Sample records for average ambient temperature

  1. Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Williams, B. A.

    1976-01-01

    Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.

  2. Hydrostatic temperature calculations. [in synoptic meteorology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1987-01-01

    Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).

  3. [Association between ambient temperature and hospital emergency room visits for cardiovascular diseases: a case-crossover study].

    PubMed

    Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan

    2009-08-01

    To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.

  4. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment

    NASA Astrophysics Data System (ADS)

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2017-05-01

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  5. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    PubMed

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Does maternal exposure during pregnancy to higher ambient temperature increase the risk of hypospadias?

    PubMed

    Kilinc, Muhammet Fatih; Cakmak, Sedat; Demir, Demirhan Orsan; Doluoglu, Omer Gokhan; Yildiz, Yildiray; Horasanli, Kaya; Dalkilic, Ayhan

    2016-12-01

    The association between ambient temperature that the mother is exposed to during pregnancy and hypospadias has not been investigated by the studies, although the recent studies showed the correlation between some congenital malformations (congenital heart disease, neural tube defect, etc.) and ambient temperature. The aim was to investigate the relation between hypospadias and the ambient temperatures that the mother is exposed to during her pregnancy. The data of patients with hypospadias that had their gestational periods in Ankara and Istanbul regions, and had other urological treatments (circumcision, urinary tract infection, pyeloplasty, nephrolithotomy, etc.) between January 2000 and November 2015 were analyzed retrospectively. The ambient temperature at 8-14 weeks of gestation was investigated for each patient by reviewing the data of the General Directorate of Meteorology, since this period was risky for development of hypospadias. The data including ambient temperature that the pregnant mother was exposed to, maternal age, parity, economical status, gestational age at birth, and birth weight were compared between two groups. The retrospective nature of the study may be a potential source for selection bias. The data of 1,709 children that had hypospadias repair and 4,946 children that had other urological treatments between 2000 and 2015 were retrospectively analyzed. There were no differences between the groups for maternal age, parity, economical status, gestational age at birth, and birth weight (Table). Analysis of exposed maximum and average ambient temperatures at 8-14 weeks of gestation revealed that July and August, hot periods in summer time, were more prevalent in the hypospadias group (p = 0.01). The average and maximum monthly ambient temperatures during summer increased the risk for hypospadias (OR, 1.32; 95% CI, 1.08-1.52; and OR, 1.22; 95% CI, 0.99-1.54, respectively. In this paper, we evaluated the relation between hypospadias and the ambient temperatures that the mother is exposed during her pregnancy. The results of this study indicated that the high ambient temperatures the mother and fetus are exposed to at 8-14 weeks of gestation increased the risk of hypospadias in the offspring. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  7. 40 CFR 1066.310 - Coastdown procedures for vehicles above 14,000 pounds GVWR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Calibrate the equipment by running the zero-wind and zero-angle calibrations within 24 hours before... = mean ambient absolute temperature during testing, in K. p act = average ambient pressuring during the...

  8. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna.

    PubMed

    Mohler, F S; Heath, J E

    1988-02-01

    The temperature of the pinnae of male New Zealand White rabbits was measured by use of infrared thermography. At ambient temperatures of 15, 20, and 25 degrees C, the average pinna temperatures were 23.0, 28.7, and 36.2 degrees C, respectively. From these temperatures, average heat loss from the total pinna surface area was calculated to be 2.8, 3.3, and 4.4 W, respectively. Preoptic temperature changes also affect the vasomotor state of the rabbit. At an ambient temperature of 20 degrees C, cooling the preoptic area of the rabbit by approximately 1 degree C resulted in an average pinna temperature of 26.5 degrees C and a heat loss of 2.4 W. Heating the preoptic area by approximately 1 degree C resulted in an average pinna temperature of 33.5 degrees C and a heat loss of 5.4 W. Finally, pinna temperatures were measured by use of a thermocouple and infrared thermography simultaneously. When the pinnae were vasodilated, the thermocouple measurements were consistently higher than the pinna surface temperatures measured thermographically. When the pinnae were vasoconstricted, the thermocouple measurements were consistently lower than the pinna surface temperatures measured thermographically. The discrepancy between the two methods of measurement is discussed.

  9. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    PubMed

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  10. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    PubMed

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p < 0.001, p < 0.001, p < 0.001, p = 0.008 respectively), but increased feed/gain, mortality, respiratory rate, rectal temperature, serum uric acid contents and serum creatine kinase activity (p = 0.008, p = 0.003, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.003 respectively), irrespective of crude protein levels. At the ambient temperature, reducing crude protein levels resulted in an increase in feed/gain (p < 0.001), but a decrease in serum total protein and uric acid contents. Only serum creatine kinase activity in broiler chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly

    PubMed Central

    Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.

    2015-01-01

    Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469

  12. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    PubMed

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  13. The effect of ambient temperature on infrared thermographic images of joints in the distal forelimbs of healthy racehorses.

    PubMed

    Soroko, Maria; Howell, Kevin; Dudek, Krzysztof

    2017-05-01

    The aim of the study was to describe the dependence on ambient temperature of distal joint temperature at the forelimbs of racehorses. The study also investigated the influence of differing ambient temperatures on the temperature difference between joints: this was measured ipsilaterally (i.e. between the carpal and fetlock joints along each forelimb) and contralaterally (i.e. between the same joints of the left and right forelimbs). Sixty-four healthy racehorses were monitored over 10 months. At each session, three thermographic images were taken of the dorsal, lateral and medial aspects of the distal forelimbs. Temperature measurements were made from regions of interest (ROIs) covering the carpal and fetlock joints. There was a strong correlation between ambient temperature and absolute joint temperature at all ROIs. The study also observed a moderate correlation between ambient temperature and the ipsilateral temperature differences between joints when measured from the medial and lateral aspects. No significant correlation was noted when measured dorsally. The mean contralateral temperature differences between joints were all close to 0°C. The data support previous reports that the temperature distribution between the forelimbs of the healthy equine is generally symmetric, although some horses differ markedly from the average findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of Temperature on Feeding Period of Larval Blacklegged Ticks (Acari: Ixodidae) on Eastern Fence Lizards.

    PubMed

    Rulison, Eric L; Lebrun, Roger A; Ginsberg, Howard S

    2014-11-01

    Ambient temperature can influence tick development time, and can potentially affect tick interactions with pathogens and with vertebrate hosts. We studied the effect of ambient temperature on duration of attachment of larval blacklegged ticks, Ixodes scapularis Say, to eastern fence lizards, Sceloporus undulatus (Bosc & Daudin). Feeding periods of larvae that attached to lizards under preferred temperature conditions for the lizards (WARM treatment: temperatures averaged 36.6°C at the top of the cage and 25.8°C at the bottom, allowing behavioral thermoregulation) were shorter than for larvae on lizards held under cool conditions (COOL treatment temperatures averaged 28.4°C at top of cage and 24.9°C at the bottom). The lizards were infested with larvae four times at roughly monthly intervals. Larval numbers successfully engorging and dropping declined and feeding period was longer after the first infestation. © 2014 Entomological Society of America.

  15. Effect of temperature on feeding period of larval blacklegged ticks (Acari: Ixodidae) on eastern fence lizards

    USGS Publications Warehouse

    Rulison, Eric L.; LeBrun, Roger A.; Ginsberg, Howard S.

    2014-01-01

    Ambient temperature can influence tick development time, and can potentially affect tick interactions with pathogens and with vertebrate hosts. We studied the effect of ambient temperature on duration of attachment of larval blacklegged ticks, Ixodes scapularis Say, to eastern fence lizards, Sceloporus undulatus (Bose & Daudin). Feeding periods of larvae that attached to lizards under preferred temperature conditions for the lizards (WARM treatment: temperatures averaged 36.6°C at the top of the cage and 25.8°C at the bottom, allowing behavioral thermoregulation) were shorter than for larvae on lizards held under cool conditions (COOL treatment temperatures averaged 28.4°C at top of cage and 24.9°C at the bottom). The lizards were infested with larvae four times at roughly monthly intervals. Larval numbers successfully engorging and dropping declined and feeding period was longer after the first infestation.

  16. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.

    PubMed

    Speakman, John R; Heidari-Bakavoli, Sahar

    2016-08-01

    Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.

  17. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

    PubMed Central

    Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767

  18. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere.

    PubMed

    Fabre, Anne-Lise; Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

  19. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system.

