleoptile growth depends on the transcriptional up-regulation of ZMK1, an inwardly rectifying K+ channel expressed in the nonvascular tissue of this organ. PMID:10518597

  12. Changes in Ion Fluxes During Phototropic Bending of Etiolated Oat Coleoptiles

    PubMed Central

    BABOURINA, OLGA; GODFREY, LEITH; VOLTCHANSKII, KONSTANTIN

    2004-01-01

    • Background and Aims This work has been conducted to assist theoretical modelling of the different stages of the blue light (BL)‐induced phototropic signalling pathway and ion transport activity across plant membranes. Ion fluxes (Ca2+, H+, K+ and Cl–) in etiolated oat coleoptiles have been measured continuously before and during unilateral BL exposure. • Methods Changes in ion fluxes at the illuminated (light) and shadowed (dark) sides of etiolated oat coleoptiles (Avena sativa) were studied using a non‐invasive ion‐selective microelectrode technique (MIFE). The bending response was also measured continuously, and correlations between the changes in various ion fluxes and bending response have been investigated. For each ion the difference (Δ) between the magnitudes of flux at the light and dark sides of the coleoptile was calculated. • Key results Plants that demonstrated a phototropic bending response also demonstrated Ca2+ influx into the light side approximately 20 min after the start of BL exposure. This is regarded as part of the perception and transduction stages of the BL‐induced signal cascade. The first 10 min of bending were associated with substantial influx of H+, K+ and Cl– into the light (concave) side of the coleoptiles. • Conclusions The data suggest that Ca2+ participates in the signalling stage of the BL‐induced phototropism, whereas the phototropic bending response is linked to changes in the transport of H+, K+ and Cl–. PMID:15155378

  13. Gravitropism of oat and wheat coleoptiles: dependence on the stimulation angle and involvement of autotropic straightening.

    PubMed

    Tarui, Y; Iino, M

    1997-12-01

    Gravitropism of oat (Avena sativa L.) and wheat (Triticum aestivum L.) coleoptiles was investigated in relation to the displacement angle or to the initially set stimulation angle (SA). We measured curvature rates at the early phase of curvature, before it was affected by the drop in SA resulting from the curvature response itself. The plot of the rates against the sines of initial SAs revealed similar curves for oats and wheat, which approached saturation as the sine increased to unity. The two species and previously analyzed rice [Iino et al. (1996) Plant Cell Environ. 19: 1160] appeared to have similar gravisensitivities. Initial SAs below and over 90 degrees yielded comparable rates when the sine values were the same, indicating that the extent of gravitropism is determined by the gravity component perpendicular to the organ's long axis. Long-term curvature kinetics at different SAs indicated that the net curvature rate dropped sharply before the tip reached the vertical position and then the tip approached the vertical slowly, with clear oscillatory movements in the case of wheat. During this late curvature phase, the coleoptile straightened gradually, although none of its parts had yet reached the vertical. When rotated on horizontal clinostats or displaced upwards to reduce SA in the late curvature phase, coleoptiles bent in the opposite direction. These results demonstrated that autotropism counteracts gravitropism to straighten coleoptiles. PMID:11536867

  14. Ethylene-Induced Polyamine Accumulation in Rice (Oryza sativa L.) Coleoptiles 1

    PubMed Central

    Lee, Tse-Min; Chu, Chun

    1992-01-01

    Effects of ethylene on free polyamine biosynthesis in rice (Oryza sativa L. cv Taichung Native 1) coleoptiles were investigated in sealed and aerobic conditions. In sealed conditions, putrescine increased significantly and coincided with ethylene accumulation. Application of ethylene in sealed containers promoted putrescine accumulation over that in sealed controls. This ethylene-enhanced putrescine accumulation was inhibited by the ethylene action inhibitor 2,5-norbornadiene at 4000 μL/L. In aerobic conditions, ethylene and 1-aminocyclopropane-1-carboxylic acid also induced putrescine accumulation. Activity of arginine decarboxylase (EC 4.1.1.19) and S-adenosylmethionine decarboxylase (EC 4.1.1.50) increased on exposure to ethylene in aerobic conditions. Ornithine decarboxylase (EC 4.1.1.17) activity, however, remained unchanged. The ethylene-induced putrescine accumulation was inhibited by 5 × 10−4m α-difluromethylarginine, but not by 5 × 10−4m α-difluromethylornithine. Apparently, arginine decarboxylase, not ornithine decarboxylase, mediates the ethylene-induced putrescine accumulation. The increased S-adenosylmethioinine decarboxylase activity, however, did not result in a significant spermidine/spermine accumulation. In ethylene-treated coleoptiles, the accumulation of putrescine paralleled the increase of coleoptile length in both sealed and aerobic conditions. α-difluromethylarginine inhibited ethylene induced putrescine accumulation and coleoptile elongation. It seems that putrescine biosynthesis might be involved in the ethylene-induced elongation of rice coleoptiles. PMID:16652953

  15. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium.

    PubMed

    Gehring, C A; Williams, D A; Cody, S H; Parish, R W

    1990-06-01

    Phototropism and gravitropism in the shoots and roots of higher plants are the result of asymmetric growth. This is explained by the redistribution of growth regulators following exposure to gravity or unilateral light (the Cholodny-Went hypothesis). The positive phototropism and the negative geotropism of grass seedling coleoptiles are believed to result from lateral movement of auxin from the irradiated to the shaded side and from the upper to the lower side, respectively. Many physiological processes in plants, including auxin-induced cell elongation, are reported to be under the control of calcium. Added auxin triggers oscillations in cytosolic free calcium ([Ca2+]cyt) and cytosolic pH (pHcyt) in epidermal cells of maize coleoptiles. Until recently, it has not been possible to visualize these changes spatially with the commonly used fluorescent cation indicators. Using a scanning laser confocal microscope, a new visible wavelength Ca2+ probe fluo-3 and the fluorescent pH indicator BCECF, we have recorded rapid light-induced increases in [Ca2+]cyt and a lowering of pHcyt of cells on the shaded side of maize coleoptiles. In horizontally orientated coleoptiles, [Ca2+]cyt increases and pHcyt decreases in the more rapidly elongating cells on the lower side. For the first time, rapid changes in [Ca2+]cyt and pHcyt are correlated directly with increases in cell elongation stimulated by light and gravity.

  16. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  17. Effect of cadmium on germination, coleoptile and root growth of barley seeds in the presence of gibberellic acid and kinetin.

    PubMed

    Munzuroglu, Omer; Zengin, Fikriye Kirbag

    2006-10-01

    Effect of cadmium on barley seeds treated with kinetin and gibberellic acid was investigated. As usual, cadmium has inhibited seed germination, and showed important inhibitory effects on roots and coleoptile growth after germination. In general, increase in cadmium concentration caused a greater inhibition of germination, root and coleoptile growth. The adverse effect of cadmium on root and coleoptile growth was more pronounced than that on germination. While testa was pierced by radicle (an indication of germination), no root or coleoptile development was observed above at concentration of 3-9.5 mM CdCl2xH2O. Low concentrations of cadmium have inhibited the root growth more than it did on coleoptile growth. Treatment of seeds with gibberellic acid and kinetin did not show any significant difference on the effect of cadmium in germination. However, inhibition of coleoptile elongation by cadmium has decreased a very much after kinetin application. The same result, although with lower rates when compared to kinetin, has been obtained for GA3 as well. In addition, the inhibitory effect of cadmium on root growth increased even more after kinetin application. The results have been found statistically significant through the least significant different (LSD) test at levels ofp < 0.05 and p < 0.01.

  18. Auxin Transport in Zea mays Coleoptiles II. Influence of Light on the Transport of Indoleacetic Acid-2-14C

    PubMed Central

    Naqvi, S. M.; Gordon, S. A.

    1967-01-01

    The effect of bilateral irradiation with white light (1000 Meter Candle Sec) on the basipetal transport of auxin has been investigated. Illumination of either the intact shoot or the excised coleoptile tip of the Zea seedling, decreased the amount of diffusible auxin obtained from the tip, and decreased Avena curvature response to unilaterally applied indoleacetic acid. Irradiation of the intact Zea seedling did not affect the absorption of 14C-labeled indoleacetic acid from an agar block subsequently placed on the decapitated coleoptile. However, light caused a significant decrease in the amount of labeled auxin basipetally transported, without affecting materially the velocity of that transport. These and other observations are interpreted as support for the hypothesis that the primary hormonal phenomenon in first-positive phototropism is a light-induced impairment in the basipetal transport of auxin. PMID:16656477

  19. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis.

    PubMed

    Edwards, Joshua M; Roberts, Thomas H; Atwell, Brian J

    2012-07-01

    Oxygen deprivation limits the energy available for cellular processes and yet no comprehensive ATP budget has been reported for any plant species under O(2) deprivation, including Oryza sativa. Using 3-d-old coleoptiles of a cultivar of O. sativa tolerant to flooding at germination, (i) rates of ATP regeneration in coleoptiles grown under normoxia (aerated solution), hypoxia (3% O(2)), and anoxia (N(2)) and (ii) rates of synthesis of proteins, lipids, nucleic acids, and cell walls, as well as K(+) transport, were determined. Based on published bioenergetics data, the cost of synthesizing each class of polymer and the proportion of available ATP allocated to each process were then compared. Protein synthesis consumed the largest proportion of ATP synthesized under all three oxygen regimes, with the proportion of ATP allocated to protein synthesis in anoxia (52%) more than double that in normoxic coleoptiles (19%). Energy allocation to cell wall synthesis was undiminished in hypoxia, consistent with preferential elongation typical of submerged coleoptiles. Lipid synthesis was also conserved strongly in O(2) deficits, suggesting that membrane integrity was maintained under anoxia, thus allowing K(+) to be retained within coleoptile cells. Rates of protein synthesis in coleoptiles from rice cultivars with contrasting tolerance to oxygen deficits (including mutants deficient in fermentative enzymes) confirmed that synthesis and turnover of proteins always accounted for most of the ATP consumed under anoxia. It is concluded that successful establishment of rice seedlings under water is largely due to the capacity of coleoptiles to allocate energy to vital processes, particularly protein synthesis.

  20. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments

    PubMed Central

    Burdach, Zbigniew; Kurtyka, Renata; Siemieniuk, Agnieszka; Karcz, Waldemar

    2014-01-01

    Background and Aims The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth. Methods Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed. Key Results Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and

  1. Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles.

    PubMed

    Fischer, K; Schopfer, P

    1998-07-01

    During gravitropic and phototropic curvature of the maize coleoptile, the cortical microtubules (MTs) adjacent to the outer epidermal cell wall assume opposite orientations at the two sides of the organ. Starting from a uniformly random pattern during straight growth in darkness, the MTs reorientate perpendicularly to the organ axis at the outer (faster growing) side and parallel to the organ axis at the inner (slower growing) side. As similar reorientations can be induced during straight growth by increasing or decreasing the effective auxin concentration, it has been proposed that these reorientations may be used as a diagnostic test for assessing the auxin status of the epidermal cells during tropic curvature. This idea was tested by determining the MT orientations in the coleoptile of intact maize seedlings in which the gravitropic or phototropic curvature was prevented or inversed by an appropriate mechanical counterforce. Forces that just prevented the coleoptile from curving in a gravity or light field prevented reorientations of the MTs. Forces strong enough to overcompensate the tropic stimuli by enforcing curvature in the opposite direction induced reorientations of the MTs opposite to those produced by tropic stimulation. These results show that the MTs at the outer surface of the coleoptile respond to changes in mechanical tissue strain rather than to gravitropic or phototropic stimuli and associated changes at the level of auxin or any other element in the signal transduction chain between perception of tropic stimuli and asymmetric growth response. It is proposed that cortical MTs can act as strain gauges in a positive feed-back regulatory circle utilized for amplification and stabilization of environmentally induced changes in the direction of elongation growth. PMID:11536886

  2. Magnetophoretic induction of curvature in coleoptiles and hypocotyls

    NASA Technical Reports Server (NTRS)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1997-01-01

    Coleoptiles of barley (Hordeum vulgare) were positioned in a high gradient magnetic field (HGMF, dynamic factor gradient of H(2)/2 of 10(9)-10(10) Oe2 cm-1), generated by a ferromagnetic wedge in a uniform magnetic field and rotated on a 1 rpm clinostat. After 4 h 90% of coleoptiles had curved toward the HGMF. The cells affected by HGMF showed clear intracellular displacement of amyloplasts. Coleoptiles in a magnetic field next to a non-ferromagnetic wedge showed no preferential curvature. The small size of the area of nonuniformity of the HGMF allowed mapping of the sensitivity of the coleoptiles by varying the initial position of the wedge relative to the coleoptile apex. When the ferromagnetic wedge was placed 1 mm below the coleoptile tip only 58% of the coleoptiles curved toward the wedge indicating that the cells most sensitive to intracellular displacement of amyloplasts and thus gravity sensing are confined to the top 1 mm portion of barley coleoptiles. Similar experiments with tomato hypocotyls (Lycopersicum esculentum) also resulted in curvature toward the HGMF. The data strongly support the amyloplast-based gravity-sensing system in higher plants and the usefulness of HGMF to substitute gravity in shoots.

  3. The role of auxin and ethylene for gravitropic differential growth of coleoptiles and roots of rye- and maize seedlings

    NASA Astrophysics Data System (ADS)

    Edelmann, H. G.; Sabovljevic, A.; Njio, G.; Roth, U.

    The relevance of auxin and ethylene for differential gravitropic growth has been analyzed both in shoots and roots of etiolated rye- and maize seedlings. As previously demonstrated for indolyl-3-acetic acid (IAA), incubation of coleoptiles in dichlorophenoxy acetic acid (2,4-D) resulted in a two- to threefold length increase compared to water controls. In spite of this immense effect on elongation growth, gravi-curvature was similar to water controls. In contrast, inhibition of ethylene synthesis prevented differential growth of abraded coleoptiles as well as of roots without a significant inhibiting effect on elongation. Inhibition of ethylene perception in horizontally stimulated maize roots growing on surfaces eliminated the capacity of the roots to adapt growth to the surface and a vertical orientation of the root tip. This effect is accompanied by up- and down-regulation of a number of proteins as detected with the 2D-MALDI-TOF (matrix-assisted laser desorption ionization- time of flight) method. Exogenous ethylene inhibited growth but enhanced gravitropic curvature in roots that were "freely" gravistimulated in a horizontal position, exhibiting a pronounced "waving" behavior. Together the data challenge the regulatory relevance of IAA-redistribution for gravitropic differential growth. They corroborate the crucial regulatory relevance of ethylene for gravitropic growth, in both roots and coleoptiles.

  4. Enhancement of phototropic response to a range of light doses in Triticum aestivum coleoptiles in clinostat-simulated microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Bircher, B. W.; Brown, A. H. (Principal Investigator)

    1987-01-01

    The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1 g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1 g follows the well-established pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.

  5. Effects of osmotic stress on the kinds, forms and levels of polyamines in wheat coleoptiles.

    PubMed

    Liu, Huai-Pan; Zhu, Zi-Xue; Liu, Tian-Xue; Li, Chao-Hai

    2006-06-01

    The changes in levels and forms of polyamine (Pa) in the coleoptiles of two wheat (triticum aestivum L.) cultivars differing in drought tolerance were investigated under osmotic stress. The drought-tolerant 'Yumai 18' showed marked increases in free spermidine (Spd) and spermine (Spm) levels in coleoptiles after being treated with polyethylene glycol (PEG)-6000 for 2 d in the dark, while drought-sensitive 'Yangmai 9' showed a significant increase in free putrescine (Put) content. Treatment of coleoptiles with methylglyoxal-bis (guanylhydrazone) (MGBG), an S-adenosylmethionine decarboxylase (S-AMDC) inhibitor, resulted in reduction of free Spd and free Spm levels in coleoptiles and aggravation of PEG-induced injury to 'Yumai 18' coleoptile, while exogenous Spd treatment resulted in an increase in free Spd + free Spm content of coleoptiles, and an alleviation of PEG-induced injury to 'Yangmai 9' coleoptile. Osmotic stress induced significant increases in perchloric acid-soluble conjugated PA (PS conjugated PA) and perchloric acid-insoluble conjugated PA (PIS conjugated PA) levels in coleoptiles of 'Yumai 18' whereas osmotic stress affected only slightly the PS-conjugated PA and PIS-conjugated PA levels in 'Yangmai 9' coleoptiles. Treatment of coleoptiles with phenanthroline (o-Phen), an inhibitor of transglutaminase (TGase), also aggravated the PEG-induced injury to 'Yumai 18' coleoptiles, accompanied by the decreases in the level of PIS-conjugated PA. These results suggest that free Spd, free Spm and conjugated PA enhance the osmotic stress tolerance of wheat coleoptiles.

  6. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles.

    PubMed

    Chandrakuntal, Kumar; Kumar, Pradeep G; Laloraya, Malini; Laloraya, Manmohan M

    2004-07-01

    Blue-light-induced photomorphogenesis is the sum total of a sequence of phenomena involving absorption of light by specific receptors, generation of a signal, processing transmembrane transport of signal, and the activation of a cascade of reactions in the cell interior. Though four blue-light receptors cryptochrome1, cryptochrome2, phototropin1, and phototropin2 have been identified, the signal transduction events associated with blue-light receptor activation are not understood. In this report, we demonstrate the generation and spatiotemporal distribution of H(2)O(2) in wheat coleoptile in response to blue light. Interception of the free-radical generation pathways dithiothreitol and propyl gallate rendered wheat coleoptile tips phototropically non-responsive. Unilateral application of H(2)O(2) onto the sub-apical region of a growing coleoptile brought about curvature in dark. Blue light also caused lipid peroxidation and augmented membrane rigidity of coleoptile cell membranes. We conclude that H(2)O(2) can act as a translocating second messenger that could bring about coleoptile curvature, and the signaling events may trigger Ca(2+) signaling cascades, changes in gene expression, and protein modifications.

  7. Auxin Redistribution during First Positive Phototropism in Corn Coleoptiles 1

    PubMed Central

    Nick, Peter; Schäfer, Eberhard; Furuya, Masaki

    1992-01-01

    In red-light grown corn (Zea mays L. cv Brio42.HT) coleoptiles, cortical microtubules adjacent to the outer cell wall of the outer epidermis reorient from transverse to longitudinal in response to auxin depletion and after phototropic stimulation in the lighted side of the coleoptile. This was used as an in situ assay of cellular auxin concentration. The fluence-response relation for the blue light-induced reorientation is compared with that for first positive phototropism and the dose-response relationship for the auxin-dependent reorientation. The result supports the theory by Cholodny and Went, claiming that phototropic stimulation results in auxin displacement across the coleoptile. In terms of microtubule orientation, this displacement becomes even more pronounced after preirradiation with a weak blue light pulse from above. ImagesFigure 2 PMID:16669036

  8. Actin microfilaments in presumptive statocytes of root caps and coleoptiles

    NASA Technical Reports Server (NTRS)

    White, R. G.; Sack, F. D.

    1990-01-01

    Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.

  9. Nastic curvatures of wheat coleoptiles that develop in true microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.

    1995-01-01

    Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.

  10. Restoration of phototropic responsiveness in decapitated maize coleoptiles.

    PubMed

    Kaldenhoff, R; Iino, M

    1997-08-01

    The literature indicates that the tip of maize (Zea mays L.) coleoptiles has the localized functions of producing auxin for growth and perceiving unilateral light stimuli and translocating auxin laterally for phototropism. There is evidence that the auxinproducing function of the tip is restored in decapitated coleoptiles. We examined whether the functions for phototropism are also restored by using blue-light conditions that induced a first pulse-induced positive phototropism (fPIPP) and a time-dependent phototropism (TDP). When the apical 5 mm, in which photosensing predominantly takes place, was removed, no detectable fPIPP occurred even if indole-3-acetic acid (lanolin mixture) was applied to the cut end. However, when the blue-light stimulation was delayed after decapitation, fPIPP became inducible in the coleoptile stumps supplied with indole-3-acetic-acid/lanolin (0.01 mg g-1), indicating that phototropic responsiveness was restored. This restoration progressed 1 to 2 h after decapitation, and the curvature response became comparable to that of intact coleoptiles. The results for TDP were qualitatively similar, but some quantitative differences were observed. It appeared that the overall TDP was based on a major photosensing mechanism specific to the tip and on at least one additional mechanism not specific to the tip, and that the tip-specific TDP was restored in decapitated coleoptiles with kinetics similar to that for fPIPP. It is suggested that the photoreceptor system, which accounts for fPIPP and a substantial part of TDP, is regenerated in decapitated coleoptiles, perhaps together with the mechanism for lateral auxin translocation. PMID:11536822

  11. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the

  12. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of AuxinW⃞

    PubMed Central

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution. PMID:15598797

  13. Phytochrome is required for the occurrence of time-dependent phototropism in maize coleoptiles

    PubMed

    Liu, Y J; Iino, M

    1996-12-01

    Time-dependent phototropism (TDP), sometimes called second positive curvature, occurs when the duration of phototropic stimulation with blue light (B) exceeds a few minutes. TDP was characterized in maize (Zea mays L.) coleoptiles raised under continuous red light (R). Subsequently, coleoptiles adapted to darkness were used to investigate the effect of R on TDP. It was found that TDP, which is induced in R-grown coleoptiles, does not occur in dark-adapted coleoptiles and that dark-adapted coleoptiles begin to show TDP after treatment with R. The TDP responsiveness became maximal 1-2 h after treatment with a R pulse and decreased during the next few hours. At least 10 min was required after a short pulse of R before the coleoptile began to respond to B for the induction of TDP. The effect of R in establishing the TDP responsiveness was totally suppressed by a pulse of far-red light given immediately after an inductive pulse of R. It is concluded that the mechanism of TDP requires for its establishment a R signal perceived by phytochrome. The TDP of R-grown and R-pretreated coleoptiles showed relationships to stimulation times and fluence rates that are similar to those reported for oat coleoptiles, except that TDP of maize showed a sharp increase in its magnitude within a narrow range of stimulation times as short as 5-10 min. PMID:11539322

  14. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles

    PubMed Central

    Matsuda, Satomi; Kajizuka, Tomomi; Kadota, Akeo; Nishimura, Takeshi; Koshiba, Tomokazu

    2011-01-01

    Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m−2 s−1). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0–3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0–3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0–2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles. PMID:21459767

  15. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles.

    PubMed

    Matsuda, Satomi; Kajizuka, Tomomi; Kadota, Akeo; Nishimura, Takeshi; Koshiba, Tomokazu

    2011-06-01

    Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m(-2) s(-1)). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0-3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0-3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0-2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles. PMID:21459767

  16. [Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids].

    PubMed

    Kolupaev, Yu E; Vayner, A A; Yastreb, T O; Oboznyi, A I; Khripach, V A

    2015-01-01

    The involvement of Ca2+ into the signal transduction of exogenous brassinosteroids (BS) (24-epi-brassinolide-24-EBL and 24-epicastasterone-24-ECS) causing the increase of heat resistance of the cells of wheat (Triticum aestivum L.) coleoptiles was investigated using calcium chelator EGTA and inhibitor of phosphatidylinositol-specific phospholipase C--neomycin. Twenty-four-hour treatment of coleoptile segments with 10 nM solutions of 24-EBL and 24-ECS led to a transient increase in the generation of superoxide anion radical by cell surface and the subsequent activation of superoxide dismutase and catalase. Pretreatment of coleoptiles with EGTA and neomycin depressed to a considerable extent these effects and leveled the increase in heat resistance of wheat coleoptiles that were caused by BS. Possible mechanisms of involvement of calcium signaling into the formation of reactive oxygen species in plant cells and induction of heat resistance of plant cells by the action of exogenous BS have been discussed.

  17. Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species.

    PubMed

    Badaeva, Ekaterina D; Shelukhina, Olga Yu; Diederichsen, Axel; Loskutov, Igor G; Pukhalskiy, Vitaly A

    2010-02-01

    The chromosome set of Avena macrostachya Balansa ex Coss. et Durieu was analyzed using C-banding and fluorescence in situ hybridization with 5S and 18S-5.8S-26S rRNA gene probes, and the results were compared with the C-genome diploid Avena L. species. The location of major nucleolar organizer regions and 5S rDNA sites on different chromosomes confirmed the affiliation of A. macrostachya with the C-genome group. However, the symmetric karyotype, the absence of "diffuse heterochromatin" and the location of large C-band complexes in proximal chromosome regions pointed to an isolated position of A. macrostachya from other Avena species. Based on the distribution of rDNA loci on the C-genome chromosomes of diploid and polyploid Avena species, we propose a model of the chromosome alterations that occurred during the evolution of oat species.

  18. Circumnutation of rice coleoptiles: its relationships with gravitropism and absence in lazy mutants.

    PubMed

    Yoshihara, Takeshi; Iino, Moritoshi

    2006-05-01

    Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation. PMID:17087462

  19. Regulation of Glucose Metabolism and Cell Wall Synthesis in Avena Stem Segments by Gibberellic Acid 1

    PubMed Central

    Montague, Michael J.; Ikuma, Hiroshi

    1978-01-01

    Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity. PMID:16660524

  20. Transport of Indole-3-Acetic Acid during Gravitropism in Intact Maize Coleoptiles 1

    PubMed Central

    Parker, Karen E.; Briggs, Winslow R.

    1990-01-01

    We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature. PMID:16667914

  1. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    PubMed

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.

  2. AFLP variation in 25 Avena species.

    PubMed

    Fu, Yong-Bi; Williams, David J

    2008-08-01

    Current molecular characterization of ex situ plant germplasm has placed more emphasis on cultivated gene pools and less on exotic gene pools representing wild relative species. This study attempted to characterize a selected set of germplasm accessions representing various Avena species with the hope to establish a reference set of exotic oat germplasm for oat breeding and research. The amplified fragment length polymorphism (AFLP) technique was applied to screen 163 accessions of 25 Avena species with diverse geographic origins. For each accession, 413 AFLP polymorphic bands detected by five AFLP primer pairs were scored. The frequencies of polymorphic bands ranged from 0.006 to 0.994 and averaged 0.468. Analysis of molecular variance revealed 59.5% of the total AFLP variation resided among 25 oat species, 45.9% among six assessed sections of the genus, 36.1% among three existing ploidy levels, and 50.8% among eight defined genome types. All the species were clustered together according to their ploidy levels. The C genome diploids appeared to be the most distinct, followed by the Ac genome diploid A. canariensis. The Ac genome seemed to be the oldest in all the A genomes, followed by the As, Al and Ad genomes. The AC genome tetraploids were more related to the ACD genome hexaploids than the AB genome tetraploids. Analysis of AFLP similarity suggested that the AC genome tetraploid A. maroccana was likely derived from the Cp genome diploid A. eriantha and the As genome diploid A. wiestii, and might be the progenitor of the ACD genome hexaploids. These AFLP patterns are significant for our understanding of the evolutionary pathways of Avena species and genomes, for establishing reference sets of exotic oat germplasm, and for exploring new exotic sources of genes for oat improvement.

  3. Microsatellite variation in Avena sterilis oat germplasm.

    PubMed

    Fu, Yong-Bi; Chong, James; Fetch, Tom; Wang, Ming-Li

    2007-04-01

    The Avena sterilis L. collection in the Plant Gene Resources of Canada (PGRC) consists of 11,235 accessions originating from 27 countries and is an invaluable source of genetic variation for genetic improvement of oats, but it has been inadequately characterized, particularly using molecular techniques. More than 35 accessions have been identified with genes for resistance to oat crown and stem rusts, but little is known about their comparative genetic diversity. This study attempted to characterize a structured sample of 369 accessions representing 26 countries and two specific groups with Puccinia coronata avenae (Pc) and Puccinia graminis avenae (Pg) resistance genes using microsatellite (SSR) markers. Screening of 230 SSR primer pairs developed from other major crop species yielded 26 informative primer pairs for this characterization. These 26 primer pairs were applied to screen all the samples and 125 detected alleles were scored for each accession. Analyses of the SSR data showed the effectiveness of the stratified sampling applied in capturing country-wise SSR variation. The frequencies of polymorphic alleles ranged from 0.01 to 0.99 and averaged 0.28. More than 90% of the SSR variation resided within accessions of a country. Accessions from Greece, Liberia, and Italy were genetically most diverse, while accessions from Egypt, Georgia, Ethiopia, Gibraltar, and Kenya were most distinct. Seven major clusters were identified, each consisting of accessions from multiple countries and specific groups, and these clusters were not well congruent with geographic origins. Accessions with Pc and Pg genes had similar levels of SSR variation, did not appear to cluster together, and were not associated with the other representative accessions. These SSR patterns are significant for understanding the progenitor species of cultivated oat, managing A. sterilis germplasm, and exploring new sources of genes for oat improvement.

  4. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  5. [Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles].

    PubMed

    Kolupaiev, Iu Ie; Iastreb, T O; Shvidenko, M V; Karpets', Iu V

    2011-01-01

    The comparative study of influence of exogenous salicylic (SaA) and succinic (SuA) acids on the production of reactive oxygen species by isolated wheat coleoptiles has been provided. Under the action of both acids the increase of generation of superoxide anion-radical (O2(.-)) was observed. This increase was partially suppressed by treatment of coleoptiles with inhibitors of peroxidase (salicylhydroxamic acid) and NADP H-oxidase (imidazole and alpha-naphthol). The increase of hydrogen peroxide content, activity of peroxidase and superoxide dismutase (SOD) was registered under the influence of SaA and SuA; catalase activity did not change essentially. The treatment of coleoptiles with the indicated acids resulted in the increase of their resistance to abiotic stress (damaging heating, 43 +/- 0,1 degrees C, 10 min). The conclusion is made, that the increase of O2(.-) generation in wheat coleoptiles under the action of SaA and SuA is related, probably, to the increase of apoplast peroxidase and NADP.H-oxidase activity, and the rise of H2O2 content is related to the growth of SOD activity. These enzymatic systems are involved in the induction of plant cells protective reactions to the hyperthermia. PMID:22276431

  6. Comparative phytohormone profiles, lipid kinase and lipid phosphatase activities in barley aleurone, coleoptile, and root tissues.

    PubMed

    Meringer, Maria V; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela E; Racagni, Graciela E

    2012-09-01

    We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.

  7. Genetic diversity and adaptedness in tetraploid Avena barbata and its diploid ancestors Avena hirtula and Avena wiestii.

    PubMed Central

    García, P; Morris, M I; Sáenz-de-Miera, L E; Allard, R W; Pérez de la Vega, M; Ladizinsky, G

    1991-01-01

    Avena barbata, a tetraploid grass, is much more widely adapted and successful in forming dense stands than its diploid ancestors. The success of such polyploids has often been attributed to heterosis associated with ability to breed true for a highly heterozygous state in which allelic differences between the parents are fixed in the polyploid by chromosome doubling. We have examined the relationship between genetic diversity and adaptedness for 14 allozyme loci in A. barbata and its diploid ancestors in samples collected from diverse habitats in Israel and Spain. The relationship varied from locus to locus: superior adaptedness was associated with genetic uniformity for five loci, in part with genetic uniformity and in part with genetic diversity (monomorphism for a single heteroallelic quadriplex) for one locus, and with allelic diversity in the form of heteroallelic quadriplexes combined with genotypic diversity in the form of complex polymorphisms among different homoallelic and/or heteroallelic quadriplexes for the eight remaining loci. These results indicate that allelic diversity fixed in nonsegregating form through chromosome doubling was an important factor in the evolution of adaptedness in A. barbata. However, it is unlikely that heterosis associated with heterozygosity contributed significantly to superior adaptedness in either the diploids or the tetraploid because virtually all loci (approximately 99%) were homozygous in the Avena diploids and tetraploid. PMID:1996323

  8. Genome size variation in the genus Avena.

    PubMed

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  9. Genome size variation in the genus Avena.

    PubMed

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology. PMID:26881940

  10. Expansin-regulated cell elongation is involved in the drought tolerance in wheat.

    PubMed

    Zhao, Mei-rong; Li, Feng; Fang, Ying; Gao, Qiang; Wang, Wei

    2011-04-01

    Water stress restrains plant growth. Expansin is a cell wall protein that is generally accepted to be the key regulator of cell wall extension during plant growth. In this study, we used two different wheat cultivars to study the involvement of expansin in drought tolerance. Wheat coleoptile was used as the material in experiment. Our results indicated that water stress induced an increase in acidic pH-dependant cell wall extension, which is related to expansin activity; however, water stress inhibited coleoptile elongation growth. The increased expansin activity was mainly due to increased expression of expansin protein that was upregulated by water stress, but water stress also resulted in a decrease in cell wall acidity, a negative factor for cell wall extension. Decreased plasma membrane H(+)-ATPase activity was involved in the alkalinization of the cell wall under water stress. The activity of expansin in HF9703 (a drought-tolerant wheat cultivar) was always higher than that in 921842 (a drought-sensitive wheat cultivar) under both normal and water stress conditions, which may be correlated with the higher expansin protein expression and plasma membrane H(+)-ATPase activity observed in HF9703 versus 921842. However, water stress did not change the susceptibility of the wheat cell wall to expansin, and no difference in this susceptibility was observed between the drought-tolerant and drought-sensitive wheat cultivars. These results suggest the involvement of expansin in cell elongation and the drought resistance of wheat.

  11. Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: Implications for the initiation of growth

    PubMed Central

    Deng, Z.; Xu, S.; Chalkley, R. J.; Oses-Prieto, J. A.; Burlingame, A. L.; Wang, Z.-Y.; Kutschera, U.

    2011-01-01

    In axial organs of juvenile plants, the phytohormone auxin (indole-3-acetic acid, IAA) rapidly allows cell wall loosening and hence promotes turgor-driven elongation. In this study, we used rye (Secale cereale) coleoptile sections to investigate possible effects of IAA on the proteome of cells. In a first set of experiments, we document that IAA causes organ elongation via promotion of expansion of the rigid outer wall of the outer epidermis. A quantitative comparison of the proteome (membrane-associated proteins), using two-dimensional difference gel electrophoresis (2-D DIGE), revealed that, within 2 h of auxin treatment, at least 16 protein spots were up- or down-regulated by IAA. These proteins were identified using reverse-phase liquid chromatography electrospray tandem mass spectrometry. Four of these proteins were detected in the growth-controlling outer epidermis and were further analysed. One epidermal polypeptide, a small Ras-related GTP-binding protein, was rapidly down-regulated by IAA (after 0.5 h of incubation) by −35% compared to the control. Concomitantly, a subunit of the 26S proteasome was up-regulated by IAA (+30% within 1 h). In addition, this protein displayed IAA-mediated post-translational modification. The implications of these rapid auxin effects with respect to signal transduction and IAA-mediated secretion of glycoproteins (osmiophilic nano-particles) into the growth-controlling outer epidermal wall are discussed. PMID:22117532

  12. Synthesis of Elongated Microcapsules

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Calle, Luz M.

    2011-01-01

    One of the factors that influence the effectiveness of self-healing in functional materials is the amount of liquid healing agents that can be delivered to the damaged area. The use of hollow tubes or fibers and the more sophisticated micro-vascular networks has been proposed as a way to increase the amount of healing agents that can be released when damage is inflicted. Although these systems might be effective in some specific applications, they are not practical for coatings applications. One possible practical way to increase the healing efficiency is to use microcapsules with high-aspect-ratios, or elongated microcapsules. It is understood that elongated microcapsules will be more efficient because they can release more healing agent than a spherical microcapsule when a crack is initiated in the coating. Although the potential advantage of using elongated microcapsules for self healing applications is clear, it is very difficult to make elongated microcapsules from an emulsion system because spherical microcapsules are normally formed due to the interfacial tension between the dispersed phase and the continuous phase. This paper describes the two methods that have been developed by the authors to synthesize elongated microcapsules. The first method involves the use of an emulsion with intermediate stability and the second involves the application of mechanical shear conditions to the emulsion.

  13. Induction of beta-glucosidase activity in maize coleoptiles by blue light illumination.

    PubMed

    Jabeen, Riffat; Yamada, Kosumi; Shigemori, Hideyuki; Hasegawa, Tsuyoshi; Hara, Masakazu; Kuboi, Toru; Hasegawa, Koji

    2006-03-01

    The role of beta-glucosidase during the phototropic response in maize (Zea mays) coleoptiles was investigated. Unilateral blue light illumination abruptly up-regulated the activity of beta-glucosidase in the illuminated halves, 10 min after the onset of illumination, peaking after 30 min and decreasing thereafter. The level of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which is released from DIMBOA glucoside (DIMBOA-Glc) by beta-glucosidase, and its degradation compound 6-methoxy-benzoxazolinone (MBOA) were elevated within 30 min in the illuminated halves as compare to the shaded halves, prior to the phototropic curvature. Furthermore, beta-glucosidase inhibitor treatment significantly decreased the phototropic curvature and decreased growth suppression in the illuminated sides. These results suggest that blue light induces the activity of beta-glucosidase in the illuminated halves of coleoptiles causing an increase in DIMBOA biosynthesis and the growth inhibition that leads to a phototropic curvature. PMID:16473658

  14. Evidence for regulation of polar auxin transport at the efflux carrier in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. )

    1989-04-01

    Previously we have shown that conditions which result in an increased auxin-induced growth response in maize (Zea mays L.) coleoptile sections also result in a decrease in the velocity of polar auxin transport. Coleoptile sections given conditions which result in slower transport of IAA have different kinetics for net IAA accumulation compared to sections given conditions which result in faster transport. In further experiments, sections were loaded with 30 nM ({sup 3}H)IAA in the presence of increasing unlabeled IAA at low pH. Efflux of ({sup 3}H)IAA was then followed as a function of unlabeled IAA. Saturation of efflux appears to occur at a lower conc. of IAA in sections showing slower transport.

  15. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. ); Cross, J.W. )

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  16. Distribution of calmodulin in corn seedlings - Immunocytochemical localization in coleoptiles and root apices

    NASA Technical Reports Server (NTRS)

    Dauwalder, M.; Roux, S. J.

    1986-01-01

    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.

  17. Growth rate and turgor pressure: auxin effect studies with an automated apparatus for single coleoptiles.

    PubMed

    Green, P B; Cummins, W R

    1974-12-01

    Because turgor pressure is regarded as the driving force for cell extension, any general theory of plant growth requires quantitative information on the relationship between steady irreversible growth rate and turgor pressure. To investigate contrasting views of this relation an automated apparatus was constructed which perfused both the outer and inner epidermis of a single coleoptile while its growth rate was continuously recorded. Turgor was altered abruptly by perfusing with solutions of varying tonicity. With specially grown rye coleoptiles the half-time of the osmo-elastic response was reduced to 2 minutes or less. After decay of this response, however, rate continued to change (so as to partially compensate the effects of the turgor shift in question) for 30 to 60 minutes. Only then could a steady rate be taken. A characterization of steady rate versus turgor covering five turgor values for a single coleoptile thus required many hours. The conclusions are as follows. (a) The change in steady rate, per unit change in turgor, was much greater +IAA than -IAA. (b) Both auxin and turgor act to reset an apparent stabilizing system whose presence is shown in the partial compensation of the initial response to turgor shifts. The above "extensibility" changes are operational only. They need not reflect changes in the immediate physical extensibility of the wall; they could reflect changes in a process acting on the wall. (c) The growth rate versus turgor relation shows some hysteresis.

  18. Inhibitory Effect of Camptothecin against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae RS-2.

    PubMed

    Dong, Qiaolin; Luo, Ju; Qiu, Wen; Cai, Li; Anjum, Syed Ishtiaq; Li, Bin; Hou, Mingsheng; Xie, Guanlin; Sun, Guochang

    2016-01-01

    Camptothecin (CPT) has anticancer, antiviral, and antifungal properties. However, there is a dearth of information about antibacterial activity of CPT. Therefore, in this study, we investigated the inhibitory effect of CPT on Acidovorax avenae subsp. avenae strain RS-2, the pathogen of rice bacterial brown stripe, by measuring cell growth, DNA damage, cell membrane integrity, the expression of secretion systems, and topoisomerase-related genes, as well as the secretion of effector protein Hcp. Results indicated that CPT solutions at 0.05, 0.25, and 0.50 mg/mL inhibited the growth of strain RS-2 in vitro, while the inhibitory efficiency increased with an increase in CPT concentration, pH, and incubation time. Furthermore, CPT treatment affected bacterial growth and replication by causing membrane damage, which was evidenced by transmission electron microscopic observation and live/dead cell staining. In addition, quantitative real-time PCR analysis indicated that CPT treatment caused differential expression of eight secretion system-related genes and one topoisomerase-related gene, while the up-regulated expression of hcp could be justified by the increased secretion of Hcp based on the ELISA test. Overall, this study indicated that CPT has the potential to control the bacterial brown stripe pathogen of rice. PMID:27472315

  19. Evolution of Multilocus Genetic Structure in Avena Hirtula and Avena Barbata

    PubMed Central

    Allard, R. W.; Garcia, P.; Saenz-de-Miera, L. E.; de-la-Vega, M. P.

    1993-01-01

    Avena barbata, an autotetraploid grass, is much more widely adapted than Avena hirtula, its diploid ancestor. We have determined the 14-locus genotype of 754 diploid and 4751 tetraploid plants from 10 and 50 Spanish sites, respectively. Allelic diversity is much greater in the tetraploid (52 alleles) than in the diploid (38 alleles): the extra alleles of the tetraploid were present in nonsegregating heteroallelic quadriplexes. Seven loci were monomorphic for the same allele (genotypically 11) in all populations of the diploid: five of these loci were also monomorphic for the same allele (genotypically 1111) in all populations of the tetraploid whereas two loci each formed a heteroallelic quadriplex (1122) that was monomorphic or predominant in the tetraploid. Seven of the 14 loci formed one or more highly successful homoallelic and/or heteroallelic quadriplexes in the tetraploid. We attribute much of the greater heterosis and wider adaptedness of the tetraploid to favorable within-locus interactions and interlocus (epistatic) interactions among alleles of the loci that form heteroallelic quadriplexes. It is difficult to account for the observed patterns in which genotypes are distributed ecogeographically except in terms of natural selection favoring particular alleles and genotypes in specific habitats. We conclude that natural selection was the predominant integrating force in shaping the specific genetic structure of different local populations as well as the adaptive landscape of both the diploid and tetraploid. PMID:8307328

  20. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism

    SciTech Connect

    Quinones, M.A.; Lu, Zhenmin; Zeiger, E.

    1996-03-05

    Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction. 28 refs. 4 figs.

  1. Elongated Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan N. (Inventor); Buhrow, Jerry W. (Inventor); Perusich, Stephen A. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor)

    2015-01-01

    Elongated microcapsules, such as elongated hydrophobic-core and hydrophilic-core microcapsules, may be formed by pulse stirring an emulsion or shearing an emulsion between two surfaces moving at different velocities. The elongated microcapsules may be dispersed in a coating formulation, such as paint.

  2. Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Leopold, A. C.

    1985-01-01

    Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.

  3. [Comparative cytogenetic analysis of hexaploid Avena L. species].

    PubMed

    Badaeva, E D; Shelukhina, O Iu; Dedkova, O S; Loskutov, I G; Pukhal'skiĭ, V A

    2011-06-01

    Using C-banding method and in situ hybridization with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C-17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.

  4. Photoreversible Calcium Fluxes Induced by Phytochrome in Oat Coleoptile Cells 1

    PubMed Central

    Hale, Calvin C.; Roux, Stanley J.

    1980-01-01

    The chromometallic dye murexide was used to measure photoreversible Ca fluxes in apical tips of etiolated oat coleoptiles and in suspension cultures of protoplasts derived from the coleoptile segments. Phytochrome presence in the protoplasts was indicated by a repeatably photoreversible ΔA(725 - 800 nm) of >0.001 A centimeters−1, recorded on a dual wavelength spectrophotometer. Concentrations of Ca in the solution bathing the cells were observed to change photoreversibly, red irradiation inducing an increase in the medium Ca concentration and subsequent farred irradiation inducing a decrease down to near dark control levels. These changes could be measured in media with or without exogenously added Ca. Protoplasts from green primary leaves of oat, which had no spectro-photometrically detectable phytochrome, showed no photoreversible Ca fluxes when measured by the same method. These data imply that red light induces an efflux of Ca from phytochrome-containing cells and that far red light can reverse this change by promoting a Ca reentry into these cells. PMID:16661257

  5. A major isoform of the maize plasma membrane H(+)-ATPase: characterization and induction by auxin in coleoptiles.

    PubMed Central

    Frías, I; Caldeira, M T; Pérez-Castiñeira, J R; Navarro-Aviñó, J P; Culiañez-Maciá, F A; Kuppinger, O; Stransky, H; Pagés, M; Hager, A; Serrano, R

    1996-01-01

    The plasma membrane (PM) H(+)-ATPase has been proposed to play important transport and regulatory roles in plant physiology, including its participation in auxin-induced acidification in coleoptile segments. This enzyme is encoded by a family of genes differing in tissue distribution, regulation, and expression level. A major expressed isoform of the maize PM H(+)-ATPase (MHA2) has been characterized. RNA gel blot analysis indicated that MHA2 is expressed in all maize organs, with highest levels being in the roots. In situ hybridization of sections from maize seedlings indicated enriched expression of MHA2 in stomatal guard cells, phloem cells, and root epidermal cells. MHA2 mRNA was induced threefold when nonvascular parts of the coleoptile segments were treated with auxin. This induction correlates with auxin-triggered proton extrusion by the same part of the segments. The PM H(+)-ATPase in the vascular bundies does not contribute significantly to auxin-induced acidification, is not regulated by auxin, and masks the auxin effect in extracts of whole coleoptile segments. We conclude that auxin-induced acidification in coleoptile segments most often occurs in the nonvascular tissue and is mediated, at least in part, by increased levels of MHA2. PMID:8837507

  6. Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum.

    PubMed

    Lee, Soo Youn; Kim, Bit-Na; Choi, Yong Woo; Yoo, Kye Sang; Kim, Yang-Hoon; Min, Jiho

    2012-04-01

    The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenolcontaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

  7. Properties of a blue-light-absorbing photoreceptor kinase localized in the plasma membrane of the coleoptile tip region.

    PubMed

    Hager, A

    1996-02-01

    The blue-light-sensing apical part of coleoptiles of grasses is responsible for the first positive phototropic bending reaction of this organ. The photoreceptor responsible has been shown to be localized to the plasma membrane (PM) of this tip region. An approximately 100-kDa protein moiety of this receptor is rapidly phosphorylated upon irradiation. Properties of this protein kinase reaction were studied in vitro by using PMs from the maize (Zea mays L.) coleoptile tip region; (i) The substrate for the blue-light-triggered phosphorylation of the 100-kDa protein was found to be ATP as well as GTP. However, the affinity of the involved protein kinase for the substrate GTP was lower than for ATP. (ii) Experiments were undertaken to find out whether a photoreceptor moiety acts as an autophosphorylating protein kinase or whether the photoreceptor protein, when activated by light, becomes the target of an extrinsic protein kinase. Two studied extrinsic protein kinases (50 and 55 kDa) of the coleoptile tip were found not to be involved in the light-dependent protein phosphorylation. The degree of phosphorylation of the 100-kDa protein on isolated plasma membranes upon irradiation at 0 degrees C was scarcely different from a reaction at 30 degrees C, in contrast to the background protein phosphorylations which decreased with decreasing temperature. This result points to an autophosphorylation mechanism at the receptor. (iii) In mixing experiments, solubilized membranes from maize coleoptiles were irradiated and added to unirradiated membrane proteins from pea (Pisum sativum L.) epicotyls followed by addition of [gamma-32P]ATP. Unirradiated proteins from pea were not phosphorylated by light-activated (autophosphorylatable) maize protein kinases. (iv) It is suggested that the blue-light-sensitive photoreceptor localized to the PM of the phototropically active tip region of coleoptiles has an autophosphorylatable kinase domain which is able to use ATP or GTP as substrate

  8. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    NASA Technical Reports Server (NTRS)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  9. Auxins induce clustering of the auxin-binding protein at the surface of maize coleoptile protoplasts.

    PubMed Central

    Diekmann, W; Venis, M A; Robinson, D G

    1995-01-01

    The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific. Images Fig. 1 Fig. 2 Fig. 3 PMID:11607527

  10. Transport of indoleacetic acid in intact corn coleoptiles. [Zea mays L

    SciTech Connect

    Parker, K.E.; Briggs, W.R. )

    1990-10-01

    We have characterized the transport of ({sup 3}H)indoleacetic acid (IAA) in intact corn (Zea mays L.) coleoptiles. We have used a wide range of concentrations of added IAA (28 femtomoles to 100 picomoles taken up over 60 minutes). The shape of the transport curve varies with the concentration of added IAA, although the rate of movement of the observed front of tracer is invariant with concentration. At the lowest concentration of tracer used, the labeled IAA in the transport stream is not detectably metabolized or immobilized, curvature does not develop as a result of tracer application, and normal phototropic and gravitropic responsiveness are not affected. Therefore we believe we are observing the transport of true tracer quantities of labeled auxin at this lowest concentration.

  11. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.)

    PubMed Central

    Iannucci, Anna; Fragasso, Mariagiovanna; Platani, Cristiano; Papa, Roberto

    2013-01-01

    The objectives of this study were to determine the pattern of dry matter (DM) accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L.), a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant) was recorded at 122 days after sowing (DAS; kernel hard stage). The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS) and at the heading stage (0.70 μg/kg; 98 DAS). Thus, wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity. PMID:24381576

  12. Altered growth response to exogenous auxin and gibberellic acid by gravistimulation in pulvini of Avena sativa

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90 degrees) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90 degrees. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity.

  13. Disease development and genotypic diversity of Puccinia graminis f. sp. avenae in Swedish oat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disease development and population structure of Puccinia graminis f. sp. avenae, which causes stem rust on oat, were studied to investigate if sexual reproduction plays an important role in the epidemiology of the disease. The genetic population structure of P. graminis f. sp. avenae in Sweden w...

  14. Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems.

    PubMed

    Nishimura, Takeshi; Matano, Naoyuki; Morishima, Taichi; Kakinuma, Chieko; Hayashi, Ken-Ichiro; Komano, Teruya; Kubo, Minoru; Hasebe, Mitsuyasu; Kasahara, Hiroyuki; Kamiya, Yuji; Koshiba, Tomokazu

    2012-10-01

    The monocot coleoptile tip region has been generally supposed to be the source of IAA to supply IAA to basal parts by the polar IAA transport system, which results in gravi- and phototropic curvature of coleoptiles. Based on this IAA transport system and gravitropism of maize coleoptiles, we have developed two screening methods to identify small molecules from a large chemical library that inhibit IAA transport. The methods detect molecules that affect (i) gravitropic curvature of coleoptiles; and (ii) the amount of IAA transported from the tip. From 10,000 chemicals, eight compounds were identified and categorized into two groups. Four chemicals in group A decreased IAA transport from the tip, and increased endogenous IAA levels in the tip. The structures of two compounds resembled that of 1-N-naphthylphthalamic acid (NPA), but those of the other two differed from structures of known IAA transport inhibitors. Four chemicals in group B strongly inhibited IAA transport from the tip, but IAA levels at the tip were only slightly affected. At higher concentrations, group B compounds inhibited germination of Arabidopsis, similarly to brefeldin A (BFA). Analysis of the cellular distribution of PIN2-green fluorescent protein (GFP) and PIN1-GFP in Arabidopsis revealed that one of the four chemicals in group B induced internalization of PIN1 and PIN2 proteins into vesicles smaller than BFA bodies, suggesting that this compound affects cellular vesicle trafficking systems related to PIN trafficking. The eight chemicals identified here will be a useful tool for understanding the mechanisms of IAA transport in plants. PMID:22875609

  15. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    PubMed

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  16. The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae).

    PubMed

    Peng, Yuan-Ying; Baum, Bernard R; Ren, Chang-Zhong; Jiang, Qian-Tao; Chen, Guo-Yue; Zheng, You-Liang; Wei, Yu-Ming

    2010-10-01

    Ribosomal ITS sequences are commonly used for phylogenetic reconstruction because they are included in rDNA repeats, and these repeats often undergo rapid concerted evolution within and between arrays. Therefore, the rDNA ITS copies appear to be virtually identical and can sometimes be treated as a single gene. In this paper we examined ITS polymorphism within and among 13 diploid (A and C genomes), seven tetraploid (AB, AC and CC genomes) and four hexaploid (ACD genome) to infer the extent and direction of concerted evolution, and to reveal the phylogenetic and genome relationship among species of Avena. A total of 170 clones of the ITS1-5.8S-ITS2 fragment were sequenced to carry out haplotype and phylogenetic analysis. In addition, 111 Avena ITS sequences retrieved from GenBank were combined with 170 clones to construct a phylogeny and a network. We demonstrate the major divergence between the A and C genomes whereas the distinction among the A and B/D genomes was generally not possible. High affinity among the A(d) genome species A. damascena and the ACD genome species A. fatua was found, whereas the rest of the ACD genome hexaploids and the AACC tetraploids were highly affiliated with the A(l) genome diploid A. longiglumis. One of the AACC species A. murphyi showed the closest relationship with most of the hexaploid species. Both C(v) and C(p) genome species have been proposed as paternal donors of the C-genome carrying polyploids. Incomplete concerted evolution is responsible for the observed differences among different clones of a single Avena individual. The elimination of C-genome rRNA sequences and the resulting evolutionary inference of hexaploid species are discussed.

  17. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  18. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena.

    PubMed

    Pandey, Harish C; Baig, M J; Chandra, A; Bhatt, R K

    2010-07-01

    Seven species of genus Avena viz., Avena sativa, Avena strigosa, Avena brevis, Avena vaviloviana, Avena abyssinica, Avena marocana and Avena sterilis were used to study the impact of drought stress on lipid peroxidation and other antioxidant enzymes. Maximum increase in the catalase activity was recorded in A. vaviloviana (129.97%) followed by A. sativa (122.82%) and A. brevis (83.38%) at vegetative stage; however at flowering stage the maximum increase was reported in A. sativa (25.62%) followed by A. sterilis (20.46%) and A. brevis (18.53%). At vegetative stage drought, maximum increase in peroxidase activity was recorded in A. sativa (122.82%) followed by A. brevis (83.38%) and A. sterilis (49.78%). Flowering stage drought, showed maximum increase in A. Sativa (27.09%) followed by A. marocana (23.50%) and A. sterilis (20.46%). A. sativa and A. sterilis showed stress tolerance at both the stages by accumulating higher percentage of peroxidase followed by A. brevis at vegetative and A. marocana at flowering stage. Level of lipid peroxidation in terms of Malondialdehyde (MDA) content was increased in the leaves when plants were subjected to moisture stress. The rate of increase in lipid peroxidation occurs irrespective of stage however; maximum increase was recorded in A. strigosa at both the stages. Avena species which showed high level of MDA content, indicates more lipid peroxidation and more membrane permeability and are comparatively more susceptible for water stress than those which produce less Malondialdehyde (MDA) content at higher magnitude of water stress such species have better capability for moisture stress tolerance.

  19. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis.

    PubMed

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-09-11

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H₂O₂ and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  20. Transferability and utility of white oat (Avena sativa) microsatellite markers for genetic studies in black oat (Avena strigosa).

    PubMed

    Da-Silva, P R; Milach, S C K; Tisian, L M

    2011-11-29

    Preservation and use of wild oat species germplasm are essential for further improvement of cultivated oats. We analyzed the transferability and utility of cultivated (white) oat Avena sativa (AACCDD genome) microsatellite markers for genetic studies of black oat A. strigosa (A(s)A(s) genome) genotypes. The DNA of each black oat genotype was extracted from young leaves and amplified by PCR using 24 microsatellite primers developed from white oat. The PCR products were separated on 3% agarose gel. Eighteen microsatellite primer pairs amplified consistent products and 15 of these were polymorphic in A. strigosa, demonstrating a high degree of transferability. Microsatellite primer pairs AM3, AM4, AM21, AM23, AM30, and AM35 consistently amplified alleles only in A. sativa, which indicates that they are putative loci for either the C or D genomes of Avena. Using the data generated by the 15 polymorphic primer pairs, it was possible to separate 40 genotypes of the 44 that we studied. The four genotypes that could not be separated are probably replicates. We conclude that A. sativa microsatellites have a high transferability index and are a valuable resource for genetic studies and characterization of A. strigosa genotypes.

  1. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    PubMed Central

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-01-01

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice. PMID:26378528

  2. Hack's Law: Sinuosity, convexity, elongation

    NASA Astrophysics Data System (ADS)

    Willemin, James H.

    2000-11-01

    Hack's law, an empirical, power law relationship between drainage basin area and the length of the main stream channel, has long been taken to imply that drainage basins become more elongate (relatively longer and narrower) with increasing basin size. A study of the geometry of 38 basins from three distinct geomorphic settings shows that this geometric interpretation of Hack's law is only occasionally true: Even though Hack's power law relationship holds between basin area and main channel length, these basins do not necessarily become more elongate with increasing size. Rather, Hack's law is an expression of a balance between changes in basin shape and changes in channel planform geometry. For the basins in this study, changes in channel sinuosity play the most important role in this balance; changes in basin shape are far less regular. Local conditions appear to determine the partitioning of importance between changes in basin shape and channel sinuosity.

  3. Auxin-Growth Relationships in Maize Coleoptiles and Pea Internodes and Control by Auxin of the Tissue Sensitivity to Auxin

    PubMed Central

    Haga, Ken; Iino, Moritoshi

    1998-01-01

    Growth of a zone of maize (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes was greatly suppressed when the organ was decapitated or ringed at an upper position with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) mixed with lanolin. The transport of apically applied 3H-labeled indole-3-acetic acid (IAA) was similarly inhibited by NPA. The growth suppressed by NPA or decapitation was restored by the IAA mixed with lanolin and applied directly to the zone, and the maximal capacity to respond to IAA did not change after NPA treatment, although it declined slightly after decapitation. The growth rate at IAA saturation was greater than the rate in intact, nontreated plants. It was concluded that growth is limited and controlled by auxin supplied from the apical region. In maize coleoptiles the sensitivity to IAA increased more than 3 times when the auxin level was reduced over a few hours with NPA treatment. This result, together with our previous result that the maximal capacity to respond to IAA declines in pea internodes when the IAA level is enhanced for a few hours, indicates that the IAA concentration-response relationship is subject to relatively slow adaptive regulation by IAA itself. The spontaneous growth recovery observed in decapitated maize coleoptiles was prevented by an NPA ring placed at an upper position of the stump, supporting the view that recovery is due to regenerated auxin-producing activity. The sensitivity increase also appeared to participate in an early recovery phase, causing a growth rate greater than in intact plants. PMID:9701602

  4. Are Pathogenesis-Related Proteins Induced by Meloidogne javanica or Heterodera avenae lnvasion?

    PubMed Central

    Oka, Y.; Chet, I.; Spiegel, Y.

    1997-01-01

    Changes in root- and leaf-soluble proteins were investigated in tomato after invasion by the root-knot nematode Meloidogyne javanica, or in barley and wheat after invasion by the cereal cyst nematode Heterodera avenae. Infection of susceptible tomato plants by M. javanica did not cause any change in the soluble-protein composition of leaves or roots compared with uninoculated plants at an early infection stage. No pathogenesis-related proteins (chitinase, glucanase, or P-14) were induced in the leaf apoplast. Changes in leaf proteins were not observed after invasion of wheat cultivars by H. avenae, whereas, in barley, a few changes in intercellular leaf proteins were recorded in resistant cultivars. These changes, however, were not the same among different H. avenae-resistant cultivars. Protein changes were found at an early stage of infection in barley and wheat roots infected with H. avenae, but no difference was found between resistant and susceptible cultivars. PMID:19274187

  5. Victorin-induced callose in mesophyll protoplasts of Avena sativa

    SciTech Connect

    Schaeffer, H.J.; Walton, J.D. )

    1991-05-01

    Callose ((1-3){beta}-D-glucan), measured as incorporation of {sup 14}C-glucose into ethanol-insoluble product, is produced within 2h in victorin treated mesophyll protoplasts of victorin-sensitive cultivars of oat (Avena sativa). This production is ten-fold higher in the presence of 6 ng victorin/ml than untreated protoplasts after 2h. Microsomes of victorin-treated and untreated protoplasts are assayed for callose synthase activity using radiolabeled substrate, UDP-glucose. Preliminary studies indicate that microsomes of victorin-treated protoplasts have up to four times more callose synthase activity than microsomes of untreated protoplasts. Therefore, stimulation of callose synthase by some means that survives microsome isolation, at least in part, may account for the effect of victorin.

  6. Microscopic changes in Avena and Phaseolus from ozone exposure

    SciTech Connect

    Evans, L.S.

    1985-01-01

    Seedlings of Avena and Phaseolus were exposed to 0.30 ppM ozone for up to 5 hr. Histological and histochemical observations indicated injuries occurred as early after exposure as 1/4 hr in beans and 1/2 hr in oats. Both species exhibited similar symptoms on a cellular level. Symptoms include a less orderly arrangement within and among chloroplasts and the ultimate amorphous aggregation of chloroplasts adjacent to the plasmalemma. Folding and fracturing of the plasmalemma and cell walls occurred in many thin walled cells. This latter symptom was less obvious in thick-walled cells. Symptoms are described at 1/4 hr intervals for the first 3 hr during fumigation. 16 references, 6 figures.

  7. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  8. Structure and Elongation of fine Ladies’ Hosiery

    NASA Astrophysics Data System (ADS)

    Lozo, M.; Vrljicak, Z.

    2016-07-01

    On a sock-knitting machine with diameter of cylindrical needle bed 100 mm (4e") that knitted with 400 needles, samples of fine women's hosiery were made from four PA filament yarns in counts 20 dtex f 20, 30 dtex f 34, 40 dtex f 40 and 60 dtex f 60. Each type of yarns was used to make hosiery samples with four loop sinking depths of unit values in a computer program 400, 550, 700 and 850. For all the samples, parameters of yarn structure were analyzed and elongation properties of knitted fabric were measured. During the elongation of knitted fabric, areas of knitted fabric elasticity, beginning of permanent deformation and elongation at break were measured. Elongation of knitted fabric in the wale direction, i.e. transverse hosiery elongation and elongation of knitted fabric in the course direction, or longitudinal direction of hosiery were measured. Yarn fineness and loop sinking depth significantly influence the elongation properties of hosiery.

  9. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae

    PubMed Central

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N.; Jones, Michael G. K.; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction. PMID:24802510

  10. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    PubMed Central

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability. PMID:25374564

  11. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  12. Metabolic changes in Avena sativa crowns recovering from freezing.

    PubMed

    Henson, Cynthia A; Duke, Stanley H; Livingston, David P

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants.

  13. Metabolic Changes in Avena sativa Crowns Recovering from Freezing

    PubMed Central

    Henson, Cynthia A.; Duke, Stanley H.; Livingston, David P.

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants. PMID:24675792

  14. Studies on Cellulose Synthesis by a Cell-free Oat Coleoptile Enzyme System: Inactivation by Airborne Oxidants 1

    PubMed Central

    Ordin, Lawrence; Hall, Michael A.

    1967-01-01

    Particulate cell wall polysaccharide synthetase from oat coleoptiles could use either guanosine diphosphate glucose or uridine diphosphate glucose; the latter was a much more effective glucose donor. The neutral polymer derived from uridine diphosphate glucose utilization yielded, after cellulase digestion, mostly cellobiose and to a lesser extent a substance tentatively identified as a mixed-linkage β1,4 = β1,3-trisaccharide; only cellobiose was found after guanosine diphosphate glucose utilization. The uridine diphosphate glucose utilizing system was inactivated by peroxyacetyl nitrate treatment of intact tissue and to a lesser extent by ozone treatment suggesting that this system is a possible site of interference with cellulose and non-cellulosic glucan biosynthesis in vivo. Direct treatment of the enzyme in vitro by peroxyacetyl nitrate, iodoacetamide or p-chloromercuribenzoate also inactivated the enzyme, indicating that the mechanism of inactivation possibly involves reaction with sulfhydryl groups. Images PMID:16656496

  15. SUPPRESSING A PEROXIDASE GENE REDUCES SURVIVAL IN THE WHEAT APHID Sitobion avenae.

    PubMed

    Deng, Fei; He, Qiankun; Zhao, Zhangwu

    2016-10-01

    Peroxidases (POXs) make up a large superfamily of enzymes that act in a wide range of biological mechanisms, including maintaining appropriate redox balances within cells, among other actions. In this study, we cloned a sequence that encodes a POX protein, SaPOX, from wheat aphids, Sitobion avenae. Amino acid sequence alignment showed the SaPOX sequence was conserved with POXs from other insect species. SaPOX mRNA accumulations were present in all nymphal and adult stages, at higher levels during the first and second instar, and lower during later stages in the life cycle. Ingestion of dsRNA specific to POX led to reduced SaPOX mRNA accumulation. Sitobion avenae nymphs continuously exposed to dietary dsPOX via an artificial diet led to reduced survival rate and ecdysis index. We infer that POX is important to maintain the growth and development of S. avenae. PMID:27406683

  16. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  17. A spaceflight experiment to investigate the effects of a range of unilateral blue light phototropic stimulations on the movements of wheat coleoptiles (6-IML-1)

    NASA Technical Reports Server (NTRS)

    Heathcote, David G.

    1992-01-01

    In 1978, in response to an announcement of opportunity by NASA, two independent groups proposed related investigations to study the response of seedling plants to photostimulations at microgravity. The spaceflight experiment is known by its NASA acronym, FOTRAN. The scientific objectives behind the experiment are outlined, and a brief description of the spaceflight equipment and the experimental procedures developed to accomplish the aims of the experiment are presented. By reference to the results of ground-based studies, the likely scientific returns of the FOTRAN experiment will be assessed. The experiment is designed to investigate the effects of a range of blue light stimulations on the movements of wheat coleoptiles at zero-g. The seedlings will be dark-grown, and their movements assessed from infrared time-lapse video recordings made during flight. The photostimulus may be expected to modulate circumnutations of the coleoptiles, by synchronizing, initiating or amplifying these rhythmic movements, and to initiate the classic phototropic response.

  18. In Planta Stage-Specific Fungal Gene Profiling Elucidates the Molecular Strategies of Fusarium graminearum Growing inside Wheat Coleoptiles[W][OA

    PubMed Central

    Zhang, Xiao-Wei; Jia, Lei-Jie; Zhang, Yan; Jiang, Gang; Li, Xuan; Zhang, Dong; Tang, Wei-Hua

    2012-01-01

    The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat (Triticum aestivum). To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles and then examined pathogen gene expression inside wheat coleoptiles at 16, 40, and 64 h after inoculation (HAI) using laser capture microdissection and microarray analysis. We identified 344 genes that were preferentially expressed during invasive growth in planta. Gene expression profiles for 134 putative plant cell wall–degrading enzyme genes suggest that there was limited cell wall degradation at 16 HAI and extensive degradation at 64 HAI. Expression profiles for genes encoding reactive oxygen species (ROS)–related enzymes suggest that F. graminearum primarily scavenges extracellular ROS before a later burst of extracellular ROS is produced by F. graminearum enzymes. Expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum relies on the glyoxylate cycle at an early stage of plant infection. A secondary metabolite biosynthesis gene cluster was specifically induced at 64 HAI and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert penetration strategies and switches to overt cellular destruction of tissues at an advanced stage of infection. PMID:23266949

  19. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    PubMed Central

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  20. Foraging by Hippodamia convergens for the aphid Sitobion avenae on wheat plants growing in greenhouse plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate wheat in a typical pro...

  1. Functional response of Hippodamia convergens to Sitobion avenae on wheat plants in the laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., plants in a laboratory arena and developed a functional response model for the number of aphids eaten by an adult female conv...

  2. Molecular Polymorphism and Morphometrics of Species of the Heterodera avenae Group in Syria and Turkey

    PubMed Central

    Abidou, H.; Valette, S.; Gauthier, J. P.; Rivoal, R.; El-Ahmed, A.; Yahyaoui, A.

    2005-01-01

    Molecular characterization of the three most common cereal cyst nematode species of the Heterodera avenae group (H. avenae, H. filipjevi, and H. latipons), originating from various locations in major cereal-cultivating areas in Syria and Turkey, showed distinct restriction fragment patterns of the ITS-rDNA following PCR amplification and RFLP digestion with four endonucleases (Hae III, Hinf I, Ita I, and Pst I). Genetic dissimilarity within H. avenae group populations increased in comparison with H. avenae and other species; it was 0.164 with H. filipjevi and 0.354 with H. latipons populations. No intraspecific polymorphism was observed within H. latipons or H. filipjevi populations. Principal component analysis revealed contrasted correlations among 12 morphological parameters of cysts and juveniles of the three Heterodera species that separated them and distinguished differences within populations of H. latipons. Our results showed a clear separation of the three cyst nematode species on cereal using a conventional method for classification and molecular tests, and confirmed the congruence between genetics and morphological traits. PMID:19262854

  3. Phylogenetic Relationships of the Symbiotic Bacteria in the Aphid Sitobion avenae (Hemiptera: Aphididae).

    PubMed

    Alkhedir, Hussein; Karlovsky, Petr; Mashaly, Ashraf Mohamed Ali; Vidal, Stefan

    2015-10-01

    Aphids have developed symbiotic associations with different bacterial species, and some morphological and molecular analyses have provided evidence of the host relationship between the primary symbiotic bacteria (Buchnera aphidicola) and the aphid while the contrary with the secondary symbiotic bacteria. In this study, we investigated the phylogenetic relationships of the bacterial endosymbionts in the aphid Sitobion avenae (F.). We characterized all bacterial endosymbionts in 10 genetically defined S. avenae clones by denaturing gradient gel electrophoresis and, from these clones, sequenced the 16S rRNA genes of both the primary endosymbiont, B. aphidicola (for the first time), and the secondary endosymbionts, Regiella insecticola and Hamiltonella defensa (for the first time). The phylogenetic analysis indicated that Buchnera from Sitobion related to those in Macrosiphoni. The analysis of the secondary endosymbionts indicated that there is no host relationship between H. defensa and R. insecticola from Sitobion and those from other aphid species. In this study, therefore, we identified further evidence for the relationship between Buchnera and its host and reported a relationship within the secondary endosymbionts of S. avenae from the same country, even though there were no relationships between the secondary bacteria and their host. We also discussed the diversity within the symbiotic bacteria in S. avenae clones. PMID:26314016

  4. Genetic Diversity of Sitobion avenae (Homoptera: Aphididae) Populations from Different Geographic Regions in China

    PubMed Central

    Xin, Juan-Juan; Shang, Qing-Li; Desneux, Nicolas; Gao, Xi-Wu

    2014-01-01

    Sitobion avenae is a major agricultural pest of wheat in China. Using microsatellite markers, we studied the potential gene flow, genetic diversity, genetic differentiation, and genetic structure of seven S. avenae populations from different regions of China (Beijing, Hebei, Henan, Hubei, Jiangsu, Shandong, and Shanxi provinces). The populations from Henan, Shandong, and Jiangsu showed high levels of genic and genotypic diversity. By contrast, the genic diversity in the Beijing and Hebei populations was much lower. Despite this low genic diversity, the genotypic diversity of the Beijing population was higher than that of all of the other populations, except those from Jiangsu and Shandong. Overall, the genetic divergence among the seven S. avenae populations tested was high, though there was almost no differentiation between the Shandong and Henan populations. We observed significant negative correlation between the strength of gene flow and the geographic distances among populations. Based on genetic analysis, the seven S. avenae populations studied can be divided into four distinct clusters; (i) Hubei, (ii) Shanxi, (iii) Beijing and Hebei, and (iv) Shandong, Henan, and Jiangsu. The present results provide a basis for potentially optimizing integrated pest management (IPM) programs in China, through adapting control methods that target biological traits shared by various populations of the same genotype. PMID:25356548

  5. An improved assay for detection of Acidovorax avenae subsp. citrulli in watermelon and melon seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidovorax avenae subsp. citrulli (Aac), the causal agent of a watermelon seedling blight and fruit blotch (WFB), has emerged as a serious seedborne pathogen of watermelon, melons, pumpkin, and citron. Although attempts have been made to develop a simple routine laboratory seed assay to detect the...

  6. Spring wheat tolerance and resistance to Heterodera avenae in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cereal cyst nematode Heterodera avenae reduces wheat yields in the Pacific Northwest. Previous evaluations of cultivar resistance had been in controlled environments. Cultivar tolerance had not been evaluated. Seven spring wheat trials were conducted in naturally infested fields in three states ...

  7. The origin of the C-genome and cytoplasm of Avena polyploids.

    PubMed

    Nikoloudakis, N; Katsiotis, A

    2008-07-01

    The contribution of C-genome diploid species to the evolution of polyploid oats was studied using C-genome ITS-specific primers. SCAR analysis among Avena accessions confirmed the presence of C-genome ITS1-5.8S-ITS2 sequences in the genome of AACC and AACCDD polyploids. In situ hybridization and screening of more than a thousand rRNA clones in Avena polyploid species containing the C-genome revealed substantial C-genome rRNA sequence elimination. C-genome clones sequenced and Maximum Likelihood Parsimony analysis revealed close proximity to Avena ventricosa ITS1-5.8S-ITS2 sequences, providing strong evidence of the latter's active role in the evolution of tetraploid and hexaploid oats. In addition, cloning and sequencing of the chloroplastic trnL intron among the most representative Avena species verified the maternal origin of A-genome for the AACC interspecific hybrid formation, which was the genetic bridge for the establishment of cultivated hexaploid oats.

  8. Elongated Deposits in Southern Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Nussbaumer, J. W.

    2012-03-01

    In the Elysium Planitia region, deposits have elongated elevations that resemble terrestrial drumlins or yardangs. Drumlins and drumlin clusters are glacial landforms that have been extensively studied. In contrast, Yardangs are formed by wind.

  9. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  10. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  11. Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls.

    PubMed

    Nick, P; Bergfeld, R; Schafer, E; Schopfer, P

    1990-05-01

    Auxin (indole-3-acetic acid) controls the orientation of cortical microtubes (MT) at the outer wall of the outer epidermis of growing maize coleoptiles (Bergfeld, R., Speth, V., Schopfer, P., 1988, Bot. Acta 101, 57-67). A detailed time course of MT reorientation, determined by labeling MT with fluorescent antibodies, revealed that the auxin-mediated movement of MT from the longitudinal to the transverse direction starts after less than 15 min and is completed after 60 min. This response was used for a critical test of the functional involvement of auxin in tropic curvature. It was found that phototropic (first phototropic curvature) as well as gravitropic bending are correlated with a change of MT orientation from transverse to longitudinal at the slower-growing organ flank whereas the transverse MT orientation is maintained (or even augmented) at the faster-growing organ flank. These directional changes are confined to the MT subjacent to the outer epidermal wall. The same basic results were obtained with sunflower hypocotyls subjected to phototropic or gravitropic stimulation. It is concluded that auxin is, in fact, involved in asymmetric growth leading to tropic curvature. However, our results do not allow us to discriminate between an uneven distribution of endogenous auxin or an even distribution of auxin, the activity of which is modulated by an unevenly distributed inhibitor of auxin action.

  12. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    PubMed

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  13. Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L.

    PubMed

    Xiang, Fengning; Xia, Guangmin; Chen, Huimin

    2003-06-01

    Protoplasts from cell suspensions ofyoung-embryo-derived calli, which were nonregenerable for long-term subculture and protoplasts from embryogenic calli with the regeneration capacity of 75% ofthe same wheat Jinan 177, were mixed as recipient. Protoplasts from embryogenic calli of Avena sativa (with the regeneration capacity ofless than 10%) irradiated with UV at an intensity of 300 muW/cm(2) for 30 s, 1 min, 2 min, 3 min, 5 min were used as the donor. Protoplasts ofthe recipient and the donor were fused by PEG method. Many calli and normal green plants were regenerated at high frequency, and were verified as somatic hybrids by chromosome counting, isozyme, 5S rDNA spacer sequence analysis and GISH (genomic in situ hybridization). Fusion combination between protoplasts either from the cell suspensions or from the calli and UV-treated Avena sativa protoplasts could not regenerate green plants. PMID:18763139

  14. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species.

    PubMed

    Liu, Wenying; Yu, Kenming; He, Tengfei; Li, Feifei; Zhang, Dongxu; Liu, Jianxia

    2013-01-01

    The paperaim of the was to study the effect of low temperature stress on Avena nuda L. seedlings. Cold stress leads to many changes of physiological indices, such as membrane permeability, free proline content, malondialdehyde (MDA) content, and chlorophyll content. Cold stress also leads to changes of some protected enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). We have measured and compared these indices of seedling leaves under low temperature and normal temperature. The proline and MDA contents were increased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. The activities of SOD, POD, and CAT were increased under low temperature. The study was designated to explore the physiological mechanism of cold tolerance in naked oats for the first time and also provided theoretical basis for cultivation and antibiotic breeding in Avena nuda L. PMID:23843738

  15. Role of Indole-3-acetic Acid in Modification of Geotropic Responses in Clinostat Rotated Avena Seedlings.

    PubMed

    Dedolph, R R; Naqvi, S M; Gordon, S A

    1966-05-01

    Oat seedlings were grown in a sand medium on clinostats with horizontal axes of rotation to nullify the directional component of the gravity-force vector. Coleoptile segments from such seedlings showed an enhanced absorption of apically applied exogenous auxin (indole-3-acetic acid), compared to segments from vertically rotated or stationary controls. Absorption of basally applied auxin and auxin transport were unaffected by the gravity treatments. Horizontal rotation did not materially change the amount of auxin produced and transported from excised coleoptile tips: however, plants so rotated showed an enhanced curvature response to unilaterally applied auxin.Collectively, these experiments indicate that enhanced plant responses to horizontal clinostat rotation, where rates of rotation are sufficient to nullify the directional component of the gravity-force vector, are caused primarily by increases in metabolism and not by a modification of auxin availability. These data do not support recently advanced hypotheses that the polarity of auxin transport is based on gravitational sedimentation of cell inclusions.

  16. Inheritance of prehaustorial resistance to Puccinia graminis f. sp. avenae in barley (Hordeum vulgare L.).

    PubMed

    Dracatos, Peter M; Ayliffe, Michael; Khatkar, Mehar S; Fetch, Tom; Singh, Davinder; Park, Robert F

    2014-11-01

    Rust pathogens within the genus Puccinia cause some of the most economically significant diseases of crops. Different formae speciales of P. graminis have co-evolved to mainly infect specific grass hosts; however, some genotypes of other closely related cereals can also be infected. This study investigated the inheritance of resistance to three diverse pathotypes of the oat stem rust pathogen (P. graminis f. sp. avenae) in the 'Yerong' ✕ 'Franklin' (Y/F) barley doubled haploid (DH) population, a host with which it is not normally associated. Both parents, 'Yerong' and 'Franklin', were immune to all P. graminis f. sp. avenae pathotypes; however. there was transgressive segregation within the Y/F population, in which infection types (IT) ranged from complete immunity to mesothetic susceptibility, suggesting the presence of heritable resistance. Both QTL and marker-trait association (MTA) analysis was performed on the Y/F population to map resistance loci in response to P. graminis f. sp. avenae. QTL on chromosome 1H ('Yerong' Rpga1 and Rpga2) were identified using all forms of analysis, while QTL detected on 5H ('Franklin' Rpga3 and Rpga4) and 7H (Rpga5) were only detected using MTA or composite interval mapping-single marker regression analysis respectively. Rpga1 to Rpga5 were effective in response to all P. graminis f. sp. avenae pathotypes used in this study, suggesting resistance is not pathotype specific. Rpga1 co-located to previously mapped QTL in the Y/F population for adult plant resistance to the barley leaf scald pathogen (Rhynchosporium secalis) on chromosome 1H. Histological evidence suggests that the resistance observed within parental and immune DH lines in the population was prehaustorial and caused by callose deposition within the walls of the mesophyll cells, preventing hyphal penetration. PMID:25025780

  17. Molecular and Quantitative Genetic Differentiation in Sitobion avenae Populations from Both Sides of the Qinling Mountains

    PubMed Central

    Huang, Xianliang; Liu, Deguang; Wang, Da; Shi, Xiaoqin; Simon, Jean-Christophe

    2015-01-01

    Quantitative trait differences are often assumed to be correlated with molecular variation, but the relationship is not certain, and empirical evidence is still scarce. To address this issue, we sampled six populations of the cereal aphid Sitobion avenae from areas north and south of the Qinling Mountains, and characterized their molecular variation at seven microsatellite loci and quantitative variation at nine life-history traits. Our results demonstrated that southern populations had slightly longer developmental times of nymphs but much higher lifetime fecundity, compared to northern populations. Of the nine tested quantitative characters, eight differed significantly among populations within regions, as well as between northern and southern regions. Genetic differentiation in neutral markers was likely to have been caused by founder events and drift. Increased subdivision for quantitative characters was found in northern populations, but reduced in southern populations. This phenomenon was not found for molecular characters, suggesting the decoupling between molecular and quantitative variation. The pattern of relationships between FST and QST indicated divergent selection and suggested that local adaptation play a role in the differentiation of life-history traits in tested S. avenae populations, particularly in those traits closely related to reproduction. The main role of natural selection over genetic drift was also supported by strong structural differences in G-matrices among S. avenae populations. However, cluster analyses did not result in two groups corresponding to northern and southern regions. Genetic differentiation between northern and southern populations in neutral markers was low, indicating considerable gene flow between them. The relationship between molecular and quantitative variation, as well as its implications for differentiation and evolution of S. avenae populations, was discussed. PMID:25822721

  18. Inheritance of prehaustorial resistance to Puccinia graminis f. sp. avenae in barley (Hordeum vulgare L.).

    PubMed

    Dracatos, Peter M; Ayliffe, Michael; Khatkar, Mehar S; Fetch, Tom; Singh, Davinder; Park, Robert F

    2014-11-01

    Rust pathogens within the genus Puccinia cause some of the most economically significant diseases of crops. Different formae speciales of P. graminis have co-evolved to mainly infect specific grass hosts; however, some genotypes of other closely related cereals can also be infected. This study investigated the inheritance of resistance to three diverse pathotypes of the oat stem rust pathogen (P. graminis f. sp. avenae) in the 'Yerong' ✕ 'Franklin' (Y/F) barley doubled haploid (DH) population, a host with which it is not normally associated. Both parents, 'Yerong' and 'Franklin', were immune to all P. graminis f. sp. avenae pathotypes; however. there was transgressive segregation within the Y/F population, in which infection types (IT) ranged from complete immunity to mesothetic susceptibility, suggesting the presence of heritable resistance. Both QTL and marker-trait association (MTA) analysis was performed on the Y/F population to map resistance loci in response to P. graminis f. sp. avenae. QTL on chromosome 1H ('Yerong' Rpga1 and Rpga2) were identified using all forms of analysis, while QTL detected on 5H ('Franklin' Rpga3 and Rpga4) and 7H (Rpga5) were only detected using MTA or composite interval mapping-single marker regression analysis respectively. Rpga1 to Rpga5 were effective in response to all P. graminis f. sp. avenae pathotypes used in this study, suggesting resistance is not pathotype specific. Rpga1 co-located to previously mapped QTL in the Y/F population for adult plant resistance to the barley leaf scald pathogen (Rhynchosporium secalis) on chromosome 1H. Histological evidence suggests that the resistance observed within parental and immune DH lines in the population was prehaustorial and caused by callose deposition within the walls of the mesophyll cells, preventing hyphal penetration.

  19. Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay.

    PubMed

    Matsumoto, Sadao; Varela, Rosa M; Palma, Miguel; Molinillo, José M G; Lima, Inês S; Barroso, Carmelo G; Macías, Francisco A

    2014-07-01

    A bio-guided optimization of the extraction of bioactive components from Annona glabra leaves has been developed using the etiolated wheat coleoptile bioassay as the control method. The optimization of an ultrasound-assisted extraction of bioactive compounds using allelopathy results as target values has been carried out for the first time. A two-level fractional factorial experimental design was applied to optimize the ultrasound-assisted extraction. The solvent was the extraction variable that had the most marked effect on the resulting bioactivity of the extracts in the etiolated wheat coleoptile bioassay. Extraction time, extraction temperature and the size of the ultrasonic probe also influenced the bioactivity of the extracts. A larger scale extraction was carried out in the next step in the allelopathic study, i.e., the isolation of compounds from the bioactive extract and chemical characterization by spectroscopic techniques, including NMR. Eight compounds were isolated and identified from the active extracts, namely two steroids (β-sistosterol and stigmasterol), five diterpenes with the kaurane skeleton (ent-kaur-16-en-19-oic acid, ent-19-methoxy-19-oxokauran-17-oic acid, annoglabasin B, ent-17-hydroxykaur-15-en-19-oic acid and ent-15β,16β-epoxy-17-hydroxy-kauran-19-oic acid) and the acetogenin asimicin. The most active compound was annoglabasin B, which showed inhibition with values of -95% at 10(-3) M, -87% at 5×10(-4) M and greater than -70% at 10(-4) M in the etiolated wheat coleoptile bioassay. PMID:24556321

  20. Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay.

    PubMed

    Matsumoto, Sadao; Varela, Rosa M; Palma, Miguel; Molinillo, José M G; Lima, Inês S; Barroso, Carmelo G; Macías, Francisco A

    2014-07-01

    A bio-guided optimization of the extraction of bioactive components from Annona glabra leaves has been developed using the etiolated wheat coleoptile bioassay as the control method. The optimization of an ultrasound-assisted extraction of bioactive compounds using allelopathy results as target values has been carried out for the first time. A two-level fractional factorial experimental design was applied to optimize the ultrasound-assisted extraction. The solvent was the extraction variable that had the most marked effect on the resulting bioactivity of the extracts in the etiolated wheat coleoptile bioassay. Extraction time, extraction temperature and the size of the ultrasonic probe also influenced the bioactivity of the extracts. A larger scale extraction was carried out in the next step in the allelopathic study, i.e., the isolation of compounds from the bioactive extract and chemical characterization by spectroscopic techniques, including NMR. Eight compounds were isolated and identified from the active extracts, namely two steroids (β-sistosterol and stigmasterol), five diterpenes with the kaurane skeleton (ent-kaur-16-en-19-oic acid, ent-19-methoxy-19-oxokauran-17-oic acid, annoglabasin B, ent-17-hydroxykaur-15-en-19-oic acid and ent-15β,16β-epoxy-17-hydroxy-kauran-19-oic acid) and the acetogenin asimicin. The most active compound was annoglabasin B, which showed inhibition with values of -95% at 10(-3) M, -87% at 5×10(-4) M and greater than -70% at 10(-4) M in the etiolated wheat coleoptile bioassay.

  1. Biochemical and molecular characterization of Avena indolines and their role in kernel texture.

    PubMed

    Gazza, Laura; Taddei, Federica; Conti, Salvatore; Gazzelloni, Gloria; Muccilli, Vera; Janni, Michela; D'Ovidio, Renato; Alfieri, Michela; Redaelli, Rita; Pogna, Norberto E

    2015-02-01

    Among cereals, Avena sativa is characterized by an extremely soft endosperm texture, which leads to some negative agronomic and technological traits. On the basis of the well-known softening effect of puroindolines in wheat kernel texture, in this study, indolines and their encoding genes are investigated in Avena species at different ploidy levels. Three novel 14 kDa proteins, showing a central hydrophobic domain with four tryptophan residues and here named vromindoline (VIN)-1,2 and 3, were identified. Each VIN protein in diploid oat species was found to be synthesized by a single Vin gene whereas, in hexaploid A. sativa, three Vin-1, three Vin-2 and two Vin-3 genes coding for VIN-1, VIN-2 and VIN-3, respectively, were described and assigned to the A, C or D genomes based on similarity to their counterparts in diploid species. Expression of oat vromindoline transgenes in the extra-hard durum wheat led to accumulation of vromindolines in the endosperm and caused an approximate 50 % reduction of grain hardness, suggesting a central role for vromindolines in causing the extra-soft texture of oat grain. Further, hexaploid oats showed three orthologous genes coding for avenoindolines A and B, with five or three tryptophan residues, respectively, but very low amounts of avenoindolines were found in mature kernels. The present results identify a novel protein family affecting cereal kernel texture and would further elucidate the phylogenetic evolution of Avena genus.