    PubMed

    Kwon, Sangil; Park, Yonghee; Park, Junhong; Kim, Jeongsoo; Choi, Kwang-Ho; Cha, Jun-Seok

    2017-01-15

    This paper presents the on-road nitrogen oxides (NO x ) emissions measurements from Euro 6 light-duty diesel vehicles using a portable emissions measurement system on the predesigned test routes in the metropolitan area of Seoul, Korea. Six diesel vehicles were tested and the NO x emissions results were analyzed according to the driving routes, driving conditions, data analysis methods, and ambient temperatures. Total NO x emissions for route 1, which has higher driving severity than route 2, differed by -4-60% from those for route 2. The NO x emissions when the air conditioner (AC) was used were higher by 68% and 85%, on average, for routes 1 and 2, respectively, compared to when the AC was not used. The analytical results for NO x emissions by the moving averaging window method were higher by 2-31% compared to the power binning method. NO x emissions at lower ambient temperatures (0-5°C) were higher by 82-192% compared to those at higher ambient temperatures (15-20°C). This result shows that performance improvements of exhaust gas recirculation and the NO x after-treatment system will be needed at lower ambient temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of environmental levels of aromatic hydrocarbons in gasoline service stations by gas chromatography.

    PubMed

    Periago, J F; Zambudio, A; Prado, C

    1997-08-22

    The volume of gasoline sold in refuelling operations and the ambient temperature, can increase significantly the environmental levels of aromatic hydrocarbon vapours and subsequently, the occupational risk of gasoline service station attendants, specially in the case of benzene. We have evaluated the occupational exposure to aromatic hydrocarbons by means of personal-breathing-zone samples of gasoline vapours in a service station attendant population. This evaluation was carried out using diffusive samplers, in two periods at quite different temperatures (March and July). A significant relationship between the volume of gasoline sold during the shift and the ambient concentration of benzene, toluene, and xylenes was found for each worker sampled. Furthermore a significant difference was found between the time-weighted average concentration of aromatic compounds measured in March, with ambient temperatures of 14-15 degrees C and July, with temperatures of 28-30 degrees C. In addition, 20% of the population sampled in the last period were exposed to a time-weighted average concentration of benzene above the proposed Threshold Limit Value of 960 micrograms/m(3) of the American Conference of Governmental Industrial Hygienists (ACGIH).

  1. [Effect of humidity and temperature on filter and gravimetric measurement of ambient particulate matter in a balance room].

    PubMed

    Su, Wen-jin; Wang, Li-min; Weng, Shao-fan; Wang, Hai-jiao; Du, Li-li; Liu, Yue-wei; Yang, Lei; Chen, Wei-hong

    2008-04-01

    To assess the effects of the alteration of humidity and (or) temperature on weight of filters without and with ambient particulate matter in a balance room. The mass of blank dust sampling filters were weighed under (18 +/- 1) degrees C and (28 +/- 1) degrees C respectively, with the humidity varying from 35% relative humidity (RH) to 100% RH in a balance room. Then the blank filters were divided into two groups and were used to sample total dust and respirable dust. After sampling, the loaded filters were re-weighed under above conditions and the mass difference before and after the sampling were compared and analyzed. The vibration of the average mass of filters varied from 0.10 to 0.13 mg and from 0.06 to 0.09 mg under the temperatures of (18 +/- 1) degrees C and (28 +/- 1) degrees C respectively; When both the temperature and humidity changed, it varied from 0.12 to 0.16 mg. The deviation of average mass difference ranged from 0.07 to 0.10 mg and from 0.04 to 0.08 mg under the two temperatures mentioned above; When both the temperature and humidity changed, it varied from 0.09 to 0.14 mg. The average mass of blank filters and loaded filters were all positively correlated with the change of humidity (P < 0.01). No effects of humidity on the average mass difference of the loaded filters were observed. The average mass differences of loaded filters and blank filters under (18 +/- 1) degrees C were significantly higher than that under (28 +/- 1) degrees C (P < 0.01) when humidity was not changed. The alteration of humidity and (or) temperature in a balance room attributes to the deviation of the measurement of the mass of filters and thus affects the gravimetric measurements of ambient particulate matter.

  2. Insulin storage in hot climates without refrigeration: temperature reduction efficacy of clay pots and other techniques.

    PubMed

    Ogle, G D; Abdullah, M; Mason, D; Januszewski, A S; Besançon, S

    2016-11-01

    Insulin loses potency when stored at high temperatures. Various clay pots part-filled with water, and other evaporative cooling devices, are used in less-resourced countries when home refrigeration is unavailable. This study examined the cooling efficacy of such devices. Thirteen devices used in Sudan, Ethiopia, Tanzania, Mali, India, Pakistan and Haiti (10 clay pots, a goat skin, a vegetable gourd and a bucket filled with wet sand), and two identical commercially manufactured cooling wallets were compared. Devices were maintained according to local instructions. Internal and ambient temperature and ambient humidity were measured by electronic loggers every 5 min in Khartoum (88 h), and, for the two Malian pots, in Bamako (84 h). Cooling efficacy was assessed by average absolute temperature difference (internal vs. ambient), and % maximal possible evaporative cooling (allowing for humidity). During the study period, mean ambient temperature and humidity were 31.0°C and 32.0% in Khartoum and 32.9°C and 39.8% in Bamako. All devices reduced the temperature (P < 0.001) with a mean (sd) reduction from 2.7 ± 0.5°C to 8.3 ± 1.0°C, depending on the device. When expressed as % maximal cooling, device efficacy ranged from 20.5% to 71.3%. On cluster analysis, the most efficacious devices were the goat skin, two clay pots (from Ethiopia and Sudan) and the suspended cooling wallet. Low-cost devices used in less-resourced countries reduce storage temperatures. With more efficacious devices, average temperatures at or close to standard room temperature (20-25°C) can be achieved, even in hot climates. All devices are more efficacious at lower humidity. Further studies are needed on insulin stability to determine when these devices are necessary. © 2016 Diabetes UK.

  3. Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen

    2008-01-01

    Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.

  4. Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis.

    PubMed

    Smith, Wally R; Coyne, Patrick; Smith, Virginia S; Mercier, Bruce

    2003-09-01

    Weather changes are among the proposed precursors of painful sickle cell crises. However, epidemiologic data are mixed regarding the relationship between ambient temperature and crisis frequency. To study this relationship among a local sickle cell disease population, emergency department (ED) visits and admissions were evaluated in adults with sickle cell crisis as the primary diagnosis at a major teaching hospital in a temperate climate. Official daily ambient temperatures (average for that day) were obtained from the National Climate Data Center for the days patients visited the ED or were hospitalized, and for 24 or 48 hours prior. Daily ED visit counts and admission counts were correlated with the visit/admission day's ambient temperature, with the ambient temperature 24 hours before admission, and with the magnitude of change in daily ambient temperature over the prior 24 or 48 hours. For all correlations, statistical significance was defined as a p value of <0.01 and clinical significance was defined as a moderate or greater correlation, absolute value of r >/= 0.30. ED visits or admissions correlated statistically, but not clinically, with daily temperatures. On days when temperatures were <32 degrees F or >80 degrees F, these correlations were statistically significant, but clinical significance was variable. ED visits or admissions correlated only statistically with temperatures 24 hours prior, even on days when temperatures were <32 degrees F. When temperatures were >80 degrees F, the correlations were statistically significant, but there was a reverse, clinically significant correlation between admissions and temperatures. Finally, only statistically significant correlations were found between ED visits or admissions and change in temperature over the prior 24 or 48 hours. Weak or inconsistent confirmation of a relationship was found between daily ambient temperatures and ED visits or hospital admissions for sickle cell crises.

  5. Genetic variation for farrowing rate in pigs in response to change in photoperiod and ambient temperature.

    PubMed

    Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F

    2016-08-01

    Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.

  6. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    PubMed Central

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  7. Experimental and casework validation of ambient temperature corrections in forensic entomology.

    PubMed

    Johnson, Aidan P; Wallman, James F; Archer, Melanie S

    2012-01-01

    This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.

  8. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    PubMed

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.

  9. THE MOUSE: AN "AVERAGE" HOMEOTHERM

    EPA Science Inventory

    Mice, rats, and nearly all mammals and birds are classified as homeothermic, meaning that their core temperature is regulated at a constant level over a relatively wide range of ambient temperatures. In one sense, this homeothermic designation has been confirmed by the advent of ...