  2. Genetic Basis and Selection for Life-History Trait Plasticity on Alternative Host Plants for the Cereal Aphid Sitobion avenae

    PubMed Central

    Dai, Xinjia; Gao, Suxia; Liu, Deguang

    2014-01-01

    Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones’ life-history traits was unexpectedly low. The factor ‘clone’ alone explained 27.7–62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed. PMID:25181493

  3. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae.

    PubMed

    Dai, Xinjia; Gao, Suxia; Liu, Deguang

    2014-01-01

    Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones' life-history traits was unexpectedly low. The factor 'clone' alone explained 27.7-62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.

  4. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ß-lactam antibiotics

    PubMed Central

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-01-01

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes. PMID:26915352

  5. [Comparative analysis of diploid species of Avena l. using cytogenetic and biochemical markers: Avena canariensis baum et fedak and A. longiglumis dur].

    PubMed

    Shelukhina, O Iu; Badaeva, E D; Brezhneva, T A; Loskutov, I G; Pukhal'skiĭ, V A

    2008-06-01

    The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3A1 long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.

  6. Reorientation of elongated particles at density interfaces.

    PubMed

    Doostmohammadi, A; Ardekani, A M

    2014-09-01

    Density interfaces in the water column are ubiquitously found in oceans and lakes. Interaction of settling particles with pycnoclines plays a pivotal function in nutrient transport between ocean layers and settling rates of marine particles. We perform direct numerical simulations of an elongated particle settling through a density interface and scrutinize the role of stratification on the settling dynamics. It is found that the presence of the density interface tends to turn the long axis of an elongated particle parallel to the settling direction, which is dramatically different from its counterpart in a homogeneous fluid. Although broadside-on settling of the elongated particle is enhanced upon approaching the interface, the long axis rotates toward the settling direction as the particle passes through the interface. We quantify turning couples due to stratification effects, which counteract the pressure-induced torques due to the fluid inertia. A similar behavior is observed for different initial orientations of the particle. It is shown that the reorientation of an elongated particle occurs in both sharp and linear density stratifications. PMID:25314535

  7. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  8. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    PubMed Central

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  9. The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi.

    PubMed

    Miao, Jin; Wu, Yuqing; Xu, Weigang; Hu, Lin; Yu, Zhenxing; Xu, Qiongfang

    2011-06-01

    This study investigated the impact of transgenic wheat expressing Galanthus nivalis agglutinin (GNA), commonly known as snowdrop lectin, on three wheat aphids: Sitobion avenae (F.), Schizaphis graminum (Rondani), and Rhopalosiphum padi (L.). We compared the feeding behavior and the life-table parameters of aphids reared on GNA transgenic wheat (test group) and those aphids reared on untransformed wheat (control group). The results showed that the feeding behaviors of S. avenae and S. graminum on GNA transgenic wheat were affected. Compared with the control group, they had shorter initial probing period, longer total nonprobing period, shorter initial and total phloem sap ingestion phase (waveform E2), shorter duration of sustained ingestion (E (pd) > 10 min), and lower percentage of phloem phase of the total observation time. Moreover, S. graminum made more probes and had a longer total duration of extracellular stylet pathway (waveform C). The fecundity and intrinsic rate of natural increase (r(m)) of S. avenae and S. graminum on the transgenic wheat were lowered in the first and second generations, however, the survival and lifespan were not affected. The effects of the GNA expressing wheat on S. graminum and S. avenae were not significant in the third generation, suggesting rapid adaptation by the two aphid species. Despite the impact we found on S. avenae and S. graminum, transgenic GNA expressing wheat did not have any effects on R. padi.

  10. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    SciTech Connect

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. )

    1992-01-15

    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  11. Mechanism of amyloid-β fibril elongation.

    PubMed

    Gurry, Thomas; Stultz, Collin M

    2014-11-11

    Amyloid-β is an intrinsically disordered protein that forms fibrils in the brains of patients with Alzheimer's disease. To explore factors that affect the process of fibril growth, we computed the free energy associated with disordered amyloid-β monomers being added to growing amyloid fibrils using extensive molecular dynamics simulations coupled with umbrella sampling. We find that the mechanisms of Aβ40 and Aβ42 fibril elongation have many features in common, including the formation of an obligate on-pathway β-hairpin intermediate that hydrogen bonds to the fibril core. In addition, our data lead to new hypotheses for how fibrils may serve as secondary nucleation sites that can catalyze the formation of soluble oligomers, a finding in agreement with recent experimental observations. These data provide a detailed mechanistic description of amyloid-β fibril elongation and a structural link between the disordered free monomer and the growth of amyloid fibrils and soluble oligomers.

  12. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  13. Elongational viscosity of photo-oxidated LDPE

    SciTech Connect

    Rolón-Garrido, Víctor H. E-mail: manfred.wagner@tu-berlin.de; Wagner, Manfred H. E-mail: manfred.wagner@tu-berlin.de

    2014-05-15

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  14. [Genomic structure of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of the ITS1 and ITS2 sequences: on the oat karyotype evolution during the early stages of the Avena species divergence].

    PubMed

    Rodionov, A V; Tiupa, N B; Kim, E S; Machs, E M; Loskutov, I G

    2005-05-01

    To examine the genomic structure of Avena macrostachya, internal transcribed spacers, ITS1 and ITS2, as well as nuclear 5.8S tRNA genes from three oat species with AsAs karyotype (A. wiestii, A. hirtula, and A. atlantica), and those from A. longiglumis (AlAl), A. canariensis (AcAc), A. ventricosa (CvCv), A. pilosa, and A. clauda (CpCp) were sequenced. All species of the genus Avena examined represented a monophyletic group (bootstrap index = 98), within which two branches, i.e., species with A- and C-genomes, were distinguished (bootstrap indices = 100). The subject of our study, A. macrostachya, albeit belonging to the phylogenetic branch of C-genome oat species (karyotype with submetacentic and subacrocentric chromosomes), has preserved an isobrachyal karyotype, (i.e., that containing metacentric chromosomes), probably typical of the common Avena ancestor. It was suggested to classify the A. macrostachya genome as a specific form of C-genome, Cm-genome. Among the species from other genera studied, Arrhenatherum elatius was found to be the closest to Avena in ITS1 and ITS structure. Phylogenetic relationships between Avena and Helictotrichon remain intriguingly uncertain. The HPR389153 sequence from H. pratense genome was closest to the ITS1 sequences specific to the Avena A-genomes (p-distance = 0.0237), while the differences of this sequence from the ITS1 of A. macrostachya reached 0.1221. On the other hand, HAD389117 from H. adsurgens was close to the ITS1 specific to Avena C-genomes (p-distance = 0.0189), while its differences from the A-genome specific ITS1 sequences reached 0.1221. It seems likely that the appearance of highly polyploid (2n = 12-21x) species of H. pratense and H. adsurgens could be associated with interspecific hybridization involving Mediterranean oat species carrying A- and C-genomes. A hypothesis on the pathways of Avena chromosomes evolution during the early stages the oat species divergence is proposed.

  15. Assessment of Sublethal and Transgenerational Effects of Pirimicarb on the Wheat Aphids Rhopalosiphum padi and Sitobion avenae.

    PubMed

    Xiao, Da; Yang, Ting; Desneux, Nicolas; Han, Peng; Gao, Xiwu

    2015-01-01

    The wheat aphids, Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius), are key pests on wheat crops worldwide. Management practices rely primarily on insecticides. The pirimicarb (carbamate) is used extensively as an effective insecticide to control these two aphids. In addition to the mortality caused by pirimicarb, various sublethal effects may occur in aphids when exposed to low lethal or sublethal doses. Understanding the general effect of pirimicarb on aphids could help increasing rational use of this insecticide. Under laboratory conditions, we assessed the sublethal effects of a low lethal concentration of pirimicarb (LC25) on biological traits and acetylcholinesterase (AChE) activity of R. padi and S. avenae. Both direct and transgenerational effects, i.e. on parent and the F1 generations were assessed, respectively. We found that R. padi and S. avenae responded differentially to the LC25 of pirimicarb. The parent generation of R. padi showed a 39% decrease in fecundity and multiple transgenerational effects were observed in the F1 generation; overall juvenile development, reproductive period, adult longevity and lifespan were longer than those of the control group. By contrast, LC25 of pirimicarb showed almost no effects on S. avenae biological traits in both the parent and F1 generations; only the pre-reproductive duration was reduced in F1 generations. Demographic parameter estimates (e.g. rm) showed similar trend, i.e. significant negative effect on R. padi population growth and no effect on S. avenae. However, AChE activity decreased in both R. padi and S. avenae treated by the LC25 of pirimicarb. We demonstrated sublethal and transgenerational effects of pirimicarb in the two wheat aphid species; it hinted at the importance of considering sublethal effects (including hormesis) of pirimicarb for optimizing Integrated Pest Management (IPM) of wheat aphids.

  16. Assessment of Sublethal and Transgenerational Effects of Pirimicarb on the Wheat Aphids Rhopalosiphum padi and Sitobion avenae

    PubMed Central

    Desneux, Nicolas; Han, Peng; Gao, Xiwu

    2015-01-01

    The wheat aphids, Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius), are key pests on wheat crops worldwide. Management practices rely primarily on insecticides. The pirimicarb (carbamate) is used extensively as an effective insecticide to control these two aphids. In addition to the mortality caused by pirimicarb, various sublethal effects may occur in aphids when exposed to low lethal or sublethal doses. Understanding the general effect of pirimicarb on aphids could help increasing rational use of this insecticide. Under laboratory conditions, we assessed the sublethal effects of a low lethal concentration of pirimicarb (LC25) on biological traits and acetylcholinesterase (AChE) activity of R. padi and S. avenae. Both direct and transgenerational effects, i.e. on parent and the F1 generations were assessed, respectively. We found that R. padi and S. avenae responded differentially to the LC25 of pirimicarb. The parent generation of R. padi showed a 39% decrease in fecundity and multiple transgenerational effects were observed in the F1 generation; overall juvenile development, reproductive period, adult longevity and lifespan were longer than those of the control group. By contrast, LC25 of pirimicarb showed almost no effects on S. avenae biological traits in both the parent and F1 generations; only the pre-reproductive duration was reduced in F1 generations. Demographic parameter estimates (e.g. rm) showed similar trend, i.e. significant negative effect on R. padi population growth and no effect on S. avenae. However, AChE activity decreased in both R. padi and S. avenae treated by the LC25 of pirimicarb. We demonstrated sublethal and transgenerational effects of pirimicarb in the two wheat aphid species; it hinted at the importance of considering sublethal effects (including hormesis) of pirimicarb for optimizing Integrated Pest Management (IPM) of wheat aphids. PMID:26121265

  17. pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO3−

    PubMed Central

    Greenway, Hank; Kulichikhin, Konstantin Y.; Cawthray, Gregory R.; Colmer, Timothy D.

    2012-01-01

    During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H+ influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K+ efflux was continuous. Further experiments used excised coleoptile tips (7–10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO3−, which distinguished two processes involved in pH regulation. Net H+ influx (μmol g−1 fresh weight h−1) for coleoptiles with NO3− was ∼1.55 over the first 24 h, being about twice that in the absence of NO3−, but then decreased to 0.5–0.9 as net NO3− uptake declined from ∼1.3 to 0.5, indicating reduced uptake via H+–NO3− symports. NO3− reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K+ balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO3− supply. Thus, biochemical pHstats and reduced net H+ influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5. PMID:22174442

  18. A Key and Compendium to Species of the Heterodera avenae Group (Nematoda: Heteroderidae)

    PubMed Central

    Handoo, Zafar A.

    2002-01-01

    A key based on cyst and juvenile characters is given for identification of 12 valid Heterodera species in the H. avenae group. A compendium providing the most important diagnostic characters for use in identification of species is included as a supplement to the key. Cyst characters are most useful for separating species; these include shape, color, cyst wall pattern, fenestration, vulval slit length, and the posterior cone including presence or absence of bullae and underbridge. Also useful are those of second-stage juvenile characteristics including aspects of the stylet knobs, tail hyaline tail terminus, and lateral field. Photomicrographs of diagnostically important morphological features complement the compendium. PMID:19265941

  19. Antioxidant defenses of mycorrhizal fungus infection against SO(2)-induced oxidative stress in Avena nuda seedlings.

    PubMed

    Huang, L L; Yang, C; Zhao, Y; Xu, X; Xu, Q; Li, G Z; Cao, J; Herbert, S J; Hao, L

    2008-11-01

    Colonization of arbuscular mycorrhizal fungi Glomus mosseae increased Avena nuda seedling tolerance to SO(2) exposure, as indicated by elevated total plant biomass and ameliorative photosynthetic rate, when compared to the non-mycorrhizal plants. This is associated with an improved antioxidant capacity as shown by enhanced superoxide dismutase and catalase activity, increased ascorbic acid and glutathione content, and reduced malondialdehyde and hydrogen peroxide level in the mycorrhizal plants relative to the non-mycorrhizal plants under SO(2) exposure. The mycorrhizal fungi colonization had no effect on the stomatal conductance. To our knowledge, this is the first finding of this sort.

  20. Dimerization of elongator protein 1 is essential for Elongator complex assembly

    PubMed Central

    Xu, Huisha; Lin, Zhijie; Li, Fengzhi; Diao, Wentao; Dong, Chunming; Zhou, Hao; Xie, Xingqiao; Wang, Zheng; Shen, Yuequan; Long, Jiafu

    2015-01-01

    The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities. PMID:26261306

  1. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells.

    PubMed

    Siemieniuk, Agnieszka; Karcz, Waldemar

    2015-06-30

    The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K(+) and Ca(2+), were also determined. Growth experiments have shown that in the absence of K(+) in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca(2+), respectively, while in the presence of 1 mM K(+) they were inhibited only by 1 mM Ca(2+). At 10 mM K(+), endogenous growth and growth induced by either IAA or FC did not depend on Ca(2+) concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca(2+) channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K(+), independently of Ca(2+). However, lack of Ca(2+) in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K(+) uptake channels in regulation of plant cell growth.

  2. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells

    PubMed Central

    Siemieniuk, Agnieszka; Karcz, Waldemar

    2015-01-01

    The role of potassium (K+) and calcium (Ca2+) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K+ and Ca2+ ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K+ and Ca2+, were also determined. Growth experiments have shown that in the absence of K+ in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca2+, respectively, while in the presence of 1 mM K+ they were inhibited only by 1 mM Ca2+. At 10 mM K+, endogenous growth and growth induced by either IAA or FC did not depend on Ca2+ concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca2+ channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K+, independently of Ca2+. However, lack of Ca2+ in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K+ uptake channels in regulation of plant cell growth. PMID:26134122

  3. Cell division versus cell elongation: the control of radicle elongation during thermoinhibition of Tagetes minuta achenes.

    PubMed

    Taylor, Nicky J; Hills, Paul N; van Staden, Johannes

    2007-12-01

    Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.

  4. Scattering from polymer networks under elongational strain

    NASA Astrophysics Data System (ADS)

    Svaneborg, C.; Grest, G. S.; Everaers, R.

    2005-12-01

    Molecular-dynamics simulations are used to sample the single-chain form factor of labelled sub-chains in model polymer networks under elongational strain. We observe very similar results for randomly cross-linked and for randomly end-linked networks with the same average strand length and see no indication of lozenge-like scattering patterns reported for some experimental systems. Our data analysis shows that a recent variant of the tube model quantitatively describes scattering in the Guinier regime as well as the macroscopic elastic properties. The observed failure of the theory outside the Guinier regime is shown to be due to non-Gaussian pair-distance distributions.

  5. Scattering from polymer networks under elongational strain.

    SciTech Connect

    Grest, Gary Stephen; Svaneborg, Carsten; Everaers, Ralf

    2005-06-01

    Molecular-dynamics simulations are used to sample the single-chain form factor of labelled sub-chains in model polymer networks under elongational strain. We observe very similar results for randomly cross-linked and for randomly end-linked networks with the same average strand length and see no indication of lozenge-like scattering patterns reported for some experimental systems. Our data analysis shows that a recent variant of the tube model quantitatively describes scattering in the Guinier regime as well as the macroscopic elastic properties. The observed failure of the theory outside the Guinier regime is shown to be due to non-Gaussian pair-distance distributions.

  6. Antibiosis and non-preference of Sitobion avenae (F.) (Hemiptera: Aphididae) on leaves and ears of commercial cultivars of wheat (Triticum aestivum).

    PubMed

    Silva, A M; Sampaio, M V; de Oliveira, R S; Korndorfer, A P; Ferreira, S E; Polastro, G C; Dias, P A S

    2013-06-01

    Little is known on the resistance of wheat cultivars to Sitobion avenae (F.) in Brazil. The goal of this work was to assess the behavior and biology of S. avenae on four commercial wheat cultivars to verify the existence of resistance by antibiosis in leaves and ears and non-preference in the ears. The smallest net fecundity rates of S. avenae in wheat leaves have been found in the cultivars Embrapa 22 and BRS264, which did not differ between themselves. The intrinsic rate of increase of S. avenae was smaller in leaves of Embrapa 22 than in cultivars BRS254 and BRS Timbaúva. The smallest net fecundity rates of S. avenae in wheat ears were observed in the cultivars BRS254 and Embrapa 22. The intrinsic rate of increase of the aphid in the ear of cultivar Embrapa 22 was smaller than in BRS Timbaúva and BRS264, but did not differ from BRS254. The organ of the wheat plant in which the aphid was reared influences antibiosis resistance, but the cultivar BRS Timbaúva was considered susceptible and Embrapa 22 resistant to S. avenae in both plant organs tested. Ears of wheat cultivars tested did not show differences in the mechanism of resistance by non-preference to S. avenae.

  7. Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psbA-trnH and single-copy nuclear gene Acc1.

    PubMed

    Yan, Hong-Hai; Baum, Bernard R; Zhou, Ping-Ping; Zhao, Jun; Wei, Yu-Ming; Ren, Chang-Zhong; Xiong, Fang-Qiu; Liu, Gang; Zhong, Lin; Zhao, Gang; Peng, Yuan-Ying

    2014-05-01

    Two uncorrelated nucleotide sequences, chloroplast intergenic spacer psbA-trnH and acetyl CoA carboxylase gene (Acc1), were used to perform phylogenetic analyses in 75 accessions of the genus Avena, representing 13 diploids, seven tetraploid, and four hexaploids by maximum parsimony and Bayesian inference. Phylogenic analyses based on the chloroplast intergenic spacer psbA-trnH confirmed that the A genome diploid might be the maternal donor of species of the genus Avena. Two haplotypes of the Acc1 gene region were obtained from the AB genome tetraploids, indicating an allopolyploid origin for the tetraploid species. Among the AB genome species, both gene trees revealed differences between Avena agadiriana and the other species, suggesting that an AS genome diploid might be the A genome donor and the other genome diploid donor might be the Ac genome diploid Avena canariensis or the Ad genome diploid Avena damascena. Three haplotypes of the Acc1 gene have been detected among the ACD genome hexaploid species. The haplotype that seems to represent the D genome clustered with the tetraploid species Avena murphyi and Avena maroccana, which supported the CD genomic designation instead of AC for A. murphyi and A. maroccana.

  8. Nonlinear deformations of microcapsules in elongation flow

    NASA Astrophysics Data System (ADS)

    Deschamps, Julien; de Loubens, Clément; Boedec, Gwenn; Georgelin, Marc; Leonetti, Marc; Soft Matter; Biophysics Group Team

    2014-11-01

    Soft microcapsules are drops bounded by a thin elastic shell made of cross-linked proteins. They have numerous applications for drug delivery in bioengineering, pharmaceutics and medicine, where their mechanical stability and their dynamics under flow are crucial. They can also be used as red blood cells models. Here, we investigate the mechanical behaviour of microcapsules made of albumine in strong elongational flow, up to a stretching of 180% just before breaking. The set-up allows us to visualize the deformed shape in the two perpendicular main fields of view, to manage high capillary number and to manipulate soft microcapsules. The steady-state shape of a capsule in the planar elongational flow is non-axisymmetric. In each cross section, the shape is an ellipse but with different small axis which vary in opposite sense with the stretching. Whatever the degree of cross-linking and the size of the capsules, the deformations followed the same master-curve. Comparisons between numerical predictions and experimental results permit to conclude unambiguously that the more properly strain-energy model of membrane is the generalized Hooke model.

  9. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal

    PubMed Central

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-01-01

    Genomic diversity of Portuguese accessions of Avena species—diploid A. strigosa and hexaploids A. sativa and A. sterilis—was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species—rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies—IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)—were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs. PMID:26861283

  10. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal.

    PubMed

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-01-01

    Genomic diversity of Portuguese accessions of Avena species--diploid A. strigosa and hexaploids A. sativa and A. sterilis--was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species--rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies--IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)--were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs. PMID:26861283

  11. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal.

    PubMed

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-02-04

    Genomic diversity of Portuguese accessions of Avena species--diploid A. strigosa and hexaploids A. sativa and A. sterilis--was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species--rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies--IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)--were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs.

  12. Genomic and polyploid evolution in genus Avena as revealed by RFLPs of repeated DNA sequences.

    PubMed

    Morikawa, Toshinobu; Nishihara, Miho

    2009-06-01

    Phylogenetic relationships and genome affinities were investigated by utilizing all the biological Avena species consisting of 11 diploid species (15 accessions), 8 tetraploid species (9 accessions) and 4 hexaploid species (5 accessions). Genomic DNA regions of As120a, avenin, and globulin were amplified by PCR. A total of 130 polymorphic fragments were detected out of 156 fragments generated by digesting the PCR-amplified fragments with 11 restriction enzymes. The number of fragments generated by PCR-amplification followed by digestion with restriction enzymes was almost the same as those among the three repeated DNA sequences. A high level of genetic distance was detected between A. damascena (Ad) and A. canariensis (Ac) genomes, which reflected their different morphology and reproductive isolation. The A. longiglumis (Al) and A. prostrata (Ap) genomes were closely related to the As genome group. The AB genome species formed a cluster with the AsAs genome artificial autotetraploid and the As genome diploids indicating near-autotetraploid origin. The A. macrostachya is an outbreeding autotetraploid closely related with the C genome diploid and the AC genome tetraploid species. The differences of genetic distances estimated from the repeated DNA sequence divergence among the Avena species were consistent with genome divergences and it was possible to compare the genetic intra- and inter-ploidy relationships produced by RFLPs. These results suggested that the PCR-mediated analysis of repeated DNA polymorphism can be used as a tool to examine genomic relationships of polyploidy species.

  13. Phylogenetic inferences in Avena based on analysis of FL intron2 sequences.

    PubMed

    Peng, Yuan-Ying; Wei, Yu-Ming; Baum, Bernard R; Yan, Ze-Hong; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2010-09-01

    The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.

  14. [Effects of wheat-oilseed rape intercropping and methyl salicylate application on the spatial distributions of Sitobion avenae and its main natural enemies].

    PubMed

    Dong, Jie; Liu, Ying-Jie; Wang, Guang; Liu, Yong

    2012-07-01

    A field investigation was conducted on the spatial distributions of Sitobion avenae and its main natural enemies under wheat-oilseed rape intercropping and methyl salicylate application. With the development of wheat plant, an alternation from aggregation to uniform was observed in the spatial distribution of S. avenae under the intercropping and methyl salicylate application, being more obvious under the interaction of the two practices. The spatial distribution of S. avenae natural enemies was in accordance with that of the aphid. These results could be used for the reference of sampling investigation and forecast of wheat aphid and its natural enemies in field.

  15. Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae).

    PubMed

    Dias, P A S; Sampaio, M V; Rodrigues, M P; Korndörfer, A P; Oliveira, R S; Ferreira, S E; Korndörfer, G H

    2014-08-01

    Despite the knowledge about the effects of silicon augmenting antibiosis and nonpreference of plants by apterous aphids, few studies exist on such effects with alate aphids. This study evaluated the effects of silicon fertilization on the biology of alate and apterous morphs of Sitobion avenae (F.) (Hemiptera: Aphididae), and the effect on nonpreference by S. avenae alates for wheat plants with or without silicon fertilization. A method for rearing aphids on detached leaves was evaluated comparing the biology of apterous aphids reared on wheat leaf sections and on whole plants with and without silicon fertilization. Because the use of detached leaves was a reliable method, the effect of silicon fertilization on the biology of apterous and alate S. avenae was assessed using wheat leaf sections. Biological data of aphids were used to calculate a fertility life table. Finally, the effect of silicon fertilization on the nonpreference of alate aphids was carried out for both vegetative and reproductive phases of wheat. Thirty alate aphids were released in the center of a cage, and the number of aphids per whole plant with or without silicon fertilization was observed. Silicon fertilization induced antibiosis resistance in wheat plants to apterous morphs as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate; however, alates were unaffected. Plants that received silicon fertilization had fewer alate aphids in both the vegetative and reproductive phases. Thus, silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants.

  16. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae

    PubMed Central

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  17. Progress in the Development of Crimson Sweet-type Watermelon Breeding Lines with Resistance to Acidovorax Avenae Subsp. Citrulli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial fruit blotch (Acidovorax avenae subsp. citrulli [Schaad et al.] Willems et al.) continues to occur almost every year and has the potential to cause a disaster for the watermelon industry. In this study, Crimson Sweet watermelon was crossed with PI482279 and PI494817, two Citrullus lanatus...

  18. Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae)

    PubMed Central

    Li, Xiangrui; Zhang, Fangmei; Coates, Brad; Zhang, Yunhui; Zhou, Xuguo; Cheng, Dengfa

    2016-01-01

    MicroRNAs (miRNAs) are short single-stranded non-coding RNAs that regulate gene expression, particularly during development. In this study, 345 miRNAs were identified from the English green aphid, Sitobion avenae (F.), of which 168 were conserved and 177 were S. avenae-specific. Quantitative comparison of miRNA expression levels indicated that 16 and 12 miRNAs were significantly up-regulated in winged and wingless S. avenae small RNA libraries, respectively. Differential expression of these miRNAs was confirmed by real-time quantitative RT-PCR validation. The putative transcript targets for these candidate miRNAs were predicted based on sequences from a model species Drosophila melanogaster and four aphid species Acyrthosiphon pisum, Myzus persicae, Toxoptera citricida, and Aphis gosspii. Gene Ontology and KEGG pathway analyses shed light on the potential functions of these miRNAs in the regulation of genes involved in the metabolism, development and wing polyphenism of S. avenae. PMID:27762301

  19. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  20. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae.

    PubMed

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  1. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  2. Trade studies of plasma elongation for next-step tokamaks

    SciTech Connect

    Galambos, J.D.; Strickler, D.J.; Peng, Y.K.M.; Reid, R.L.

    1988-09-01

    The effect of elongation on minimum-cost devices is investigated for elongations ranging from 2 to 3. The analysis, carried out with the TETRA tokamak systems code, includes the effects of elongation on both physics (plasma beta limit) and engineering (poloidal field coil currents) issues. When ignition is required, the minimum cost occurs for elongations from 2.3 to 2.9, depending on the plasma energy confinement scaling used. Scalings that include favorable plasma current dependence and/or degradation with fusion power tend to have minimum cost at higher elongation (2.5-2.9); scalings that depend primarily on size result in lower elongation (/approximately/2.3) for minimum cost. For design concepts that include steady-state current-driven operation, minimum cost occurs at an elongation of 2.3. 12 refs., 13 figs.

  3. Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides.

    PubMed

    Xu, Lanjie; Duan, Xiaoliang; Lv, Yanhua; Zhang, Xiaohua; Nie, Zhansheng; Xie, Chaojie; Ni, Zhongfu; Liang, Rongqi

    2014-04-01

    RNA interference (RNAi) describes the ability of double-stranded RNA (dsRNA) to inhibit homologous gene expression at the RNA level. Its specificity is sequence-based and depends on the sequence of one strand of the dsRNA corresponding to part or all of a specific gene transcript. In this study we adopted plant-mediated RNAi technology that targets Sitobion avenae (S. avenae) to enable gene silencing in the aphid and to minimize handling of the insects during experiments. S. avenae was selected for this study because it causes serious economic losses to wheat throughout the world. The carboxylesterase (CbE E4) gene in S. avenae was homologously cloned, which increased synthesis of a protein known to be critical to the resistance (tolerance) this species has developed to a wide range of pesticides. A plant RNAi vector was constructed, and transgenic Triticum aestivum (dsCbE1-5 and dsCbE2-2 lines) expressing CbE E4 dsRNA were developed. S. avenae were fed on dsCbE1-5 and dsCbE2-2 lines stably producing the CbE E4 dsRNA. CbE E4 gene expression in S. avenae was reduced by up to 30-60%. The number of aphids raised on dsCbE1-5 and dsCbE2-2 was lower than the number raised on non-transgenic plants. A solution of CbE E4 enzyme from S. avenae fed on dsCbE1-5 and dsCbE2-2 plants hydrolyzed only up to 20-30% Phoxim solution within 40 min whereas a solution of the enzyme from CbE E4 fed on control plants hydrolyzed 60% of Phoxim solution within 40 min. CbE E4 gene silencing was achieved by our wheat-mediated RNAi approach. This plant-mediated RNAi approach for addressing degradation-based pesticide resistance mechanisms in aphids and may prove useful in pest management for diverse agro-ecosystems. PMID:24242160

  4. Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides.

    PubMed

    Xu, Lanjie; Duan, Xiaoliang; Lv, Yanhua; Zhang, Xiaohua; Nie, Zhansheng; Xie, Chaojie; Ni, Zhongfu; Liang, Rongqi

    2014-04-01

    RNA interference (RNAi) describes the ability of double-stranded RNA (dsRNA) to inhibit homologous gene expression at the RNA level. Its specificity is sequence-based and depends on the sequence of one strand of the dsRNA corresponding to part or all of a specific gene transcript. In this study we adopted plant-mediated RNAi technology that targets Sitobion avenae (S. avenae) to enable gene silencing in the aphid and to minimize handling of the insects during experiments. S. avenae was selected for this study because it causes serious economic losses to wheat throughout the world. The carboxylesterase (CbE E4) gene in S. avenae was homologously cloned, which increased synthesis of a protein known to be critical to the resistance (tolerance) this species has developed to a wide range of pesticides. A plant RNAi vector was constructed, and transgenic Triticum aestivum (dsCbE1-5 and dsCbE2-2 lines) expressing CbE E4 dsRNA were developed. S. avenae were fed on dsCbE1-5 and dsCbE2-2 lines stably producing the CbE E4 dsRNA. CbE E4 gene expression in S. avenae was reduced by up to 30-60%. The number of aphids raised on dsCbE1-5 and dsCbE2-2 was lower than the number raised on non-transgenic plants. A solution of CbE E4 enzyme from S. avenae fed on dsCbE1-5 and dsCbE2-2 plants hydrolyzed only up to 20-30% Phoxim solution within 40 min whereas a solution of the enzyme from CbE E4 fed on control plants hydrolyzed 60% of Phoxim solution within 40 min. CbE E4 gene silencing was achieved by our wheat-mediated RNAi approach. This plant-mediated RNAi approach for addressing degradation-based pesticide resistance mechanisms in aphids and may prove useful in pest management for diverse agro-ecosystems.

  5. Potential flow about elongated bodies of revolution

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1936-01-01

    This report presents a method of solving the problem of axial and transverse potential flows around arbitrary elongated bodies of revolution. The solutions of Laplace's equation for the velocity potentials of the axial and transverse flows, the system of coordinates being an elliptic one in a meridian plane, are given. The theory is applied to a body of revolution obtained from a symmetrical Joukowsky profile, a shape resembling an airship hull. The pressure distribution and the transverse-force distribution are calculated and serve as examples of the procedure to be followed in the case of an actual airship. A section on the determination of inertia coefficients is also included in which the validity of some earlier work is questioned.

  6. Low temperature viscosity in elongated ferrofluids

    NASA Astrophysics Data System (ADS)

    Alarcón, T.; Pérez-Madrid, A.; Rubí, J. M.

    1997-12-01

    We have studied the relaxation and transport properties of a ferrofluid in an elongational flow. These properties are influenced by the bistable nature of the potential energy. Bistability comes from the irrotational character of the flow together with the symmetry of the dipoles. Additionally, the presence of a constant magnetic field destroys the symmetry of the potential energy magnetizing the system. We have shown that at a moderate temperature, compared to the height of the energy barrier, the viscosity decreases with respect to the value it would have if the potential were stable. This phenomenon is known as the "negative viscosity" effect. Thermal motion induces jumps of the magnetic moment between the two stable states of the system leading to the aforementioned lowered dissipation effect.

  7. Conditions for bubble elongation in cold ice-sheet ice

    USGS Publications Warehouse

    Alley, R.B.; Fitzpatrick, J.J.

    1999-01-01

    Highly elongated bubbles are sometimes observed in ice-sheet ice. Elongation is favored by rapid ice deformation, and opposed by diffusive processes. We use simple models to show that vapor transport dominates diffusion except possibly very close to the melting point, and that latent-heat effects are insignificant. Elongation is favored by larger bubbles at pore close-off, but is nearly independent of bubble compression below close-off. The simple presence of highly elongated bubbles indicates only that a critical ice-strain rate has been exceeded for significant time, and provides no information on possible disruption of stratigraphic continuity by ice deformation.

  8. Venus - A Large Elongated Caldera 'Sacajawea Patera

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image reveals Sacajawea Patera, a large, elongate caldera located in Western Ishtar Terra on the smooth plateau of Lakshmi Planum. The image is centered at 64.5 degrees North latitude and 337 degrees East longitude. It is approximately 420 kilometers (252 miles) wide at the base. Sacajawea is a depression approximately 1-2 kilometers (0.6-1.2 miles) deep and 120 x 215 kilometers (74 x 133 miles) in diameter; it is elongate in a southwest-northeast direction. The depression is bounded by a zone of circumferential curvilinear structures interpreted to be graben and fault scarps. These structures are spaced 0.5-4 kilometers (0.3-2.5 miles) apart, are 0.6-4.0 kilometers (0.4-2.5 miles) in width and up to 100 kilometers (62 miles) in length. Extending up to approximately 140 kilometers (87 miles) in length from the southeast of the patera is a system of linear structures thought to represent a flanking rift zone along which the lateral injection and eruption of magma may have occurred. A shield edifice 12 kilometers (7 miles) in diameter with a prominent central pit lies along the trend of one of these features. The impact crater Zlata, approximately 6 kilometers (4 miles) in diameter is located within the zone of graben to the northwest of the patera. Few flow features are observed in association with Sacajawea, possibly due to age and state of degradation of the flows. Mottled bright deposits 4-20 kilometers (2.5-12 miles) in width are located near the periphery and in the center of the patera floor within local topographic lows. Diffuse patches of dark material approximately 40 kilometers (25 miles) in width are observed southwest of the patera, superposed on portions of the surrounding graben. The formation of Sacajawea is thought to be related to the drainage and collapse of a large magma chamber. Gravitational relaxation may have caused the resultant caldera to sag, producing the numerous faults and graben that circumscribe the patera. Regions of

  9. Effect of urea and certain NPK fertilizers on the cereal cyst nematode (Heterodera avenae) on wheat.

    PubMed

    Al-Hazmi, Ahmad S; Dawabah, Ahmed A M

    2014-04-01

    Two outdoor pot experiments were conducted in two consecutive years under outdoor conditions during the wheat growing season in Saudi Arabia to determine the effects of urea and certain compound fertilizers (NPK), compared to the effects of the nematicide fenamiphos on the cereal cyst nematode (CCN), Heterodera avenae, and wheat growth. The results showed that all of the treatments, except the fertilizer diammonium phosphate (DAP), reduced the number of nematode cysts/root system and increased (P ⩽ 0.05) the dry weight of nematode-infected wheat plants. Fenamiphos and urea resulted in the best control, followed by the NPK fertilizers. The combined application of urea and fenamiphos resulted in the most significant effect in decreasing (P ⩽ 0.05) the number of cysts/root system and increasing (P ⩽ 0.05) the growth of nematode-infected wheat plants. PMID:24600314

  10. Effect of urea and certain NPK fertilizers on the cereal cyst nematode (Heterodera avenae) on wheat

    PubMed Central

    Al-Hazmi, Ahmad S.; Dawabah, Ahmed A.M.

    2013-01-01

    Two outdoor pot experiments were conducted in two consecutive years under outdoor conditions during the wheat growing season in Saudi Arabia to determine the effects of urea and certain compound fertilizers (NPK), compared to the effects of the nematicide fenamiphos on the cereal cyst nematode (CCN), Heterodera avenae, and wheat growth. The results showed that all of the treatments, except the fertilizer diammonium phosphate (DAP), reduced the number of nematode cysts/root system and increased (P ⩽ 0.05) the dry weight of nematode-infected wheat plants. Fenamiphos and urea resulted in the best control, followed by the NPK fertilizers. The combined application of urea and fenamiphos resulted in the most significant effect in decreasing (P ⩽ 0.05) the number of cysts/root system and increasing (P ⩽ 0.05) the growth of nematode-infected wheat plants. PMID:24600314

  11. Physiological biosafety assessment of genetically modified canola on weed (Avena sativa).

    PubMed

    Syed, Kashmala; Shinwari, Zabta Khan

    2016-03-01

    The present study was carried out for the assessment of physiological biosafety and effects of genetically modified (GM) canola on Avena sativa, which is a common weed plant of South Asia. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of A. sativa under sterilized conditions. The extracts were treated with 3%, 5%, and 10% concentrations of methanol. Results showed that the extract of GM canola increases the number of roots and root fresh weight. However, root length was significantly decreased. Similarly, a significant rate of increase was observed in shoot fresh weight and shoot length of A. sativa by treatment of GM canola. Emergence percentage, germination index, and emergence rate index show a significant effect of decrease when treated with GM canola.

  12. Revised structures of avenacosides A and B and a new sulfated saponin from Avena sativa L.

    PubMed

    Pecio, Łukasz; Jędrejek, Dariusz; Masullo, Milena; Piacente, Sonia; Oleszek, Wiesław; Stochmal, Anna

    2012-11-01

    The revised structures of avenacosides A and B and a new sulfated steroidal saponin isolated from grains of Avena sativa L. were elucidated. Their structures and complete NMR assignments are based on 1D and 2D NMR studies and identified as nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside (1), nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside (2), and nuatigenin 3-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-6-O-sulfoglucopyranosyl-(1→4)]-β-D-glucopyranoside}-26-O-β-D-glucopyranoside (3).

  13. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    PubMed

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent.

  14. Expression profiling and cross-species RNA interference (RNAi) of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae

    PubMed Central

    2010-01-01

    Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members

  15. Dehydration-Specific Induction of Hydrophilic Protein Genes in the Anhydrobiotic Nematode Aphelenchus avenae

    PubMed Central

    Browne, John A.; Dolan, Katharine M.; Tyson, Trevor; Goyal, Kshamata; Tunnacliffe, Alan; Burnell, Ann M.

    2004-01-01

    Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations that are required for anhydrobiosis, we developed a novel SL1-based mRNA differential display technique to clone genes that are upregulated by dehydration in A. avenae. Three such genes, Aav-lea-1, Aav-ahn-1, and Aav-glx-1, encode, respectively, a late embryogenesis abundant (LEA) group 3 protein, a novel protein that we named anhydrin, and the antioxidant enzyme glutaredoxin. Strikingly, the predicted LEA and anhydrin proteins are highly hydrophilic and lack significant secondary structure in the hydrated state. The dehydration-induced upregulation of Aav-lea-1 and Aav-ahn-1 was confirmed by Northern hybridization and quantitative PCR experiments. Both genes were also upregulated by an osmotic upshift, but not by cold, heat, or oxidative stress. Experiments to investigate the relationship between mRNA levels and protein expression for these genes are in progress. LEA proteins occur commonly in plants, accumulating during seed maturation and desiccation stress; the presence of a gene encoding an LEA protein in an anhydrobiotic nematode suggests that some mechanisms of coping with water loss are conserved between plants and animals. PMID:15302829

  16. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    PubMed

    Chen, Changlong; Liu, Shusen; Liu, Qian; Niu, Junhai; Liu, Pei; Zhao, Jianlong; Jian, Heng

    2015-01-01

    Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin) and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS) caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI) in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK) signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  17. An ANNEXIN-Like Protein from the Cereal Cyst Nematode Heterodera avenae Suppresses Plant Defense

    PubMed Central

    Chen, Changlong; Liu, Shusen; Liu, Qian; Niu, Junhai; Liu, Pei; Zhao, Jianlong; Jian, Heng

    2015-01-01

    Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin) and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS) caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI) in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK) signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana. PMID:25849616

  18. Emerging brain morphologies from axonal elongation

    PubMed Central

    Holland, Maria A.; Miller, Kyle E.; Kuhl, Ellen

    2015-01-01

    Understanding the characteristic morphology of our brain remains a challenging, yet important task in human evolution, developmental biology, and neurosciences. Mathematical modeling shapes our understanding of cortical folding and provides functional relations between cortical wavelength, thickness, and stiffness. Yet, current mathematical models are phenomenologically isotropic and typically predict non-physiological, periodic folding patterns. Here we establish a mechanistic model for cortical folding, in which macroscopic changes in white matter volume are a natural consequence of microscopic axonal growth. To calibrate our model, we consult axon elongation experiments in chick sensory neurons. We demonstrate that a single parameter, the axonal growth rate, explains a wide variety of in vitro conditions including immediate axonal thinning and gradual thickness restoration. We embed our axonal growth model into a continuum model for brain development using axonal orientation distributions motivated by diffusion spectrum imaging. Our simulations suggest that white matter anisotropy - as an emergent property from directional axonal growth - intrinsically induces symmetry breaking, and predicts more physiological, less regular morphologies with regionally varying gyral wavelengths and sulcal depths. Mechanistic modeling of brain development could establish valuable relationships between brain connectivity, brain anatomy, and brain function. PMID:25824370

  19. Glycoproteome of Elongating Cotton Fiber Cells*

    PubMed Central

    Kumar, Saravanan; Kumar, Krishan; Pandey, Pankaj; Rajamani, Vijayalakshmi; Padmalatha, Kethireddy Venkata; Dhandapani, Gurusamy; Kanakachari, Mogilicherla; Leelavathi, Sadhu; Kumar, Polumetla Ananda; Reddy, Vanga Siva

    2013-01-01

    Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation. PMID:24019148

  20. Nonlocal order in elongated dipolar gases

    NASA Astrophysics Data System (ADS)

    Ruhman, J.; Dalla Torre, E. G.; Huber, S. D.; Altman, E.

    2012-03-01

    Dipolar particles in an elongated trap are expected to undergo a quantum phase transition from a linear to a zigzag structure with decreasing transverse confinement. We derive the low-energy effective theory of the transition showing that in the presence of quantum fluctuations the zigzag phase can be characterized by a long-ranged string order, while the local Ising correlations decay as a power law. This is also confirmed using density matrix renormalization group calculations on a microscopic model. The nonlocal order in the bulk gives rise to zero energy states localized at the interface between the ordered and disordered phases. Such an interface naturally arises when the particles are subject to a weak harmonic confinement along the tube axis. We compute the signature of the edge states in the single-particle tunneling spectra pointing to differences between a system with bosonic versus fermionic particles. Finally we assess the magnitude of the relevant quantum fluctuations in realistic systems of dipolar particles, including ultracold polar molecules as well as alkali atoms weakly dressed by a Rydberg excitation.