  10. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    PubMed Central

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  11. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    PubMed

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  12. Incidence and seasonality of hypothermia among newborns in southern Nepal.

    PubMed

    Mullany, Luke C; Katz, Joanne; Khatry, Subarna K; Leclerq, Steven C; Darmstadt, Gary L; Tielsch, James M

    2010-01-01

    To quantify incidence, age distribution, and seasonality of neonatal hypothermia among a large population cohort. Longitudinal cohort study. Sarlahi, Nepal. A total of 23 240 newborns born between September 2, 2002, and February 1, 2006. Main Exposures Community-based workers recorded axillary temperature on days 1 through 4, 6, 8, 10, 12, 14, 21, and 28 (213 636 total measurements). Regression smoothing was used to describe axillary temperature patterns during the newborn period. Hypothermia incidence in the first day, week, and month were estimated using standard cutoffs. Ambient temperatures allowed comparison of mild hypothermia (36.0 degrees C to <36.5 degrees C) and moderate or severe hypothermia (<36.0 degrees C) incidence over mean ambient temperature quintiles. Measurements lower than 36.5 degrees C were observed in 21 459 babies (92.3%); half (48.6%) had moderate or severe hypothermia, and risk peaked in the first 24 to 72 hours of life. Risk of moderate or severe hypothermia increased by 41.3% (95% confidence interval, 40.0%-42.7%) for every 5 degrees C decrease in average ambient temperature. Relative to the highest quintile, risk was 4.03 (95% confidence interval, 3.77-4.30) times higher among babies exposed to the lowest quintile of average ambient temperature. In the hot season, one-fifth of the babies (18.2%) were observed below the moderate hypothermia cutoff. Mild or moderate hypothermia was nearly universal, with substantially higher risk in the cold season. However, incidence in the hot season was also high; thus, year-round thermal care promotion is required. Research on community, household, and caretaker practices associated with hypothermia can guide behavioral interventions to reduce risk.

  13. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  14. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    PubMed

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged <45 years, whereas the effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  15. 40 CFR 86.230-94 - Test sequence: general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing. (2) The ambient temperature reported shall be a simple average of the test cell temperatures... cell temperature shall be 20 °F±3 °F (−7 °C±1.7 °C) when measured in accordance with paragraph (e)(2... approximately level during all phases of the test sequence to prevent abnormal fuel distribution. (e) Engine...

  16. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  17. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  18. Warming and Acidification Induced Mass Mortality of a Coastal Keystone predator

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Findeisen, U.

    2016-02-01

    The Baltic Sea is characterized by low salinity and pronounced fluctuations in pCO2. On-line monitoring of pCO2 in 2014 in Kiel Fjord demonstrated occurrence of peak values of >2,000 µatm in summer and autumn and average values >750 µatm. We assessed the impacts of elevated temperature (ambient temperature, ambient +3°C) and pCO2 (500, 1,500, 2,400 µatm) on the keystone species Asterias rubens in a fully crossed long - term experiment (N=5 replicate tanks each, 1 year duration). During spring and early summer (February - June), high temperature animals ingested significantly more food and spawned significantly earlier (April 30th) than ambient acclimated animals (May 23rd). Elevated pCO2 led to comparatively minor reductions in food intake and scope for growth during that period. During summer (June - August), elevated temperature >25°C caused negative energy budgets and >95% mortality in the warm acclimated groups, while mortality was low in the ambient temperature groups. Our results indicate that A. rubens may benefit from increased temperature during colder months, yet dramatically suffer during summer heat waves in warm years. Meaningful experimental approaches to assess species vulnerability to climate change need to encompass all seasons and realistic abiotic stressor levels.

  19. Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.

    PubMed

    Caretti, David M; Barker, Daniel J

    2014-01-01

    This investigation assessed the thermophysiological and subjective impacts of different respirator ambient air cooling options while wearing chemical and biological personal protective equipment in a warm environment (32.7 ± 0.4°C, 49.6 ± 6.5% RH). Ten volunteers participated in 90-min heat exposure trials with and without respirator (Control) wear and performed computer-generated tasks while seated. Ambient air cooling was provided to respirators modified to blow air to the forehead (FHC) or to the forehead and the breathing zone (BZC) of a full-facepiece air-purifying respirator using a low-flow (45 L·min(-1)) mini-blower. An unmodified respirator (APR) trial was also completed. The highest body temperatures (TTY) and least favorable comfort ratings were observed for the APR condition. With ambient cooling over the last 60 min of heat exposure, TTY averaged 37.4 ± 0.6°C for Control, 38.0 ± 0.4°C for APR, 37.8 ± 0.5°C for FHC, and 37.6 ± 0.7°C for BZC conditions independent of time. Both the FHC and BZC ambient air cooling conditions reduced facial skin temperatures, reduced the rise in body temperatures, and led to more favorable subjective comfort and thermal sensation ratings over time compared to the APR condition; however statistical differences among conditions were inconsistent. Independent of exposure time, average breathing apparatus comfort scores with BZC (7.2 ± 2.5) were significantly different from both Control (8.9 ± 1.4) and APR (6.5 ± 2.2) conditions when ambient cooling was activated. These findings suggest that low-flow ambient air cooling of the face under low work rate conditions and mild hyperthermia may be a practical method to minimize the thermophysiological strain and reduce perceived respirator discomfort.

  20. Remote monitoring of parental incubation conditions in the greater sandhill crane

    USGS Publications Warehouse

    Gee, G.F.; Hatfield, J.; Howey, P.J.

    1995-01-01

    To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.

  1. Ambient temperature and cardiovascular biomarkers in a repeated-measure study in healthy adults: A novel biomarker index approach.

    PubMed

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2017-07-01

    Associations of ambient temperature with cardiovascular morbidity and mortality have been well documented in numerous epidemiological studies, but the underlying pathways remain unclear. We investigated whether systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function may be the mechanistic pathways associated with ambient temperature. Forty study participants underwent repeated blood collections for 12 times in Beijing, China in 2010-2011. Ambient temperature and air pollution data were measured in central monitors close to student residences. We created five indices as the sum of weighted biomarker percentiles to represent the overall levels of 15 cardiovascular biomarkers in five pathways (systemic inflammation: hs-CRP, TNF-α and fibrinogen; coagulation: fibrinogen, PAI-1, tPA, vWF and sP-selectin; systemic oxidative stress: Ox-LDL and sCD36: antioxidant activity: EC-SOD and GPX1; and endothelial function: ET-1, E-selectin, ICAM-1 and VCAM-1). We used generalized mixed-effects models to estimate temperature effects controlling for air pollution and other covariates. There were significant decreasing trends in the adjusted means of biomarker indices over the lowest to the highest quartiles of daily temperatures before blood collection. A 10°C decrease at 2-d average daily temperature were associated with increases of 2.5% [95% confidence interval (CI): 0.7, 4.2], 1.6% (95% CI: 0.1, 3.1), 2.7% (95% CI: 0.5, 4.8), 5.5% (95% CI: 3.8, 7.3) and 2.0% (95% CI: 0.3, 3.8) in the indices for systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function, respectively. In contrast, the associations between ambient temperature and individual biomarkers had substantial variation in magnitude and strength. The altered cardiovascular biomarker profiles in healthy adults associated with ambient temperature changes may help explain the temperature-related cardiovascular morbidity and mortality. The biomarker index approach may serve as a novel tool to capture ambient temperature effects. Copyright © 2017. Published by Elsevier Inc.

  2. Effect of coefficient of viscosity and ambient temperature on the flow rate of drug solutions in infusion pumps.

    PubMed

    Kawabata, Yoshinori

    2012-01-01

    FOLFOX6 and FOLFIRI regimens are often selected as the first- or second-line treatment for advanced or recurrent colorectal cancer. Patients are now able to undergo at-home treatment by using a portable disposable infusion pump (SUREFUSER(®)A) for continuous intravenous infusion of 5-fluorouracil (5-FU). The duration of continuous 5-FU infusion is normally set at an average of 46 h, but large variations in the duration of infusion are observed. The relationship between the total volume of the drug solution in SUREFUSER(®)A and the duration of infusion was analyzed by regression analysis. In addition, multiple regression analysis of the total volume of the drug solution, dummy variables for temperature, and duration of infusion was carried out. The duration of infusion was affected by the coefficient of viscosity of the drug solution and the ambient temperature. The composition of the drug solutions and the ambient temperature must be considered to ensure correct duration of continuous infusion.

  3. Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA.