  1. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  2. Blastocyst Elongation, Trophoblastic Differentiation and Embryonic Pattern Formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular basis behind elongation and concomitant gastrulation in ungulates that occurs during pre-implantation is still poorly understood. In-depth transcriptome analysis of the elongating porcine conceptus at specific stages has demonstrated that protein synthesis, protein trafficking, cell g...

  3. Conceptus elongation in cattle: genes, models and questions.

    PubMed

    Hue, Isabelle; Degrelle, Séverine Aude; Turenne, Nicolas

    2012-09-01

    In ruminants, more than 30% of the embryonic loss observed after artificial insemination has an early origin that is coincident with the marked elongation of the conceptus that occurs before implantation. During this developmental phase, physiological interactions are established between the conceptus and the uterus which are essential for the establishment of pregnancy and the elongation process. Our molecular knowledge of elongating conceptuses in cattle has long been focused on its analysis in view of its interactions with the uterus with the elongating stages being defined, like the uterus stages, by days post insemination or conception. The gene clusters reported so far indicate important pathways, some being shared by the non-elongating conceptuses of other mammals. However, to identify the key components of the elongation process - that could be specific to ungulates - new models are needed. Somatic nuclear transfer could be one of them as it provides complementary insights on differentiation beyond the blastocyst stage. Nonetheless, other models are necessary to convert gene lists or networks in elongating phenotypes. This review partly summarizes information on these topics, but data on the impact of the uterus on the elongation process or on the differentiation of the embryonic tissues are reviewed elsewhere. PMID:22921267

  4. Formation of elongated galaxies with low masses at high redshift

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-10-01

    We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at z ≃ 2. These are preferentially low-mass galaxies (M* ≤ 109.5 M⊙), residing in dark matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the Λ cold dark matter cosmology. Feedback slows formation of stars at the centres of these haloes, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.

  5. Sequence-dependent elongation dynamics on macrolide-bound ribosomes.

    PubMed

    Johansson, Magnus; Chen, Jin; Tsai, Albert; Kornberg, Guy; Puglisi, Joseph D

    2014-06-12

    The traditional view of macrolide antibiotics as plugs inside the ribosomal nascent peptide exit tunnel (NPET) has lately been challenged in favor of a more complex, heterogeneous mechanism, where drug-peptide interactions determine the fate of a translating ribosome. To investigate these highly dynamic processes, we applied single-molecule tracking of elongating ribosomes during inhibition of elongation by erythromycin of several nascent chains, including ErmCL and H-NS, which were shown to be, respectively, sensitive and resistant to erythromycin. Peptide sequence-specific changes were observed in translation elongation dynamics in the presence of a macrolide-obstructed NPET. Elongation rates were not severely inhibited in general by the presence of the drug; instead, stalls or pauses were observed as abrupt events. The dynamic pathways of nascent-chain-dependent elongation pausing in the presence of macrolides determine the fate of the translating ribosome stalling or readthrough.

  6. Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation.

    PubMed

    Knight, John R P; Bastide, Amandine; Roobol, Anne; Roobol, Jo; Jackson, Thomas J; Utami, Wahyu; Barrett, David A; Smales, C Mark; Willis, Anne E

    2015-01-15

    Cells respond to external stress conditions by controlling gene expression, a process which occurs rapidly via post-transcriptional regulation at the level of protein synthesis. Global control of translation is mediated by modification of translation factors to allow reprogramming of the translatome and synthesis of specific proteins that are required for stress protection or initiation of apoptosis. In the present study, we have investigated how global protein synthesis rates are regulated upon mild cooling. We demonstrate that although there are changes to the factors that control initiation, including phosphorylation of eukaryotic translation initiation factor 2 (eIF2) on the α-subunit, the reduction in the global translation rate is mediated by regulation of elongation via phosphorylation of eukaryotic elongation factor 2 (eEF2) by its specific kinase, eEF2K (eukaryotic elongation factor 2 kinase). The AMP/ATP ratio increases following cooling, consistent with a reduction in metabolic rates, giving rise to activation of AMPK (5'-AMP-activated protein kinase), which is upstream of eEF2K. However, our data show that the major trigger for activation of eEF2K upon mild cooling is the release of Ca2+ ions from the endoplasmic reticulum (ER) and, importantly, that it is possible to restore protein synthesis rates in cooled cells by inhibition of this pathway at multiple points. As cooling has both therapeutic and industrial applications, our data provide important new insights into how the cellular responses to this stress are regulated, opening up new possibilities to modulate these responses for medical or industrial use at physiological or cooler temperatures.

  7. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa)

    NASA Technical Reports Server (NTRS)

    Gibeaut, David M.; Karuppiah, Nadarajah; Chang, S.-R.; Brock, Thomas G.; Vadlamudi, Babu; Kim, Donghern; Ghosheh, Najati S.; Rayle, David L.; Carpita, Nicholas C.; Kaufman, Peter B.

    1990-01-01

    The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response and asymmetric processes involving degradation of starch and cell wall synthesis. Cellular and biochemical events were studied by investigation of the activities of related enzymes and changes in cell walls and their constituents. It is suggested that an osmotic potential gradient acts as the driving factor for growth, while wall extensibility is a limiting factor in pulvinus growth.

  8. Isolation and characterization of a fatty acid- and retinoid-binding protein from the cereal cyst nematode Heterodera avenae.

    PubMed

    Le, Xiuhu; Wang, Xuan; Guan, Tinglong; Ju, Yuliang; Li, Hongmei

    2016-08-01

    A gene encoding fatty acid- and retinoid-binding protein was isolated from the cereal cyst nematode Heterodera avenae and the biochemical function of the protein that it encodes was analysed. The full-length cDNA of the Ha-far-1 gene is 827 bp long and includes a 22- nucleotide trans-spliced leader sequence (SL1) at its 5-end. The genomic clone of Ha-far-1 consists of eight exons separated by seven introns, which range in size from 48 to 186 bp. The Ha-far-1 cDNA contains an open reading frame encoding a 191 amino acid protein, with a predicted secretory signal peptide. Sequence analysis showed that Ha-FAR-1 has highest similarity to the Gp-FAR-1 protein from the potato cyst nematode, Globodera pallida and that the protein was grouped with all homologues from other plant-parasitic nematodes in a phylogenetic analysis. Fluorescence-based ligand binding analysis confirmed that the recombinant Ha-FAR-1 protein was able to bind fatty acids and retinol. Spatial and temporal expression assays showed that the transcripts of Ha-far-1 accumulated mainly in the hypodermis and that the gene is most highly expressed in third-stage juveniles of H. avenae. Fluorescence immunolocalization showed that the Ha-FAR-1 protein was present on the surface of the infective second-stage juveniles of H. avenae. Nematodes treated with dsRNA corresponding to Ha-far-1 showed significantly reduced reproduction compared to nematodes exposed to dsRNA from a non-endogenous gene, suggesting that Ha-far-1 may be an effective target gene for control of H. avenae using an RNAi strategy. PMID:27240755

  9. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Camargo, Flávio A O

    2012-04-01

    Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L(-1) of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L(-1) after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata. PMID:22002857

  10. Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China.

    PubMed

    Yu, Wenjuan; Xu, Zhaohuan; Francis, Frédéric; Liu, Yong; Cheng, Dengfa; Bragard, Claude; Chen, Julian

    2013-12-01

    Fourteen Sitobion avenae Fabricius (Hemiptera: Aphididae) clonal lines (clones) originating from China were tested for their ability to transmit BYDV-PAV (one isolate from Belgium and another from China) using wheat plants. By sequence analysis, the coat protein gene of BYDV-PAV-BE was distinguishable from BYDV-PAV-CN. All of the clones could transmit BYDV-PAV, and the transmission varied from 24.42% to 66.67% with BYDV-PAV-BE and from 23.55% to 56.18% with BYDV-PAV-CN. These data suggest that S. avenae has no specialty in BYDV-PAV isolate. Significant differences in the transmission frequencies between the clones with BYDV-PAV-BE and BYDV-PAV-CN were observed. The transmission efficiencies of aphid clones from the middle-lower reaches of Yangtze River (AH, HD, HDE, HZ, JZ, JY and SJ) and Yunnan province (YH) were similar. Nevertheless, differences in the virus transmission efficiencies of the clones from northern (ST and STA) and northwestern (QX, SB and XS) regions were assessed. The transmission efficiency of S. avenae from northern and northwestern China, where BYDV impact is more important, was higher than that from the middle-lower reaches of the Yangtze River and Yunnan province. This work emphasizes the importance of considering aphid vector clonal diversity in addition to virus strain variability when assessing BYDV transmission efficiency. PMID:23911295

  11. Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa

    NASA Technical Reports Server (NTRS)

    Kaur Sawhney, R.; Shekhawat, N. S.; Galston, A. W.

    1985-01-01

    We have previously reported that aseptically cultured mesophyll protoplasts of Vigna divide rapidly and regenerate into complete plants, while mesophyll protoplasts of Avena divide only sporadically and senesce rapidly after isolation. We measured polyamine titers in such cultures of Vigna and Avena, to study possible correlations between polyamines and cellular behavior. We also deliberately altered polyamine titer by the use of selective inhibitors of polyamine biosynthesis, noting the effects on internal polyamine titer, cell division activity and regenerative events. In Vigna cultures, levels of free and bound putrescine and spermidine increased dramatically as cell division and differentiation progressed. The increase in bound polyamines was largest in embryoid-forming callus tissue while free polyamine titer was highest in root-forming callus. In Avena cultures, the levels of total polyamines decreased as the protoplast senesced. The presence of the inhibitors alpha-difluoromethyl-arginine (specific inhibitor of arginine decarboxylase), alpha-difluoromethylornithine (specific inhibitor of ornithine decarboxylase) and dicyclohexylamine (inhibitor of spermidine synthase) reduced cell division and organogenesis in Vigna cultures. Addition of low concentration of polyamines to such cultures containing inhibitors or removal of inhibitors from the culture medium restored the progress of growth and differentiation with concomitant increase in polyamine levels.

  12. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Camargo, Flávio A O

    2012-04-01

    Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L(-1) of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L(-1) after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata.

  13. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  14. [The roles of microtubule in internodal cell elongation (Nitellopsis obtusa)].

    PubMed

    Yu, Rong; Yuan, Ming; Zhu, Guo Li; Wang, Xue Chen

    2004-04-01

    The relationship between cell elongation and microtubules (MTs) was investigated in characean internodal cells (Nitellops obtusa). First, we examined the immunofluorescent localization of MTs in different living stages under confocal laser scanning microscope. In young, rapidly elongating cells, MTs were predominantly transverse to the long axis of the cell. As the relative growth rate fell, transverse MTs gradually decreased, and in non-growing cells, longitudinally oriented cortical MTs became most pronounced. Moreover, cells in different living stages responded to the treatment of oryzalin (microtubule-disrupting agent) differently, young active internodal cells seemed to be more sensitive. After 40 min incubation of 10 micromol/L oryzalin, nearly all cortical MTs in the elongating cells depolymerized. However, in the old, non-growing cells, some MT fragments still remained after 3 h treatment of oryzalin. Second, we measured the cell growth rates with and without the treatment of oryzalin. In young growing cells treated with 10 micromol/L oryzalin, the elongation rates were inhibited obviously. When the oryzalin was removed, the elongation rates could be recovered to some extent. Interestingly, a time-gap existed between microtubule disassembly (40 min) and cessation of cell elongation (100 min). Our data confirmed the evidence that MTs are involved in cell elongation.

  15. Elastocaloric effect dependence on pre-elongation in natural rubber

    NASA Astrophysics Data System (ADS)

    Xie, Zhongjian; Sebald, Gael; Guyomar, Daniel

    2015-08-01

    In the context of solid-state-cooling, the elastocaloric effect offers a very large controlled entropy change based in low-cost polymers, especially natural rubber which is environmentally friendly. However, large elastocaloric activity requires large elongation (>5), which makes this material impractical for cooling systems due to the large change in sample's area. By performing a pre-elongation, area change is limited, and β = - ∂ γ / ∂ λ (where γ is the specific entropy and λ is the elongation) is larger. The highest β value is obtained when pre-elongation is right before (at the "eve") the onset of the strain-induced crystallization, which is also interpreted in the view of molecular conformation. Experimental results obtained on a natural rubber sample showed an adiabatic temperature change of 4.3 °C for pre-elongation of 4 with further elongation of 4 (true strain change of 69%). Furthermore, the entropy exhibits a quasi-linear dependence on elongation, and the β value is found to be 6400 J K-1 m-3.

  16. Analysis of perspective elongation for sodium laser guide star

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhang, Wei; Chen, Tianjiang; Zhou, Wenchao; Yan, Hong

    2015-10-01

    Laser Guide Star Adaptive Optical systems become an established technique at telescope facilities with large apertures. At these aperture diameters, such as 8m class telescope facilities, the finite distance and vertical extend of an artificial excited guide star result in perspective elongation, which produces errors in wave-front reconstruction and could influence the performance of adaptive optical systems seriously. In this paper, we shall briefly introduce and explain the effect of the perspective elongation, and show some results of theoretical simulation and experiment. First of all, we analyzed how the perspective elongation of sodium LGS changes, and gave the results of simulation which indicated the relation between the perspective elongation and some related parameters. The aberration caused by the elongation was analyzed, and the possibility of aberration correction was discussed. Based on the results of the theoretical simulation, we designed an experiment to observe the perspective elongation. A transmitting and receiving system has been set up. The system consisted of a 300mJ sodium LGS laser, a telescope with an aperture diameter of 450mm, a beam expander with an aperture diameter of 200mm, a LGS detecting device, etc. Based on the pulsed laser and the mobile LGS projector, we operated the experiment at different distance between the telescope and the laser projector. A series of elongated images, corresponding the distance from 5m to 30m, was obtained. The analytic results of the image data agreed with the theoretical simulation. Based on the experimental data, we deduced the aberration of wave-front at 30m separation. According to theoretical simulation of the perspective elongation, the effects including the aberration of wave-front could be achieved, which had been partially verified in the experiment. We suggest that one could improve the reconstruction accuracy in a sodium or Rayleigh LGS adaptive optical system by eliminating the influence of

  17. Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective.

    PubMed

    Brannan, Kris; Bentley, David L

    2012-01-01

    The origins of our current understanding of control of transcription elongation lie in pioneering experiments that mapped RNA polymerase II on viral and cellular genes. These studies first uncovered the surprising excess of polymerase molecules that we now know to be situated at the at the 5' ends of most genes in multicellular organisms. The pileup of pol II near transcription start sites reflects a ubiquitous bottle-neck that limits elongation right at the start of the transcription elongation. Subsequent seminal work identified conserved protein factors that positively and negatively control the flux of polymerase through this bottle-neck, and make a major contribution to control of gene expression. PMID:22567377

  18. Pausing on Polyribosomes: Make Way for Elongation in Translational Control.

    PubMed

    Richter, Joel D; Coller, Jeff

    2015-10-01

    Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.

  19. Chromatin modification by the RNA Polymerase II elongation complex

    PubMed Central

    Tanny, Jason C.

    2014-01-01

    Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function. PMID:25494544

  20. Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties

    PubMed Central

    Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian

    2014-01-01

    The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214

  1. Tripartite interactions of Barley yellow dwarf virus, Sitobion avenae and wheat varieties.

    PubMed

    Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian

    2014-01-01

    The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214

  2. Direct Characterization of Transcription Elongation by RNA Polymerase I

    PubMed Central

    Ucuncuoglu, Suleyman; Engel, Krysta L.; Purohit, Prashant K.; Dunlap, David D.; Schneider, David A.

    2016-01-01

    RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo. PMID:27455049

  3. Direct Characterization of Transcription Elongation by RNA Polymerase I.

    PubMed

    Ucuncuoglu, Suleyman; Engel, Krysta L; Purohit, Prashant K; Dunlap, David D; Schneider, David A; Finzi, Laura

    2016-01-01

    RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo. PMID:27455049

  4. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    EPA Science Inventory

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMPs) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure i...

  5. Amyloid-Like Fibril Elongation Follows Michaelis-Menten Kinetics

    PubMed Central

    Milto, Katazyna; Botyriute, Akvile; Smirnovas, Vytautas

    2013-01-01

    A number of proteins can aggregate into amyloid-like fibrils. It was noted that fibril elongation has similarities to an enzymatic reaction, where monomers or oligomers would play a role of substrate and nuclei/fibrils would play a role of enzyme. The question is how similar these processes really are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation. The correlation of the fit is very good and repeatable. It speaks in favour of enzyme-like model of fibril elongation. In addition, obtained and values at different conditions may help in better understanding influence of environmental factors on the process of fibril elongation. PMID:23874721

  6. Prevalence of Elongated Styloid Process in a Central Brazilian Population

    PubMed Central

    Vieira, Evanice Menezes Marçal; Morais, Sylvania De; Musis, Carlo Ralph De; Albuquerque, Paulo Artur Andrade De; Borges, Álvaro Henrique

    2015-01-01

    Background Eagle’s syndrome comprises a rare disorder caused by compression of an elongated or deformed styloid process or ossified/calcified stylohyoid ligament on neural and vascular structures. It is characterized by facial and neck pain and can be confused with a wide variety of facial neuralgias, oral and dental diseases and temporomandibular disorders. An imaging evaluation associated with a careful clinical examination, are mandatory in structuring a correct differential diagnosis and in the establishment of a proper therapeutic protocol. Aim To investigate the prevalence of the elongated styloid process in a Central Brazilian population and its relation to gender, age and side. Materials and Methods Digital panoramic radiographs of 736 patients (412 female and 324 male, with a mean age of 35.03 years) were consecutively selected from a private radiology clinic’s secondary database. The apparent length of the styloid process was measured from the point where the styloid left the tympanic plate to the tip of the process by two specialists in dental radiology, with the help of the measuring tools on the accompanying software. Styloid process measuring more than 30 mm was considered elongated. The statistical analysis included frequency distribution and cross tabulation. The data were analysed by using Chi-squared tests. The level of significance was set at 5% for all analyses. Results A total of 323 (43.89%) radiographic images were suggestive of elongated styloid process. No statistically significant difference was found between the genders, although a higher prevalence was noticed in female participants. Approximately, 31% of the elongated styloid process was observed in 18-53-year-old participants (p < 0.05). Two hundred and sixty seven styloid processes (36.28%) were elongated on both right and left sides. Conclusion The prevalence of elongated styloid process was high and no statistically significant correlation was found between the presence of

  7. Characteristics of grains and oils of four different oats (Avena sativa L.) cultivars growing in Turkey.

    PubMed

    Musa Ozcan, M; Ozkan, Gülcan; Topal, Ali

    2006-01-01

    Some physical and chemical properties of four oat (Avena sativa L.) varieties (BDMY-6, BDMY-7, Che-Chois and Y-2330) harvested from Konya in Turkey were investigated. The weight of the grain, moisture, crude protein, crude ash, crude fibre, crude energy, crude oil and water-soluble extract contents of all oat variety grains were analysed. Contents of aluminium, calcium, cadmium, phosphorus, magnesium, zinc, lead, potassium and manganese were also determined in the oat grains. The specific gravity, refractive index, free fatty acids, peroxide value, saponification number and unsaponifiable matter were determined in the grain oil. Tocopherol contents of these four oat grain oils were measured. Palmitic acid (15.72%), oleic acid (33.97-51.26%) and linoleic acid (22.80-35.90%) were found to be rich in protein, oil, fibre, unsaturated fatty acids and minerals, suggesting that they may be valuable for food uses. Due to high nutritive values, it is recommended to process for healthy food products.

  8. Colloidal Oatmeal (Avena Sativa) Improves Skin Barrier Through Multi-Therapy Activity.

    PubMed

    Ilnytska, Olha; Kaur, Simarna; Chon, Suhyoun; Reynertson, Kurt A; Nebus, Judith; Garay, Michelle; Mahmood, Khalid; Southall, Michael D

    2016-06-01

    Oats (Avena sativa) are a centuries-old topical treatment for a variety of skin barrier conditions, including dry skin, skin rashes, and eczema; however, few studies have investigated the actual mechanism of action for the skin barrier strengthening activity of colloidal oatmeal. Four extracts of colloidal oatmeal were prepared with various solvents and tested in vitro for skin barrier related gene expression and activity. Extracts of colloidal oatmeal were found to induce the expression of genes related to epidermal differentiation, tight junctions and lipid regulation in skin, and provide pH-buffering capacity. Colloidal oatmeal boosted the expression of multiple target genes related to skin barrier, and resulted in recovery of barrier damage in an in vitro model of atopic dermatitis. In addition, an investigator-blinded study was performed with 50 healthy female subjects who exhibited bilateral moderate to severe dry skin on their lower legs. Subjects were treated with a colloidal oatmeal skin protectant lotion. Clinically, the colloidal oatmeal lotion showed significant clinical improvements in skin dryness, moisturization, and barrier. Taken together, these results demonstrate that colloidal oatmeal can provide clinically effective benefits for dry and compromised skin by strengthening skin barrier.

    J Drugs Dermatol. 2016;15(6):684-690. PMID:27272074

  9. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to Pisum and Avena phytochrome

    SciTech Connect

    Cordonnier, M.M.; Greppin, H.; Pratt, L.H.

    1984-01-01

    Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome - red-absorbing form and phytochrome - far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action. 27 references, 3 figures, 1 table.

  10. Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts.

    PubMed

    Hooley, R; Beale, M H; Smith, S J

    1991-01-01

    A functional assay for gibberellin (GA) receptors is described based on the induction of α-amylase gene expression in isolated aleurone protoplasts of Avena fatua L. by GA4 immobilised to Sepharose beads. A 17-thiol derivative of GA4, shown to be biologically active with aleurone protoplasts, has been coupled to epoxy-activated Sepharose 6B. This GA4-17-Sepharose induces high levels of α-amylase when incubated with isolated aleurone protoplasts, while cells of the intact aleurone layer do not respond appreciably to the immobilised GA4. In order to eliminate the possibility that GA4 may be released from the Sepharose when incubated with protoplasts, aleurone layers and isolated aleurone protoplasts have been co-incubated, and their responses to GA4, GA4-17-Sepharose and control Sepharose estimated by determining the relative amounts of α-amylase mRNA induced in each tissue. Evidence from these experiments is consistent with the view that GA417-Sepharose induces α-amylase gene expression in aleurone protoplasts by interacting with the protoplast surface. This indicates that GA receptors may be located at, or near, the external face of the aleurone plasma membrane.

  11. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    PubMed Central

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  12. Colloidal Oatmeal (Avena Sativa) Improves Skin Barrier Through Multi-Therapy Activity.

    PubMed

    Ilnytska, Olha; Kaur, Simarna; Chon, Suhyoun; Reynertson, Kurt A; Nebus, Judith; Garay, Michelle; Mahmood, Khalid; Southall, Michael D

    2016-06-01

    Oats (Avena sativa) are a centuries-old topical treatment for a variety of skin barrier conditions, including dry skin, skin rashes, and eczema; however, few studies have investigated the actual mechanism of action for the skin barrier strengthening activity of colloidal oatmeal. Four extracts of colloidal oatmeal were prepared with various solvents and tested in vitro for skin barrier related gene expression and activity. Extracts of colloidal oatmeal were found to induce the expression of genes related to epidermal differentiation, tight junctions and lipid regulation in skin, and provide pH-buffering capacity. Colloidal oatmeal boosted the expression of multiple target genes related to skin barrier, and resulted in recovery of barrier damage in an in vitro model of atopic dermatitis. In addition, an investigator-blinded study was performed with 50 healthy female subjects who exhibited bilateral moderate to severe dry skin on their lower legs. Subjects were treated with a colloidal oatmeal skin protectant lotion. Clinically, the colloidal oatmeal lotion showed significant clinical improvements in skin dryness, moisturization, and barrier. Taken together, these results demonstrate that colloidal oatmeal can provide clinically effective benefits for dry and compromised skin by strengthening skin barrier.

    J Drugs Dermatol. 2016;15(6):684-690.

  13. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa.

    PubMed

    Kim, Hyun Il; Kisugi, Takaya; Khetkam, Pichit; Xie, Xiaonan; Yoneyama, Kaori; Uchida, Kenichi; Yokota, Takao; Nomura, Takahito; McErlean, Christopher S P; Yoneyama, Koichi

    2014-07-01

    Root exudates from the allelopathic plant, black oat (Avena strigosa Schreb.), were found to contain at least six different germination stimulants for root parasitic plants, but no known strigolactones (SLs). One of these germination stimulants was purified and named avenaol. Its HR-ESI-TOFMS analysis indicated that the molecular formula of avenaol is C20H24O7, and thus it contains an additional carbon compared with known C19-SLs. Its structure was determined as 5-((E)-(5-(3-hydroxy-1,5,5-trimethyl-2-oxobicyclo[4.1.0]heptan-7-yl)-2-oxodihydrofuran-3(2H)-ylidene)methoxy)-3-methylfuran-2(5H)-one, by 1D and 2D NMR spectroscopy, and ESI- and EI-MS spectrometry. Although avenaol contains the C-D moiety, the common structural feature for all known SLs, it lacks the B ring and has an additional carbon atom between the A and C rings. Avenaol is a potent germination stimulant of Phelipanche ramosa seeds, but only a weak stimulant for seeds of Striga hermonthica and Orobanche minor.

  14. Analysis of Leaf and Root Transcriptome of Soil Grown Avena barbata Plants

    SciTech Connect

    Swarbreck, Sté; phanie,; Lindquist, Erika; Ackerly, David; Andersen, Gary

    2011-02-01

    Slender wild oat (Avena barbata) is an annual grass dominant in many grassland ecosystems in Mediterranean climate. This species has been the subject of ecological studies that aim at understanding the effect of global climate change on grassland ecosystems and the genetic basis for adaptation under varying environmental conditions. We present the sequencing and analysis of cDNA libraries constructed from leaf and root samples collected from A. barbata grown on natural soil and under varying rainfall patterns. More than one million expressed sequence tags (ESTs) were generated using both GS 454-FLX pyrosequencing and Sanger sequencing, and these tags were assembled into consensus sequences. We identified numerous candidate polymorphic markers in the dataset, providing possibilities for linking the genomic and the existing genetic information for A. barbata. Using the digital northern method, we showed that genes involved in photosynthesis were down regulated under high rainfall while stress- related genes were up regulated. We also identified a number of genes unique to the root library with unknown function. Real-time RT-PCR was used to confirm the root specificity of some of these transcripts such as two genes encoding O-methyl transferase. Also we showed differential expression under three water levels. Through a combination of Sanger and 454-based sequencing technologies, we were able to generate a large set of transcribed sequences for A. barbata. This dataset provides a platform for further studies of this important wild grass species

  15. Hormonal Regulation of alpha-Amylase Gene Transcription in Wild Oat (Avena fatua L.) Aleurone Protoplasts.

    PubMed

    Zwar, J A; Hooley, R

    1986-02-01

    The time of appearance and relative amounts of alpha-amylase mRNA in wild oat (Avena fatua L.) aleurone protoplasts incubated with 1 micromolar gibberellin A(4) (GA(4)) were closely correlated with the amounts of alpha-amylase enzyme secreted by the protoplasts. In the absence of GA(4), or when protoplasts were incubated with 25 micromolar abscisic acid (ABA) together with 1 micromolar GA(4) no alpha-amylase mRNA was detected and only very low levels of alpha-amylase were secreted. Nuclei were isolated in high yields (65-71%) from aleurone protoplasts and in an in vitro transcription system displayed characteristics of a faithful DNA-dependent RNA synthesizing system. The time course of incorporation of [(3)H]-UTP suggested that the RNA synthesized was mainly ;run off' transcription and therefore that the transcripts produced in vitro were those being synthesized in the protoplasts at the times when the nuclei were isolated. By hybridizing in vitro synthesized [(32)P]RNA to barley alpha-amylase cDNA and control filters we have estimated that 90 +/- 10 ppm of the transcripts synthesized by nuclei isolated from GA(4) treated protoplasts can be attributed to alpha-amylase sequences and that statistically insignificant amounts of these transcripts are obtained from control and GA(4) plus ABA treatments. The results suggest that GA(4) and ABA influence the transcription of alpha-amylase genes in aleurone protoplasts of wild oat.

  16. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  17. Competency for graviresponse in the leaf-sheath pulvinus of Avena sativa: onset to loss

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    The development of the leaf-sheath pulvinus of oat (Avena sativa L. cv. Victory) was studied in terms of its competency to respond to gravistimulation. Stages of onset of competency, maximum competency and loss of competency were identified, using the length of the supertending internode as a developmental marker. During the early phases in the onset of competency, the latency period between stimulus and graviresponse decreased and the steady state response rate increased significantly. When fully competent, the latency period remained constant as the plant continued to develop, suggesting that the latency period is relatively insensitive to quantitative changes (e.g., in carbohydrate or nutrient availability) at the cell level within the plant. In contrast, the response rate was found to increase with plant development, indicating that graviresponse rate is more strongly influenced by quantitative cellular changes. The total possible graviresponse of a single oat pulvinus was confirmed to be significantly less than the original presentation angle. This was shown to not result from a loss of competency, since the graviresponse could be reinitiated by increasing the presentation angle. As a result of the low overall graviresponse of individual pulvini, two or more pulvini are required to bring the plant apex to the vertical. This was determined to occur though the sequential, rather than simultaneous, action of successive pulvini, since a given pulvinus lost competency to gravirespond shortly after the next pulvinus became fully competent.

  18. Genetic analysis of seedling resistance to crown rust in five diploid oat (Avena strigosa) accessions.

    PubMed

    Cabral, A L; Park, R F

    2016-02-01

    Crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks., is a serious menace in oats, for which resistance is an effective means of control. Wild diploid oat accessions are a source of novel resistances that first need to be characterised prior to introgression into locally adapted oat cultivars. A genetic analysis of resistance to crown rust was carried out in three diverse diploid oat accessions (CIav6956, CIav9020, PI292226) and two cultivars (Saia and Glabrota) of A. strigosa. A single major gene conditioning resistance to Australian crown rust pathotype (Pt) 0000-2 was identified in each of the three accessions. Allelism tests suggested that these genes are either the same, allelic, or tightly linked with less than 1 % recombination. Similarly, a single gene was identified in Glabrota, and possibly two genes in Saia; both cultivars previously reported to carry two and three crown rust resistance genes, respectively. The identified seedling resistance genes could be deployed in combination with other resistance gene(s) to enhance durability of resistance to crown rust in hexaploid oat. Current diploid and hexaploid linkage maps and molecular anchor markers (simple sequence repeat [SSR] and diversity array technology [DArT] markers) should facilitate their mapping and introgression into hexaploid oat.

  19. Characteristics of grains and oils of four different oats (Avena sativa L.) cultivars growing in Turkey.

    PubMed

    Musa Ozcan, M; Ozkan, Gülcan; Topal, Ali

    2006-01-01

    Some physical and chemical properties of four oat (Avena sativa L.) varieties (BDMY-6, BDMY-7, Che-Chois and Y-2330) harvested from Konya in Turkey were investigated. The weight of the grain, moisture, crude protein, crude ash, crude fibre, crude energy, crude oil and water-soluble extract contents of all oat variety grains were analysed. Contents of aluminium, calcium, cadmium, phosphorus, magnesium, zinc, lead, potassium and manganese were also determined in the oat grains. The specific gravity, refractive index, free fatty acids, peroxide value, saponification number and unsaponifiable matter were determined in the grain oil. Tocopherol contents of these four oat grain oils were measured. Palmitic acid (15.72%), oleic acid (33.97-51.26%) and linoleic acid (22.80-35.90%) were found to be rich in protein, oil, fibre, unsaturated fatty acids and minerals, suggesting that they may be valuable for food uses. Due to high nutritive values, it is recommended to process for healthy food products. PMID:17135024

  20. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants.

    PubMed

    Dittrich, F; Zajonc, D; Hühne, K; Hoja, U; Ekici, A; Greiner, E; Klein, H; Hofmann, J; Bessoule, J J; Sperling, P; Schweizer, E

    1998-03-15

    Elongation of long-chain fatty acids was investigated in yeast mutants lacking endogenous de novo fatty acid synthesis. In this background, in vitro fatty acid elongation was dependent strictly on the substrates malonyl-CoA, NADPH and a medium-chain or long-chain acyl-CoA primer of 10 or more carbon atoms. Maximal activity was observed with primers containing 12-14 carbon atoms, while shorter-chain-length acyl-CoA were almost (octanoyl-CoA) or completely (hexanoyl-CoA, acetyl-CoA) inactive. In particular, acetyl-CoA was inactive as a primer and as extender unit. The Michaelis constants for octanoyl-CoA (0.33 mM), decanoyl-CoA (0.83 mM) lauroyl-CoA (0.05 mM), myristoyl-CoA (0.4 mM) and palmitoyl-CoA (0.13 mM) were determined and were comparable for fatty acid synthesis and elongation. In contrast, the affinity of malonyl-CoA was 17-fold lower for elongation (Km = 0.13 mM) than for the fatty acid synthase (FAS) system. With increasing chain length of the primer (> or = 12:0), fatty acid elongation becomes increasingly sensitive to substrate inhibition. Due to the activation of endogenous fatty acids, ATP exhibits a stimulatory effect at suboptimal but not at saturating substrate concentrations. In the yeast cell homogenate, the specific activity of fatty acid elongation is about 10-20-fold lower than that of de novo fatty acid synthesis. The same elongation activity is observed in respiratory competent and in mitochondrially defective cells. The products of in vitro fatty acid elongation are fatty acids of 15-17 or 22-26 carbon atoms, depending on whether tridecanoyl-CoA or stearoyl-CoA is used as a primer. In vitro, the elongation products are converted in part, by alpha-oxidation, to their odd-chain-length lower homologues or are hydrolyzed to fatty acids. In contrast, no odd-chain-length elongation products or very-long-chain fatty acids (VLCFA) shorter than 26:0 are observed in vivo. Hence, VLCFA synthesis exhibits a higher processivity in vivo than in the cell

  1. [Ecological effects of wheat-oilseed rape intercropping combined with methyl salicylate release on Sitobion avenae and its main natural enemies].

    PubMed

    Dong, Jie; Liu, Ying-Jie; Li, Pei-Ling; Lin, Fang-Jing; Chen, Ju-Lian; Liu, Yong

    2012-10-01

    In order to explore the effects of wheat-oilseed rape intercropping in combining with methyl salicylate (MeSA) release on Sitobion avenae and its main natural enemies, a field experiment was conducted at the Tai'an Experimental Station of Shandong Agricultural University in East China from October 2008 to June 2010 to study the temporal dynamics of S. avenae and its main natural enemies as well as the ecological control effect on the aphid. In the plots of intercropping combined with MeSA release, the S. avenae apterae population reached a peak about 12 d in advance of the control, but the peak value was significantly lower than that of the control. The average annual number of S. avenae apterae per 100 wheat tillers decreased in the order of wheat monoculture > wheat-oilseed rape intercropping > MeSA release > wheat-oilseed rape intercropping combined with MeSA release. Moreover, the total number of ladybeetles was the highest in the plots of intercropping combined with MeSA release. The population densities of aphid parasitoids reached a peak about 10 d in advance of the control, which could play a significant role in controlling S. avenae at the filling stage of wheat. Taking the biological control index (BCI) as a quantitative indicator, and with the ladybeetles and parasitoids as the dominant control factors in fields, it was observed that wheat-oilseed rape intercropping combined with MeSA release could suppress the population increase of S. avenae apterae effectively from the heading to filling stages of wheat.

  2. Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena.

    PubMed

    Cheng, D W; Armstrong, K C; Drouin, G; McElroy, A; Fedak, G; Molnar, S D

    2003-02-01

    The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana and Avena murphyi and several sequences from different accessions of A. sativa; and (iii) A. murphyi and sequences from A. sativa and Avena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.

  3. Studies on the mechanism of cell elongation in Blepharisma japonicum I. A physiological mechanism how light stimulation evokes cell elongation.

    PubMed

    Ishida, M; Shigenaka, Y; Taneda, K

    1989-10-27

    In a heterotrichous ciliate, Blepharisma japonicum, longitudinal elongation of the cell body is induced by light stimulation (1000 to 3000 lux). This light-induced response was inhibited under the existence of cyclic mononucleotide phosphodiesterase (PDE) antagonists such as papaverine (10(-4)M), theophylline (10(-3) M), dibutyril-cAMP (10(-4)M), 3-isobutyl-1-methyl-xanthine (10(-4) M) and dibutyril-cGMP (10(-4) M). Microinjection of cyclic mononucleotides, especially cGMP, inhibited cell elongation. These observations suggest that the cell elongation was mediated by intracellular cyclic mononucleotide. K(+) specific ionophore valinomycin (10(-8)-10(-7) M) enhanced light-induced cell elongation. This effect of valinomycin became more remarkable when valinomycin coexisted with PDE antagonists, while it was diminished under high K+ conditions. Moreover, the K(+) channel blockers tetraethylammonium (TEA) and CsCl inhibited cell elongation. These observations suggest that the cell elongation is also mediated by K(+) hyperpolarization, and that this electrical change is probably elicited after the intracellular concentration of cyclic mononucleotide decreased.

  4. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.

    PubMed

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-09-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K(+) TRANSPORTER2;1 expression and Na(+) uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops.

  5. STRAIGHT-A STUDENTS DISLIKE PHYSICAL EDUCATION IN ADOLESCENCE: MYTH OR TRUTH? THE AVENA, AFINOS AND UP&DOWN STUDIES.

    PubMed

    Cañadas, Laura; Esteban-Cornejo, Irene; Ortega, Francisco B; Gomez-Martinez, Sonia; Casajús, José Antonio; Cabero, María Jesús; Calle, Maria E; Marcos, Ascensión; Veiga, Oscar L; Martinez-Gomez, David

    2015-07-01

    Objetivo: conocer si a aquellos adolescentes que no les gusta la educación física obtienen mejores resultados en rendimiento académico y cognitivo que sus compañeros. Métodos: los participantes incluyen 4.226 adolescentes de los estudios AVENA, AFINOS y UP&DOWN. El gusto por la educación física se valoró con una escala Likert de 7 puntos. El rendimiento cognitivo se valoró en el estudio AVENA usando la versión española del SRA Test of Educational Ability. El rendimiento académico se valoró en los estudios AFINOS y UP&DOWN con las notas de Matemáticas, Lengua y la media de Lengua y Matemáticas. Resultados: en el estudio AVENA encontramos diferencias en la habilidad verbal entre las chicas a las que no les gustaba la educación física y sus compañeros (P = 0,033). En el estudio AFINOS los chicos a los que no les gustaba la educación física tenían mejores notas en Lengua que sus compañeros (P = 0,024). En el estudio UP&DOWN las chicas a las que no les gustaba la educación física obtuvieron mejores resultados en Lengua y en la media de Lengua y Matemáticas (P < 0,001).

  6. Gibberellic acid controls specific acid-phosphatase isozymes in aleurone cells and protoplasts of Avena fatua L.

    PubMed

    Hooley, R

    1984-06-01

    In the presence of gibberellic acid (GA3) aleurone layers and isolated aleurone protoplasts of Avena fatua accumulate specific isozymes of acid phosphatase (EC 3.1.3.2). Some of these may be involved in mobilizing aleurone-grain phosphate reserves during germination. The hormone also controls secretion of other specific molecular forms of the enzyme that probably assist in endosperm hydrolysis. The accumulation and secretion of putative cell-wall-associated isozymes are stimulated by the action of GA3 in isolated protoplasts. This effect however, is apparently over-ridden in the intact tissue, possibly by a cell-wall-based feedback mechanism.

  7. The busiest of all ribosomal assistants: elongation factor Tu.

    PubMed

    Kavaliauskas, Darius; Nissen, Poul; Knudsen, Charlotte R

    2012-04-01

    During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review. PMID:22409271

  8. CEP120 interacts with CPAP and positively regulates centriole elongation.

    PubMed

    Lin, Yi-Nan; Wu, Chien-Ting; Lin, Yu-Chih; Hsu, Wen-Bin; Tang, Chieh-Ju C; Chang, Ching-Wen; Tang, Tang K

    2013-07-22

    Centriole duplication begins with the formation of a single procentriole next to a preexisting centriole. CPAP (centrosomal protein 4.1-associated protein) was previously reported to participate in centriole elongation. Here, we show that CEP120 is a cell cycle-regulated protein that directly interacts with CPAP and is required for centriole duplication. CEP120 levels increased gradually from early S to G2/M and decreased significantly after mitosis. Forced overexpression of either CEP120 or CPAP not only induced the assembly of overly long centrioles but also produced atypical supernumerary centrioles that grew from these long centrioles. Depletion of CEP120 inhibited CPAP-induced centriole elongation and vice versa, implying that these proteins work together to regulate centriole elongation. Furthermore, CEP120 was found to contain an N-terminal microtubule-binding domain, a C-terminal dimerization domain, and a centriolar localization domain. Overexpression of a microtubule binding-defective CEP120-K76A mutant significantly suppressed the formation of elongated centrioles. Together, our results indicate that CEP120 is a CPAP-interacting protein that positively regulates centriole elongation.

  9. An Integrated Approach Reveals Regulatory Controls on Bacterial Translation Elongation

    PubMed Central

    Subramaniam, Arvind R.; Zid, Brian M.; O’Shea, Erin K.

    2014-01-01

    Summary Ribosomes elongate at a non-uniform rate during translation. Theoretical models and experiments disagree on the in vivo determinants of elongation rate and the mechanism by which elongation rate affects protein levels. To resolve this conflict, we measured transcriptome-wide ribosome occupancy under multiple conditions and used it to formulate a whole-cell model of translation in E. coli. Our model predicts that elongation rates at most codons during nutrient-rich growth are not limited by the intracellular concentrations of aminoacyl-tRNAs. However, elongation pausing during starvation for single amino acids is highly sensitive to the kinetics of tRNA aminoacylation. We further show that translation abortion upon pausing accounts for the observed ribosome occupancy along mRNAs during starvation. Abortion reduces global protein synthesis, but it enhances the translation of a subset of mRNAs. These results suggest a regulatory role for aminoacylation and abortion during stress, and our study provides an experimentally-constrained framework for modeling translation. PMID:25416955

  10. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua

    PubMed Central

    Metzger, James D.

    1983-01-01

    Gibberellin A1 (GA1) was identified by combined gas chromatographymass spectrometry as the major biologically active gibberellin (GA) in seeds of wild oat (Avena fatua L.) regardless of the depth of dormany or stage of imbibition. Both unimbibed dormant and nondromant seeds contained similar amounts of GA1 as estimated by the d5-maize bioassay. During imbibition, the level of GA1 declined in both dormant and non-dormant seeds, although the decline was more rapid in dormant seeds. Only in imbibing nondormant seeds did the GA biosynthesis inhibitor, 2-chloroethyltrimethyl ammonium chloride (CCC), cause a reduction in the level of GA1 from that observed in control seeds. These results are interpreted as an indication that while afterripening does not cause a direct change in the levels of GAs during dry storage, it does induce a greater capacity for GA biosynthesis during imbibition. Nondormant seeds imbibed in the presence of 50 millimolar CCC germinated equally as well as untreated seeds. When wild oat plants were fed CCC throughout the entire life cycle, viable seeds were produced that lacked detectable GA-like substances. These seeds afterripened at a slightly slower rate than the controls. Moreover, completely afterripened (nondormant) seeds from plants fed CCC continuously contained no detectable GA-like substances, and when these seeds germinated, dwarf seedlings were produced, indicating GA biosynthesis was inhibited during and after germination. In total, these results suggest that the increased capacity for GA biosynthesis observed in imbibing nondormant seeds is not a necessary prerequisite for germination. It is therefore possible that GA biosynthesis in imbibing nondormant seeds is one of many coordinated biochemical events that occur during germination rather than an initiator of the processes leading to germination. PMID:16663302

  11. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  12. ACCase mutations in Avena sterilis populations and their impact on plant fitness.

    PubMed

    Papapanagiotou, Aristeidis P; Paresidou, Maria I; Kaloumenos, Nikolaos S; Eleftherohorinos, Ilias G

    2015-09-01

    Avena sterilis (sterile oat) populations originating from wheat-growing regions of Greece, developed resistance to fenoxaprop, clodinafop and other herbicides. The partial ACCase gene sequence revealed six point mutations (Ile-1781-Leu, Trp-1999-Cys, Trp-2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Cys-2088-Arg) in 24 out of the 26 resistant (R) populations, confirming the molecular mechanism of resistance to ACCase-inhibiting herbicides. However, DNA sequence of two R populations did not reveal any known ACCase mutations, suggesting possible presence of unknown mutation or metabolism-based mechanism of resistance. The Cys-2088-Arg mutation is the first record for ACCase mutant conferring target-site resistance in A. sterilis worldwide. The evaluation of 12 R and 6 susceptible (S) populations under non-competitive field conditions did not indicate consistent mean growth rate differences, whereas the pot evaluation of the same (12 R and 6 S) populations grown in competition with wheat or in pure stands showed significant growth (fresh weight and panicle number) differences between six S populations and between six R populations containing the same ACCase mutation (Ile-2041-Asn). Finally, one S and five R (Trp-1999-Cys, Trp-2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Cys-2088-Arg) populations grown under field competitive conditions indicated fresh weight and panicle number differences in competition with other populations as compared with pure stands. These findings suggest clearly that the inconsistent fitness differences between R and S A. sterilis populations are not related with the ACCase resistance trait but they may result from other non-resistance fitness traits selected in their different geographical locations. PMID:26267051

  13. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  14. Hormonal Regulation of α-Amylase Gene Transcription in Wild Oat (Avena fatua L.) Aleurone Protoplasts

    PubMed Central

    Zwar, John A.; Hooley, Richard

    1986-01-01

    The time of appearance and relative amounts of α-amylase mRNA in wild oat (Avena fatua L.) aleurone protoplasts incubated with 1 micromolar gibberellin A4 (GA4) were closely correlated with the amounts of α-amylase enzyme secreted by the protoplasts. In the absence of GA4, or when protoplasts were incubated with 25 micromolar abscisic acid (ABA) together with 1 micromolar GA4 no α-amylase mRNA was detected and only very low levels of α-amylase were secreted. Nuclei were isolated in high yields (65-71%) from aleurone protoplasts and in an in vitro transcription system displayed characteristics of a faithful DNA-dependent RNA synthesizing system. The time course of incorporation of [3H]-UTP suggested that the RNA synthesized was mainly `run off' transcription and therefore that the transcripts produced in vitro were those being synthesized in the protoplasts at the times when the nuclei were isolated. By hybridizing in vitro synthesized [32P]RNA to barley α-amylase cDNA and control filters we have estimated that 90 ± 10 ppm of the transcripts synthesized by nuclei isolated from GA4 treated protoplasts can be attributed to α-amylase sequences and that statistically insignificant amounts of these transcripts are obtained from control and GA4 plus ABA treatments. The results suggest that GA4 and ABA influence the transcription of α-amylase genes in aleurone protoplasts of wild oat. Images Fig. 1 Fig. 2 PMID:16664643

  15. ACCase mutations in Avena sterilis populations and their impact on plant fitness.

    PubMed

    Papapanagiotou, Aristeidis P; Paresidou, Maria I; Kaloumenos, Nikolaos S; Eleftherohorinos, Ilias G

    2015-09-01

    Avena sterilis (sterile oat) populations originating from wheat-growing regions of Greece, developed resistance to fenoxaprop, clodinafop and other herbicides. The partial ACCase gene sequence revealed six point mutations (Ile-1781-Leu, Trp-1999-Cys, Trp-2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Cys-2088-Arg) in 24 out of the 26 resistant (R) populations, confirming the molecular mechanism of resistance to ACCase-inhibiting herbicides. However, DNA sequence of two R populations did not reveal any known ACCase mutations, suggesting possible presence of unknown mutation or metabolism-based mechanism of resistance. The Cys-2088-Arg mutation is the first record for ACCase mutant conferring target-site resistance in A. sterilis worldwide. The evaluation of 12 R and 6 susceptible (S) populations under non-competitive field conditions did not indicate consistent mean growth rate differences, whereas the pot evaluation of the same (12 R and 6 S) populations grown in competition with wheat or in pure stands showed significant growth (fresh weight and panicle number) differences between six S populations and between six R populations containing the same ACCase mutation (Ile-2041-Asn). Finally, one S and five R (Trp-1999-Cys, Trp-2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Cys-2088-Arg) populations grown under field competitive conditions indicated fresh weight and panicle number differences in competition with other populations as compared with pure stands. These findings suggest clearly that the inconsistent fitness differences between R and S A. sterilis populations are not related with the ACCase resistance trait but they may result from other non-resistance fitness traits selected in their different geographical locations.

  16. Targeting sources of drought tolerance within an Avena spp. collection through multivariate approaches.

    PubMed

    Sánchez-Martín, Javier; Mur, Luis A J; Rubiales, Diego; Prats, Elena

    2012-11-01

    In this study, we find and characterize the sources of tolerance to drought amongst an oat (Avena sativa L.) germplasm collection of 174 landraces and cultivars. We used multivariate analysis, non-supervised principal component analyses (PCA) and supervised discriminant function analyses (DFA) to suggest the key mechanism/s responsible for coping with drought stress. Following initial assessment of drought symptoms and area under the drought progress curve, a subset of 14 accessions were selected for further analysis. The collection was assessed for relative water content (RWC), cell membrane stability, stomatal conductance (g (1)), leaf temperature, water use efficiency (WUE), lipid peroxidation, lipoxygenase activity, chlorophyll levels and antioxidant capacity during a drought time course experiment. Without the use of multivariate approaches, it proved difficult to unequivocally link drought tolerance to specific physiological processes in the different resistant oat accessions. These approaches allowed the ranking of many supposed drought tolerance traits in the order of degree of importance within this crop, thereby highlighting those with a causal relationship to drought stress tolerance. Analyses of the loading vectors used to derive the PCA and DFA models indicated that two traits involved in water relations, temperature and RWC together with the area of drought curves, were important indicators of drought tolerance. However, other parameters involved in water use such as g (1) and WUE were less able to discriminate between the accessions. These observations validate our approach which should be seen as representing a cost-effective initial screen that could be subsequently employed to target drought tolerance in segregating populations.

  17. Resistance to uprooting of Alfalfa and Avena Sativa and related importance for flume experiments

    NASA Astrophysics Data System (ADS)

    Edmaier, K.; Crouzy, B.; Burlando, P.; Perona, P.

    2012-04-01

    Vegetation influences sediment dynamics by stabilizing the alluvial sediment with its root system. Thus, vegetation engineers the riparian ecosystem by contributing to the formation and stabilization of river bars and islands. The resistance to uprooting of young plants in non-cohesive sediment depends on the competition between flow induced drag and root growth timescales. The investigation of flow-sediment-plant interactions in situ is difficult since variables cannot be controlled and material hardly be collected. In order to investigate ecomorphological processes, laboratory experiments are essential and have gained importance in the last decade. To achieve a better understanding of the dependence of resistance to uprooting on the root system (length and structure) we conducted vertical uprooting experiments with Alfalfa and Avena Sativa which are both species that have been used in flume experiments on vegetation-flow interactions (e.g. Tal and Paola, 2010; Perona et al., in press). Seeds were seeded on quartz sand and vertically uprooted with constant velocity whereat the weight force required to uproot a seedling was measured. After uprooting, roots were scanned and analyzed and the correlation of root parameters with the uprooting work was studied. Total root length was found to be the best explanatory variable, in particular the uprooting work increases following a power law with increasing root length. The impact of other root parameters (main root length, root number, tortuosity) on the uprooting work was as well analyzed. Still, not all influencing root parameters could be captured, like the angle between roots or root hair distribution. Environmental conditions like grain size and saturation were also found to have an effect on the uprooting resistance of roots. So, lower saturated sediment results in a higher uprooting work. This work is a first step to better understand the energy regime for vegetation uprooting and its dependence on various

  18. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  19. Three Cases of Elongated Mandibular Coronoid Process with Different Presentations

    PubMed Central

    Ilguy, Mehmet; Kursoglu, Pinar; Ilguy, Dilhan

    2014-01-01

    Abnormal elongation of the mandibular coronoid process is rare and its etiology is not yet elucidated. The aim of this report is to demonstrate and discuss the relationship between elongated mandibular coronoid process and limitation of mouth opening with cone beam computed tomography. Although the clinical characteristic of elongation of the coronoid process is mandibular limitation, in this report, one case had problem with mouth opening. Axial scans revealed that the distance between the coronoid process and the inner face of the frontal part of the zygomatic bone may cause limitation in mouth opening. In conclusion, instead of the length, the distance between the coronoid process and the inner face of the frontal part of the zygomatic bone may be the actual reason for limitation of mouth opening. This may prevent misdiagnosis. PMID:24693298

  20. Wnt5a is essential for intestinal elongation in mice

    PubMed Central

    Cervantes, Sara; Yamaguchi, Terry P.; Hebrok, Matthias

    2009-01-01

    Summary Morphogenesis of the mammalian small intestine entails extensive elongation and folding of the primitive gut into a tightly coiled digestive tube. Surprisingly, little is known about the cellular and molecular mechanisms that mediate the morphological aspects of small intestine formation. Here, we demonstrate that Wnt5a, a member of the Wnt family of secreted proteins, is essential for the development and elongation of the small intestine from the midgut region. We found that the small intestine in mice lacking Wnt5a was dramatically shortened and duplicated, forming a bifurcated lumen instead of a single tube. In addition, cell proliferation was reduced and re-intercalation of post-mitotic cells into the elongating gut tube epithelium was disrupted. Thus, our study demonstrates that Wnt5a functions as a critical regulator of midgut formation and morphogenesis in mammals. PMID:19100728

  1. An Elongated Tetrakaidecahedron Model for Open-Celled Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2007-01-01

    A micro-mechanics model for non-isotropic, open-celled foams is developed using an elongated tetrakaidecahedron (Kelvin model) as the repeating unit cell. The micro-mechanics model employs an elongated Kelvin model geometry which is more general than that employed by previous authors. Assuming the cell edges possess axial and bending rigidity, the mechanics of deformation of the elongated tetrakaidecahedron lead to a set of equations for the Young's modulus, Poisson's ratio and strength of the foam in the principal material directions. These equations are written as a function of the cell edge lengths and cross-section properties, the inclination angle and the strength and stiffness of the solid material. The model is applied to predict the strength and stiffness of several polymeric foams. Good agreement is observed between the model results and the experimental measurements.

  2. Elongate summit calderas as Neogene paleostress indicators in Antarctica

    USGS Publications Warehouse

    Paulsen, T.S.; Wilson, T.J.

    2007-01-01

    The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.

  3. A ratchet mechanism of transcription elongation and its control.

    PubMed

    Bar-Nahum, Gil; Epshtein, Vitaly; Ruckenstein, Andrei E; Rafikov, Ruslan; Mustaev, Arkady; Nudler, Evgeny

    2005-01-28

    RNA chain elongation is a highly processive and accurate process that is finely regulated by numerous intrinsic and extrinsic signals. Here we describe a general mechanism that governs RNA polymerase (RNAP) movement and response to regulatory inputs such as pauses, terminators, and elongation factors. We show that E.coli RNAP moves by a complex Brownian ratchet mechanism, which acts prior to phosphodiester bond formation. The incoming substrate and the flexible F bridge domain of the catalytic center serve as two separate ratchet devices that function in concert to drive forward translocation. The adjacent G loop domain controls F bridge motion, thus keeping the proper balance between productive and inactive states of the elongation complex. This balance is critical for cell viability since it determines the rate, processivity, and fidelity of transcription.

  4. Bilateral elongated mandibular coronoid process in an Anatolian skull

    PubMed Central

    Çorumlu, Ufuk; Demir, Mehmet Tevfik; Pirzirenli, Mennan Ece

    2016-01-01

    Elongation or hyperplasia of coronoid process of mandible is rare condition characterized by abnormal bone development which cause malocclusion and the limited mouth opening. In this study, in an Anatolian skull, a case of bilateral elongation of mandibular coronoid process was presented. Levandoski panographic analysis was performed on the panoramic radiographie to determine the hyperplasia of the coronoid process. The right condylar process was exactly hyperplastic. The measurements of Kr-Go/Cd-Go were 95.10 mm/79.03 mm on right side and 97.53 mm/87.80 mm on left side. The ratio of Kr-Go/Cd-Go on the right side was 1.20. Elongated coronoid process is one of the factors cause mandibular hypomobility, it as reported here might lead to limited mouth opening. The knowledge of this variation or abnormality can be useful for the radiologist and surgeons and prevent misdiagnosis. PMID:27722017

  5. Break-induced replication and recombinational telomere elongation in yeast.

    PubMed

    McEachern, Michael J; Haber, James E

    2006-01-01

    When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.

  6. River Elongation as a Proxy for Lateral Channel Activity

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.

    2009-12-01

    Lateral channel movement is a process that is tightly linked to both channel hydraulics and sediment transport, strongly influences floodplain ecology, and also has great relevance for banktop property owners. The correlation between channel migration rate and channel curvature usually causes meandering river channels to elongate as they migrate laterally. Over the long term, the increase in sinuosity is compensated by a rapid decrease in sinuosity where and when river bends shorten through cutoff processes. However, the elongation for most meander bends in systems free to migrate across wide floodplains often occurs relatively uniformly throughout the system. Consequently, the rate of elongation of individual river bends, integrated across a river reach, offers a simple mechanism for characterizing the reach’s lateral activity. Spatial series of accumulated elongation can also be used to delineate reaches with similar properties. We use aerial imagery pairs to compare rates of lateral channel centerline shifting with channel centerline elongation for reaches many bends long along eight different rivers with widths ranging from 12 to 584 m. Except where bends translate downstream without changing form, elongation rates are closely linked to lateral shifting. In several cases, a change in elongation rate corresponds closely with a change in channel width, discharge, and/or bed material. For reaches free to migrate across a wide, unconfined floodplain and where lateral migration measurements are likely of high quality, the average ratio between the reach average migration rate normalized by channel width and the rate of sinuosity increase (excluding bends that experienced a cutoff between imagery dates) is approximately 5.6. Since elongation rate measurements can be made accurately even from photos that are poorly aligned, the relationship between sinuosity increase and lateral migration potentially provides a means of bypassing time-consuming georeferencing

  7. Rotation in Free Fall of Rectangular Wings of Elongated Shape

    NASA Technical Reports Server (NTRS)

    Dupleich, Paul

    1949-01-01

    The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.

  8. Actin nucleation and elongation factors: mechanisms and interplay.

    PubMed

    Chesarone, Melissa A; Goode, Bruce L

    2009-02-01

    Cells require actin nucleators to catalyze the de novo assembly of filaments and actin elongation factors to control the rate and extent of polymerization. Nucleation and elongation factors identified to date include Arp2/3 complex, formins, Ena/VASP, and newcomers Spire, Cobl, and Lmod. Here, we discuss recent advances in understanding their activities and mechanisms and new evidence for their cooperation and interaction in vivo. Earlier models had suggested that different nucleators function independently to assemble distinct actin arrays. However, more recent observations indicate that the construction of most cellular actin networks depends on the activities of multiple actin assembly-promoting factors working in concert.

  9. Isolate Specificity and Polygenic Inheritance of Resistance in Barley to the Heterologous Rust Pathogen Puccinia graminis f. sp. avenae.

    PubMed

    Dracatos, P M; Nansamba, M; Berlin, A; Park, R F; Niks, R E

    2016-09-01

    Barley is a near-nonhost to numerous heterologous (nonadapted) rust pathogens because a small proportion of genotypes are somewhat susceptible. We assessed 66 barley accessions and three mapping populations (Vada × SusPtrit, Cebada Capa × SusPtrit, and SusPtrit × Golden Promise) for response to three Swedish oat stem rust (Puccinia graminis f. sp. avenae) fungal isolates and determined that barley is a near-nonhost to P. graminis f. sp. avenae and that resistance was polygenically inherited. The parental genotypes Vada and Golden Promise were immune to all three isolates, whereas Cebada Capa was immune to two isolates and moderately resistant to the third. Phenotypic data from the Vada × SusPtrit mapping population and the barley accessions tested also demonstrated isolate-specific resistance. In particular, the SusPtrit parent and several other accessions allowed sporulation by isolate Ingeberga but were resistant to isolate Evertsholm. Nine chromosomal regions carried quantitative trait loci (QTL) (Rpgaq1 to Rpgaq9) of varying effect, most of which colocated to previously identified QTL for resistance to other heterologous rust pathogens. Rpgaq1 on chromosome 1H (Vada and Golden Promise) was effective toward all isolates tested. Microscopic examination indicated that resistance was prehaustorial in Vada whereas, in SusPtrit, both pre- and posthaustorial mechanisms play a role. PMID:27111801

  10. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae)

    PubMed Central

    Zhang, Fangmei; Li, Xiangrui; Zhang, Yunhui; Coates, Brad; Zhou, Xuguo “Joe”; Cheng, Dengfa

    2015-01-01

    Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24 h old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests. PMID:26042046

  11. Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus).

    PubMed

    Lu, Y-H; Zheng, X-S; Gao, X-W

    2016-08-01

    The aphid species Sitobion avenae and Rhopalosiphum padi are the most important pests in wheat growing regions of many countries. In this study, we investigated the sublethal effects of imidacloprid on fecundity, longevity, and enzyme activity in both aphid species by comparing 3-h exposure for one or three generations. Our results indicated that 3-h exposure to sublethal doses of imidacloprid for one generation had no discernible effect on the survival, fecundity, longevity, or enzyme activity levels of aphids. However, when pulse exposures to imidacloprid were sustained over three generations, both fecundity and longevity were significantly decreased in both S. avenae and R. padi. Interestingly, the fecundity of R. padi had almost recovered by the F5 generation, but its longevity was still deleteriously affected. These results indicated that R. padi laid eggs in shorter time lags and has a more fast resilience. The change in reproduction behavior may be a phenomenon of R. padi to compensate its early death. If this is stable for the next generation, it means that the next generation is more competitive than unexposed populations, which could be the reason underlying population outbreaks that occur after longer-term exposure to an insecticide. This laboratory-based study highlights the sublethal effects of imidacloprid on the longevity and fecundity of descendants and provides an empirical basis from which to consider management decisions for chemical control in the field. PMID:27161277

  12. Testing the fecundity advantage hypothesis with Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum (Hemiptera: Aphididae) feeding on ten wheat accessions

    PubMed Central

    Hu, Xiang-Shun; Liu, Xiao-Feng; Thieme, Thomas; Zhang, Gai-Sheng; Liu, Tong-Xian; Zhao, Hui-Yan

    2015-01-01

    The fecundity advantage hypothesis suggests that females with a large body size produce more offspring than smaller females. We tested this hypothesis by exploring the correlations between life-history traits of three aphid species feeding on ten wheat accessions at three levels of analysis with respect to the host plant: overall, inter-accession, and intra-accession. We found that fecundity was significantly correlated with mean relative growth rate (MRGR), weight gain, and development time, and that the faster aphid develops the greater body and fecundity, depending on aphid species, wheat accession, and analyses level. Larger aphids of all three species produced more offspring overall; this held true for Sitobion avenae and Schizaphis graminum at the inter-accession level, and for S. avenae, Rhopalosiphum padi, and S. graminum for three, five, and eight accessions respectively at the intra-accession level. Only one correlation, between intrinsic rates of natural increase (rm) and MRGR, was significant for all aphid species at all three analysis levels. A more accurate statement of the fecundity advantage hypothesis is that cereal aphids with greater MRGR generally maintain higher rm on wheat. Our results also provide a method for exploring relationships between individual life-history traits and population dynamics for insects on host plants. PMID:26680508

  13. Isolate Specificity and Polygenic Inheritance of Resistance in Barley to the Heterologous Rust Pathogen Puccinia graminis f. sp. avenae.

    PubMed

    Dracatos, P M; Nansamba, M; Berlin, A; Park, R F; Niks, R E

    2016-09-01

    Barley is a near-nonhost to numerous heterologous (nonadapted) rust pathogens because a small proportion of genotypes are somewhat susceptible. We assessed 66 barley accessions and three mapping populations (Vada × SusPtrit, Cebada Capa × SusPtrit, and SusPtrit × Golden Promise) for response to three Swedish oat stem rust (Puccinia graminis f. sp. avenae) fungal isolates and determined that barley is a near-nonhost to P. graminis f. sp. avenae and that resistance was polygenically inherited. The parental genotypes Vada and Golden Promise were immune to all three isolates, whereas Cebada Capa was immune to two isolates and moderately resistant to the third. Phenotypic data from the Vada × SusPtrit mapping population and the barley accessions tested also demonstrated isolate-specific resistance. In particular, the SusPtrit parent and several other accessions allowed sporulation by isolate Ingeberga but were resistant to isolate Evertsholm. Nine chromosomal regions carried quantitative trait loci (QTL) (Rpgaq1 to Rpgaq9) of varying effect, most of which colocated to previously identified QTL for resistance to other heterologous rust pathogens. Rpgaq1 on chromosome 1H (Vada and Golden Promise) was effective toward all isolates tested. Microscopic examination indicated that resistance was prehaustorial in Vada whereas, in SusPtrit, both pre- and posthaustorial mechanisms play a role.

  14. Life-history trait plasticity and its relationships with plant adaptation and insect fitness: a case study on the aphid Sitobion avenae.

    PubMed

    Dai, Peng; Shi, Xiaoqin; Liu, Deguang; Ge, Zhaohong; Wang, Da; Dai, Xinjia; Yi, Zhihao; Meng, Xiuxiang

    2016-01-01

    Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid.

  15. The perennial wild species Avena macrostachya as a genetic source for improvement of winterhardiness in winter oat for cultivation in Poland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avena macrostachya Bal. et Durieu has been reported as a valuable source of genetic variation for oat because of its winterhardiness and resistance to various diseases and pests. Therefore a series of crosses of cultivated oat with this species was initiated in IHAR-Radzików, Poland, in 2002. Three ...

  16. Life-history trait plasticity and its relationships with plant adaptation and insect fitness: a case study on the aphid Sitobion avenae.

    PubMed

    Dai, Peng; Shi, Xiaoqin; Liu, Deguang; Ge, Zhaohong; Wang, Da; Dai, Xinjia; Yi, Zhihao; Meng, Xiuxiang

    2016-01-01

    Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid. PMID:27426961

  17. Life-history trait plasticity and its relationships with plant adaptation and insect fitness: a case study on the aphid Sitobion avenae

    PubMed Central

    Dai, Peng; Shi, Xiaoqin; Liu, Deguang; Ge, Zhaohong; Wang, Da; Dai, Xinjia; Yi, Zhihao; Meng, Xiuxiang

    2016-01-01

    Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid. PMID:27426961

  18. Molecular development of the mid-stage elongating cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is one of the leading natural textile fibers and is the leading value added crop in the USA. The annual business revenue from the cotton industry exceeds $120 billion. The growth of the cotton fiber is divided into four unique, yet overlapping stages; initiation, elongation, secondary w...

  19. FtsZ-Dependent Elongation of a Coccoid Bacterium

    PubMed Central

    Pereira, Ana R.; Hsin, Jen; Król, Ewa; Tavares, Andreia C.; Flores, Pierre; Hoiczyk, Egbert; Ng, Natalie; Dajkovic, Alex; Brun, Yves V.; VanNieuwenhze, Michael S.; Roemer, Terry; Carballido-Lopez, Rut; Huang, Kerwyn Casey

    2016-01-01

    ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. PMID:27601570

  20. Fiber elongation-dependent aquaporin expression in different cotton cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber length is an important component to measure cotton yield potential. Many research efforts have focused on development of cotton cultivars with higher fiber quality and yield potential. It is known that genetic diversity exists for fiber elongation. Understanding the genetic and molecular mecha...

  1. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation

    PubMed Central

    Wu, Zhe; Ietswaart, Robert; Liu, Fuquan; Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    The basis of quantitative regulation of gene expression is still poorly understood. In Arabidopsis thaliana, quantitative variation in expression of FLOWERING LOCUS C (FLC) influences the timing of flowering. In ambient temperatures, FLC expression is quantitatively modulated by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. Investigation of this mechanism unexpectedly showed that RNA polymerase II (Pol II) occupancy changes at FLC did not reflect RNA fold changes. Mathematical modeling of these transcriptional dynamics predicted a tight coordination of transcriptional initiation and elongation. This prediction was validated by detailed measurements of total and chromatin-bound FLC intronic RNA, a methodology appropriate for analyzing elongation rate changes in a range of organisms. Transcription initiation was found to vary ∼25-fold with elongation rate varying ∼8- to 12-fold. Premature sense transcript termination contributed very little to expression differences. This quantitative variation in transcription was coincident with variation in H3K36me3 and H3K4me2 over the FLC gene body. We propose different chromatin states coordinately influence transcriptional initiation and elongation rates and that this coordination is likely to be a general feature of quantitative gene regulation in a chromatin context. PMID:26699513

  2. STRIP BEING REDUCED IN CROSSSECTION AND ELONGATED ON RUNOUT LINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRIP BEING REDUCED IN CROSS-SECTION AND ELONGATED ON RUN-OUT LINE OF #43 HOT MILL. MECHANICAL TRANSFER HAS MOVED INTO POSITION OVER FURNACE DISCHARGE LINE (L) TO RETRIEVE ANOTHER CAKE. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  3. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  4. Collisional diffusion in toroidal plasmas with elongation and triangularity

    SciTech Connect

    Martin, P.; Castro, E.; Haines, M. G.

    2007-05-15

    Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.

  5. Binary asteroid population. 3. Secondary rotations and elongations

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Kušnirák, P.; Hornoch, K.; Galád, A.; Naidu, S. P.; Pray, D. P.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Krugly, Yu. N.; Cooney, W. R.; Gross, J.; Terrell, D.; Gaftonyuk, N.; Pollock, J.; Husárik, M.; Chiorny, V.; Stephens, R. D.; Durkee, R.; Reddy, V.; Dyvig, R.; Vraštil, J.; Žižka, J.; Mottola, S.; Hellmich, S.; Oey, J.; Benishek, V.; Kryszczyńska, A.; Higgins, D.; Ries, J.; Marchis, F.; Baek, M.; Macomber, B.; Inasaridze, R.; Kvaratskhelia, O.; Ayvazian, V.; Rumyantsev, V.; Masi, G.; Colas, F.; Lecacheux, J.; Montaigut, R.; Leroy, A.; Brown, P.; Krzeminski, Z.; Molotov, I.; Reichart, D.; Haislip, J.; LaCluyze, A.

    2016-03-01

    We collected data on rotations and elongations of 46 secondaries of binary and triple systems among near-Earth, Mars-crossing and small main belt asteroids. 24 were found or are strongly suspected to be synchronous (in 1:1 spin-orbit resonance), and the other 22, generally on more distant and/or eccentric orbits, were found or are suggested to have asynchronous rotations. For 18 of the synchronous secondaries, we constrained their librational angles, finding that their long axes pointed to within 20° of the primary on most epochs. The observed anti-correlation of secondary synchroneity with orbital eccentricity and the limited librational angles agree with the theories by Ćuk and Nesvorný (Ćuk, M., Nesvorný, D. [2010]. Icarus 207, 732-743) and Naidu and Margot (Naidu, S.P., Margot, J.-L. [2015]. Astron. J. 149, 80). A reason for the asynchronous secondaries being on wider orbits than synchronous ones may be longer tidal circularization time scales at larger semi-major axes. The asynchronous secondaries show relatively fast spins; their rotation periods are typically < 10 h. An intriguing observation is a paucity of chaotic secondary rotations; with an exception of (35107) 1991 VH, the secondary rotations are single-periodic with no signs of chaotic rotation and their periods are constant on timescales from weeks to years. The secondary equatorial elongations show an upper limit of a2 /b2 ∼ 1.5 . The lack of synchronous secondaries with greater elongations appears consistent, considering uncertainties of the axis ratio estimates, with the theory by Ćuk and Nesvorný that predicts large regions of chaotic rotation in the phase space for a2 /b2 ≳√{ 2 } . Alternatively, secondaries may not form or stay very elongated in gravitational (tidal) field of the primary. It could be due to the secondary fission mechanism suggested by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.J. [2011]. Icarus 214, 161-178), as its efficiency is correlated with the

  6. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    PubMed

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. PMID:26888633

  7. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  8. Stimulation of root elongation and curvature by calcium.

    PubMed

    Takahashi, H; Scott, T K; Suge, H

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms. PMID:11537880

  9. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  10. Isozyme variation in germplasm accessions of the wild oat Avena sterilis L.

    PubMed

    Phillips, T D; Murphy, J P; Goodman, M M

    1993-03-01

    Optimal exploitation of crop genetic resources requires a knowledge of the range and structure of the variation present in the gene pool of interest. Avena sterilis L., the cultivated oat progenitor, contains a store of genetic diversity that is readily accessible to the oat breeder. The objectives of the present paper were: (1) to evaluate isozyme polymorphisms in a sample of A. sterilis accessions from the U.S. National Small Grains Collection, (2) to analyze the distribution of isozyme diversity across the geographic range of the accessions, (3) to classify the accessions into groups based on isozyme variation, and (4) to suggest strategies for efficient sampling of this germplasm collection. One thousand and five accessions from 23 countries and 679 collection sites were screened for variation using 23 enzyme systems. Due to limited information about the genetic relationship among individual members of families of isozymes in hexaploid oat species, data were recorded solely for band presence. The frequencies of bands in accessions from the various countries were used to calculate the probability of genotypic identity (Ix.y), the probability of a unique genotype (Ux.y), and an adjusted polymorphic index (Hx). Accessions from Turkey and Lebanon had the largest polymorphic index values, Turkish and Moroccan accessions displayed the greatest numbers of bands. Accessions from Iran, Turkey, Iraq, and Lebanon had the largest mean probabilities of containing unique genotypes. Based on isozyme data, Turkey appeared to represent the center of diversity in this germplasm collection. Band frequencies calculated among countries were used in a principal component analysis. Accessions from Israel and Morocco clustered together; accessions from Iran, Iraq, Turkey, and Ethiopia formed another group; and Algerian accessions formed an outlying group. Several isozyme bands had a regional distribution. These results suggested that choosing accessions from countries based on their

  11. Quantifying elongation rhythm during full-length protein synthesis.

    PubMed

    Rosenblum, Gabriel; Chen, Chunlai; Kaur, Jaskiran; Cui, Xiaonan; Zhang, Haibo; Asahara, Haruichi; Chong, Shaorong; Smilansky, Zeev; Goldman, Yale E; Cooperman, Barry S

    2013-07-31

    Pauses regulate the rhythm of ribosomal protein synthesis. Mutations disrupting even minor pauses can give rise to improperly formed proteins and human disease. Such minor pauses are difficult to characterize by ensemble methods, but can be readily examined by single-molecule (sm) approaches. Here we use smFRET to carry out real-time monitoring of the expression of a full-length protein, the green fluorescent protein variant Emerald GFP. We demonstrate significant correlations between measured elongation rates and codon and isoacceptor tRNA usage, and provide a quantitative estimate of the effect on elongation rate of replacing a codon recognizing an abundant tRNA with a synonymous codon cognate to a rarer tRNA. Our results suggest that tRNA selection plays an important general role in modulating the rates and rhythms of protein synthesis, potentially influencing simultaneous co-translational processes such as folding and chemical modification. PMID:23822614

  12. Catalytic effects of elongation factor Ts on polypeptide synthesis

    PubMed Central

    Ruusala, Tarmo; Ehrenberg, Måns; Kurland, Charles G.

    1982-01-01

    The kinetic parameters which characterize the interaction between elongation factor Tu (EF-Tu) and elongation factor Ts (EF-Ts) have been determined in a poly(uridylic acid)-primed translation system. The EF-Ts catalyzed release of GDP from EF-Tu was measured independently in a nucleotide exchange assay. We conclude that the rate-limiting step for the EF-Tu cycle in protein synthesis in the absence of EF-Ts is the release of GDP. By adding EF-Ts the time of this step is reduced from 90 s to 30 ms. Half maximal rate is obtained at an EF-Ts concentration of 2.5 x 10−6 M. PMID:16453409

  13. Elongated solid electrolyte cell configurations and flexible connections therefor

    DOEpatents

    Reichner, Philip

    1989-01-01

    A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations 1, each cell combination containing an interior electrode 2 having a top surface and a plurality of interior gas feed conduits 3, through its axial length, electrolyte 5 contacting the interior electrode and exterior electrode 8 contacting electrolyte, where a major portion of the air electrode top surface 7 is covered by interconnection material 6, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material 9 in electronic connection with the air electrode 2 through contact with a major portion of the interconnection material 6, the metal fiber felt being effective as a shock absorbent body between the cells.

  14. Mapping the Escherichia coli transcription elongation complex with exonuclease III

    PubMed Central

    Liu, Zhaokun; Artsimovitch, Irina

    2014-01-01

    Summary RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters; induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template. PMID:25665555

  15. DNA sequencing by synthesis based on elongation delay detection

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2015-03-01

    The one of most important problem in modern genetics, biology and medicine is determination of the primary nucleotide sequence of the DNA of living organisms (DNA sequencing). This paper describes the label-free DNA sequencing approach, based on the observation of a discrete dynamics of DNA sequence elongation phase. The proposed DNA sequencing principle are studied by numerical simulation. The numerical model for proposed label-free DNA sequencing approach is based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) and dynamics of nucleotides incorporation to rising DNA strand. The estimates for number of copied DNA sequences for required probability of nucleotide incorporation event detection and correct DNA sequence determination was obtained. The proposed approach can be applied at all known DNA sequencing devices with "sequencing by synthesis" principle of operation.

  16. Noise regulation and symmetry breaking during vertebrate body elongation

    NASA Astrophysics Data System (ADS)

    Emonet, Thierry; Das, Dipjyoti; Holley, Scott A.

    Elongation of the vertebrate body axis is driven by collective cell migration and cell proliferation at the posteriorly advancing embryonic tailbud. Within the Zebrafish tailbud an ordered stream of cells symmetrically bifurcates to form the left and right halves of the presomitic mesoderm. Maintaining bilateral symmetry during this process is critical to avoid catastrophic spine deformation. Using direct comparison between experimental data and a simple model of cell migration we identified the dynamic regulation of the noise in the direction of motion of individual cells as a critical factor in maintaining symmetric cell flow. Genetic perturbations that reduced noise led to body axis deformation whereas an increase in noise led to retarded elongation as predicted by our model.

  17. Elongated solid electrolyte cell configurations and flexible connections therefor

    DOEpatents

    Reichner, P.

    1989-10-17

    A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations, each cell combination containing an interior electrode having a top surface and a plurality of interior gas feed conduits, through its axial length, electrolyte contacting the interior electrode and exterior electrode contacting electrolyte, where a major portion of the air electrode top surface is covered by interconnection material, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material in electronic connection with the air electrode through contact with a major portion of the interconnection material, the metal fiber felt being effective as a shock absorbent body between the cells. 4 figs.

  18. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

    PubMed

    Moravec, Martin; Wischnewski, Harry; Bah, Amadou; Hu, Yan; Liu, Na; Lafranchi, Lorenzo; King, Megan C; Azzalin, Claus M

    2016-07-01

    Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.

  19. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    PubMed Central

    Di Sansebastiano, Gian-Pietro; Fornaciari, Silvia; Barozzi, Fabrizio; Piro, Gabriella; Arru, Laura

    2014-01-01

    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response. PMID:24642879

  20. New insights on plant cell elongation: a role for acetylcholine.

    PubMed

    Di Sansebastiano, Gian-Pietro; Fornaciari, Silvia; Barozzi, Fabrizio; Piro, Gabriella; Arru, Laura

    2014-01-01

    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response. PMID:24642879

  1. Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation

    PubMed Central

    Bica, Laura; Liddell, Jeffrey R.; Donnelly, Paul S.; Duncan, Clare; Caragounis, Aphrodite; Volitakis, Irene; Paterson, Brett M.; Cappai, Roberto; Grubman, Alexandra; Camakaris, James; Crouch, Peter J.; White, Anthony R.

    2014-01-01

    Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, CuII(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that CuII(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, CuII(atsm), but at a higher concentration. Induction of neurite elongation by CuII(gtsm) was restricted to neurites within the length range of 75–99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM CuII(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that CuII(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM CuII(gtsm), suggesting a potential link between CuII(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes. PMID:24587210

  2. Clamped-filament elongation model for actin-based motors.

    PubMed Central

    Dickinson, Richard B; Purich, Daniel L

    2002-01-01

    Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility. PMID:11806905

  3. Functional interplay between PPM1G and the transcription elongation machinery

    PubMed Central

    Gudipaty, Swapna Aravind; D’Orso, Iván

    2016-01-01

    Transcription elongation is a critical regulatory step in the gene expression cycle. One key regulator of the switch between transcription initiation and elongation is the P-TEFb kinase, which phosphorylates RNA polymerase II (Pol II) and several negative elongation factors to relieve the elongation block at paused promoters to facilitate productive elongation. Here, we highlight recent findings signifying the role of the PPM1G/PP2Cγ phosphatase in activating and maintaining the active transcription elongation state by regulating the availability of P-TEFb and blocking its assembly into the catalytic inactive 7SK small nuclear ribonucleoprotein (snRNP) complex. PMID:27088130

  4. The Occurrence of Two Species of Entomophthorales (Entomophthoromycota), Pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia

    PubMed Central

    Boukhris-Bouhachem, Sonia; Eilenberg, Jørgen; Allagui, Mohamed Bechir; Jensen, Annette Bruun

    2013-01-01

    The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia. PMID:23862158

  5. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    SciTech Connect

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  6. Substrate specificity screening of oat (Avena sativa) seeds aminopeptidase demonstrate unusually broad tolerance in S1 pocket.

    PubMed

    Gajda, Anna D; Pawełczak, Małgorzata; Drag, Marcin

    2012-05-01

    Aminopeptidases are proteolytic enzymes that remove one amino acid at a time from N-terminus of peptidic substrates. In plants, inhibitors of aminopeptidases can find potential applications in agriculture as herbicides. In this report we have used a library of fluorogenic derivatives of natural and unnatural amino acids for substrate specificity profiling of oat (Avena sativa) aminopeptidase. Interestingly, we have found that this enzyme recognizes effectively among the natural amino acids basic residues like Arg and Lys, hydrophobic Phe, Leu and Met, but also to some extent acidic residues Asp and Glu. In the case of unnatural amino acids hydrophobic residues (hPhe and hCha) and basic hArg were preferentially recognized.

  7. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    PubMed

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  8. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo).

    PubMed

    Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K

    2012-05-01

    Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.

  9. Lipids in grain tissues of oat (Avena sativa): differences in content, time of deposition, and fatty acid composition.

    PubMed

    Banas, Antoni; Debski, Henryk; Banas, Walentyna; Heneen, Waheeb K; Dahlqvist, Anders; Bafor, Maureen; Gummeson, Per-Olov; Marttila, Salla; Ekman, Asa; Carlsson, Anders S; Stymne, Sten

    2007-01-01

    Oat (Avena sativa) is unusual in comparison with other cereals since there are varieties with up to 18% oil content. The lipid content and fatty acid composition in different parts of the grain during seed development were characterized in cultivars Freja (6% oil) and Matilda (10% oil), using thin-layer and gas chromatography, and light and electron microscopy. The majority of lipids (86-90%) were found in the endosperm. Ninety-five per cent of the higher oil content of cv. Matilda compared with cv. Freja was due to increased oil content of the endosperm. Up to 84% of the lipids were deposited during the first half of seed development, when seeds where still green with a milky endosperm. Microscopy studies revealed that whereas oil bodies of the embryo and scutellum still contained a discrete shape upon grain maturation, oil bodies of the endosperms fused upon maturation and formed smears of oil.

  10. Primary photophysics of the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa

    NASA Astrophysics Data System (ADS)

    Schüttrigkeit, Tanja A.; Kompa, Christian K.; Salomon, Michael; Rüdiger, Wolfhart; Michel-Beyerle, Maria E.

    2003-11-01

    The temporal evolution of the initially excited singlet state of flavine mononucleotide, which is the cofactor in the LOV2 domain of the blue photoreceptor phototropin, has been studied in picosecond time-resolved fluorescence and femtosecond time-resolved absorption experiments. In the LOV2-WT protein of Avena sativa singlet-triplet intersystem crossing proceeding within 2.3 ns is the primary process which increases the triplet yield by a factor of 1.23 as compared to a mutant where cysteine 39 is replaced by alanine. This flavin triplet state is responsible for the formation of a cysteinyl-flavin adduct which triggers the unique photocycle of the LOV2 domain and thus the sensoric function of the blue light receptor phototropin.

  11. Mechanism of gibberellin-dependent stem elongation in peas

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Sovonick-Dunford, S. A.

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.

  12. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    PubMed

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams.

  13. Mechanism of gibberellin-dependent stem elongation in peas.

    PubMed

    Cosgrove, D J; Sovonick-Dunford, S A

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process. PMID:11537446

  14. Elongation fracture of metals containing pre-introduced secondary defects

    NASA Astrophysics Data System (ADS)

    Arakawa, K.; Ono, K.; Iseki, M.; Kiritani, M.

    2002-01-01

    High-speed, high-strain tensile deformation of thin foils of fcc metals has recently been found to result in the formation of an anomalously high density of small vacancy clusters, probably in the absence of dislocations. In the present study, deformation of secondary-defect-pre-introduced pure Al is performed, at strain rates ranging from 10(-4) to 10(5)/s and a deformation temperature of - 196 or 25 degreesC. Microstructures in the deformed regions are examined by transmission electron microscopy. Vacancy-type dislocation loops and voids are eliminated by the deformation. He-bubbles are observed to elongate under a tensile stress, mainly in the absence of dislocations. Rows of bubbles oriented close to directions of elongation are found, and might result from extreme elongation and division of bubbles. The bubble rows are parallel to particular crystallographic directions, either (001) or (112). This indicates that displacement of atoms during high-speed, high-strain tensile deformation progresses while conforming with the nature of a crystal, even in the absence of dislocations.

  15. Ethylene-promoted Elongation: an Adaptation to Submergence Stress

    PubMed Central

    Jackson, Michael B.

    2008-01-01

    Background A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. Scope Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. Conclusions Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water. PMID:17956854

  16. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-07-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  17. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-09-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  18. Relative Mesothelioma Potencies for Unregulated Respirable Elongated Mineral and Synthetic Particles

    EPA Science Inventory

    For decades uncertainties and contradictions have surrounded the issue of whether exposures to respirable elongated mineral and synthetic particles (REMPs and RESPs) present health risks such as those recognized for exposures to elongated asbestiform mineral particles from the fi...

  19. Studies on the mechanism of cell elongation in Blepharisma japonicum: 3. Cytoplasmic calcium ions may correlate to cell elongation in calmodulin-dependent manner.