    PubMed

    Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O'Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie

    2016-10-02

    Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993-2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research.

  4. Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA

    PubMed Central

    Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O’Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie

    2016-01-01

    Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993–2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research. PMID:27706089

  5. Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens).

    PubMed

    Couvillon, Margaret J; Fitzpatrick, Ginny; Dornhaus, Anna

    Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.

  6. Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data.

    PubMed

    Liu, Tao; Zeng, Weilin; Lin, Hualiang; Rutherford, Shannon; Xiao, Jianpeng; Li, Xing; Li, Zhihao; Qian, Zhengmin; Feng, Baixiang; Ma, Wenjun

    2016-08-26

    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of -0.07%, -0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and -0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks.

  7. Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data

    PubMed Central

    Liu, Tao; Zeng, Weilin; Lin, Hualiang; Rutherford, Shannon; Xiao, Jianpeng; Li, Xing; Li, Zhihao; Qian, Zhengmin; Feng, Baixiang; Ma, Wenjun

    2016-01-01

    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of −0.07%, −0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and −0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks. PMID:27571094

  8. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  9. Seasonal acclimatization determined by non-invasive measurements of coat insulation.

    PubMed

    Langman, Vaughan A; Langman, Sarah L; Ellifrit, Nancy

    2015-01-01

    Seasonal acclimatization in terrestrial mammals in the Northern Hemisphere involves changes in coat insulation. It is more economical to provide increased insulation than increased heat production for protection against the cold. This study was done to test a technique for the non-invasive measurement of mammal coat insulation and to measure coat insulation over several seasons on captive exotics. The working hypothesis was that species that have no coat or have a coat that does not change seasonally do not acclimatize seasonally. Three surface temperature readings were measured from the torso area. The insulation was calculated using measured metabolic rates and body temperature when possible. The African elephants, giraffe and okapi did not acclimatize with average maximum insulation values of 0.256°Cm(2)  W(-1) . The Amur tigers and mountain goats acclimatized to seasonal ambient conditions by increasing the insulation values of the hair coats in the cold with an average maximum insulation values of 0.811°Cm(2)  W(-1) . The cold adapted species are more than three times more insulated in the cold than the equatorial species. The husbandry implications of exotics that have no ability to acclimatize to Northern Hemisphere seasonal ambient changes are profound. Giraffe, African elephants, and okapi when exposed to cold conditions with ambient air temperatures below 21°C will use body energy reserves to maintain a heat balance and will require housing that provides ambient conditions of 21°C. © 2015 Wiley Periodicals, Inc.

  10. 40 CFR 86.107-98 - Sampling and analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system (recorder and sensor) shall have an accuracy of ±3 °F (±1.7 °C). The recorder (data processor... ambient temperature sensors, connected to provide one average output, located 3 feet above the floor at... wall. For diurnal emission testing, an additional temperature sensor shall be located underneath the...

  11. 40 CFR 86.107-98 - Sampling and analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system (recorder and sensor) shall have an accuracy of ±3 °F (±1.7 °C). The recorder (data processor... ambient temperature sensors, connected to provide one average output, located 3 feet above the floor at... wall. For diurnal emission testing, an additional temperature sensor shall be located underneath the...

  12. 40 CFR 86.107-98 - Sampling and analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system (recorder and sensor) shall have an accuracy of ±3 °F (±1.7 °C). The recorder (data processor... ambient temperature sensors, connected to provide one average output, located 3 feet above the floor at... wall. For diurnal emission testing, an additional temperature sensor shall be located underneath the...

  13. Speech Signal Processing Research. Appendices 1 thru 9

    DTIC Science & Technology

    1975-12-01

    is 2400 rpm for a maximum rotational latency of 25 ms and an average of 12.5 ms. The track to track access time is 12 ms, the average access time...in Table 1-3. Table 1-3. Capabilities and Limitations Description Characteristics Start-Up Time Operating Temperature Operating Humidity...Storage Conditions - - ■ ■ ■ -*****•******* ~40 seconds 0oC (320F) to +50oC (1220F) ambient 10% to 80% with no condensation Temperature =0oC(32oF) to

  14. Trailer microclimate and calf welfare during fall-run transportation of beef calves in Alberta.

    PubMed

    Goldhawk, C; Janzen, E; González, L A; Crowe, T; Kastelic, J; Pajor, E; Schwartzkopf-Genswein, K S

    2014-11-01

    Twenty-four commercial loads of beef calves (BW 300 ± 52 kg, mean ± SD) were evaluated for associations among transportation factors, in-transit microclimate, and calf welfare. Transport factors evaluated included vehicle speed, space allowance, compartment within trailer, and transit duration. Calves were transported for 7 h 44 min ± 4 h 15 min, with space allowances ranging from 0.56 to 1.17 m(2)/animal. Compartment within trailer, space allowance, and vehicle speed did not affect the difference between compartment ceiling-level and ambient temperatures during a 30-min period of steady-state microclimate. During the steady-state period, a 1°C increase in ambient temperature above the mean of 5.6°C was associated with a 0.62°C decrease in the difference between ceiling-level and ambient temperature (P < 0.01). Ceiling-level temperature and humidity during the first 400 min of transport could be predicted by ambient conditions and vehicle speed (pseudo-r(2) of 0.91 and 0.82 for temperature and humidity ratio; P < 0.01). Events when animal-level temperature-humidity index (THI) was classified as above the "danger" level lasted for 10.2 ± 4.1 consecutive minutes. Ambient and ceiling-level THI values were not classified as above "danger" for 90.0 and 84.9% of animal-level events. Ambient and ceiling-level THI were 5.0 ± 2.1 and 4.7 ± 2.0° Flower than animal-level THI during periods of disagreement, respectively. The majority of calves arrived in good condition and biochemical indicators of calf welfare were within reference ranges for healthy cattle. Within the study population, high pre-transport cortisol and hematocrit were associated with elevated post-transport values (P < 0.01). A 1% increase in shrink during the weaning to loading interval (24 or 48 h) decreased transportation shrink by 0.26 ± 0.04% when average animal-level temperature was greater than 5°C and decreased transportation shrink by 0.11 ± 0.04% when average animal-level temperature was less than 5°C (P < 0.01). We inferred that the study results support future investigation of the extension of in-transit microclimate as a risk factor for post-transport treatment for disease. The study also provided correction factors for estimating in-transit microclimate that could assist in evaluation of transportation management and decisions affecting profitability and calf welfare.

  15. Low-Temperature Friction-Stir Welding of 2024 Aluminum

    NASA Technical Reports Server (NTRS)

    Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.

    1998-01-01

    Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).

  16. Temporal and spatial variation in personal ambient temperatures for outdoor working populations in the southeastern USA

    NASA Astrophysics Data System (ADS)

    Sugg, Margaret M.; Fuhrmann, Christopher M.; Runkle, Jennifer D.

    2018-05-01

    Excessive ambient temperature exposure can result in significant morbidity and mortality, especially among vulnerable occupational groups like outdoor workers. Average temperatures in the USA are projected to increase in frequency and intensity, placing future worker populations at greater risk for unhealthy levels of exposure. Unlike previous research focused on aggregate-level temperature exposures from in situ weather station data, this study will measure location-based personal ambient temperatures (PAT) at the individual-level by piloting the use of wearable sensor technology. A total of 66 outdoor workers in three geographically and climatologically diverse regions in the Southeast USA were continuously sampled during the workday for a 1-week period throughout July 11 to August 8 2016. Results indicate significant worker variation in temperature exposure within and between study locations; with PAT characterized by less pronounced variability as workers moved between indoor and outdoor environments. Developed land covers, a factor often associated with higher temperatures, were poorly correlated with PAT. Future analysis should focus on a worker's physiological response to PAT and mapping of spatial patterns of PAT for a larger worker population to produce innovative and targeted heat prevention programs.

  17. Suicide and Ambient Temperature in East Asian Countries: A Time-Stratified Case-Crossover Analysis

    PubMed Central

    Kim, Yoonhee; Honda, Yasushi; Guo, Yue Leon; Chen, Bing-Yu; Woo, Jong-Min; Ebi, Kristie L.