    PubMed

    Ishida, M; Shigenaka, Y; Suzaki, T; Taneda, K

    1991-02-22

    Among many heterotrichous ciliates, Blepharisma japonicum especially demonstrates negative phototaxis in response to light stimulation, which is attributed to be caused by swimming acceleration accompanied by cell elongation and ciliary reversal. When Blepharisma cells were treated with 0.1 mM EGTA, cell elongation gradually decreased in its degree as the adaptation time lapsed. Calmodulin inhibitors such as W-7 (10(-5) M) and chlorpromazine (10(-5) M) inhibited cell elongation. These results suggest that a rise in cytoplasmic free Ca(2+) concentration might cause cell elongation through the Ca-calmodulin system. On the other hand, Ca(2+)-channel blockers (La(3+), Co(2+), Cd(2+), Zn(2+), Mn(2+) and verapamil) did not inhibit cell elongation. Ca2+ localization examined by calcium pyroantimonate cytochemistry suggests that Ca(2+) ions required for cell elongation might be supplied from the vacuoles located in the cortical region of the cell instead of Ca(2+) influx from the surrounding medium.

  20. Transcription elongation and tissue-specific somatic CAG instability.

    PubMed

    Goula, Agathi-Vasiliki; Stys, Agnieszka; Chan, Jackson P K; Trottier, Yvon; Festenstein, Richard; Merienne, Karine

    2012-01-01

    The expansion of CAG/CTG repeats is responsible for many diseases, including Huntington's disease (HD) and myotonic dystrophy 1. CAG/CTG expansions are unstable in selective somatic tissues, which accelerates disease progression. The mechanisms underlying repeat instability are complex, and it remains unclear whether chromatin structure and/or transcription contribute to somatic CAG/CTG instability in vivo. To address these issues, we investigated the relationship between CAG instability, chromatin structure, and transcription at the HD locus using the R6/1 and R6/2 HD transgenic mouse lines. These mice express a similar transgene, albeit integrated at a different site, and recapitulate HD tissue-specific instability. We show that instability rates are increased in R6/2 tissues as compared to R6/1 matched-samples. High transgene expression levels and chromatin accessibility correlated with the increased CAG instability of R6/2 mice. Transgene mRNA and H3K4 trimethylation at the HD locus were increased, whereas H3K9 dimethylation was reduced in R6/2 tissues relative to R6/1 matched-tissues. However, the levels of transgene expression and these specific histone marks were similar in the striatum and cerebellum, two tissues showing very different CAG instability levels, irrespective of mouse line. Interestingly, the levels of elongating RNA Pol II at the HD locus, but not the initiating form of RNA Pol II, were tissue-specific and correlated with CAG instability levels. Similarly, H3K36 trimethylation, a mark associated with transcription elongation, was specifically increased at the HD locus in the striatum and not in the cerebellum. Together, our data support the view that transcription modulates somatic CAG instability in vivo. More specifically, our results suggest for the first time that transcription elongation is regulated in a tissue-dependent manner, contributing to tissue-selective CAG instability. PMID:23209427

  1. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    PubMed Central

    Aust, Ann E.; Cook, Philip M.; Dodson, Ronald F.

    2011-01-01

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMP) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure include duration and frequency of exposures; tissue-specific dose over time; impacts on dose persistence from in vivo REMP dissolution, comminution, and clearance; individual susceptibility; and the mineral type and surface characteristics. The mechanisms associated with asbestos particle toxicity involve two facets for each particle's contribution: (1) the physical features of the inhaled REMP, which include width, length, aspect ratio, and effective surface area available for cell contact; and (2) the surface chemical composition and reactivity of the individual fiber/elongated particle. Studies in cell-free systems and with cultured cells suggest an important way in which REMP from asbestos damage cellular molecules or influence cellular processes. This may involve an unfortunate combination of the ability of REMP to chemically generate potentially damaging reactive oxygen species, through surface iron, and the interaction of the unique surfaces with cell membranes to trigger membrane receptor activation. Together these events appear to lead to a cascade of cellular events, including the production of damaging reactive nitrogen species, which may contribute to the disease process. Thus, there is a need to be more cognizant of the potential impact that the total surface area of REMP contributes to the generation of events resulting in pathological changes in biological systems. The information presented has applicability to inhaled dusts, in general, and specifically to respirable elongated mineral particles. PMID:21534085

  2. Tbx1 is Necessary for Palatal Elongation and Elevation

    PubMed Central

    Goudy, Steven; Law, Amy; Sanchez, Gabriela; Baldwin, H. Scott; Brown, Christopher

    2010-01-01

    The transcription factor TBX1 is a key mediator of developmental abnormalities associated with DiGeorge/Velocardiofacial Syndrome. Studies in mice have demonstrated that decreased dosage of Tbx1 results in defects in pharyngeal arch, cardiovascular, and craniofacial development. The role of Tbx1 in cardiac development has been intensely studied; however, its role in palatal development is poorly understood. By studying the Tbx1-/- mice we found defects during the critical points of palate elongation and elevation. The intrinsic palate defects in the Tbx1-/- mice were determined by measuring changes in palate shelf length, proliferation, apoptosis, expression of relevant growth factors, and in palate fusion assays. Tbx1-/- embryos exhibit cleft palate with failed palate elevation in 100% and abnormal palatal-oral fusions in 50%. In the Tbx1-/- mice the palate shelf length was reduced and tongue height was greater, demonstrating a physical impediment to palate elevation and apposition. In vitro palate fusion assays demonstrate that Tbx1-/- palate shelves are capable of fusion but a roller culture assay showed that the null palatal shelves were unable to elongate. Diminished hyaluronic acid production in the Tbx1-/- palate shelves may explain failed palate shelf elevation. In addition, cell proliferation and apoptosis were perturbed in Tbx1-/- palates. A sharp decrease of Fgf8 expression was detected in the Tbx1-/- palate shelves, suggesting that Fgf8 is dependent on Tbx1 in the palate. Fgf10 is also up-regulated in the Tbx1-/- palate shelves and tongue. These data demonstrate that Tbx1 is a critical transcription factor that guides palatal elongation and elevation and that Fgf8 expression in the palate is Tbx1-dependent. PMID:20214979

  3. Fruiting Branch K+ Level Affects Cotton Fiber Elongation Through Osmoregulation

    PubMed Central

    Yang, Jiashuo; Hu, Wei; Zhao, Wenqing; Chen, Binglin; Wang, Youhua; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K+ contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha-1) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (Vmax) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K+ was the major osmotic factor affecting fiber length, and malate was likely facilitating K+ accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K+ absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls. PMID:26834777

  4. Fruiting Branch K(+) Level Affects Cotton Fiber Elongation Through Osmoregulation.

    PubMed

    Yang, Jiashuo; Hu, Wei; Zhao, Wenqing; Chen, Binglin; Wang, Youhua; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K(+) contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha(-1)) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (V max) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K(+) was the major osmotic factor affecting fiber length, and malate was likely facilitating K(+) accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K(+) absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls. PMID:26834777

  5. Amorphous Zr-Based Foams with Aligned, Elongated Pores

    NASA Astrophysics Data System (ADS)

    Cox, Marie E.; Mathaudhu, Suveen N.; Hartwig, K. Ted; Dunand, David C.

    2010-07-01

    Interpenetrating phase composites are created by warm equal channel angular extrusion (ECAE) of blended powders of amorphous Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 (Vit106a) and a crystalline ductile metal (Cu, Ni, or W). Subsequent dissolution of the continuous metallic phase results in amorphous Vit106a foams with ~40 pct aligned, elongated pores. The extent of Vit106a powder densification in the composites improves with the strength of the crystalline metallic powder, from low for Cu to high for W, with a concomitant improvement in foam compressive strength, ductility, and energy absorption.

  6. Elongated optical bottle beams generated by composite binary axicons

    NASA Astrophysics Data System (ADS)

    Porfirev, A. P.; Skidanov, R. V.

    2016-04-01

    We provide analytical, numerical and experimental study of the possibility of forming elongated optical bottle beams (OBBs) using composite binary phase axicons. In this case, the OBB is generated by the superposition of Bessel beams in the near-field region on the axicon. To generate the OBB experimentally, we utilized a spatial light modulator. The experimental results are qualitatively consistent with the results of numerical simulations performed using Fresnel transform. Such type of optical trap can be applied in many applications of microbiology, micromechanics and meteorology to manipulate micro- and nanoobjects in liquid or gaseous medium.

  7. Controlled laser production of elongated articles from particulates

    DOEpatents

    Dixon, Raymond D.; Lewis, Gary K.; Milewski, John O.

    2002-01-01

    It has been discovered that wires and small diameter rods can be produced using laser deposition technology in a novel way. An elongated article such as a wire or rod is constructed by melting and depositing particulate material into a deposition zone which has been designed to yield the desired article shape and dimensions. The article is withdrawn from the deposition zone as it is formed, thus enabling formation of the article in a continuous process. Alternatively, the deposition zone is moved along any of numerous deposition paths away from the article being formed.

  8. Reduction of laser spot elongation in adaptive optics.

    PubMed

    Ribak, Erez N; Ragazzoni, Roberto

    2004-06-15

    Adaptive optics systems measure the wave front to be corrected by use of a reference source, a star, or a laser beacon. Such laser guide stars are a few kilometers long, and when observed near the edges of large telescopes they appear elongated. This limits their utility significantly. However, with more sophisticated launch optics their shape and length can be controlled. We propose to string around the rim of a telescope a number of small telescopes that will add laser beams in the scattering medium to create a compact spot. The method could also be adapted for ocular adaptive optics.

  9. Familial Occurrence of Enteric Muco-Submucosal Elongated Polyp

    PubMed Central

    Nakamura, Kenji; Okamoto, Takeshi; Imamura, Noriatsu; Ishii, Naoki; Fujita, Yoshiyuki

    2016-01-01

    We report 2 cases of enteric muco-submucosal elongated polyps (EMSEPs) that presented with gastrointestinal bleeding. The 2 patients are siblings. They both had a history of percutaneous coronary intervention for coronary artery disease and were on dual antiplatelet therapy. They underwent endoscopic resection of the polyps, which displayed identical endoscopic and histological features compatible with EMSEP. This is the first report of familial occurrence of EMSEP, suggesting possible genetic involvement. It is also important to note that the use of antiplatelet agents appears to be a predisposing factor for gastrointestinal bleeding from EMSEP. PMID:27807549

  10. The Jasper Ridge elevated CO{sub 2} experiment: Root acid phosphatase activity in Bromus hordeaceus and Avena barbata remains unchanged under elevated [CO{sub 2}

    SciTech Connect

    Cardon, Z.G.; Jackson, R.

    1995-06-01

    Root acid phosphatase activity increases phosphate available to plants by cleaving phosphate esters in soil organic matter. Because of increased plant growth potential under elevated [CO{sub 2}], we hypothesized that high [CO{sub 2}]-grown plants might exhibit higher phosphatase activity than low [CO{sub 2}]-grown plants. We assayed phosphatase activity in two species grown on two substrates (Bromus on serpentine soil and Bromus and Avena on sandstone soil) under high and low [CO{sub 2}] and under several nutrient treatments. Phosphatase activity was expressed per gram fresh weight of roots. Phosphatase activity of Bromus roots (on sandstone) was first assayed in treatments where only P and K, or only N, were added to soil. Bromus roots in this case showed strong induction of phosphatase activity when N only had been added to soil, indicating that Bromus regulated its phosphatase activity in response to phosphate availability. Both Bromus and Avena growing in sandstone, and Bromus growing in serpentine, showed enhanced phosphatase activity at high nutrient (N, P, and K) levels over that at low nutrient levels, but no differences between phosphatase activity were apparent between [CO{sub 2}] treatments. The increased phosphatase activity at high N, P, and K may indicate enhanced {open_quotes}growth demand{close_quotes} (reflected in higher biomass) in both Avena and Bromus. In contrast, though Bromus {open_quotes}growth demand{close_quotes} (biomass) increased under high [CO{sub 2}] on sandstone, phosphatase activity did not increase.

  11. Rds and Rih mediate hypersensitive cell death independent of gene-for-gene resistance to the oat crown rust pathogen Puccinia coronata f. sp. avenae.

    PubMed

    Yu, G X; Braun, E; Wise, R P

    2001-12-01

    The Pca crown rust resistance cluster in the diploid Avena genus confers gene-for-gene specificity to numerous isolates of Puccinia coronata f. sp. avenae. Recombination breakpoint analysis indicates that specificities conferred by the Pca cluster are controlled by at least five distinct genes, designated Pc81, Pc82, Pc83, Pc84, and Pc85. Avena plants with the appropriate genotype frequently respond to P. coronata by undergoing hypersensitive cell death at the sites of fungal infection. Autofluorescence of host cells in response to P. coronata occurs in plants that develop visible necrotic lesions but not in plants that lack this phenotype. Two newly described, non-Pc loci were shown to control hypersensitive cell death. Rds (resistance-dependent suppressor of cell death) suppresses the hypersensitive response (HR), but not the resistance, mediated by the Pc82 resistance gene. In contrast, Rih (resistance-independent hypersensitive cell death) confers HR in both resistant and susceptible plants. Linkage analysis indicates that Rds is unlinked to the Pca cluster, whereas Rih is tightly linked to it. These results indicate that multiple synchronous pathways affect the development of hypersensitive cell death and that HR is not essential for resistance to crown rust. Further characterization of these genes will clarify the relationship between plant disease resistance and localized hypersensitive cell death.

  12. Cellular dynamics of the negative transcription elongation factor NELF

    SciTech Connect

    Yung, Tetsu M.C.; Narita, Takashi; Komori, Toshiharu; Yamaguchi, Yuki; Handa, Hiroshi

    2009-06-10

    Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.

  13. Chromosome end elongation by recombination in the mosquito Anopheles gambiae.

    PubMed Central

    Roth, C W; Kobeski, F; Walter, M F; Biessmann, H

    1997-01-01

    One of the functions of telomeres is to counteract the terminal nucleotide loss associated with DNA replication. While the vast majority of eukaryotic organisms maintain their chromosome ends via telomerase, an enzyme system that generates short, tandem repeats on the ends of chromosomes, other mechanisms such as the transposition of retrotransposons or recombination can also be used in some species. Chromosome end regression and extension were studied in a medically important mosquito, the malaria vector Anopheles gambiae, to determine how this dipteran insect maintains its chromosome ends. The insertion of a transgenic pUChsneo plasmid at the left end of chromosome 2 provided a unique marker for measuring the dynamics of the 2L telomere over a period of about 3 years. The terminal length was relatively uniform in the 1993 population with the chromosomes ending within the white gene sequence of the inserted transgene. Cloned terminal chromosome fragments did not end in short repeat sequences that could have been synthesized by telomerase. By late 1995, the chromosome ends had become heterogeneous: some had further shortened while other chromosomes had been elongated by regenerating part of the integrated pUChsneo plasmid. A model is presented for extension of the 2L chromosome by recombination between homologous 2L chromosome ends by using the partial plasmid duplication generated during its original integration. It is postulated that this mechanism is also important in wild-type telomere elongation. PMID:9271395

  14. The Brassica rapa elongated internode (EIN) gene encodes phytochrome B.

    PubMed

    Devlin, P F; Somers, D E; Quail, P H; Whitelam, G C

    1997-06-01

    The elongated internode (ein) mutation of Brassica rapa leads to a deficiency in immunochemically detectable phytochrome B. Molecular analysis of the PHYB gene from ein indicates a deletion in the flanking DNA 5' of the ATG start codon, which could interfere either with PHYB transcription or processing of the PHYB transcript. Restriction fragment length polymorphisms and inverse PCR fragments generated from the PHYB gene of wild-type and ein seedlings demonstrate the deletion to be 500 bp in length. Seedlings of heterozygote, EIN/ein, contain about 50% of the level of immunochemically detectable phytochrome B of equivalent wild-type EIN/EIN seedlings. Etiolated seedlings of EIN/ein show a responsiveness to red light almost intermediate between that of ein/ein and EIN/EIN homozygotes. Furthermore, whereas the ein/ein homozygote is poorly responsive to low red/far-red ratio light, the presence of one functional allele of EIN in the heterozygote confers an elongation response intermediate between that of the homozygotes EIN/EIN and ein/ein in these light conditions. The partial dominance of ein indicates a close relationship between phytochrome B level and phenotype.

  15. Electrostatics in the Ribosomal Tunnel Modulate Chain Elongation Rates

    PubMed Central

    Lu, Jianli; Deutsch, Carol

    2008-01-01

    SUMMARY Electrostatic potentials along the ribosomal exit tunnel are non-uniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet is likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel, and measured chain elongation rates. Positively-charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively-charged residues than for those containing positively-charged residues. We provide experimental evidence that extra-ribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide. PMID:18822297

  16. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    PubMed Central

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  17. Application of an Elongated Kelvin Model to Space Shuttle Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2009-01-01

    The space shuttle foams are rigid closed-cell polyurethane foams. The two foams used most-extensively oil space shuttle external tank are BX-265 and NCFL4-124. Because of the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a nonisotropic mechanical behavior. A detailed microstructural characterization of the two foams is presented. Key features of the foam cells are described and the average cell dimensions in the two foams are summarized. Experimental studies are also conducted to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise). The measured elastic modulus, proportional limit stress, ultimate tensile strength, and Poisson's ratios are reported. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are summarized. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson's ratios are predicted for both foams and are compared with the experimental data. The predicted tensile strength ratio is in close agreement with the measured strength ratio for both BX-265 and NCFI24-124. The comparison between the predicted Poisson's ratios and the measured values is not as favorable.

  18. Directed 3D cell alignment and elongation in microengineered hydrogels.

    PubMed

    Aubin, Hug; Nichol, Jason W; Hutson, Ché B; Bae, Hojae; Sieminski, Alisha L; Cropek, Donald M; Akhyari, Payam; Khademhosseini, Ali

    2010-09-01

    Organized cellular alignment is critical to controlling tissue microarchitecture and biological function. Although a multitude of techniques have been described to control cellular alignment in 2D, recapitulating the cellular alignment of highly organized native tissues in 3D engineered tissues remains a challenge. While cellular alignment in engineered tissues can be induced through the use of external physical stimuli, there are few simple techniques for microscale control of cell behavior that are largely cell-driven. In this study we present a simple and direct method to control the alignment and elongation of fibroblasts, myoblasts, endothelial cells and cardiac stem cells encapsulated in microengineered 3D gelatin methacrylate (GelMA) hydrogels, demonstrating that cells with the intrinsic potential to form aligned tissues in vivo will self-organize into functional tissues in vitro if confined in the appropriate 3D microarchitecture. The presented system may be used as an in vitro model for investigating cell and tissue morphogenesis in 3D, as well as for creating tissue constructs with microscale control of 3D cellular alignment and elongation, that could have great potential for the engineering of functional tissues with aligned cells and anisotropic function.

  19. Local auxin metabolism regulates environment-induced hypocotyl elongation.

    PubMed

    Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P; Chory, Joanne

    2016-01-01

    A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

  20. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  1. Local auxin metabolism regulates environment-induced hypocotyl elongation

    PubMed Central

    Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P.; Chory, Joanne

    2016-01-01

    A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

  2. Study of Elongated Superbubble around CYG OB1

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Nichols, Joy

    2004-01-01

    OB association superbubbles and supernova remnants are believed to be the primary sources of the hot component of the interstellar medium. Super- bubbles are also thought to "blow out" of the galactic plane and are thus the potential source of galactic coronal gas. Quantifying the energetics and accurately modeling the evolution of superbubbles is thus an important task in the understanding of the evolution of our Galaxy. The superbubble surrounding the Cyg OB1 association is an excellent example for study of the early stages of superbubble evolution. This superbubble, discovered in IRAS data, is an elongated structure 2 x 5 degrees (26 x 65 pc at distance=1.5 kpc), with at least 2 known supernova remnants believed to be associated with the superbubble. The elongated shape is more extended than can be explained by differential galactic rotation. A major problem in understanding the evolution of the Cyg OB1 superbubble is the discrepancy between the age of the superbubble and the derived age of the parent star association. The superbubble is believed to be no more than 1 Myr old, while the association is about 4-5 Myr old.

  3. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  4. Actin filament nucleation and elongation factors--structure-function relationships.

    PubMed

    Dominguez, Roberto

    2009-01-01

    The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.

  5. Elongation of discotic liquid crystal strands and lubricant effects.

    PubMed

    Bhattacharyya, Surjya Sarathi; Galerne, Yves

    2014-05-19

    After a short review on the physics of pulled threads and their mechanical properties, the paper reports and discusses the strand elongation of disordered columnar phases, hexagonal or lamella-columnar, of small molecules or polymers. The mechanical properties appear to be relevant to the length of the columns of molecules compared to the thread length, instead of the usual correlation length. If, taking the entanglement effect into account, the column length is short, the strand exhibits rather fluid-like properties that may even look nematic-like at the macroscopic scale. The Plateau-Rayleigh instability breaks the thread shortly thereafter. However, because the hydrodynamic objects are the columns instead of the molecules, the viscosity is anomalously large. The observations show that the strands in the columnar phases are made of filaments, or fibrils, which are bundles of columns of molecules. This explains the grooves and rings, which are observed on the antenna or bamboo-like strand profiles. On pulling a strand, the elongation stress eventually exceeds the plasticity threshold, thus breaking the columns and the filaments. As a result, cracks, more exactly, giant dislocations are formed. These change the strand thickness by steps of different birefringence colors. Interestingly, the addition of a solute may drastically change the effective viscosity of the columnar phase and its mechanical properties. Some solutes, such as alkanes, exhibit lubricant and detangling properties, whereas others such as triphenylene, are antilubricant. PMID:24302445

  6. Engineering the elongation factor Tu for efficient selenoprotein synthesis

    PubMed Central

    Haruna, Ken-ichi; Alkazemi, Muhammad H.; Liu, Yuchen; Söll, Dieter; Englert, Markus

    2014-01-01

    Selenocysteine (Sec) is naturally co-translationally incorporated into proteins by recoding the UGA opal codon with a specialized elongation factor (SelB in bacteria) and an RNA structural signal (SECIS element). We have recently developed a SECIS-free selenoprotein synthesis system that site-specifically—using the UAG amber codon—inserts Sec depending on the elongation factor Tu (EF-Tu). Here, we describe the engineering of EF-Tu for improved selenoprotein synthesis. A Sec-specific selection system was established by expression of human protein O6-alkylguanine-DNA alkyltransferase (hAGT), in which the active site cysteine codon has been replaced by the UAG amber codon. The formed hAGT selenoprotein repairs the DNA damage caused by the methylating agent N-methyl-N′-nitro-N-nitrosoguanidine, and thereby enables Escherichia coli to grow in the presence of this mutagen. An EF-Tu library was created in which codons specifying the amino acid binding pocket were randomized. Selection was carried out for enhanced Sec incorporation into hAGT; the resulting EF-Tu variants contained highly conserved amino acid changes within members of the library. The improved UTu-system with EF-Sel1 raises the efficiency of UAG-specific Sec incorporation to >90%, and also doubles the yield of selenoprotein production. PMID:25064855

  7. Assessment of Spatial Distribution of Growth in the Elongation Zone of Grass Leaf Blades 1

    PubMed Central

    Schnyder, Hans; Nelson, Curtis J.; Coutts, John H.

    1987-01-01

    Knowledge about the spatial distribution of growth is essential for understanding the leaf growth process. In grasses the elongation zone is located at the base of the leaf blade and is enclosed by sheaths of older leaves. Assessment of spatial growth distribution, therefore, necessitates use of a destructive method. We used a fine needle to make holes through bases of tillers at the location of the leaf elongation zone of tall fescue (Festuca arundinacea Schreb.), then measured the displacement of the holes after a 6 or 24 h interval. Needle holes caused a 22 to 41% decrease in daily leaf elongation so experiments were conducted to investigate if the spatial distribution of growth in the elongation zone was altered. Leaf elongation rate was reduced similarly when needle holes were made within or above the zone where cell elongation occurs. Distribution of elongation within the zone was the same when estimated by displacement of needle holes or ink marks placed on the epidermis of the elongation zone after surrounding tissue had been removed. Making holes at different locations within the elongation zone did not differentially affect the relative contribution of the damaged or undamaged parts to leaf elongation. These findings demonstrate that needle holes or ink marks in paired leaves can be used to estimate the relative distribution of growth in the elongation zone of undamaged tall fescue leaf blades. PMID:16665672

  8. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

    PubMed Central

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-01-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164

  9. Modes of Action of ADP-Ribosylated Elongation Factor 2 in Inhibiting the Polypeptide Elongation Cycle: A Modeling Study

    PubMed Central

    Chen, Kevin C.; Xie, Honglin; Cai, Yujie

    2013-01-01

    Despite the fact that ADP-ribosylation of eukaryotic elongation factor 2 (EF2) leads to inhibition of protein synthesis, the mechanism by which ADP-ribosylated EF2 (ADPR•EF2) causes this inhibition remains controversial. Here, we applied modeling approaches to investigate the consequences of various modes of ADPR•EF2 inhibitory actions on the two coupled processes, the polypeptide chain elongation and ADP-ribosylation of EF2. Modeling of experimental data indicates that ADPR•EF2 fully blocks the late-phase translocation of tRNAs; but the impairment in the translocation upstream process, mainly the GTP-dependent factor binding with the pretranslocation ribosome and/or the guanine nucleotide exchange in EF2, is responsible for the overall inhibition kinetics. The reduced ADPR•EF2-ribosome association spares the ribosome to bind and shield native EF2 against toxin attack, thereby deferring the inhibition of protein synthesis inhibition and inactivation of EF2. Minimum association with the ribosome also keeps ADPR•EF2 in an accessible state for toxins to catalyze the reverse reaction when nicotinamide becomes available. Our work underscores the importance of unveiling the interactions between ADPR•EF2 and the ribosome, and argues against that toxins inhibit protein synthesis through converting native EF2 to a competitive inhibitor to actively disable the ribosome. PMID:23861744

  10. Gain and loss of elongation factor genes in green algae

    PubMed Central

    Cocquyt, Ellen; Verbruggen, Heroen; Leliaert, Frederik; Zechman, Frederick W; Sabbe, Koen; De Clerck, Olivier

    2009-01-01

    Background Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models. Results Within the Chlorophyta, EF-1α is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus Ignatius. Models describing gene gain-loss dynamics revealed that the presence of EF-1α, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1α phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1α state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages. Conclusion EF-1α is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1α and EFL is confirmed in a large sample of green plants. Hypotheses about the gain

  11. Comparison of the potential rate of population increase of brown and green color morphs of Sitobion avenae (Homoptera: Aphididae) on barley infected and uninfected with Barley yellow dwarf virus.

    PubMed

    Hu, Zu-Qing; Zhao, Hui-Yan; Thieme, Thomas

    2014-06-01

    Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 ± 1°C, 65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infected with virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performed significantly better when fed on BYDV-infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore, when fed on BYDV-infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There were no significant differences in this respect between the two color morphs of S. avenae when they were reared on virus-free plants that either had been or not been previously infested with aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs of S. avenae tested, particularly the green color morph.

  12. Comparison of the potential rate of population increase of brown and green color morphs of Sitobion avenae (Homoptera: Aphididae) on barley infected and uninfected with Barley yellow dwarf virus.

    PubMed

    Hu, Zu-Qing; Zhao, Hui-Yan; Thieme, Thomas

    2014-06-01

    Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 ± 1°C, 65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infected with virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performed significantly better when fed on BYDV-infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore, when fed on BYDV-infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There were no significant differences in this respect between the two color morphs of S. avenae when they were reared on virus-free plants that either had been or not been previously infested with aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs of S. avenae tested, particularly the green color morph. PMID:24382739

  13. The fine structure of elongate gametocytes of Leucocytozoon ziemanni (Laveran).

    PubMed

    Kocan, A A; Kocan, K M

    1978-12-01

    In an effort to establish comparative data within the genus Leucocytozoon, elongate gametocytes of L. ziemanni from naturally infected great horned owls (Bubo virginianus) were examined by electron microscopy. Micro- and macrogametocytes proved to be easily distinguishable at the electron microscopic level due to dramatic dimorphism at maturity and cytoplasmic and nuclear morphology. The parasite membrane architecture, number and type of cytoplasmic ribosomes of both micro- and macrogametocytes, presence and arrangement of osmiophilic bodies and electron dense spheres, mitochondrial morphology, endoplasmic reticulum cisternae morphology, mitochondria containing pocket infoldings of the nuclear membrane of the microgametocytes, and cytostome and food vacuole formation compare favorably with available information on L. simondi and L. smithi. Comparative variations exist only in that L. ziemanni gametocytes apparently lack compartmentalization of the cytoplasm by aligned unit membranes and parasite induced separations of the host cell nucleus as reported for L. simondi. PMID:105117

  14. Reconstruction of recurrent diaphragmatic eventration with an elongated polytetrafluoroethylene sheet

    PubMed Central

    Ikeda, Masaki; Sonobe, Makoto; Bando, Toru; Date, Hiroshi

    2013-01-01

    We report the case of a 31-year old woman with recurrence of left diaphragmatic eventration 3 years after a previous surgery for this condition. At the initial occurrence, she had experienced dyspnoea on exercise and subsequently underwent laparoscopic plication of the diaphragm with an endo-stapler at a local hospital. Immediately after the operation, the diaphragm was torn and the intestine entered the thorax. Therefore, plication involving sewing was performed. Then, 3 years later, the patient again experienced dyspnoea and was diagnosed as having recurrence of left diaphragmatic eventration. Observation under thoracoscopy revealed that the centre of the left diaphragm was thin but not torn. We reconstructed the left diaphragm with an elongated polytetrafluoroethylene sheet on the naïve diaphragm. The patient was discharged from our hospital 5 days after surgery. Her respiratory function improved and she has not experienced recurrence. PMID:23644727

  15. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  16. Centrosome splitting during nuclear elongation in the Drosophila embryo.

    PubMed

    Callaini, G; Anselmi, F

    1988-10-01

    In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.

  17. Content-Based Retrieval of Medical Images with Elongated Structures

    NASA Astrophysics Data System (ADS)

    Machado, Alexei Manso Correa; Teixeira, Christiano Augusto Caldas

    In this paper we propose a set of methods to describe, register and retrieve images of elongated structures from a database based on their shape content. Registration is performed based on an elastic matching algorithm that jointly takes into account the gross shape of the structure and the shape of its boundary, resulting in anatomically consistent deformations. The method determines a medial axis that represents the full extent of the structure with no branches. Discriminative anatomic features are computed from the results of registration and used as variables in a content-based image retrieval system. A case study on the morphology of the corpus callosum in the chromosome 22q11.2 deletion syndrome illustrates the effectiveness of the method and corroborates the hypothesis that retrieval systems may also act as knowledge discovery tools.

  18. Ultraviolet spectroscopy of the zodiacal light at 20-deg elongation

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1977-01-01

    The zodiacal light at 20-deg elongation and 10-deg inclination was observed by rocket ultraviolet spectrometers at 10-15-A resolution in the spectral range 1200-3200 A during an experiment designed to observe comet Kohoutek (1973 XII). The data were obtained above 180 km when scattered horizon light in the startracker caused a loss of tracking on the comet. Airglow emission due to NO and O(+), identified spectroscopically and by its variation with altitude, is significant between 1900 and 2500 A. Longward of 2600 A, the spectrum matches that of the sun, and the derived value of the color ratio, relative to the visible, is 0.90 + or - 0.20. At 1600 A, an upper limit on the zodiacal-light emission of 0.07 R per A or 7 hundred-millionths erg/s per sq cm/sterad per A is obtained.

  19. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    SciTech Connect

    Rolón-Garrido, Víctor H. Wagner, Manfred H.

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  20. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  1. Effect of elongational flow on ferrofuids under a magnetic field.

    PubMed

    Altmeyer, S; Do, Younghae; Lopez, J M

    2013-07-01

    To set up a mathematical model for the flow of complex magnetic fluids, noninteracting magnetic particles with a small volume or an even point size are typically assumed. Real ferrofluids, however, consist of a suspension of particles with a finite size in an almost ellipsoid shape as well as with particle-particle interactions that tend to form chains of various lengths. To come close to the realistic situation for ferrofluids, we investigate the effect of elongational flow incorporated by the symmetric part of the velocity gradient field tensor, which could be scaled by a so-called transport coefficient λ(2). Based on the hybrid finite-difference and Galerkin scheme, we study the flow of a ferrofluid in the gap between two concentric rotating cylinders subjected to either a transverse or an axial magnetic field with the transport coefficient. Under the influence of a transverse magnetic field with λ(2)=0, we show that basic state and centrifugal unstable flows are modified and are inherently three-dimensional helical flows that are either left-winding or right-winding in the sense of the azimuthal mode-2, which is in contrast to the generic cases. That is, classical modulated rotating waves rotate, but these flows do not. We find that under elongational flow (λ(2)≠0), the flow structure from basic state and centrifugal instability flows is modified and their azimuthal vorticity is linearly changed. In addition, we also show that the bifurcation threshold of the supercritical centrifugal unstable flows under a magnetic field depends linearly on the transport coefficient, but it does not affect the general stabilization effect of any magnetic field. PMID:23944545

  2. The Effects of Microgravity on Seated Height (Spinal Elongation)

    NASA Technical Reports Server (NTRS)

    Young, K. S.; Rajulu, S.

    2011-01-01

    ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by

  3. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat.

    PubMed

    Liu, Xingang; Tian, Fajun; Tian, Yingying; Wu, Yanbing; Dong, Fengshou; Xu, Jun; Zheng, Yongquan

    2016-05-11

    Five compounds (syringic acid, tricin, acacetin, syringoside, and diosmetin) were isolated from the aerial parts of wild oats (Avena fatua L.) using chromatography columns of silica gel and Sephadex LH-20. Their chemical structures were identified by means of electrospray ionization and high-resolution mass spectrometry as well as (1)H and (13)C nuclear magnetic resonance spectroscopic analyses. Bioassays showed that the five compounds had significant allelopathic effects on the germination and seedling growth of wheat (Triticum aestivum L.). The five compounds inhibited fresh wheat as well as the shoot and root growth of wheat by approximately 50% at a concentration of 100 mg/kg, except for tricin and syringoside for shoot growth. The results of activity testing indicated that the aerial parts of wild oats had strong allelopathic potential and could cause different degrees of influence on surrounding plants. Moreover, these compounds could be key allelochemicals in wild-oat-infested wheat fields and interfere with wheat growth via allelopathy.

  4. Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli.

    PubMed

    Zeng, Haijuan; Guo, Wenbo; Liang, Beibei; Li, Jianwu; Zhai, Xuzhao; Song, Chunmei; Zhao, Wenjun; Fan, Enguo; Liu, Qing

    2016-09-01

    We screened a highly specific monoclonal antibody (McAb), named 6D, against Acidovorax avenae subsp. citrulli (Aac). Single McAb 6D was used as both nanogold-labeled antibody and test antibody to develop a single self-paired colloidal gold immunochromatographic test strip (Sa-GICS). The detection limit achieved using the Sa-GICS approach was 10(5) CFU/mL, with a result that can be observed by the naked eye within 10 min. Moreover, Sa-GICS can detect eight strains of Aac and display no cross-reactions with other pathogenic plant microorganisms. Artificial contamination experiments demonstrated that Sa-GICS would not be affected by impurities in the leaves or stems of the plants and were consistent with the PCR results. This is the first report on the development of a colloidal gold immunoassay strip with self-paired single McAb for the rapid detection of Aac. Graphical Abstract Schematic representation of the test strip. PMID:27370686

  5. Identification of Genes in a Partially Resistant Genotype of Avena sativa Expressed in Response to Puccinia coronata Infection.

    PubMed

    Loarce, Yolanda; Navas, Elisa; Paniagua, Carlos; Fominaya, Araceli; Manjón, José L; Ferrer, Esther

    2016-01-01

    Cultivated oat (Avena sativa), an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH) library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses). These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop. PMID:27303424

  6. Comparison of fitness traits and their plasticity on multiple plants for Sitobion avenae infected and cured of a secondary endosymbiont

    PubMed Central

    Da Wang; Shi, Xiaoqin; Dai, Peng; Liu, Deguang; Dai, Xinjia; Shang, Zheming; Ge, Zhaohong; Meng, Xiuxiang

    2016-01-01

    Regiella insecticola has been found to enhance the performance of host aphids on certain plants, but its functional role in adaptation of host aphids to plants is still controversial. Here we evaluate the impacts of R. insecticola infections on vital life-history traits of Sitobion avenae (Fabricius), and their underlying genetic variation and phenotypic plasticity on three plants. It was shown that effects of R. insecticola on S. avenae’s fitness (i.e., developmental time and fecundity) were neutral on oat or wheat, but negative on rye. Infections of R. insecticola modified genetic variation that underlies S. avenae’s life-history traits. This was demonstrated by comparing life-history trait heritabilities between aphid lines with and without R. insecticola. Moreover, there were enhanced negative genetic correlations between developmental time and fecundity for R. insecticola infected lines, and structural differences in G-matrices of life-history traits for the two types of aphid lines. In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions. The identified effects of R. insecticola infections could have significant implications for the ecology and evolution of its host populations in natural conditions. PMID:26979151

  7. Protein digestion in cereal aphids (Sitobion avenae) as a target for plant defence by endogenous proteinase inhibitors.

    PubMed

    Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A

    2011-07-01

    Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.

  8. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.

    PubMed

    Fan, Jia; Zhang, Yong; Francis, Frédéric; Cheng, Dengfa; Sun, Jingrun; Chen, Julian

    2015-09-01

    Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF. PMID:26187252

  9. Identification of Genes in a Partially Resistant Genotype of Avena sativa Expressed in Response to Puccinia coronata Infection

    PubMed Central

    Loarce, Yolanda; Navas, Elisa; Paniagua, Carlos; Fominaya, Araceli; Manjón, José L.; Ferrer, Esther

    2016-01-01

    Cultivated oat (Avena sativa), an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH) library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses). These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop. PMID:27303424

  10. [Effects of UV-radiation on biological characteristics of different body-color biotypes of Sitobion avenae (Fab.)].

    PubMed

    Hu, Zu-Qing; Zhao, Hui-Yan; Kang, Ju-Xia; Hu, Xiang-Shun; Li, Dong-Hong

    2009-04-01

    UV-radiation exerts strong selection stress on the evolution of aphid populations, and thus, leads to their genetic differentiation. However, the effects of UV-radiation on different body-color biotypes of aphids are still ambiguous. In this study, new-born nymphae of red and green biotypes of Sitobion avenae were placed on two wheat varieties (Xiaoyan-22 and Astron), bred in an artificial bioclimatic chamber under strict controlled conditions (at 15 degrees C, 20 degrees C, and 25 degrees C, and treated with 30 W lamp of UV-B for 30 min per day for 5 days), and their development duration, mass, and mean relative growth rate were measured. The results showed that at lower temperature, UV-radiation delayed the growth of green biotype aphid on Xiaoyan-22 and Astron significantly; while at higher temperature, UV-radiation significantly delayed the growth of red biotype aphid on Xiaoyan-22, but had lesser effects on the growth of the two biotypes on Astron, illustrating that different biotypes of aphids had different responses to UV-radiation, and the responses were correlated to temperature and wheat varieties.

  11. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.)

    PubMed Central

    Foresman, Bradley J.; Oliver, Rebekah E.; Jackson, Eric W.; Chao, Shiaoman; Arruda, Marcio P.; Kolb, Frederic L.

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  12. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.).

    PubMed

    Foresman, Bradley J; Oliver, Rebekah E; Jackson, Eric W; Chao, Shiaoman; Arruda, Marcio P; Kolb, Frederic L

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel.

  13. Identification of Genes in a Partially Resistant Genotype of Avena sativa Expressed in Response to Puccinia coronata Infection.

    PubMed

    Loarce, Yolanda; Navas, Elisa; Paniagua, Carlos; Fominaya, Araceli; Manjón, José L; Ferrer, Esther

    2016-01-01

    Cultivated oat (Avena sativa), an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH) library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses). These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop.

  14. Toxicity of methyl tert-butyl ether to plants (Avena sativa, Zea mays, Triticum aestivum, and Lactuca sativa).

    PubMed

    An, Youn-Joo; Kampbell, Donald H; McGill, Mary E

    2002-08-01

    Influence of methyl tert-butyl ether (MTBE) on the germination of seeds and growth of seedling plants were studied in laboratory experiments. Test plants were wild oats (Avena sativa), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination, shoot growth, and root growth of plants exposed to different concentrations of MTBE in a moist soil were examined. Seed germination and seedling growth in MTBE-contaminated soil were markedly reduced in all test plants. The median lethal concentration values for seed germination tests and the median effective concentration values for shoot or root growth were calculated. The values for lettuce, wild oats, wheat, and sweet corn were in the range of 18 to 91, 362 to 459, 432 to 751, and 672 to 964 mg MTBE/kg soil as dry weight, respectively. Lettuce was most sensitive to MTBE, followed (in order of decreasing sensitivity) by wild oats, wheat, and sweet corn. Because MTBE can be readily absorbed by plants due to its high solubility in water, plant growth was a more sensitive endpoint than seed germination. Shoot length was more reduced in MTBE-contaminated soil than was the root length, which indicated that MTBE might be transported within the plant from the roots to the shoots. PMID:12152769

  15. Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L.

    PubMed

    Portyanko, V A; Chen, G; Rines, H W; Phillips, R L; Leonard, K J; Ochocki, G E; Stuthman, D D

    2005-07-01

    To facilitate the detection of quantitative trait loci (QTLs) for partial resistance to oat crown rust, Puccinia coronata f. sp. avenae Eriks., a genetic map was generated in a population of 158 F(6)-derived oat recombinant inbred lines from a cross of a partial resistance line MN841801-1 by a susceptible cultivar selection 'Noble-2'. The map, developed using 230 marker loci, mostly restriction fragment length polymorphism and amplified fragment length polymorphism markers, spanned 1,509 cM (Haldane) arranged into 30 linkage groups of 2-18 markers each. Four consistently detected major QTLs for partial rust resistance, Prq1a, Prq1b, Prq2, and Prq7, and three minor QTLs, Prq3, Prq5, and Prq6, were found in tests involving three field and two greenhouse environments. In addition, two major QTLs for flowering time, Ftq1 and Ftq7, and five weaker QTLs, Ftq2, Ftq3, Ftq4, Ftq5, and Ftq6, were revealed. Overlapping of the map segments of Ftq1 and Prq1 and of Ftq7 and Prq7 suggested either linkage between the flowering time QTLs and resistance QTLs or a pleiotropic effect of the Ftq QTLs on rust resistance. Relatively low heritability estimates (0.30) obtained for partial resistance to crown rust in the field indicate a potential value for marker-assisted selection.

  16. Protoplasts isolated from aleurone layers of wild oat (Avena fatua L.) exhibit the classic response to gibberellic acid.

    PubMed

    Hooley, R

    1982-03-01

    Viable, long-lived, gibberellic acid (GA3)-responsive protoplasts have, for the first time, been isolated from aleurone layers of mature wild oat (Avena fatua L.) grain. More than 90% of the cells of aleurone layers are recovered as protoplasts, and these respond to treatment with GA3 in essentially the same manner as the tissue from which they were derived. Protoplasts become vacuolate during incubation in vitro and, although not dependent upon GA3, vacuolation is markedly stimulated by the hormone. Amylase and ribonuclease (RNase) are produced and secreted only in the presence of GA3 and only after lag periods of 3 d and 4 d respectively. The amounts of amylase produced and secreted are proportional to GA3 concentrations as low as 1.61·10(-13) M. With increasing concentrations of mannitol in the culture medium both vacuolation and the GA3-induced production and secretion of enzymes are inhibited progressively, the latter being precluded by 0.6 M to 0.7 M mannitol.

  17. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    PubMed

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition.

  18. Vitamin E levels in soybean (Glycine max (L.) Merr.) expressing a p-hydroxyphenylpyruvate gene from oat (Avena sativa L.).

    PubMed

    Kramer, Catherine M; Launis, Karen L; Traber, Maret G; Ward, Dennis P

    2014-04-16

    The enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD) is ubiquitous in plants and functions in the tyrosine catabolic pathway, resulting in the formation of homogentisate. Homogentisate is the aromatic precursor of all plastoquinones and tocochromanols, including tocopherols and tocotrienols. Soybean (Glycine max (L.) Merr.) has been genetically modified to express the gene avhppd-03 that encodes the protein AvHPPD-03 derived from oat (Avena sativa L.). The AvHPPD-03 isozyme has an inherent reduced binding affinity for mesotrione, a herbicide that inhibits the wild-type soybean HPPD enzyme. Expression of avhppd-03 in soybean plants confers a mesotrione-tolerant phenotype. Seeds from three different avhppd-03-expressing soybean events were quantitatively assessed for content of eight vitamin E isoforms. Although increased levels of two tocopherol isoforms were identified for each of the three soybean events, they were within, or not substantially different from, the ranges of these isoforms found in nontransgenic soybean varieties. The increases of these tocopherols in the avhppd-03-expressing soybean events may have a slight benefit with regard to vitamin E nutrition but, given the commercial processing of soybeans, are unlikely to have a material impact on human nutrition with regard to vitamin E concentrations in soybean oil.

  19. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents.

    PubMed

    Xia, Fangshan; Wang, Xianguo; Li, Manli; Mao, Peisheng

    2015-09-01

    We observed the relationship between lifespan and mitochondria, including antioxidant systems, ultrastructure, and the hydrogen peroxide and malondialdehyde contents in 4 h imbibed oat (Avena sativa L.) seeds that were aged with different moisture contents (4%, 10% and 16%) for 0 (the control), 8, 16, 24, 32 and 40 d at 45 °C. The results showed that the decline in the oat seed vigor and in the integrity of the mitochondrial ultrastructure occurred during the aging process, and that these changes were enhanced by higher moisture contents. Mitochondrial antioxidants in imbibed oat seeds aged with a 4% moisture content were maintained at higher levels than imbibed oat seeds aged with a 10% and 16% moisture content. These results indicated that the levels of mitochondrial antioxidants and malondialdehyde after imbibition were related to the integrity of the mitochondrial membrane in aged oat seeds. The scavenging role of mitochondrial superoxide dismutase was inhibited in imbibed oat seeds aged at the early stage. Monodehydroascorbate reductase and dehydroascorbate reductase played more important roles than glutathione reductase in ascorbate regeneration in aged oat seeds during imbibition.

  20. The primary photophysics of the Avena sativa phototropin 1 LOV2 domain observed with time-resolved emission spectroscopy.

    PubMed

    van Stokkum, Ivo H M; Gauden, Magdalena; Crosson, Sean; van Grondelle, Rienk; Moffat, Keith; Kennis, John T M

    2011-01-01

    The phototropins are blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine in light, oxygen or voltage (LOV) domains. The primary reactions of the Avena sativa phototropin 1 LOV2 domain were investigated by means of time-resolved and low-temperature fluorescence spectroscopy. Synchroscan streak camera experiments revealed a fluorescence lifetime of 2.2 ns in LOV2. A weak long-lived component with emission intensity from 600 to 650 nm was assigned to phosphorescence from the reactive FMN triplet state. This observation allowed determination of the LOV2 triplet state energy level at physiological temperature at 16600 cm(-1). FMN dissolved in aqueous solution showed pH-dependent fluorescence lifetimes of 2.7 ns at pH 2 and 3.9-4.1 ns at pH 3-8. Here, too, a weak phosphorescence band was observed. The fluorescence quantum yield of LOV2 increased from 0.13 to 0.41 upon cooling the sample from 293 to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K in the steady-state emission.

  1. Use of High-Resolution Multispectral Imagery to Estimate Chlorophyll and Plant Nitrogen in Oats (Avena sativa)

    NASA Astrophysics Data System (ADS)

    ELarab, M.; Ticlavilca, A. M.; Torres-Rua, A. F.; Maslova, I.; McKee, M.

    2013-12-01

    Precision agriculture requires high spatial resolution in the application of the inputs to agricultural production. This requires that actionable information about crop and field status be acquired at the same high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high-resolution imagery was obtained through the use of a small, unmanned aerial vehicle, called AggieAirTM, that provides spatial resolution as fine as 6 cm. Simultaneously with AggieAir flights, intensive ground sampling was conducted at precisely determined locations for plant chlorophyll, plant nitrogen, and other parameters. This study investigated the spectral signature of a crop of oats (Avena sativa) and formulated machine learning regression models of reflectance response between the multi-spectral bands available from AggieAir (red, green, blue, near infrared, and thermal), plant chlorophyll and plant nitrogen. We tested two, separate relevance vector machines (RVM) and a single multivariate relevance vector machine (MVRVM) to develop the linkages between the remotely sensed data and plant chlorophyll and nitrogen at approximately 15-cm resolution. The results of this study are presented, including a statistical evaluation of the performance of the different models and a comparison of the RVM modeling methods against more traditional approaches that have been used for estimation of plant chlorophyll and nitrogen.

  2. Impact of biotic and abiotic stresses on the competitive ability of multiple herbicide resistant wild oat (Avena fatua).

    PubMed

    Lehnhoff, Erik A; Keith, Barbara K; Dyer, William E; Menalled, Fabian D

    2013-01-01

    Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR) wild oat (Avena fatua) populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS) A. fatua populations along a gradient of biotic and abiotic stresses The biotic stress was imposed by three levels of wheat (Triticum aestivum) competition (0, 4, and 8 individuals pot(-1)) and an abiotic stress by three nitrogen (N) fertilization rates (0, 50 and 100 kg N ha(-1)). Data were analyzed with linear mixed-effects models and results showed that the biomass of all A. fatua populations decreased with increasing T. aestivum competition at all N rates. Similarly, A. fatua relative growth rate (RGR) decreased with increasing T. aestivum competition at the medium and high N rates but there was no response with 0 N. There were no differences between the levels of biomass or RGR of HS and MHR populations in response to T. aestivum competition. Overall, the results indicate that MHR does not confer growth-related fitness costs in these A. fatua populations, and that their relative abundance will not be diminished with respect to HS populations in the absence of herbicide treatment.

  3. [A sudden rise in INR due to combination of Tribulus terrestris, Avena sativa, and Panax ginseng (Clavis Panax)].

    PubMed

    Turfan, Murat; Tasal, Abdurrahman; Ergun, Fatih; Ergelen, Mehmet

    2012-04-01

    Warfarin sodium is an antithrombin agent used in patients with prosthetic valve and atrial fibrillation. However, there are many factors that can change the effectiveness of the drug. Today, herbal mixtures promoted through targeted print and visual media can lead to sudden activity changes in patients using warfarin. In this case report we will present two cases with a sudden rise in INR due to using combination of Tribulus terrestris, Avena sativa and Panax ginseng (Panax Clavis). Two patients who used warfarin due to a history of aortic valve replacement (case 1) and atrial fibrillation (case 2) were admitted to the hospital due very high levels of INR detected during routine follow-up. Both patients had used an herbal medicine called ''Panax'' during the last month. The patients gave no indication regarding a change in diet or the use of another agent that might interact with warfarin. In cases where active bleeding could not be determinated, we terminated the use of the drug and re-evaluated dosage of warfarin before finally discharging the patient.

  4. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.).

    PubMed

    Foresman, Bradley J; Oliver, Rebekah E; Jackson, Eric W; Chao, Shiaoman; Arruda, Marcio P; Kolb, Frederic L

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  5. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat.

    PubMed

    Liu, Xingang; Tian, Fajun; Tian, Yingying; Wu, Yanbing; Dong, Fengshou; Xu, Jun; Zheng, Yongquan

    2016-05-11

    Five compounds (syringic acid, tricin, acacetin, syringoside, and diosmetin) were isolated from the aerial parts of wild oats (Avena fatua L.) using chromatography columns of silica gel and Sephadex LH-20. Their chemical structures were identified by means of electrospray ionization and high-resolution mass spectrometry as well as (1)H and (13)C nuclear magnetic resonance spectroscopic analyses. Bioassays showed that the five compounds had significant allelopathic effects on the germination and seedling growth of wheat (Triticum aestivum L.). The five compounds inhibited fresh wheat as well as the shoot and root growth of wheat by approximately 50% at a concentration of 100 mg/kg, except for tricin and syringoside for shoot growth. The results of activity testing indicated that the aerial parts of wild oats had strong allelopathic potential and could cause different degrees of influence on surrounding plants. Moreover, these compounds could be key allelochemicals in wild-oat-infested wheat fields and interfere with wheat growth via allelopathy. PMID:27079356

  6. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication

    PubMed Central

    2013-01-01

    Background Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. Results We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Conclusions Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication PMID:24165037

  7. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review.

    PubMed

    Bruinsma, J; Hasegawa, K

    1989-01-01

    During phototropic curvature, indolyl-3-acetic acid (IAA) remains evenly distributed in the hypocotyl of sunflower (Helianthus annuus L.) and in the oat (Avena sativa L.) coleoptile. At the irradiated side, growth inhibiting substances accumulate. In sunflower, basipetal movement of a growth factor is not involved, since the top of the seedling can be covered or removed without affecting the photo-tropic response; this response, moreover, is independent of the rate of elongation growth. The chemical nature of the growth-inhibiting substances is only partly known. In the hypocotyl they occur in the neutral fraction: in sunflower cis-xanthoxin is one of them, in radish (Raphanus sativus L.) cis- and trans-raphanusanins, and possibly raphanusamide, are involved. The inhibitor(s) in the oat coleoptile are acidic. During curvature, their amount remains rather constant but the distribution changes with an accumulation at the irradiated side. It is concluded that phototropic curvature is brought about by an accumulation, at the irradiated side, of growth-inhibiting substances that unilaterally reduce cell elongation even though the IAA distribution is uniform.

  8. Anisotropic Resist Reflow Process Simulation for 22 nm Elongated Contact Holes

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; Kim, Dai-Gyoung; Hong, Joo-Yoo; An, Ilsin; Oh, Hye-Keun

    2008-06-01

    Pattern size decreases as circuit integration increases. Resistance increases as the cross section of a contact hole (CH) decreases. Thus, the use of an elongated CH is suggested as a method of solving this problem. It is too difficult to obtain a small CH and an elongated CH by optical proximity correction only. Even if double patterning can be used to improve the integration of line and space, it is not easy to apply it to form an elongated CH. We suggest the use of a resist reflow process method to form 22 nm elongated CHs from a large developed size pattern. We observed RRP behavior in elongated CHs by experiment and simulation, and applied optical proximity correction to compensate the bulk effect after the resist reflow process. As a result, we made uniform 22 nm elongated CHs.

  9. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    SciTech Connect

    Liscum, E.; Young, J.C.; Hangarter, R.P. ); Poff, K.L. )

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2 generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.

  10. Elongation Kinetics of Polyglutamine Peptide Fibrils: A Quartz Crystal Microbalance with Dissipation Study

    PubMed Central

    Walters, Robert H.; Jacobson, Kurt H.; Pedersen, Joel A.; Murphy, Regina M.

    2012-01-01

    Abnormally expanded polyglutamine domains in proteins are associated with several neurodegenerative diseases, including Huntington's disease. Expansion of the polyglutamine (polyQ) domain facilitates aggregation of the affected protein, and several studies directly link aggregation to neurotoxicity. Studies of synthetic polyQ peptides have contributed substantially to our understanding of the mechanism of aggregation. In this report, polyQ fibrils were immobilized onto a sensor, and their elongation by polyQ peptides of various length and conformation was examined using quartz crystal microbalance with dissipation monitoring (QCM-D). The rate of elongation increased as the peptide length increased from 8 to 24 glutamines (Q8, Q20, and Q24). Monomer conformation affected elongation rates: insertion of a β-turn template d-Pro-Gly in the center of the peptide increased elongation rates several-fold, while insertion of Pro-Pro dramatically slowed elongation. Dissipation measurements of the QCM-D provided qualitative information about mechanical properties of the elongating fibrils. These data showed clear differences in the characteristics of the elongating aggregates, depending on the specific identity of the associating polyQ peptide. Elongation rates were sensitive to the pH and ionic strength of the buffer. Comparison of QCM-D data with those obtained by optical waveguide lightmode spectroscopy revealed that very little water was associated with the elongation of fibrils by the peptide containing d-Pro-Gly, but a significant amount of water was associated when the fibrils were elongated by Q20. Together, the data indicate that elongation of polyQ fibrils can occur without full consolidation to the fibril structure, resulting in variations to the aggregate structure during elongation. PMID:22459263

  11. Elongated styloid process in a temporomandibular disorder sample: prevalence and treatment outcome.

    PubMed

    Zaki, H S; Greco, C M; Rudy, T E; Kubinski, J A

    1996-04-01

    An elongated styloid process is an anatomic anomaly present in 2% to 30% of adults; it is occasionally associated with pain. Its prevalence among patients with classic temporomandibular disorder pain symptoms is unknown. The effect of conservative treatment on patients who have symptoms of temporomandibular disorders and an elongated styloid process is also unknown. The objectives of this study were to determine the prevalence of the elongated styloid process in a sample of patients with temporomandibular disorders and to compare patients with and without the elongated styloid process on initial presenting signs and symptoms and treatment outcome. A total of 100 panoramic radiographs of patients with symptomatic temporomandibular disorders were examined to ascertain the presence or absence of an elongated styloid process. All patients participated in a conservative treatment program of biofeedback and stress management and a flat-plane intraoral appliance. Initial symptoms and treatment outcome of patients with and without an elongated styloid process were compared by use of multivariate analysis of variance on several oral-paraoral and psychosocial-behavioral methods. The prevalence of an elongated styloid process in this clinic sample of temporomandibular disorders was 27%. The patients with or without an elongated styloid process were not significantly different in pretreatment symptoms, and both groups exhibited substantial treatment gains. However, patients with an elongated styloid process showed significantly less improvement on unassisted mandibular opening without pain than did patients who did not have an elongated styloid process. This suggests that an elongated styloid process may place structural limitations on pain-free maximum mandibular opening. The results support conservative management of patients with symptoms of temporomandibular disorders when an elongated styloid process is present.

  12. Shear banding in titanium with controlled elongations at 10/sup 6//sec

    SciTech Connect

    Staudhammer, K.P.; Gray, A.J.

    1989-01-01

    Adiabatic shear bands were obtained in titanium with controlled strains to 10.8%. Two types of shear bands were observed and characterized. In general the quantity and shear band width increased with increasing elongation. At elongations below /approximately/5% the shear bands were typically characteristic of shear bands observed at lower strain rates. Above 5% elongations many of the shear bands contained a boundary regime adjacent to the shear band and increased in width with increasing total elongation. This effect was attributed to the strain heat. 14 refs., 9 figs.

  13. Actin filaments and microtubules play different roles during bristle elongation in Drosophila.

    PubMed

    Tilney, L G; Connelly, P S; Vranich, K A; Shaw, M K; Guild, G M

    2000-04-01

    Developing bristles in Drosophila pupae contain 7-11 bundles of crosslinked actin filaments and a large population of microtubules. During bristle growth the rate of cell elongation increases with bristle length. Thin section EM shows that bundle size is correlated with the amount of cytoplasm at all points along the bristle. Thus, as the bristle elongates and tapers, fewer actin filaments are used. To ensure penetration of inhibitors we isolated thoraces and cultured them in vitro; bristles elongate at rates identical to bristles growing in situ. Interestingly, inhibitors of actin filament assembly (cytochalasin D and latrunculin A) dramatically curtailed bristle elongation while a filament stabilizer (jasplakinolide) accelerated elongation. In contrast, inhibitors of microtubule dynamics (nocodazole, vinblastine, colchicine and taxol) did not affect bristle elongation. Surprisingly, the bristle microtubules are stable and do not turn over. Furthermore, the density of microtubules decreases as the bristle elongates. These two facts coupled with calculations and kinetics of elongation and the fact that the microtubules are short indicate that the microtubules are assembled early in development and then transported distally as the bristle grows. We conclude that actin assembly is crucial for bristle cell elongation and that microtubules must furnish other functions such as to provide bulk to the bristle cytoplasm as well as playing a role in vesicle transport.

  14. Fitness consequences of natural variation in flooding-induced shoot elongation in Rumex palustris.

    PubMed

    Chen, Xin; Visser, Eric J W; de Kroon, Hans; Pierik, Ronald; Voesenek, Laurentius A C J; Huber, Heidrun

    2011-04-01

    • Plants can respond to their environment by morphological plasticity. Generally, the potential benefits of adaptive plastic responses are beyond doubt under predictable environmental changes. However, the net benefits may be less straightforward when plants encounter temporal stresses, such as flooding in river flood plains. • Here, we tested whether the balance of costs and benefits associated with flooding-induced shoot elongation depends on the flooding regime, by subjecting Rumex palustris plants with different elongation capacity to submergence of different frequency and duration. • Our results showed that reaching the surface by shoot elongation is associated with fitness benefits, as under less frequent, but longer, flooding episodes plants emerging above the floodwater had greater biomass production than plants that were kept below the surface. As we predicted, slow-elongating plants had clear advantages over fast-elongating ones if submergence was frequent but of short duration, indicating that elongation also incurs costs. • Our data suggest that high costs select for weak plasticity under frequent environmental change. In contrast to our predictions, however, fast-elongating plants did not have an overall advantage over slow-elongating plants when floods lasted longer. This indicates that the delicate balance between benefits and costs of flooding-induced elongation depends on the specific characteristics of the flooding regime.

  15. Micro- and Nanoscale Capacitors that Incorporate an Array of Conductive Elements Having Elongated Bodies

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement micro- and nanoscale capacitors that incorporate a conductive element that conforms to the shape of an array elongated bodies. In one embodiment, a capacitor that incorporates a conductive element that conforms to the shape of an array of elongated bodies includes: a first conductive element that conforms to the shape of an array of elongated bodies; a second conductive element that conforms to the shape of an array of elongated bodies; and a dielectric material disposed in between the first conductive element and the second conductive element, and thereby physically separates them.

  16. Pleiohomeotic Interacts with the Core Transcription Elongation Factor Spt5 to Regulate Gene Expression in Drosophila

    PubMed Central

    Jennings, Barbara H.

    2013-01-01

    The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner. PMID:23894613

  17. Application of an Elongated Kelvin Model to Space Shuttle Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2008-01-01

    Spray-on foam insulation is applied to the exterior of the Space Shuttle s External Tank to limit propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are BX-265 and NCFI24-124. Since the catastrophic loss of the Space Shuttle Columbia, numerous studies have been conducted to mitigate the likelihood and the severity of foam shedding during the Shuttle s ascent to space. Due to the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a non-isotropic mechanical behavior. In this paper, a detailed microstructural characterization of the two foams is presented. The key features of the foam cells are summarized and the average cell dimensions in the two foams are compared. Experimental studies to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise) are also reported. The measured elastic modulus, proportional limit stress, ultimate tensile stress and the Poisson s ratios for the two foams are compared. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are presented. The resulting equations show that the ratio of the elastic modulus in the rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the two material directions is only a function of the microstructural dimensions. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson s ratios are predicted for both foams. The predicted tensile strength ratio is in close agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison between the predicted Poisson s ratios and the measured

  18. The Molecular Mechanism of Eukaryotic Elongation Factor 2 Kinase Activation*

    PubMed Central

    Tavares, Clint D. J.; Ferguson, Scarlett B.; Giles, David H.; Wang, Qiantao; Wellmann, Rebecca M.; O'Brien, John P.; Warthaka, Mangalika; Brodbelt, Jennifer S.; Ren, Pengyu; Dalby, Kevin N.

    2014-01-01

    Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca2+/CaM binds eEF-2K with high affinity (Kd(CaM)app = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 104-fold (kauto = 2.6 ± 0.3 s−1). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca2+/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing kcatapp for peptide substrate phosphorylation by 103-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (kcatapp/Km(Pep-S)app), with equal contributions from kcatapp and Km(Pep-S)app, suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output. PMID:25012662

  19. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.

    PubMed

    Friebe; Vilich; Hennig; Kluge; Sicker

    1998-07-01

    The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.

  20. Combining orthogonal polarization for elongated target detection with GPR

    NASA Astrophysics Data System (ADS)

    Lualdi, Maurizio; Lombardi, Federico

    2014-10-01

    For an accurate imaging of ground penetrating radar data the polarization characteristics of the propagating electromagnetic (EM) wavefield and wave amplitude variations with antenna pattern orientation must be taken into account. For objects that show some directionality feature and cylindrical shape any misalignment between transmitter and target can strongly modify the polarization state of the backscattered wavefield, thus conditioning the detection capability of the system. Hints on the depolarization can be used to design the optimal GPR antenna survey to avoid omissions and pitfalls during data processing. This research addresses the issue of elongated target detection through a multi azimuth (or multi polarization) approach based on the combination of mutually orthogonal GPR data. Results from the analysis of the formal scattering problem demonstrate how this strategy can reach a scalar formulation of the scattering matrix and achieve a rotational invariant quantity. The effectiveness of the algorithm is then evaluated with a detailed field example showing results closely proximal to those obtained under the optimal alignment condition: detection is significantly improved and the risk of target missing is reduced.

  1. Chain elongation analog of resveratrol as potent cancer chemoprevention agent.

    PubMed

    Kang, Yan-Fei; Qiao, Hai-Xia; Xin, Long-Zuo; Ge, Li-Ping

    2016-09-01

    Resveratrol is identified as a natural cancer chemoprevention agent. There has been a lot of interest in designing and developing resveratrol analogs with cancer chemoprevention activity superior to that of parent molecule and exploring their action mechanism in the past several decades. In this study, we have synthesized resveratrol analogs of compounds A-C via conjugated chain elongation based on isoprene unit retention strategy. Remarkably, cytotoxic activity analysis results indicated that compound B possesses the best proliferation inhibition activity for NCI-H460 cells in all the test compounds. Intriguingly, compound B displayed a higher cytotoxicity against human non-small cell lung cancer cells (NCI-H460) compared to normal human embryonic lung fibroblasts (MRC-5). Afterward, flow cytometry analysis showed that compound B would induce cell apoptosis. We further researched the action mechanism. When NCI-H460 cells were incubated by compound B for 6 or 9 h, respectively, the intracellular reactive oxygen species (ROS) level was enhanced obviously. With elevation of intracellular ROS level, flow cytometry measurement verified mitochondrial transmembrane potential collapse, which was accompanied by the up-regulation of Bax and down-regulation of Bcl-2. More interestingly, compound B increased the expression of caspase-9 and caspase-3, which induced cell apoptosis. Moreover, compound B arrested cell cycle in G0/G1 phase. These are all to provide useful information for designing resveratrol-based chemoprevention agent and understanding the action mechanism. PMID:27160168

  2. Negative elongation factor controls energy homeostasis in cardiomyocytes.

    PubMed

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong

    2014-04-10

    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes. PMID:24656816

  3. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    PubMed Central

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  4. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis.

    PubMed

    Gao, Yanyan; Bai, Xiufeng; Zhang, Dejiu; Han, Chunsheng; Yuan, Jing; Liu, Wenbin; Cao, Xintao; Chen, Zilei; Shangguan, Fugen; Zhu, Zhenyuan; Gao, Fei; Qin, Yan

    2016-05-01

    Elongation factor 4 (EF4) is a key quality-control factor in translation. Despite its high conservation throughout evolution, EF4 deletion in various organisms has not yielded a distinct phenotype. Here we report that genetic ablation of mitochondrial EF4 (mtEF4) in mice causes testis-specific dysfunction in oxidative phosphorylation, leading to male infertility. Deletion of mtEF4 accelerated mitochondrial translation at the cost of producing unstable proteins. Somatic tissues overcame this defect by activating mechanistic (mammalian) target of rapamycin (mTOR), thereby increasing rates of cytoplasmic translation to match rates of mitochondrial translation. However, in spermatogenic cells, the mTOR pathway was downregulated as part of the developmental program, and the resulting inability to compensate for accelerated mitochondrial translation caused cell-cycle arrest and apoptosis. We detected the same phenotype and molecular defects in germline-specific mtEF4-knockout mice. Thus, our study demonstrates cross-talk between mtEF4-dependent quality control in mitochondria and cytoplasmic mTOR signaling.

  5. Delineating the glycoproteome of elongating cotton fiber cells

    PubMed Central

    Kumar, Saravanan; Pandey, Pankaj; Kumar, Krishan; Rajamani, Vijayalakshmi; Padmalatha, Kethireddy Venkata; Dhandapani, Gurusamy; Kanakachari, Mogilicherla; Leelavathi, Sadhu; Kumar, Polumetla Ananda; Reddy, Vanga Siva

    2015-01-01

    The data presented here delineates the glycoproteome component in the elongating cotton fiber cells attained using complementary proteomic approaches followed by protein and N-linked glycosylation site identification (Kumar et al., 2013) [1]. Utilizing species specific protein sequence databases in proteomic approaches often leads to additional information that may not be obtained using cross-species databases. In this context we have reanalyzed our glycoproteome dataset with the Gossypium arboreum, Gossypium raimondii (version 2.0) and Gossypium hirsutum protein databases that has led to the identification of 21 N-linked glycosylation sites and 18 unique glycoproteins that were not reported in our previous study. The 1D PAGE and solution based glycoprotein identification data is publicly available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD000178 and the 2D PAGE based protein identification and glycopeptide approach based N-linked glycosylation site identification data is available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD002849. PMID:26693171

  6. Movement of elongation factor G between compact and extended conformations.

    PubMed

    Salsi, Enea; Farah, Elie; Netter, Zoe; Dann, Jillian; Ermolenko, Dmitri N

    2015-01-30

    Previous structural studies suggested that ribosomal translocation is accompanied by large interdomain rearrangements of elongation factor G (EF-G). Here, we follow the movement of domain IV of EF-G relative to domain II of EF-G using ensemble and single-molecule Förster resonance energy transfer. Our results indicate that ribosome-free EF-G predominantly adopts a compact conformation that can also, albeit infrequently, transition into a more extended conformation in which domain IV moves away from domain II. By contrast, ribosome-bound EF-G predominantly adopts an extended conformation regardless of whether it is interacting with pretranslocation ribosomes or with posttranslocation ribosomes. Our data suggest that ribosome-bound EF-G may also occasionally sample at least one more compact conformation. GTP hydrolysis catalyzed by EF-G does not affect the relative stability of the observed conformations in ribosome-free and ribosome-bound EF-G. Our data support a model suggesting that, upon binding to a pretranslocation ribosome, EF-G moves from a compact to a more extended conformation. This transition is not coupled to but likely precedes both GTP hydrolysis and mRNA/tRNA translocation.

  7. Movement of Elongation Factor G between Compact and Extended Conformations

    PubMed Central

    Salsi, Enea; Farah, Elie; Netter, Zoe; Dann, Jillian; Ermolenko, Dmitri N.

    2014-01-01

    Previous structural studies suggested that ribosomal translocation is accompanied by large interdomain rearrangements of elongation factor G (EF-G). Here, we follow the movement of domain IV of EF-G relative to domain II of EF-G using ensemble and single-molecule Förster resonance energy transfer (smFRET). Our results indicate that ribosome-free EF-G predominantly adopts a compact conformation that can also, albeit infrequently, transition into a more extended conformation in which domain IV moves away from domain II. By contrast, ribosome-bound EF-G predominantly adopts an extended conformation regardless of whether it is interacting with pre- or posttranslocation ribosomes. Our data suggest that ribosome-bound EF-G may also occasionally sample at least one more compact conformation. GTP hydrolysis catalyzed by EF-G does not affect the relative stability of the observed conformations in ribosome-free and ribosome-bound EF-G. Our data support a model suggesting that, upon binding to a pretranslocation ribosome, EF-G moves from a compact to a more extended conformation. This transition is not coupled to, but likely precedes both GTP hydrolysis and mRNA/tRNA translocation. PMID:25463439

  8. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    NASA Astrophysics Data System (ADS)

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-09-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows.

  9. Wind-wave transformations in an elongated bay

    NASA Astrophysics Data System (ADS)

    Caliskan, Hande; Valle-Levinson, Arnoldo

    2008-08-01

    In order to determine wave transformations in an elongated bay, a numerical solution was used to interpret yearlong records of bottom pressure and wind velocity obtained at the mouth and head of Concepción Bay, on the Gulf of California side of the Baja California peninsula. Observed wind waves were predominantly produced by southeastward winds in the winter and north-northwestward winds in the summer. Typical mean wave periods at the bay entrance were between 3 and 5 s. In contrast, the waves at the head of the bay had predominant periods <3 s. The energetic long-period swell waves were dissipated somewhere in the bay as they were not observed at the head of the bay. This study centered in identifying the effects that caused swell waves to attenuate in the bay. The 'Simulating WAves Nearshore (SWAN)' model was used to determine the cause for such wave attenuation. Model results showed that swell waves were attenuated because of the combined effects of bottom friction, wave breaking, whitecapping, refraction and wave blocking by the coastline. Most of the attenuation (close to 90%), however, was caused by wave blocking owing to the change of coastline orientation of the bay. This wave blocking mechanism should therefore be explored further in embayments of complex coastline morphology.

  10. Architecture and RNA binding of the human negative elongation factor

    PubMed Central

    Vos, Seychelle M; Pöllmann, David; Caizzi, Livia; Hofmann, Katharina B; Rombaut, Pascaline; Zimniak, Tomasz; Herzog, Franz; Cramer, Patrick

    2016-01-01

    Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI: http://dx.doi.org/10.7554/eLife.14981.001 PMID:27282391

  11. Loss of Elongation Factor P Disrupts Bacterial Outer Membrane Integrity

    PubMed Central

    Hersch, Steven J.; Roy, Hervé; Wiggers, J. Brad; Leung, Andrea S.; Buranyi, Stephen; Xie, Jinglin Lucy; Dare, Kiley; Ibba, Michael; Navarre, William Wiley

    2012-01-01

    Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin. PMID:22081389

  12. Role of Tet proteins in enhancer activity and telomere elongation

    PubMed Central

    Lu, Falong; Liu, Yuting; Jiang, Lan; Yamaguchi, Shinpei

    2014-01-01

    DNA methylation at the C-5 position of cytosine (5mC) is one of the best-studied epigenetic modifications and plays important roles in diverse biological processes. Iterative oxidation of 5mC by the ten-eleven translocation (Tet) family of proteins generates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are selectively recognized and excised by thymine DNA glycosylase (TDG), leading to DNA demethylation. Functional characterization of Tet proteins has been complicated by the redundancy between the three family members. Using CRISPR/Cas9 technology, we generated mouse embryonic stem cells (ESCs) deficient for all three Tet proteins (Tet triple knockout [TKO]). Whole-genome bisulfite sequencing (WGBS) analysis revealed that Tet-mediated DNA demethylation mainly occurs at distally located enhancers and fine-tunes the transcription of genes associated with these regions. Functional characterization of Tet TKO ESCs revealed a role for Tet proteins in regulating the two-cell embryo (2C)-like state under ESC culture conditions. In addition, Tet TKO ESCs exhibited increased telomere–sister chromatid exchange and elongated telomeres. Collectively, our study reveals a role for Tet proteins in not only DNA demethylation at enhancers but also regulating the 2C-like state and telomere homeostasis. PMID:25223896

  13. Shear-induced alignment and dynamics of elongated granular particles.

    PubMed

    Börzsönyi, Tamás; Szabó, Balázs; Wegner, Sandra; Harth, Kirsten; Török, János; Somfai, Ellák; Bien, Tomasz; Stannarius, Ralf

    2012-11-01

    The alignment, ordering, and rotation of elongated granular particles was studied in shear flow. The time evolution of the orientation of a large number of particles was monitored in laboratory experiments by particle tracking using optical imaging and x-ray computed tomography. The experiments were complemented by discrete element simulations. The particles develop an orientational order. In the steady state the time- and ensemble-averaged direction of the main axis of the particles encloses a small angle with the streamlines. This shear alignment angle is independent of the applied shear rate, and it decreases with increasing grain aspect ratio. At the grain level the steady state is characterized by a net rotation of the particles, as dictated by the shear flow. The distribution of particle rotational velocities was measured both in the steady state and also during the initial transients. The average rotation speed of particles with their long axis perpendicular to the shear alignment angle is larger, while shear aligned particles rotate slower. The ratio of this fast/slow rotation increases with particle aspect ratio. During the initial transient starting from an unaligned initial condition, particles having an orientation just beyond the shear alignment angle rotate opposite to the direction dictated by the shear flow.

  14. Elastic instabilities in planar elongational flow of monodisperse polymer solutions.

    PubMed

    Haward, Simon J; McKinley, Gareth H; Shen, Amy Q

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  15. Elongated Silicon-Carbon Bonds at Graphene Edges.

    PubMed

    Chen, Qu; Robertson, Alex W; He, Kuang; Gong, Chuncheng; Yoon, Euijoon; Kirkland, Angus I; Lee, Gun-Do; Warner, Jamie H

    2016-01-26

    We study the bond lengths of silicon (Si) atoms attached to both armchair and zigzag edges using aberration corrected transmission electron microscopy with monochromation of the electron beam. An in situ heating holder is used to perform imaging of samples at 800 °C in order to reduce chemical etching effects that cause rapid structure changes of graphene edges at room temperature under the electron beam. We provide detailed bond length measurements for Si atoms both attached to edges and also as near edge substitutional dopants. Edge reconstruction is also involved with the addition of Si dopants. Si atoms bonded to the edge of graphene are compared to substitutional dopants in the bulk lattice and reveal reduced out-of-plane distortion and bond elongation. An extended linear array of Si atoms at the edge is found to be energy-favorable due to inter-Si interactions. These results provide detailed structural information about the Si-C bonds in graphene, which may have importance in future catalytic and electronic applications.

  16. NF-κB-repressing factor phosphorylation regulates transcription elongation via its interactions with 5'→3' exoribonuclease 2 and negative elongation factor.

    PubMed

    Rother, Sascha; Bartels, Myriam; Schweda, Aike Torben; Resch, Klaus; Pallua, Norbert; Nourbakhsh, Mahtab

    2016-01-01

    NF-κB-repressing factor (NKRF) inhibits transcription elongation by binding to specific sequences in target promoters. Stimuli such as IL-1 have been shown to overcome this inhibitory action and enable the resumption of transcription elongation machinery by an unknown mechanism. Using mass spectrometry and in vitro phosphorylation analyses, we demonstrate that NKRF is phosphorylated within 3 different domains in unstimulated HeLa cells. Phosphoamino acid mapping and mutation analysis of NKRF further suggest that only Ser phosphorylation within aa 421-429 is regulated by IL-1 stimulation. In copurification studies, aa 421-429 is required for interactions between NKRF, 5'→3' exoribonuclease 2 (XRN2) and the negative elongation factor (NELF)-E in HeLa cells. Chromatin immunoprecipitation experiments further show that IL-1 stimulation leads to decrease in NKRF aa 421-429 phosphorylation and dissociation of NELF-E and XRN2 by concomitant resumption of transcription elongation of a synthetic reporter or the endogenous NKRF target gene, IL-8. Together, NKRF phosphorylation modulates promoter-proximal transcription elongation of NF-κB/NKRF-regulated genes via direct interactions with elongation complex in response to specific stimuli.

  17. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    PubMed

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.

  18. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    PubMed

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling. PMID:26839364

  19. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions

    PubMed Central

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  20. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  1. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains.

    PubMed

    Grimberg, Åsa

    2014-10-01

    Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar.

  2. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin.

    PubMed

    Newell, Mark A; Asoro, Franco G; Scott, M Paul; White, Pamela J; Beavis, William D; Jannink, Jean-Luc

    2012-12-01

    Detection of quantitative trait loci (QTL) controlling complex traits followed by selection has become a common approach for selection in crop plants. The QTL are most often identified by linkage mapping using experimental F(2), backcross, advanced inbred, or doubled haploid families. An alternative approach for QTL detection are genome-wide association studies (GWAS) that use pre-existing lines such as those found in breeding programs. We explored the implementation of GWAS in oat (Avena sativa L.) to identify QTL affecting β-glucan concentration, a soluble dietary fiber with several human health benefits when consumed as a whole grain. A total of 431 lines of worldwide origin were tested over 2 years and genotyped using Diversity Array Technology (DArT) markers. A mixed model approach was used where both population structure fixed effects and pair-wise kinship random effects were included. Various mixed models that differed with respect to population structure and kinship were tested for their ability to control for false positives. As expected, given the level of population structure previously described in oat, population structure did not play a large role in controlling for false positives. Three independent markers were significantly associated with β-glucan concentration. Significant marker sequences were compared with rice and one of the three showed sequence homology to genes localized on rice chromosome seven adjacent to the CslF gene family, known to have β-glucan synthase function. Results indicate that GWAS in oat can be a successful option for QTL detection, more so with future development of higher-density markers.

  3. Basis for changes in the auxin-sensitivity of Avena sativa (oat) leaf-sheath pulvini during the gravitropic response

    NASA Technical Reports Server (NTRS)

    Kim, D.; Kaufman, P. B.

    1995-01-01

    During the gravitropic response, auxin-sensitivity of the lower flanks of leaf-sheath pulvini of Avena sativa (oat) is at least 1000-fold higher than those of the upper flanks and non-gravistimulated pulvini. When the pulvini are treated with 1 mM Ca2+, a 10-fold increase in auxin-sensitivity of the pulvini is observed. Related to this difference in auxin-sensitivity, in vitro activation of the vanadate-sensitive H(-)-ATPase by IAA was observed. Results show that the activation of the H(+)-ATPase by IAA is probably mediated by soluble protein factors and that the H(+)-ATPase prepared from the lower flanks is activated by IAA with a 1000-fold higher auxin-sensitivity as compared with that from the upper flanks of the graviresponding pulvini. Ammonium sulfate fractionation experiments show that these soluble protein factors are in the 30 to 60% fraction. Auxin-binding assays reveal that lower flanks contain more high-affinity soluble auxin-binding sites (kD; on the order of 10(-9) M) and less low-affinity soluble auxin-binding sites (kD; on the order of 10(-6) M) than upper flanks. It is concluded that differential auxin-sensitivity of graviresponding oat-shoot pulvini is achieved by the modulation of affinities of auxin-binding sites in upper and lower flanks of the pulvini, that Ca2+ is involved in such modulation, and that one of the probable cellular functions of these auxin binding sites is the activation of the proton pump on the plasma membranes.

  4. Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin 1

    NASA Astrophysics Data System (ADS)

    Gauden, Magdalena; Crosson, Sean; van Stokkum, I. H. M.; van Grondelle, Rienk; Moffat, Keith; Kennis, John T. M.

    2004-09-01

    The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm-1. Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution.

  5. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  6. Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin

    SciTech Connect

    Gauden, Magdalena; Crosson, Sean; van Stokkum, I.H.; Grondelle, Rienkvan; Moffat, Keith; Kennis, John T.

    2004-12-13

    The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm{sup -1}. Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution.

  7. Genetic separation of phototropism and blue light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.

  8. Genetic separation of phototropism and blue light inhibition of stem elongation.

    PubMed Central

    Liscum, E; Young, J C; Poff, K L; Hangarter, R P

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components. Images Figure 1 PMID:11538049

  9. Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea.

    PubMed

    Niu, Xin; Liu, Zhonghua; Zhou, Yajun; Wang, Jun; Zhang, Wenming; Yuan, Sheng

    2015-10-01

    A large amount of granular protrusions overlie the outer cell wall surfaces in both elongating and non-elongating stipe regions but overlie the inner cell wall surfaces only in non-elongating stipe regions. Removal of granular protrusions using alkali, amorphous materials overlying on both the inner and outer cell wall surfaces were explored in the non-elongating stipe regions. β-1,3-Glucanase treatment not only removed above those granular protrusions and underlying amorphous materials on the wall surfaces but also removed wall matrices embedding chitin microfibrils on the cell walls of most stipe regions, except for the outer cell wall surfaces of the non-elongating stipe regions where most of the wall matrices remained. The chitin microfibrils were closely and transversely arranged on both the inner and outer cell wall surfaces in the elongating apical stipe region, whereas they were loosely and transversely arranged on the inner cell wall surfaces and further became sparser and even randomly arranged on the outer cell wall surface in the non-elongating stipe regions. We propose that the surface deposition of granular protrusions and amorphous materials and the change of microfibril architecture and wall matrices may cause loss of wall plasticity and cessation of stipe elongation.

  10. SHORT HYPOCOTYL 1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the mechanisms and control of hypocotyl elongation is important for greenhouse vegetable crop production. In this study, we identified SHORT HYPOCOTYL1 (SH1) in cucumber which regulates low-dosage ultraviolet B (LDUVB)-dependent hypocotyl elongation by recruiting the cucumber UVR8 sign...

  11. Convergent intron gains in hymenopteran elongation factor-1α.

    PubMed

    Klopfstein, Seraina; Ronquist, Fredrik

    2013-04-01

    The eukaryotic translation elongation factor-1α gene (eEF1A) has been used extensively in higher level phylogenetics of insects and other groups, despite being present in two or more copies in several taxa. Orthology assessment has relied heavily on the position of introns, but the basic assumption of low rates of intron loss and absence of convergent intron gains has not been tested thoroughly. Here, we study the evolution of eEF1A based on a broad sample of taxa in the insect order Hymenoptera. The gene is universally present in two copies - F1 and F2 - both of which apparently originated before the emergence of the order. An elevated ratio of non-synonymous versus synonymous substitutions and differences in rates of amino acid replacements between the copies suggest that they evolve independently, and phylogenetic methods clearly cluster the copies separately. The F2 copy appears to be ancient; it is orthologous with the copy known as F1 in Diptera, and is likely present in most insect orders. The hymenopteran F1 copy, which may or may not be unique to this order, apparently originated through retroposition and was originally intron free. During the evolution of the Hymenoptera, it has successively accumulated introns, at least three of which have appeared at the same position as introns in the F2 copy or in eEF1A copies in other insects. The sites of convergent intron gain are characterized by highly conserved nucleotides that strongly resemble specific intron-associated sequence motifs, so-called proto-splice sites. The significant rate of convergent intron gain renders intron-exon structure unreliable as an indicator of orthology in eEF1A, and probably also in other protein-coding genes.

  12. Microgravity experiments on a granular gas of elongated grains

    NASA Astrophysics Data System (ADS)

    Harth, K.; Trittel, T.; Kornek, U.; Höme, S.; Will, K.; Strachauer, U.; Stannarius, R.

    2013-06-01

    Granular gases represent well-suited systems to investigate statistical granular dynamics. The literature comprises numerous investigations of ensembles of spherical or irregularly shaped grains. Mainly computer models, analytical theories and experiments restricted to two dimensions were reported. In three-dimensions, the gaseous state can only be maintained by strong external excitation, e. g. vibrations or electro-magnetic fields, or in microgravity. A steady state, where the dynamics of a weakly disturbed granular gas are governed by particle-particle collisions, is hard to realize with spherical grains due to clustering. We present the first study of a granular gas of elongated cylinders in three dimensions. The mean free path is considerably reduced with respect to spheres at comparable filling fractions. The particles can be tracked in 3D over a sequence of frames. In a homogeneous steady state, we find non-Gaussian velocity distributions and a lack of equipartition of kinetic energy. We discuss the relations between energy input and vibrating plate accelerations. At the request of the authors and the Proceedings Editors, the PDF file of this article has been updated to amend some references present in the PDF file submitted to AIP Publishing. The references affected are listed here:[1] (c) K. Nichol and K. E. Daniels, Phys. Rev. Lett. 108, 018001 (2012); [11] (e) P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford (1993); [17] (b) K. Harth, et al., Phys. Rev. Lett. 110, 144102 (2013).A LaTeX processing error resulted in changes to the authors reference formatting, which was not detected prior to publication. Due apologies are given to the authors for this oversight. The updated article PDF was published on 12 August 2013.

  13. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  14. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    PubMed

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  15. Actin and myosin inhibitors block elongation of kinetochore fibre stubs in metaphase crane-fly spermatocytes.