    2015-01-01

    Background A limited number of studies suggest that ambient temperature contributes to suicide; these studies typically focus on a single nation and use temporally and spatially aggregated data. Objective We evaluated the association between ambient temperature and suicide in multiple cities in three East Asian countries. Methods A time-stratified case-crossover method was used to explore the relationship between temperature and suicide, adjusting for potential time-varying confounders and time-invariant individual characteristics. Sex- and age-specific associations of temperature with suicide were estimated, as were interactions between temperature and these variables. A random-effects meta-analysis was used to estimate country-specific pooled associations of temperature with suicide. Results An increase in temperature corresponding to half of the city-specific standard deviation was positively associated with suicide in most cities, although average suicide rates varied substantially. Pooled country-level effect estimates were 7.8% (95% CI: 5.0, 10.8%) for a 2.3°C increase in ambient temperature in Taiwan, 6.8% (95% CI: 5.4, 8.2%) for a 4.7°C increase in Korea, and 4.5% (95% CI: 3.3, 5.7%) for a 4.2°C increase in Japan. The association between temperature and suicide was significant even after adjusting for sunshine duration; the association between sunshine and suicide was not significant. The associations were greater among men than women in 12 of the 15 cities although not significantly so. There was little evidence of a consistent pattern of associations with age. In general, associations were strongest with temperature on the same day or the previous day, with little evidence of associations with temperature over longer lags (up to 5 days). Conclusions We estimated consistent positive associations between suicide and elevated ambient temperature in three East Asian countries, regardless of country, sex, and age. Citation Kim Y, Kim H, Honda Y, Guo YL, Chen BY, Woo JM, Ebi KL. 2016. Suicide and ambient temperature in East Asian countries: a time-stratified case-crossover analysis. Environ Health Perspect 124:75–80; http://dx.doi.org/10.1289/ehp.1409392 PMID:26069051

  18. Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa.

    PubMed

    Kapwata, Thandi; Gebreslasie, Michael T; Mathee, Angela; Wright, Caradee Yael

    2018-05-10

    Climate change has resulted in rising temperature trends which have been associated with changes in temperature extremes globally. Attendees of Conference of the Parties (COP) 21 agreed to strive to limit the rise in global average temperatures to below 2 °C compared to industrial conditions, the target being 1.5 °C. However, current research suggests that the African region will be subjected to more intense heat extremes over a shorter time period, with projections predicting increases of 4⁻6 °C for the period 2071⁻2100, in annual average maximum temperatures for southern Africa. Increased temperatures may exacerbate existing chronic ill health conditions such as cardiovascular disease, respiratory disease, cerebrovascular disease, and diabetes-related conditions. Exposure to extreme temperatures has also been associated with mortality. This study aimed to consider the relationship between temperatures in indoor and outdoor environments in a rural residential setting in a current climate and warmer predicted future climate. Temperature and humidity measurements were collected hourly in 406 homes in summer and spring and at two-hour intervals in 98 homes in winter. Ambient temperature, humidity and windspeed were obtained from the nearest weather station. Regression models were used to identify predictors of indoor apparent temperature (AT) and to estimate future indoor AT using projected ambient temperatures. Ambient temperatures will increase by a mean of 4.6 °C for the period 2088⁻2099. Warming in winter was projected to be greater than warming in summer and spring. The number of days during which indoor AT will be categorized as potentially harmful will increase in the future. Understanding current and future heat-related health effects is key in developing an effective surveillance system. The observations of this study can be used to inform the development and implementation of policies and practices around heat and health especially in rural areas of South Africa.

  19. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Development of thermal models of footwear using finite element analysis.

    PubMed

    Covill, D; Guan, Z W; Bailey, M; Raval, H

    2011-03-01

    Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.

  1. Impact of patient and environmental factors on capillary refill time in adults.

    PubMed

    Anderson, Bronwyn; Kelly, Anne-Maree; Kerr, Debra; Clooney, Megan; Jolley, Damien

    2008-01-01

    Capillary refill time (CRT) has been taught as a rapid indicator of circulatory status. The aim of this study was to define normal CRT in the Australian context and the environmental, patient, and drug factors that influence it. This prospective observational study included healthy adults at hospital clinics, workplaces, universities, and community groups. Volunteer participants provided their age, sex, ethnic group, and use of hypertensive or cardiac medications. Capillary refill time, ambient temperature, and patient temperature were recorded in a standard manner. Data were analyzed using descriptive statistics and regression analyses. The 95th percentile was used to define the upper limit of normal. One thousand participants were included; 57% were women, 90% were white, and 21% were taking cardiac medications. The median CRT was 1.9 seconds (95th percentile, 3.5 seconds). The CRT increased 3.3% for each additional decade of age. The CRT was also on average 7% lower in men than in women. The CRT decreased by 1.2% per degree-Celsius rise of ambient temperature, independently of patient's temperature, and decreased by 5% for each degree-Celsius rise in patient temperature, independently of ambient temperature. On multivariant analysis, age, sex, ambient temperature, and patient temperature were statistically significant predictors of CRT, but together explain only 8% of the observed variability. Capillary refill time varies with environmental and patient factors, but these account for only a small proportion of the variability observed. Its suitability as a reliable clinical test is doubtful.

  2. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States.

    PubMed

    Yuksel, Tugce; Michalek, Jeremy J

    2015-03-17

    We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.

  3. The effect of climate variability on urinary stone attacks: increased incidence associated with temperature over 18 °C: a population-based study.

    PubMed

    Park, Hyoung Keun; Bae, Sang Rak; Kim, Satbyul E; Choi, Woo Suk; Paick, Sung Hyun; Ho, Kim; Kim, Hyeong Gon; Lho, Yong Soo

    2015-02-01

    The aim of this study was to evaluate the effect of seasonal variation and climate parameters on urinary tract stone attack and investigate whether stone attack is increased sharply at a specific point. Nationwide data of total urinary tract stone attack numbers per month between January 2006 and December 2010 were obtained from the Korean Health Insurance Review and Assessment Service. The effects of climatic factors on monthly urinary stone attack were assessed using auto-regressive integrated moving average (ARIMA) regression method. A total of 1,702,913 stone attack cases were identified. Mean monthly and monthly average daily urinary stone attack cases were 28,382 ± 2,760 and 933 ± 85, respectively. The stone attack showed seasonal trends of sharp incline in June, a peak plateau from July to September, and a sharp decline after September. The correlation analysis showed that ambient temperature (r = 0.557, p < 0.001) and relative humidity (r = 0.513, p < 0.001) were significantly associated with urinary stone attack cases. However, after adjustment for trends and seasonality, ambient temperature was the only climate factor associated with the stone attack cases in ARIMA regression test (p = 0.04). Threshold temperature was estimated as 18.4 °C. Risk of urinary stone attack significantly increases 1.71% (1.02-2.41 %, 95% confidence intervals) with a 1 °C increase of ambient temperature above the threshold point. In conclusion, monthly urinary stone attack cases were changed according to seasonal variation. Among the climates variables, only temperature had consistent association with stone attack and when the temperature is over 18.4 °C, urinary stone attack would be increased sharply.

  4. Use of Temperature, Humidity, and Slaughter Condemnation Data to Predict Increases in Transport Losses in Three Classes of Swine and Resulting Foregone Revenue.

    PubMed

    Peterson, Erik; Remmenga, Marta; Hagerman, Amy D; Akkina, Judy E

    2017-01-01

    The United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) conducts weekly surveillance of slaughter condemnation rates to provide early warning for emerging diseases and to monitor health trends in swine. Swine deaths in-transit are an animal welfare concern and represent lost revenue for the swine industry. This retrospective observational study used ambient temperature and humidity data from weather stations near United States slaughter plants collected from 2010 to 2015 to predict the incidence and risk of death among swine in-transit and just prior to slaughter. The risk of death for market swine at a heat index (HI), which combines the effects of temperature and humidity, indicating moderately hot weather conditions between 85 and 92°F was 1.37 times greater than that of the baseline temperature range of 54-79°F. The risk of death for cull sows at an HI between 85 and 92°F was 1.93 times greater than that of average temperatures ranging from 54 to 79°F. Roaster swine (weigh < 220 lbs and often used for whole carcass roasting), however, had 0.80 times the risk when the HI was 85-92°F compared to a baseline temperature of 54-79°F. The risk of death for roaster swine at a minimum temperature between 40 and 50°F was 1.21 times greater than that of average temperatures ranging from 54 to 79°F. The risk of death for market swine at a minimum temperature range of 40-50°F was 0.97 times that of average temperatures ranging from 54 to 79°F. And for cull sows, the risk of death at a minimum temperature range of 40-50°F was 0.81 times the risk at the average temperature ranging from 54 to 79°F. Across the study period, cumulative foregone revenue, or revenue not realized due to swine condemnations, for all swine was $18.6 million and $4.3 million for cold temperatures and high HI ranges above the baseline, respectively. Marginal foregone revenue per hog in hotter months is higher due to seasonal peaks in swine prices. As a result of this study, the USDA-APHIS swine condemnation surveillance can incorporate weekly estimated HI values and ambient temperature data for slaughter establishments to provide additional information for analysts investigating signals (noteworthy increases above baseline) for "dead" condemnations. This study suggests that current mitigation measures are often not sufficient to prevent swine deaths due to ambient temperature extremes.

  5. Photoperiod and fur lengths in the arctic fox ( Alopex lagopus L.)

    NASA Astrophysics Data System (ADS)

    Underwood, L. S.; Reynolds, Patricia

    1980-03-01

    Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.

  6. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  7. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    PubMed

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P < 0.01) for all traits. Narrower ranges of ADT3 increased the occurrence of MM, STB, and PDL (P < 0.01), while higher PEAK3 increased the occurrence of MM, STB, PDL, and LBA (P < 0.001). To reduce the risk of reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  8. Seasonality in hospital admissions of Crimean-Congo hemorrhagic fever and its dependence on ambient temperature-empirical evidence from Pakistan.

    PubMed

    Abbas, Tariq; Xu, Zhiwei; Younus, Muhammad; Qayyum, Abdul; Riaz, Muhammad T

    2017-11-01

    Crimean-Congo hemorrhagic fever (CCHF) has been reported from all provinces of Pakistan. Little is known about the seasonal variations in the disease and its association with weather conditions. In this study, we explored time-series data about monthly number of CCHF admissions (2007-2010) in three public sector hospitals of Quetta-the capital city of Baluchistan province of Pakistan. Cosinor analysis was carried out to investigate seasonality in the data. To assess the effect of average monthly ambient temperature (°C) on disease, a distributed lag nonlinear model (DLNM) was applied. Cosinor model revealed statistically significant seasonality in monthly number of CCHF patients admitted to the study hospitals. The estimated amplitude was 3.24 cases per month with phase in mid-June and low point in mid-December. DLNM confirmed nonlinear and delayed effect of temperature on hospital admissions. At a lag of 2 months, the cumulative relative risk was more than 1 at temperature at 18.37 °C and above. In addition, relative risk was significantly high at 60th (21.98 °C), 70th (24.50 °C), 80th (27.33 °C), and 90th (29.25 °C) percentiles of temperature (relative to median value, 18.37 °C). Inclusion of Eid-al-Adha as a predictor did not improve the fitness of DLNM. Based on our analysis, we concluded significant seasonality in CCHF hospital admissions. Our findings also suggested average monthly ambient temperature (°C) as a significant predictor of CCHF hospitalizations. DLNM presented in this study may be improved with inclusion of other possible time-varying predictors particularly meteorological conditions of this region.

  9. Long-Term Ambient Temperature and Externalizing Behaviors in Adolescents.

    PubMed

    Younan, Diana; Li, Lianfa; Tuvblad, Catherine; Wu, Jun; Lurmann, Fred; Franklin, Meredith; Berhane, Kiros; McConnell, Rob; Wu, Anna H; Baker, Laura A; Chen, Jiu-Chiuan

    2018-05-21

    The climate-violence relationship has been debated for decades, and yet most of the supportive evidence came from ecological or cross-sectional analyses with very limited long-term exposure data. We conducted an individual-level, longitudinal study to investigate the association between ambient temperature and externalizing behaviors of urban-dwelling adolescents. Participants (n = 1,287) of the Risk Factors for Antisocial Behavior Study were examined in 2000-2012 (aged 9-18 years) with repeated assessments of their externalizing behaviors (aggression; delinquency). Ambient temperature data were obtained from the local Meteorological Information System. In adjusted multi-level models, aggressive behaviors significantly increased with rising average temperatures (per 1°C-increment) in preceding 1-3 years (β = 0.23, 95% CI: 0.00, 0.46; β = 0.35, 95% CI: 0.06, 0.63; β = 0.41, 95% CI: 0.08, 0.74; respectively), equivalent to 1.5-3 years of delay in age-related behavioral maturation. These associations were slightly stronger among girls and families of lower socioeconomic status, but greatly diminished in neighborhoods with higher greenspace. No significant associations were found with delinquency. Our study provides the first individual-level epidemiologic evidence supporting the adverse association of long-term ambient temperature and aggression. Similar approaches to studying meteorology and violent crimes may further inform scientific debates on climate change and collective violence.

  10. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    PubMed

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  11. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113±8 °C)) is recommended for methanol...

  12. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  13. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113 ±8 °C)) is recommended for methanol...

  14. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  15. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  16. Extreme climatic events constrain space use and survival of a ground-nesting bird.

    PubMed

    Tanner, Evan P; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A; Dahlgren, David K; Orange, Jeremy P

    2017-05-01

    Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad-scale patterns of abiotic and biotic conditions affect organisms' distributions and population fluctuations, discrete events may be important drivers of space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently, a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species (Colinus virginianus; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 to 38 °C) through a maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (<-15 °C and >35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6%, respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily a habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are average and broad-scale conditions as typically measured in ecological studies. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-01

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  18. A rotary drum dryer for palm sterilization: preliminary study of flow and heat transfer using CFD

    NASA Astrophysics Data System (ADS)

    Hanifarianty, S.; Legwiriyakul, A.; Alimalbari, A.; Nuntadusit, C.; Theppaya, T.; Wae-Hayee, M.

    2018-01-01

    Preliminary study in this article, the flow and the heat transfer of rotary drum dryer were simulated by using Computational Fluid Dynamics (CFD). A 3D modelling of rotary drum dryer including ambient air was created by considering transient simulation. The temperature distributions on rotary drum dryer surfaces of experimental setup during heating detected by using infrared camera were given to be boundary conditions of modelling. The average temperature at the surface of the drum lids was 80°C, and the average temperature on the heated surface of the drum was 130°C. The results showed that the internal temperature of air in drum modelling was increased relating on time dependent. The final air temperature inside the drum modelling was similar to the measurement results.

  19. Seasonality in hospital admissions of Crimean-Congo hemorrhagic fever and its dependence on ambient temperature—empirical evidence from Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, Tariq; Xu, Zhiwei; Younus, Muhammad; Qayyum, Abdul; Riaz, Muhammad T.

    2017-11-01

    Crimean-Congo hemorrhagic fever (CCHF) has been reported from all provinces of Pakistan. Little is known about the seasonal variations in the disease and its association with weather conditions. In this study, we explored time-series data about monthly number of CCHF admissions (2007-2010) in three public sector hospitals of Quetta—the capital city of Baluchistan province of Pakistan. Cosinor analysis was carried out to investigate seasonality in the data. To assess the effect of average monthly ambient temperature (°C) on disease, a distributed lag nonlinear model (DLNM) was applied. Cosinor model revealed statistically significant seasonality in monthly number of CCHF patients admitted to the study hospitals. The estimated amplitude was 3.24 cases per month with phase in mid-June and low point in mid-December. DLNM confirmed nonlinear and delayed effect of temperature on hospital admissions. At a lag of 2 months, the cumulative relative risk was more than 1 at temperature at 18.37 °C and above. In addition, relative risk was significantly high at 60th (21.98 °C), 70th (24.50 °C), 80th (27.33 °C), and 90th (29.25 °C) percentiles of temperature (relative to median value, 18.37 °C). Inclusion of Eid-al-Adha as a predictor did not improve the fitness of DLNM. Based on our analysis, we concluded significant seasonality in CCHF hospital admissions. Our findings also suggested average monthly ambient temperature (°C) as a significant predictor of CCHF hospitalizations. DLNM presented in this study may be improved with inclusion of other possible time-varying predictors particularly meteorological conditions of this region.