    PubMed

    Forer, A; Spurck, T; Pickett-Heaps, J D

    2007-01-01

    We used an ultraviolet microbeam to cut individual kinetochore spindle fibres in metaphase crane-fly spermatocytes. We then followed the growth of the "kinetochore stubs", the remnants of kinetochore fibres that remain attached to kinetochores. Kinetochore stubs elongate with constant velocity by adding tubulin subunits at the kinetochore, and thus elongation is related to tubulin flux in the kinetochore microtubules. Stub elongation was blocked by cytochalasin D and latrunculin A, actin inhibitors, and by butanedione monoxime, a myosin inhibitor. We conclude that actin and myosin are involved in generating elongation and thus in producing tubulin flux in kinetochore microtubules. We suggest that actin and myosin act in concert with a spindle matrix to propel kinetochore fibres poleward, thereby causing stub elongation and generating anaphase chromosome movement in nonirradiated cells. PMID:18094930

  16. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Gardi, Ciro; Menta, Cristina

    2014-04-01

    In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni. PMID:24288040

  17. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    PubMed Central

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth. PMID:17572910

  18. Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms

    PubMed Central

    Economou, Andrew D.; Brock, Lara J.; Cobourne, Martyn T.; Green, Jeremy B. A.

    2013-01-01

    Tissue elongation is a fundamental component of developing and regenerating systems. Although localised proliferation is an important mechanism for tissue elongation, potentially important contributions of other elongation mechanisms, specifically cell shape change, orientated cell division and cell rearrangement, are rarely considered or quantified, particularly in mammalian systems. Their quantification, together with proliferation, provides a rigorous framework for the analysis of elongation. The mammalian palatal epithelium is a landmark-rich tissue, marked by regularly spaced ridges (rugae), making it an excellent model in which to analyse the contributions of cellular processes to directional tissue growth. We captured confocal stacks of entire fixed mouse palate epithelia throughout the mid-gestation growth period, labelled with membrane, nuclear and cell proliferation markers and segmented all cells (up to ∼20,000 per palate), allowing the quantification of cell shape and proliferation. Using the rugae as landmarks, these measures revealed that the so-called growth zone is a region of proliferation that is intermittently elevated at ruga initiation. The distribution of oriented cell division suggests that it is not a driver of tissue elongation, whereas cell shape analysis revealed that both elongation of cells leaving the growth zone and apico-basal cell rearrangements do contribute significantly to directional growth. Quantitative comparison of elongation processes indicated that proliferation contributes most to elongation at the growth zone, but cell shape change and rearrangement contribute as much as 40% of total elongation. We have demonstrated the utility of an approach to analysing the cellular mechanisms underlying tissue elongation in mammalian tissues. It should be broadly applied to higher-resolution analysis of links between genotypes and malformation phenotypes. PMID:24173805

  19. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  20. Characterization of three novel fatty acid- and retinoid-binding protein genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the cereal cyst nematodes Heterodera avenae and H. filipjevi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinoid-binding (FAR) proteins are nematode-spe...

  1. Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq.

    PubMed

    Fuchs, Gilad; Voichek, Yoav; Rabani, Michal; Benjamin, Sima; Gilad, Shlomit; Amit, Ido; Oren, Moshe

    2015-04-01

    4sUDRB-seq separately measures, on a genomic scale, the distinct contributions of transcription elongation speed and rate of RNA polymerase II (Pol II) transition into active elongation (TAE) to the overall mRNA production rate. It uses reversible inhibition of transcription elongation with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB), combined with a pulse of 4-thiouridine (4sU), to tag newly transcribed RNA. After DRB removal, cells are collected at several time points, and tagged RNA is biotinylated, captured on streptavidin beads and sequenced. 4sUDRB-seq enables the comparison of elongation speeds between different developmental stages or different cell types, and it allows the impact of specific transcription factors on transcription elongation speed versus TAE to be studied. RNA preparation takes ∼4 d to complete, with deep sequencing requiring an additional ∼4-11 d plus 1-3 d for bioinformatics analysis. The experimental protocol requires basic molecular biology skills, whereas data analysis requires knowledge in bioinformatics, particularly MATLAB and the Linux environment.

  2. 5 prime -Azido-(3,6- sup 3 H sub 2 )-1-naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes

    SciTech Connect

    Zettl, R.; Feldwisch, J.; Schell, J.; Palme, K. ); Boland, W. )

    1992-01-15

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, the authors have synthesized a tritiated, photolabile NPA analogue, 5{prime}-azido-(3,6-{sup 3}H{sub 2})NPA (({sup 3}H{sub 2})N{sub 3}NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of ({sup 3}H{sub 2})N{sub 3}NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with ({sup 3}H{sub 2})N{sub 3}NPA and exposure to UV light, they observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-(7-{sup 3}H)indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed.

  3. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    PubMed Central

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  4. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium.

    PubMed

    Pacheco-Villalobos, David; Díaz-Moreno, Sara M; van der Schuren, Alja; Tamaki, Takayuki; Kang, Yeon Hee; Gujas, Bojan; Novak, Ondrej; Jaspert, Nina; Li, Zhenni; Wolf, Sebastian; Oecking, Claudia; Ljung, Karin; Bulone, Vincent; Hardtke, Christian S

    2016-05-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  5. Abscisic Acid Regulates Root Elongation Through the Activities of Auxin and Ethylene in Arabidopsis thaliana

    PubMed Central

    Thole, Julie M.; Beisner, Erin R.; Liu, James; Venkova, Savina V.; Strader, Lucia C.

    2014-01-01

    Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination. PMID:24836325

  6. Molecular mechanism of Ena/VASP-mediated actin-filament elongation.

    PubMed

    Breitsprecher, Dennis; Kiesewetter, Antje K; Linkner, Joern; Vinzenz, Marlene; Stradal, Theresia E B; Small, John Victor; Curth, Ute; Dickinson, Richard B; Faix, Jan

    2011-02-01

    Ena/VASP proteins are implicated in a variety of fundamental cellular processes including axon guidance and cell migration. In vitro, they enhance elongation of actin filaments, but at rates differing in nearly an order of magnitude according to species, raising questions about the molecular determinants of rate control. Chimeras from fast and slow elongating VASP proteins were generated and their ability to promote actin polymerization and to bind G-actin was assessed. By in vitro TIRF microscopy as well as thermodynamic and kinetic analyses, we show that the velocity of VASP-mediated filament elongation depends on G-actin recruitment by the WASP homology 2 motif. Comparison of the experimentally observed elongation rates with a quantitative mathematical model moreover revealed that Ena/VASP-mediated filament elongation displays a saturation dependence on the actin monomer concentration, implying that Ena/VASP proteins, independent of species, are fully saturated with actin in vivo and generally act as potent filament elongators. Moreover, our data showed that spontaneous addition of monomers does not occur during processive VASP-mediated filament elongation on surfaces, suggesting that most filament formation in cells is actively controlled.

  7. Gibberellin Substitution for the Requirement of the Cotyledons in Stem Elongation in Pisum sativum Seedlings.

    PubMed

    Shininger, T L

    1972-03-01

    The removal of the cotyledons from 8-day-old light-grown Pisum sativum cv. Alaska seedlings caused a reduction in the rate of stem elongation to 50% of the intact control value. Gibberellic acid restored the stem elongation rate of decotylized plants to the level of the intact controls. The effect of decotylization was to lower both the rate of node formation and the rate of internode elongation. The steady state rate of internode elongation was reduced to 50% of the control rate by decotylization. Applied gibberellic acid did not restore the normal rate of node formation nor the lag in internode elongation caused by decotylization, but gibberellic acid did restore the normal steady state rate of internode elongation. Analysis of variance demonstrated an interaction between the cotyledons and applied gibberellic acid. 2-Isopropyl-4-dimethylamino-5-methyl phenyl-1-piperidine carboxylate methyl chloride inhibited internode elongation to the same extent in both intact and decotylized plants. The results indicate that the cotyledons are an effective source of gibberellin for the young pea seedling. PMID:16657957

  8. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  9. Product Diversity Linked to Substrate Usage in Chain Elongation by Mixed-Culture Fermentation.

    PubMed

    Coma, Marta; Vilchez-Vargas, Ramiro; Roume, Hugo; Jauregui, Ruy; Pieper, Dietmar H; Rabaey, Korneel

    2016-06-21

    Acetate and ethanol can be converted to caproic acid by microorganisms through reverse β-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate. PMID:27162101

  10. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana.

    PubMed

    Thole, Julie M; Beisner, Erin R; Liu, James; Venkova, Savina V; Strader, Lucia C

    2014-05-15

    Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination.

  11. Model of elongation of short DNA sequence by thermophilic DNA polymerase under isothermal conditions.

    PubMed

    Kato, Tomohiro; Liang, Xingguo; Asanuma, Hiroyuki

    2012-10-01

    Short DNA sequences, especially those that are repetitive or palindromic, can be used as the seeds for synthesis of long DNA by some DNA polymerases in an unusual manner. Although several elongation mechanisms have been proposed, there is no well-established model that explains highly efficient elongation under isothermal conditions. In the present study, we analyzed the elongation of nonrepetitive sequences with distinct hairpins at each end. These DNAs were elongated efficiently under isothermal conditions by thermophilic Vent (exo(-)) DNA polymerase, and the products were longer than 10 kb within 10 min of the reaction. A 20-nucleotide DNA with only one hairpin was also elongated. Sequence analysis revealed that the long products are mainly tandem repeats of the short seed sequences. The thermal melting temperatures of the products were much higher than the reaction temperature, indicating that most DNAs form duplexes during the reaction. Accordingly, a terminal hairpin formation and self-priming extension model was proposed in detail, and the efficient elongation was explained. Formation of the hairpin at the 5' end plays an important role during the elongation.

  12. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    PubMed Central

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  13. The role of the distal elongation zone in the response of maize roots to auxin and gravity.

    PubMed

    Ishikawa, H; Evans, M L

    1993-08-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism. PMID:11536543

  14. The role of the distal elongation zone in the response of maize roots to auxin and gravity

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1993-01-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.

  15. Evolution and Allometry of Calcaneal Elongation in Living and Extinct Primates

    PubMed Central

    Boyer, Doug M.; Seiffert, Erik R.; Gladman, Justin T.; Bloch, Jonathan I.

    2013-01-01

    Specialized acrobatic leaping has been recognized as a key adaptive trait tied to the origin and subsequent radiation of euprimates based on its observed frequency in extant primates and inferred frequency in extinct early euprimates. Hypothesized skeletal correlates include elongated tarsal elements, which would be expected to aid leaping by allowing for increased rates and durations of propulsive acceleration at takeoff. Alternatively, authors of a recent study argued that pronounced distal calcaneal elongation of euprimates (compared to other mammalian taxa) was related primarily to specialized pedal grasping. Testing for correlations between calcaneal elongation and leaping versus grasping is complicated by body size differences and associated allometric affects. We re-assess allometric constraints on, and the functional significance of, calcaneal elongation using phylogenetic comparative methods, and present an evolutionary hypothesis for the evolution of calcaneal elongation in primates using a Bayesian approach to ancestral state reconstruction (ASR). Results show that among all primates, logged ratios of distal calcaneal length to total calcaneal length are inversely correlated with logged body mass proxies derived from the area of the calcaneal facet for the cuboid. Results from phylogenetic ANOVA on residuals from this allometric line suggest that deviations are explained by degree of leaping specialization in prosimians, but not anthropoids. Results from ASR suggest that non-allometric increases in calcaneal elongation began in the primate stem lineage and continued independently in haplorhines and strepsirrhines. Anthropoid and lorisid lineages show stasis and decreasing elongation, respectively. Initial increases in calcaneal elongation in primate evolution may be related to either development of hallucal-grasping or a combination of grasping and more specialized leaping behaviors. As has been previously suggested, subsequent increases in calcaneal

  16. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain.

    PubMed

    Alexandre, Maxime T A; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Kennis, John T M

    2007-03-20

    Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a

  17. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary.

    PubMed

    Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi

    2014-06-01

    Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape. PMID:24519535

  18. Cell models of Blepharisma: Ca(2+)-dependent modification of ciliary movement and cell elongation.

    PubMed

    Matsuoka, T; Watanabe, Y; Kuriu, T; Arita, T; Taneda, K; Ishida, M; Suzaki, T; Shigenaka, Y

    1991-11-29

    Ionic mechanisms were examined with reference to modification of swimming velocity and cell elongation in Triton-extracted cell models of Blepharisma. The extracted cells swam forward at Ca(2+) concentrations below 10(-6) M. The forward swimming velocity of the cell models increased with a decreased Ca(2+) concentration in the surrounding medium. At Ca(2+) concentrations above 10(-6) M, the models swam backward or rotated. The elongation of the models occurred at Ca(2+) concentrations below 10(-7) M. Results suggest that swimming velocity, cell elongation and contraction of intact cells may be regulated by intracellular Ca(2+) concentration.

  19. Elongator, a conserved complex required for wobble uridine modifications in Eukaryotes

    PubMed Central

    Karlsborn, Tony; Tükenmez, Hasan; Mahmud, A K M Firoj; Xu, Fu; Xu, Hao; Byström, Anders S

    2014-01-01

    Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm5 and mcm5 side chains at U34 and their influence on Elongator activity. PMID:25607684

  20. Repression of In Vivo Synthesis of the Mitochondrial Elongation Factors T and G in Saccharomyces fragilis

    PubMed Central

    Richter, D.

    1973-01-01

    In vivo synthesis of the mitochondrial elongation factors T and G in the yeast Saccharomyces fragilis can be repressed. Enzymatic activity assays and immunochemical titration methods reveal that cells grown in the presence of 8% glucose or in the absence of oxygen contain relatively lower amounts of mitochondrial elongation factors than cells grown in the presence of lactate. In contrast, in vivo production of the cytoplasmic elongation factors 1 and 2 does not respond to such a change of extracellular conditions. The rate of growth does not affect the level of the mitochondrial elongation factors. Production of both enzymes is almost constant during logarithmic growth, but decreases when the stationary phase is reached. Chloramphenicol, an inhibitor of mitochondrial protein synthesis, does not block but, rather, seems to enhance the in vivo synthesis of mitochondrial T or G. PMID:4717524

  1. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis

    PubMed Central

    Atsuta, Yuji; Takahashi, Yoshiko

    2015-01-01

    When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static (‘rear’) cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth. PMID:26130757

  2. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    SciTech Connect

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-05-15

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.

  3. Quantitative structure - mesothelioma Potency Model Optimization for Complex Mixtures of Elongated Particles in Rat Pleura

    EPA Science Inventory

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including fibers from asbestos, are influenced by changes in fiber dose composition, bioavailability and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and com...

  4. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transforma)

    NASA Astrophysics Data System (ADS)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-05-01

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.

  5. Rapid elongation of arteries and veins in rats with a tissue expander.

    PubMed

    Stark, G B; Hong, C; Futrell, J W

    1987-10-01

    The saphenous arteries and veins of 40 rats were elongated with 20-cc tissue expanders underlying the leg adductor muscles. The mean rate of successful elongation of the vessels was 84 +/- 47 percent SD, with a maximum gain of 140 percent. The fastest mean elongation velocity reached 45 percent per day. Thrombosis occurred only with stretching velocities of more than 10 percent per day, which seemed to be a safe margin. Distribution of the volume into many intervals was safer than infrequent high-volume injections. Histology showed no reduction in vessel wall diameter or loss intimal integrity. Subendothelial cellular proliferation was an indicator of this rapid regeneration. Microvascular anastomoses performed in elongated arteries and veins had the same patency rate (90 percent) as in controls.

  6. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    PubMed

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  7. Elongation and gene expression in bovine cloned embryos transferred to temporary recipients.

    PubMed

    Rodríguez-Alvarez, Lleretny; Cox, José; Navarrete, Felipe; Valdés, Cristián; Zamorano, Teresa; Einspanier, Ralf; Castro, Fidel Ovidio

    2009-11-01

    SummaryElongated embryos provide a unique source of information about trophoblastic differentiation, gene expression and maternal-embryonic interactions; however they are difficult and costly to obtain, especially elongated cloned embryos. One alternative is their production in heterologous temporary recipients such as sheep and goats. We aimed to produce elongated bovine cloned embryos using heterologous transfer to temporary recipients. Day-7 cloned cattle blastocysts were transferred to the uteri of ewes and goats and recovered as elongated structures at day 17. We evaluated elongation, length, presence of embryonic disc and expression of several important genes for embryonic development. We also produced homologous (cloned cattle embryos transferred into cattle uteri). Cloned bovine blastocysts were able to proceed with preimplantation development through elongation with high efficiency despite the species to which they were transferred. In qualitative and quantitative RT-PCR experiments we found differences in the pattern of gene expression among embryos recovered from different species. Sox2, Nanog and FGF-4 were markedly deregulated. No previous reports about the expression pattern of the studied genes had been published for elongated bovine cloned embryos produced in intermediate recipients, furthermore, the pattern of expression of Nanog, Oct4, Eomes, Cdx2, IFN-tau, Dicer, FGF-4 and Sox2 shown here are novel for elongated cloned bovine embryos created by hand-made cloning. Our data confirmed that sheep and goats can be used as temporary recipients. This model could serve as a basis for further research on gene expression and cellular changes during bovine peri-implantation development.

  8. Movement of endogenous calcium in the elongating zone of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Smith, N. K.

    1989-01-01

    Endogenous calcium (Ca) accumulates along the lower side of the elongating zone of horizontally oriented roots of Zea mays cv. Yellow Dent. This accumulation of Ca correlates positively with the onset of gravicurvature, and occurs in the cytoplasm, cell walls and mucilage of epidermal cells. Corresponding changes in endogenous Ca do not occur in cortical cells of the elongating zone of intact roots. These results indicate that the calcium asymmetries associated with root gravicurvature occur in the outermost layers of the root.

  9. Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.

    2008-01-01

    An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.

  10. Magnetic-field-induced grain elongation in a medium carbon steel during its austenitic decomposition

    SciTech Connect

    Zhang, Y.D.; Esling, C.; Muller, J.; He, C.S.; Zhao, X.; Zuo, L.

    2005-11-21

    A 12-T magnetic field was applied during the austenitic decomposition in a medium plain carbon steel at a slow cooling rate. The magnetic field applied promotes proeutectoid ferrite grains to grow along the field direction and results in an elongated grain microstructure. The grain elongation is the result of the opposing contributions from the atomic dipolar interaction energy of Fe atoms and the interfacial energy.

  11. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils

    PubMed Central

    Valentine, Tracy A.; Hallett, Paul D.; Binnie, Kirsty; Young, Mark W.; Squire, Geoffrey R.; Hawes, Cathy; Bengough, A. Glyn

    2012-01-01

    Background and Aims Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Methods Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1·0 g cm−3 to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (–20 kPa matric potential). Key Results Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0·2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65·7 % of the variation in the elongation rates. Conclusions Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce. PMID:22684682

  12. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana.

    PubMed

    Hayashi, Yuki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2014-04-01

    Plasma membrane H(+)-ATPase is thought to mediate hypocotyl elongation, which is induced by the phytohormone auxin through the phosphorylation of the penultimate threonine of H(+)-ATPase. However, regulation of the H(+)-ATPase during hypocotyl elongation by other signals has not been elucidated. Hypocotyl elongation in etiolated seedlings of Arabidopsis thaliana was suppressed by the H(+)-ATPase inhibitors vanadate and erythrosine B, and was significantly reduced in aha2-5, which is a knockout mutant of the major H(+)-ATPase isoform in etiolated seedlings. Application of the phytohormone ABA to etiolated seedlings suppressed hypocotyl elongation within 30 min at the half-inhibitory concentration (4.2 µM), and induced dephosphorylation of the penultimate threonine of H(+)-ATPase without affecting the amount of H(+)-ATPase. Interestingly, an ABA-insensitive mutant, abi1-1, did not show ABA inhibition of hypocotyl elongation or ABA-induced dephosphorylation of H(+)-ATPase. This indicates that ABI1, which is an early ABA signaling component through the ABA receptor PYR/PYL/RCARs (pyrabactin resistance/pyrabactin resistance 1-like/regulatory component of ABA receptor), is involved in these responses. In addition, we found that the fungal toxin fusiccocin (FC), an H(+)-ATPase activator, induced hypocotyl elongation and phosphorylation of the penultimate threonine of H(+)-ATPase, and that FC-induced hypocotyl elongation and phosphorylation of H(+)-ATPase were significantly suppressed by ABA. Taken together, these results indicate that ABA has an antagonistic effect on hypocotyl elongation through, at least in part, dephosphorylation of H(+)-ATPase in etiolated seedlings.

  13. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  14. Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species.

    PubMed

    Han, Sang Jun; Jang, Hee-Seong; Kim, Jee In; Lipschutz, Joshua H; Park, Kwon Moo

    2016-02-29

    The length of primary cilia is associated with normal cell and organ function. In the kidney, the change of functional cilia length/mass is associated with various diseases such as ischemia/reperfusion injury, polycystic kidney disease, and congenital solitary kidney. Here, we investigate whether renal mass reduction affects primary cilia length and function. To induce renal mass reduction, mice were subjected to unilateral nephrectomy (UNx). UNx increased kidney weight and superoxide formation in the remaining kidney. Primary cilia were elongated in proximal tubule cells, collecting duct cells and parietal cells of the remaining kidney. Mn(III) Tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, reduced superoxide formation in UNx-mice and prevented the elongation of primary cilia. UNx increased the expression of phosphorylated ERK, p21, and exocyst complex members Sec8 and Sec10, in the remaining kidney, and these increases were prevented by MnTMPyP. In MDCK, a kidney tubular epithelial cell line, cells, low concentrations of H2O2 treatment elongated primary cilia. This H2O2-induced elongation of primary cilia was also prevented by MnTMPyP treatment. Taken together, these data demonstrate that kidney compensation, induced by a reduction of renal mass, results in primary cilia elongation, and this elongation is associated with an increased production of reactive oxygen species (ROS).

  15. Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species

    PubMed Central

    Han, Sang Jun; Jang, Hee-Seong; Kim, Jee In; Lipschutz, Joshua H.; Park, Kwon Moo

    2016-01-01

    The length of primary cilia is associated with normal cell and organ function. In the kidney, the change of functional cilia length/mass is associated with various diseases such as ischemia/reperfusion injury, polycystic kidney disease, and congenital solitary kidney. Here, we investigate whether renal mass reduction affects primary cilia length and function. To induce renal mass reduction, mice were subjected to unilateral nephrectomy (UNx). UNx increased kidney weight and superoxide formation in the remaining kidney. Primary cilia were elongated in proximal tubule cells, collecting duct cells and parietal cells of the remaining kidney. Mn(III) Tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, reduced superoxide formation in UNx-mice and prevented the elongation of primary cilia. UNx increased the expression of phosphorylated ERK, p21, and exocyst complex members Sec8 and Sec10, in the remaining kidney, and these increases were prevented by MnTMPyP. In MDCK, a kidney tubular epithelial cell line, cells, low concentrations of H2O2 treatment elongated primary cilia. This H2O2-induced elongation of primary cilia was also prevented by MnTMPyP treatment. Taken together, these data demonstrate that kidney compensation, induced by a reduction of renal mass, results in primary cilia elongation, and this elongation is associated with an increased production of reactive oxygen species (ROS). PMID:26923764

  16. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli.

    PubMed

    Mirza, Nadia; Crocoll, Christoph; Erik Olsen, Carl; Ann Halkier, Barbara

    2016-05-01

    The methionine-derived glucosinolate glucoraphanin is associated with the health-promoting properties of broccoli. This has developed a strong interest in producing this compound in high amounts from a microbial source. Glucoraphanin synthesis starts with a five-gene chain elongation pathway that converts methionine to dihomo-methionine, which is subsequently converted to glucoraphanin by the seven-gene glucosinolate core structure pathway. As dihomo-methionine is the precursor amino acid for glucoraphanin production, a first challenge is to establish an expression system for production of dihomo-methionine. In planta, the methionine chain elongation enzymes are physically separated within the cell with the first enzyme in the cytosol while the rest are located in the chloroplast. A de-compartmentalization approach was applied to produce dihomo-methionine by expression of the respective plant genes in Escherichia coli cytosol. Introduction of two plasmids encoding the methionine chain elongation pathway into E. coli resulted in production of 25mgL(-1) of dihomo-methionine. In addition to chain-elongated methionine products, side-products from chain elongation of leucine were produced. Methionine supplementation enhanced dihomo-methionine production to 57mgL(-1), while keeping a steady level of the chain-elongated leucine products. Engineering of the de-compartmentalized pathway of dihomo-methionine in E. coli cytosol provides an important first step for microbial production of the health-promoting glucoraphanin.

  17. “Referred Visual Sensations”: Rapid perceptual elongation after visual cortical deprivation

    PubMed Central

    Dilks, Daniel D.; Baker, Chris I.; Liu, Yicong; Kanwisher, Nancy

    2009-01-01

    Visual perceptual distortion (i.e., elongation) has been demonstrated in a single case study after several months of cortical deprivation following a stroke. Here we asked whether similar perceptual elongation can be observed in healthy participants following deprivation, and—crucially—how soon after deprivation this elongation occurs. To answer this question, we patched one eye, thus non-invasively and reversibly depriving bottom-up input to the region of primary visual cortex (V1) corresponding to the blind spot (BS) in the unpatched eye, and tested whether and how quickly elongation occurs after the onset of deprivation. Within seconds of eye patching, participants perceived rectangles adjacent to the BS to be elongated toward the BS. We attribute this perceptual elongation to rapid receptive field expansion within the deprived V1 cortex as reported in electrophysiological studies following retinal lesions, and refer to it as “referred visual sensations” (RVS). This RVS is too fast to be the result of structural changes in the cortex (e.g., the growth of new connections), instead implicating unmasking of pre-existing connections as the underlying neural mechanism. These findings may shed light on other reported perceptual distortions, as well as the phenomena of “filling-in”. PMID:19605633

  18. Real-Time Laser Guide Star Elongation and Uplink Turbulence in the Lab

    NASA Astrophysics Data System (ADS)

    Reeves, Andrew; Myers, Richard; Morris, Tim; Basden, Alastair; Bharmal, Nazim

    2013-12-01

    The effects of Laser Guide Star spot elongation and uplink turbulence on Adaptive Optics performance must be considered when designing an AO system for use on an Extremely Large Telescope. The former is the effect of atmospheric turbulence on a LGS as it travels up to excite the mesospheric sodium layer, resulting in unknown tip/tilt modes and laser plume shape and the latter the effect of the sodium layer's finite thickness, degrading Shack Hartmann wave front sensor performance through elongated spots. DRAGON is an AO test bench under construction in Durham, which can explore these effects in real time through the use of a novel LGS emulator, where a laser is projected through a realistic turbulence simulator into a cell filled with a water solution of fluorescent dye. The resulting plume provides a 3-D light source analogous to a sodium LGS. The turbulence simulator consists of 4 rotating phase screens, which can be independently translated in height. We present here first results from DRAGON, comparing wave-front sensing accuracy when the LGS is emulated by (a) the 3-D fluorescent cell (uplink turbulence and elongation), (b) a thin florescent film (uplink turbulence, no elongation), (c) the 3-D cell back illuminated (no uplink turbulence, elongation) and (d) a back illuminated thin fluorescent film (no uplink turbulence, no elongation).

  19. Polar transport of 45Ca2+ across the elongation zone of gravistimulated roots

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1985-01-01

    The movement of calcium across the elongation zone of gravistimulated primary roots of maize (Zea mays L.) was measured using 45Ca2+. Radioactive calcium was applied to one side of the elongation zone about 4 mm back from the root tip and the distribution of radioactivity across the root in the region of application was determined using scintillation spectrometry. The movement of 45Ca2+ across the elongation zone was non-polar in vertically oriented roots. In gravistimulated roots the movement of label was polarized with about twice as much label moving from top to bottom as from bottom to top. A variety of treatments which interfere with gravitropism was found to eliminate the polar movement of 45Ca2+ across the elongation zone. In maize cultivars which require light for gravitropic competency, dark grown roots exhibited neither gravitropism nor polar movement of 45Ca2+ across the elongation zone. Upon illumination the roots developed but gravitropic competency and gravity-induced polar movement of 45Ca2+ across the elongation zone. Similarly, roots of light-grown seedlings lost both gravitropic competency and 45Ca2+ transport polarity upon transfer to the dark. The results indicate a close correlation between calcium movement and gravitropism in primary roots in maize.

  20. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    PubMed Central

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  1. Mid-infrared interferometry of 23 AGN tori: On the significance of polar-elongated emission

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Burtscher, L.; Tristram, K. R. W.; Meisenheimer, K.; Schartmann, M.

    2016-06-01

    Context. Detailed high-resolution studies of active galactic nuclei (AGN) with mid-infrared (MIR) interferometry have revealed parsec-sized dust emission that is elongated in the polar direction in four sources. Aims: Using a larger, coherently analyzed sample of AGN observed with MIR interferometry, we aim to identify elongated MIR emission in a statistical sample of sources. More specifically, we wish to determine if there is indeed a preferred direction of the elongation and whether this direction is consistent with a torus-like structure or with a polar emission. Methods: We investigated the significance of the detection of an elongated shape in the MIR emission by fitting elongated Gaussian models to the interferometric data at 12 μm. We paid special attention to (1) the uncertainties caused by an inhomogeneous (u,v) coverage; (2) the typical errors in the measurements; and (3) the spatial resolution achieved for each object. Results: From our sample of 23 sources, we are able to find elongated parsec-scale, MIR emission in five sources: three type 2s, one type 1i, and one type 1. Elongated emission in four of these sources has been published before; NGC 5506 is a new detection. The observed axis ratios are typically around 2 and the position angle of the 12 μm emission for all the elongated sources always seems to be closer to the polar axis of the system than to the equatorial axis. Two other objects, NGC 4507 and MCG-5-23-16, with reasonably well-mapped (u,v) coverage and good signal-to-noise ratios, appear to have a less elongated 12 μm emission. Conclusions: Our finding that sources showing elongated MIR emission are preferentially extended in polar direction sets strong constraints on torus models or implies that both the torus and NLR/outflow region have to be modeled together. In addition, models used for SED fitting will have to be revised to include emission from polar dust.

  2. The Coprinopsis cinerea septin Cc.Cdc3 is involved in stipe cell elongation.

    PubMed

    Shioya, Tatsuhiro; Nakamura, Hiroe; Ishii, Noriyoshi; Takahashi, Naoki; Sakamoto, Yuichi; Ozaki, Noriaki; Kobayashi, Masayuki; Okano, Keiju; Kamada, Takashi; Muraguchi, Hajime

    2013-01-01

    We have identified and characterized a Coprinopsis cinerea mutant defective in stipe elongation during fruiting body development. In the wild-type, stipe cells elongate at the maturation stage of fruiting, resulting in very slender cells. In the mutant, the stipe cells fail to elongate, but become rather globular at the maturation stage. We found that the mutant phenotype is rescued by a gene encoding a homolog of Saccharomyces cerevisiae CDC3 septin, Cc.Cdc3. The C. cinerea genome includes 6 septin genes, 5 of which, including Cc.cdc3, are highly transcribed during stipe elongation in the wild type. In the mutant, the level of Cc.cdc3 transcription in the stipe cells remains the same as that in the mycelium, and the level of Cc.cdc10 transcription is approximately 100 times lower than that in the wild-type stipe cells. No increase in transcription of Cc.cdc3 in the mutant may be due to the fact that the Cc.cdc3 gene has a 4-base pair insertion in its promoter and/or that the promoter region is methylated in the mutant. Overexpressed EGFP-Cc.Cdc3 fusion protein rescues the stipe elongation in the transformants, localizes to the cell cortex and assembles into abundant thin filaments in the elongating stipe cells. In contrast, in vegetative hyphae, EGFP-Cc.Cdc3 is localized to the hyphal tips of the apical cells of hyphae. Cellular defects in the mutant, combined with the localization of EGFP-Cc.Cdc3, suggest that septin filaments in the cell cortex provide the localized rigidity to the plasma membrane and allow cells to elongate cylindrically.

  3. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy.

    PubMed

    Kemp, Stephan; Valianpour, Fredoen; Denis, Simone; Ofman, Rob; Sanders, Robert-Jan; Mooyer, Petra; Barth, Peter G; Wanders, Ronald J A

    2005-02-01

    X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder characterized by the accumulation of saturated and mono-unsaturated very long-chain fatty acids (VLCFA) and reduced peroxisomal VLCFA beta-oxidation activity. In this study, we investigated the role of VLCFA biosynthesis in X-ALD fibroblasts. Our data demonstrate that elongation of both saturated and mono-unsaturated VLCFAs is enhanced in fibroblasts from patients with peroxisomal beta-oxidation defects including X-ALD, and peroxisome biogenesis disorders. These data indicate that enhanced VLCFA elongation is a general phenomenon associated with an impairment in peroxisomal beta-oxidation, and not specific for X-ALD alone. Analysis of plasma samples from patients with X-ALD and different peroxisomal beta-oxidation deficiencies revealed increased concentrations of VLCFAs up to 32 carbons. We infer that enhanced elongation does not result from impaired peroxisomal beta-oxidation alone, but is due to the additional effect of unchecked chain elongation. We demonstrate that elongated VLCFAs are incorporated into complex lipids. The role of chain elongation was also studied retrospectively in samples from patients with X-ALD previously treated with "Lorenzo's oil." We found that the decrease in plasma C26:0 previously found is offset by the increase of mono-unsaturated VLCFAs, not measured previously during the trial. We conclude that evaluation of treatment protocols for disorders of peroxisomal beta-oxidation making use of plasma samples should include the measurement of saturated and unsaturated VLCFAs of chain lengths above 26 carbon atoms. We also conclude that chain elongation offers an interesting target to be studied as a possible mode of treatment for X-ALD and other peroxisomal beta-oxidation disorders.

  4. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation1[OPEN

    PubMed Central

    Bo, Kailiang; Behera, Tusar K.; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W.; Li, Yuhong

    2016-01-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1. Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation. PMID:27559036

  5. Testing adaptive plasticity to UV: costs and benefits of stem elongation and light-induced phenolics.

    PubMed

    Weinig, Cynthia; Gravuer, Kelly A; Kane, Nolan C; Schmitt, Johanna

    2004-12-01

    On exposure to ultraviolet radiation (UV), many plant species both reduce stem elongation and increase production of phenolic compounds that absorb in the UV region of the spectrum. To demonstrate that such developmental plasticity to UV is adaptive, it is necessary to show that the induced phenotype is both beneficial in inductive environments and maladaptive in non-inductive environments. We measured selection on stem elongation and phenolic content of seedlings of Impatiens capensis transplanted into ambient-UV and UV-removal treatments. We extended the range of phenotypes expressed, and thus the opportunity for selection in each UV treatment, by pretreating seedlings with either a low ratio of red:far-red wavelengths (R:FR), which induced stem elongation and reduced phenolic concentrations, or high R:FR, which had the opposite effect on these two phenotypic traits. Reduced stem length relative to biomass was advantageous for elongated plants under ambient UV, whereas increased elongation was favored in the UV-removal treatment. Selection favored an increase in the level of phenolics induced by UV in the ambient-UV treatment, but a decrease in phenolics in the absence of UV. These results are consistent with the hypotheses that reduced elongation and increased phenolic concentrations serve a UV-protective function and provide the first explicit demonstration in a wild species that plasticity of these traits to UV is adaptive. The observed cost to phenolics in the absence of UV may explain why many species plastically upregulate phenolic production when exposed to UV, rather than evolve constitutively high levels of these compounds. Finally, pretreatment with low R:FR simulating foliar shade did not exacerbate the fitness impact of UV exposure when plants had several weeks to acclimate to UV. This observation suggests that the evolution of adaptive shade avoidance responses to low R:FR in crowded stands will not be constrained by increased sensitivity to UV in

  6. A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution

    PubMed Central

    Claverie, Thomas; Wainwright, Peter C.

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes

  7. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis.

    PubMed

    Wang, Rui; Liu, Xiayan; Liang, Shuang; Ge, Qing; Li, Yuanfeng; Shao, Jingxia; Qi, Yafei; An, Lijun; Yu, Fei

    2015-10-01

    The growth of higher plants is under complex regulation to ensure the elaboration of developmental programmes under a changing environment. To dissect these regulatory circuits, we carried out genetic screens for Arabidopsis abnormal shoot (abs) mutants with altered shoot development. Here, we report the isolation of two dominant mutants, abs3-1D and abs4-1D, through activation tagging. Both mutants showed a 'bushy' loss of apical dominance phenotype. ABS3 and ABS4 code for two closely related putative Multidrug and Toxic Compound Extrusion (MATE) family of efflux transporters, respectively. ABS3 and ABS4, as well as two related MATE genes, ABS3-Like1 (ABS3L1) and ABS3L2, showed diverse tissue expression profiles but their gene products all localized to the late endosome/prevacuole (LE/PVC) compartment. The over-expression of these four genes individually led to the inhibition of hypocotyl cell elongation in the light. On the other hand, the quadruple knockout mutant (mateq) showed the opposite phenotype of an enhanced hypocotyl cell elongation in the light. Hypocotyl cell elongation and de-etiolation processes in the dark were also affected by the mutations of these genes. Exogenously applied sucrose attenuated the inhibition of hypocotyl elongation caused by abs3-1D and abs4-1D in the dark, and enhanced the hypocotyl elongation of mateq under prolonged dark treatment. We determined that ABS3 genetically interacts with the photoreceptor gene PHYTOCHROME B (PHYB). Our results demonstrate that ABS3 and related MATE family transporters are potential negative regulators of hypocotyl cell elongation and support a functional link between the endomembrane system, particularly the LE/PVC, and the regulation of plant cell elongation. PMID:26160579

  8. Oat (Avena sativa L.).

    PubMed

    Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2015-01-01

    Agrobacterium-mediated transformation is a suitable method to transform different cultivars using different systems of A. tumefaciens strains and binary vectors as well as selection cassettes. We describe here a detailed protocol for two cultivars, one naked and one husked, using the AGL1 strain and the pGreen vector containing the nptII selection cassette ( http://www.pgreen.ac.uk/ ), suitable for oat as well as other cereals. The pGreen vector system was recently developed for pBract ( http://www.bract.org/ ) and its transformation ability for cereals was proved. Assuming our experience and the latest knowledge on Agrobacterium-mediated transformation of cereals, we suggest using in the protocol one of the newly developed pBract or pCAMBIA ( http://www.cambia.org/daisy/cambia/ ) vector systems which carry different selection cassettes. The commonly used selection genes nptII, bar, and hpt were proved to be applicable for oat transformation and might be used as needed.

  9. Studies on the mechanism of cell elongation in Blepharisma japonicum: 4. Three dimensional construction of the kinetosomal complex and its functional role on cell elongation.

    PubMed

    Ishida, M; Suzaki, T; Shigenaka, Y

    1991-03-28

    The kinetosomal complex of a heterotrich ciliate Blepharisma japonicum was investigated at ultrastructural level, with special reference to its cell elongation in response to light stimulation. In serial sections, vacuole-associated microtubules were found to be originated from both anterior fiber sheet and left surface of the anterior kinetosome. These microtubules form a bundle and extend toward the anterior end of the organism. The postciliary microtubular sheet is attached to the proximal half of the posterior kinetosome. Two types of transverse microtubules are present: the anterior 8-9 microtubules arising at the base of the anterior kinetosome and the posterior 2-3 microtubules arising between the paired kinetosomes. Based on these results, a three dimensional model of the kinetosomal complex was proposed and the mechanism of cell elongation in Blepharisma was discussed.

  10. Fossil evidence and stages of elongation of the Giraffa camelopardalis neck

    PubMed Central

    Danowitz, Melinda; Vasilyev, Aleksandr; Kortlandt, Victoria; Solounias, Nikos

    2015-01-01

    Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial–caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe. PMID:26587249

  11. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.

    PubMed

    García, Alicia; Collin, Alejandro; Calvo, Olga

    2012-11-01

    The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3'-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5-Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5-Rpb1 complex levels and consequently transcription elongation rate.

  12. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate

    PubMed Central

    García, Alicia; Collin, Alejandro; Calvo, Olga

    2012-01-01

    The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3′-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5–Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5–Rpb1 complex levels and consequently transcription elongation rate. PMID:22973055

  13. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  14. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae

    PubMed Central

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P.; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in ‘transcription traffic jams’ on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  15. Interaction of elongation factor 1 with aminoacylated brome mosaic virus and tRNA's.

    PubMed Central

    Bastin, M; Hall, T C

    1976-01-01

    Tyrosylated Brome mosaic virus RNA was found to interact with a binary complex of wheat germ, elongation factor 1 and [3H]GTP. Increasing amounts of the aminoacylated viral RNA proportionately reduced radioactivity bound to a nitrocellulose filter, as has previously been noted by others for the charged forms of tobacco mosaic virus, turnip yellow mosaic virus, and tRNA's. However, Sephadex chromatography of the products showed that instead of forming the ternary complex elongation factor-GTP-aminoacyl RNA, the viral RNA caused release of GTP from its complex with elongation factor. Acetylated tyrosyl Brome mosaic virus RNA did not react with the binary complex,and only a slight degree, if any, of stabilization of tyrosine bound to viral RNA was observed after interaction with elongation factor 1. Although such interactions are similar to the reaction of elongation factor with aminoacyl-tRNA , the release of GTP is different and accentuates the possible role for aminoacylation in transcription rather than in translation events. PMID:978788

  16. Extending the story of very-long-chain fatty acid elongation.

    PubMed

    Haslam, Tegan M; Kunst, Ljerka

    2013-09-01

    Very-long-chain fatty acids (VLCFAs) are essential molecules produced by all plant cells, and are components or precursors of numerous specialized metabolites synthesized in specific cell types. VLCFAs are elongated by an endoplasmic reticulum-localized fatty acid elongation complex of four core enzymes, which sequentially add two carbon units to a growing acyl chain. Identification and characterization of these enzymes in Arabidopsis thaliana has revealed that three of the four enzymes act as generalists, contributing to all metabolic pathways that require VLCFAs. A fourth component, the condensing enzyme, provides substrate specificity and determines the amount of product synthesized by the entire complex. Land plants have two families of condensing enzymes, FATTY ACID ELONGATION 1 (FAE1)-type ketoacyl-CoA synthases (KCSs) and ELONGATION DEFECTIVE-LIKEs (ELO-LIKEs). Our current knowledge of the specific roles of different condensing enzymes is incomplete, as is our understanding of the biological function of a recently characterized family of proteins, CER2-LIKEs, which contribute to condensing enzyme function. More broadly, the stoichiometry and quaternary structure of the fatty acid elongase complex remains poorly understood, and specific phylogenetic and biochemical questions persist for each component of the complex. Investigation of VLCFA elongation in different organisms, structural biochemistry, and cell biology approaches stand to greatly benefit this field of plant biology.

  17. A quantitative stopped-flow fluorescence assay for measuring polymerase elongation rates

    PubMed Central

    Gong, Peng; Campagnola, Grace; Peersen, Olve B.

    2009-01-01

    The measurement of nucleic acid polymerase elongation rates is often done via a lengthy experimental process involving radiolabeled substrates, quenched elongation experiments, electrophoretic product separation, and band quantitation. In this work we describe an alternative real-time stopped-flow assay for obtaining kinetic parameters for elongation of extended sequences. The assay builds on our earlier PETE assay designed for high-throughput screening purposes (Anal. Biochem. 365, 194-200) and relies of measuring how long it takes a polymerase to reach the end of a defined length template. Using poliovirus polymerase and self-priming hairpin RNA substrates with 6 to 26 nucleotide long templating regions, we demonstrate that the assay can be used to determine Vmax rates for elongation and apparent Km values for NTP utilization. Modeling the reaction kinetics as a series of irreversible steps allows us to numerically fit the entire time-based dataset by properly accounting for the temporal distribution of intermediate species. This enables us to determine average elongati