  20. The association of ambient temperature with incidence of cardiac arrhythmias in a short timescale

    NASA Astrophysics Data System (ADS)

    Kim, Jayeun; Kim, Ho

    2017-11-01

    The body response time and an association between the exposure to outdoor temperature and cardiac arrhythmia were not fully understood. Hence, we further investigated the association between ambient temperature and the exacerbations of arrhythmia symptoms on a short timescale using the emergency department (ED) visit data. We used a total of 17,088 arrhythmia-related ED visits in Seoul, from 2008 to 2011 and fitted the model adjusting for other meteorological variables and air pollutants under the case-crossover analysis with the same year-month time stratification. The association was presented as an odds ratio (OR) with a 95% confidence interval (CI) by a 5 °C decrease in the ambient temperature. The delay time (h) between exposure and the onset of arrhythmia exacerbation was considered with time blocks for every 3 h as 1-3 h, up to 118-120 h; and daily lags (1 day), from 25-48 h to 97-120 h, as a multi-time average of exposures. The overall association was increased at lag 4-6 h and the increased association was statistically significant at lag 40-42 h (OR 1.027, 95% CI 1.003-1.051) and the adverse association continued at 97-120 h (OR 1.053, 95% CI 1.027-1.080). However, the delay of several days between ambient temperature and body response should be further investigated considering the modification according to varied demographic characteristics or different environmental circumstances.

  1. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing

    PubMed Central

    Wright, Caradee Y.; Street, Renée A.; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N.; Mathee, Angela

    2017-01-01

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’. PMID:28067816

  2. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing.

    PubMed

    Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela

    2017-01-06

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.

  3. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    PubMed

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, 2-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  4. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    NASA Astrophysics Data System (ADS)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-02-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia (P < 0.0001) and higher hematocrit and red blood cell counts (P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant (P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  5. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    NASA Astrophysics Data System (ADS)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-06-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia ( P < 0.0001) and higher hematocrit and red blood cell counts ( P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant ( P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  6. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures.

    PubMed

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-06-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia (P < 0.0001) and higher hematocrit and red blood cell counts (P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant (P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  7. Measurement of Ambient Ammonia and Surface-level Meteorological Forcing Variables near an Agricultural Emission Source

    NASA Astrophysics Data System (ADS)

    Myles, L.; Heuer, M. W.

    2012-12-01

    Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.

  8. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  9. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  10. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  11. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  12. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study.

    PubMed

    Zanobetti, Antonella; Luttmann-Gibson, Heike; Horton, Edward S; Cohen, Allison; Coull, Brent A; Hoffmann, Barbara; Schwartz, Joel D; Mittleman, Murray A; Li, Yongsheng; Stone, Peter H; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, Diane R

    2014-03-01

    Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Baseline BAD was negatively associated with particle pollution, including home/trip-integrated BC (-0.02 mm; 95% CI: -0.04, -0.003, for a 0.28 μg/m3 increase in BC), OC (-0.08 mm; 95% CI: -0.14, -0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B, Schwartz JD, Mittleman MA, Li Y, Stone PH, de Souza C, Lamparello B, Koutrakis P, Gold DR. 2014. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect 122:242-248; http://dx.doi.org/10.1289/ehp.1206136.

  13. Effects of environmental variables on surface temperature of breeding adult female northern elephant seals, Mirounga angustirostris, and pups.

    PubMed

    Codde, Sarah A; Allen, Sarah G; Houser, Dorian S; Crocker, Daniel E

    2016-10-01

    Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (T s ) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum T s of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean T s until approximately 26°C and then declined. The T s of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2°C; pup mean 14.2±0.2°C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate. Published by Elsevier Ltd.

  14. Environmental physiology of a small marsupial inhabiting arid floodplains.

    PubMed

    Warnecke, L; Cooper, C E; Geiser, F; Withers, P C

    2010-09-01

    Giles' planigale (Planigale gilesi) is among the smallest extant marsupials and inhabits deep soil cracks in arid floodplains. We examined whether its physiology shows specific adaptations to its extreme habitat. Metabolic rate, body temperature, evaporative water loss and thermal conductance were measured for eight planigales (average mass 9 g) exposed to four different ambient temperatures ranging from 10 degrees C to 32 degrees C. Water economy and respiratory variables were measured for the first time in this species. All of these standard physiological variables conformed to allometrically-predicted values for a marsupial. All variables were significantly affected by ambient temperature, except tidal volume and dry thermal conductance. Metabolic rate increased substantially at low ambient temperatures, as required to maintain a relatively constant body temperature of about 32-34 degrees C. This increased oxygen demand was accommodated by increased ventilation rather than increased oxygen extraction. Planigales had a comparatively high point of relative water economy of 19.1 degrees C, consistent with their small body size and arid habitat. Torpor reduced energy expenditure by 79% and evaporative water loss by 62%. Our study suggests that torpor use, along with behavioural adaptations, suffice for P. gilesi to live underground in arid habitats without further physiological adaptations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers.

    PubMed

    Kang, H J; Lee, I K; Piao, M Y; Gu, M J; Yun, C H; Kim, H J; Kim, K H; Baik, M

    2016-03-01

    Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean (8.7°C) and minimum (1.0°C) indoor ambient temperatures during P1 were lower (p<0.001) than those (13.0°C and 6.2°C, respectively) during P2. Daily dry matter feed intake in both the concentrate diet and forage groups was higher (p<0.001) during P2 than P1. Average daily weight gain was higher (p<0.001) during P2 (1.38 kg/d) than P1 (1.13 kg/d). Feed efficiency during P2 was higher (p = 0.015) than P1. Blood was collected three times; on March 7, April 4, and May 2. Nonesterified fatty acids (NEFA) were higher on March 7 than April 4 and May 2. Blood cortisol, glucose, and triglyceride concentrations did not differ among months. Blood CD4+, CD8+, and CD4+CD25+ T cell percentages were higher, while CD8+CD25+ T cell percentage was lower, during the colder month of March than during May, suggesting that ambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

  16. Evaluation of the Impact of Ambient Temperatures on Occupational Injuries in Spain.

    PubMed

    Martínez-Solanas, Èrica; López-Ruiz, María; Wellenius, Gregory A; Gasparrini, Antonio; Sunyer, Jordi; Benavides, Fernando G; Basagaña, Xavier

    2018-06-01

    Extreme cold and heat have been linked to an increased risk of occupational injuries. However, the evidence is still limited to a small number of studies of people with relatively few injuries and with a limited geographic extent, and the corresponding economic effect has not been studied in detail. We assessed the relationship between ambient temperatures and occupational injuries in Spain along with its economic effect. The daily number of occupational injuries that caused at least one day of leave and the daily maximum temperature were obtained for each Spanish province for the years 1994-2013. We estimated temperature-injuries associations with distributed lag nonlinear models, and then pooled the results using a multivariate meta-regression model. We calculated the number of injuries attributable to cold and heat, the corresponding workdays lost, and the resulting economic effect. The study included 15,992,310 occupational injuries. Overall, 2.72% [95% confidence interval (CI): 2.44-2.97] of all occupational injuries were attributed to nonoptimal ambient temperatures, with moderate heat accounting for the highest fraction. This finding corresponds to an estimated 0.67 million (95% CI: 0.60-0.73) person-days of work lost every year in Spain due to temperature, or an annual average of 42 d per 1,000 workers. The estimated annual economic burden is €370 million, or 0.03% of Spain's GDP (€2,015). Our findings suggest that extreme ambient temperatures increased the risk of occupational injuries, with substantial estimated health and economic costs. These results call for public health interventions to protect workers in the context of climate change. https://doi.org/10.1289/EHP2590.

  17. Outdoor temperature is associated with serum HDL and LDL.

    PubMed

    Halonen, Jaana I; Zanobetti, Antonella; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel

    2011-02-01

    While exposures to high and low air temperatures are associated with cardiovascular mortality, the underlying mechanisms are poorly understood. The risk factors for cardiovascular disease include high levels of total cholesterol and low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL). We investigated whether temperature was associated with changes in circulating lipid levels, and whether this might explain part of the association with increased cardiovascular events. The study cohort consisted of 478 men in the greater Boston area with a mean age of 74.2 years. They visited the clinic every 3-5 years between 1995 and 2008 for physical examination and to complete questionnaires. We excluded from analyses all men taking statin medication and all days with missing data, resulting in a total of 862 visits. Associations between three temperature variables (ambient, apparent, and dew point temperature) and serum lipid levels (total cholesterol, HDL, LDL, and triglycerides) were studied with linear mixed models that included possible confounders such as air pollution and a random intercept for each subject. We found that HDL decreased -1.76% (95% CI: from -3.17 to -0.32, lag 2 days), and -5.58% (95% CI: from -8.87 to -2.16, moving average of 4 weeks) for each 5°C increase in mean ambient temperature. For the same increase in mean ambient temperature, LDL increased by 1.74% (95% CI: 0.07-3.44, lag 1 day) and 1.87% (95% CI: 0.14-3.63, lag 2 days). These results were also similar for apparent and dew point temperatures. No changes were found in total cholesterol or triglycerides in relation to temperature increase. Changes in HDL and LDL levels associated with an increase in ambient temperature may be among the underlying mechanisms of temperature-related cardiovascular mortality. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Inverse relationship between ambient temperature and admissions for diabetic ketoacidosis and hyperglycemic hyperosmolar state: A 14-year time-series analysis.

    PubMed

    Lu, Chin-Li; Chang, Hsin-Hui; Chen, Hua-Fen; Ku, Li-Jung Elizabeth; Chang, Ya-Hui; Shen, Hsiu-Nien; Li, Chung-Yi

    2016-09-01

    This study aimed to investigate the association of admissions for diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) with ambient temperature and season, respectively in patients with diabetes mellitus (DM), after excluding known co-morbidities that predispose onset of acute hyperglycemia events. This was a time series correlation analysis based on medical claims of 40,084 and 33,947 episodes of admission for DKA and HHS, respectively over a 14-year period in Taiwan. These episodes were not accompanied by co-morbidities known to trigger incidence of DKA and HHS. Monthly temperature averaged from 19 meteorological stations across Taiwan was correlated with monthly rate of admission for DKA or HHS, respectively, using the 'seasonal Autoregressive Integrated Moving Average' (seasonal ARIMA) regression method. There was an inverse relationship between ambient temperature and rates of admission for DKA (β=-0.035, p<0.001) and HHS (β=-0.016, p<0.001), despite a clear decline in rates of DKA/HHS admission in the second half of the study period. We also noted that winter was significantly associated with increased rates of both DKA (β=0.364, p<0.001) and HHS (β=0.129, p<0.05) admissions, as compared with summer. On the other hand, fall was associated with a significantly lower rate of HHS admission (β=-0.016, p<0.05). Further stratified analyses according to sex and age yield essentially similar results. It is suggested that meteorological data can be used to raise the awareness of acute hyperglycemic complication risk for both patients with diabetes and clinicians to further avoid the occurrence of DKA and HHS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  20. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  1. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  2. Time-dependent local and average structural evolution of δ-phase 239Pu-Ga alloys

    DOE PAGES

    Smith, Alice I.; Page, Katharine L.; Siewenie, Joan E.; ...

    2016-08-05

    Here, plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase 239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.

  3. Tympanic temperature in confined beef cattle exposed to excessive heat load

    NASA Astrophysics Data System (ADS)

    Mader, T. L.; Gaughan, J. B.; Johnson, L. J.; Hahn, G. L.

    2010-11-01

    Angus crossbred yearling steers ( n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.

  4. Too hot to carry on? Disinclination to persist at a task in a warm office environment.

    PubMed

    Syndicus, Marc; Wiese, Bettina S; van Treeck, Christoph

    2018-04-01

    We investigated the effect of an elevated ambient temperature on performance in a persistence task. The task involved the coding of incorrect symbols and participants were free to decide how long to spend performing this task. Applying a between-subject design, we tested 125 students in an office-like environment in one of the three temperature conditions. The comfort condition (Predicted Mean Vote [PMV] = 0.01) featured an average air temperature of 24 °C. The elevated ambient temperature condition was 28 °C (PMV = 1.17). Condition three employed an airstream of approximately 0.8 m/s, intended to compensate for performance decrements at the elevated air temperature (28 °C, PMV = 0.13), according to Fanger's thermal comfort equation. Participants in the warm condition were significantly less persistent compared with participants in the control and compensation conditions. As predicted by the thermal comfort equation, the airstream seemed to compensate for the higher temperature. Participants' persistence in the compensation and comfort conditions did not differ. Practitioner Summary: A laboratory experiment involving a simulated office environment and three ambient temperature conditions (24 °C, 28 °C and 28 °C plus airstream) showed that persistence at a task is significantly impaired at 28 °C. An airstream of 0.8 m/s at 28 °C compensated for the disinclination to persist with the task.

  5. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting.

    PubMed

    Zhou, Hai-Bin; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Chen, Jun; Pan, Tian-Hao; Liu, Hong-Tao; Gu, Run-Yao

    2014-11-01

    Reducing moisture in sewage sludge is one of the main goals of sewage sludge composting and biodrying. A mathematical model was used to simulate the performance of water removal under different aeration strategies. Additionally, the correlations between temperature, moisture content (MC), volatile solids (VS), oxygen content (OC), and ambient air temperature and aeration strategies were predicted. The mathematical model was verified based on coefficients of correlation between the measured and predicted results of over 0.80 for OC, MC, and VS, and 0.72 for temperature. The results of the simulation showed that water reduction was enhanced when the average aeration rate (AR) increased to 15.37 m(3) min(-1) (6/34 min/min, AR: 102.46 m(3) min(-1)), above which no further increase was observed. Furthermore, more water was removed under a higher on/off time of 7/33 (min/min, AR: 87.34 m(3) min(-1)), and when ambient air temperature was higher. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Carcass and meat quality traits of rabbits under heat stress.

    PubMed

    Zeferino, C P; Komiyama, C M; Fernandes, S; Sartori, J R; Teixeira, P S S; Moura, A S A M T

    2013-03-01

    Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and yellowness diminished as ambient temperature increased, whereas cooking loss was linearly elevated with ambient temperature. Meat color traits revealed paler meat in the purebreds, but no differences in instrumental texture properties and water-holding capacity between genetic groups. Purebred rabbits were less susceptible to heat stress than the crossbreds. Heat stress resulted in lower slaughter and carcass weights and proportional reductions of organ weights, which contributed to a higher carcass yield. Moreover, it exerted a small, but negative, effect on meat quality traits.

  7. Neural network modelling of thermal stratification in a solar DHW storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geczy-Vig, P.; Farkas, I.

    2010-05-15

    In this study an artificial neural network (ANN) model is introduced for modelling the layer temperatures in a storage tank of a solar thermal system. The model is based on the measured data of a domestic hot water system. The temperatures distribution in the storage tank divided in 8 equal parts in vertical direction were calculated every 5 min using the average 5 min data of solar radiation, ambient temperature, mass flow rate of collector loop, load and the temperature of the layers in previous time steps. The introduced ANN model consists of two parts describing the load periods andmore » the periods between the loads. The identified model gives acceptable results inside the training interval as the average deviation was 0.22 C during the training and 0.24 C during the validation. (author)« less

  8. Trailer microclimate during commercial transportation of feeder cattle and relationship to indicators of cattle welfare.

    PubMed

    Goldhawk, C; Crowe, T; Janzen, E; González, L A; Kastelic, J; Pajor, E; Schwartzkopf-Genswein, K S

    2014-11-01

    Nineteen loads of commercial feeder cattle (BW 376 ± 39 kg, mean ± SD) transported for 18 ± 4.5 h in summer and winter seasons were used to collect data on internal temperature and humidity conditions in the deck and belly compartment of pot-bellied trailers and their relationship with shrink, cortisol, and morbidity. Measurements of temperature or humidity at ceiling or animal level did not vary with transportation factors. Temperature and humidity ratio was greater at animal-level than ambient conditions during nonhighway travel and stationary periods (P < 0.01). During the 3 time periods evaluated within journeys, there was a larger difference between animal-level and ambient conditions during the winter than during the summer (P < 0.01); however, this difference was not associated with other transport factors (P > 0.05). Evening loads (1700 and 2100 h) experienced more shrink in the summer than in the winter (11.2 ± 0.5 vs. 9.0 ± 0.5% of BW; P = 0.03). A 1°C increase in difference between average animal-level temperature in transit and the mean ambient temperature during the 10 d before transport was associated with a 0.11 ± 0.03% of BW increase in shrink (P < 0.01) and 0.006 ± 0.002 ng/mL increase in posttransport cortisol concentration (P = 0.05). Animal-level temperature-humidity index (THI) events (consecutive observations of THI greater than 78°F) were more likely to last for longer than 1 h when the trailer was stationary vs. traveling (mean = 1.8, confidence level 95% = 1.33, 2.52). During THI events at animal level, the disagreement with ambient temperature regarding THI classification was lower when the vehicle was traveling vs. stationary (95.5 ± 0.01% vs. 99.7 ± 0.002% of THI event in disagreement; P < 0.01) and was greatest in events less than 1 h (99.8 ± 0.0% vs. 91.7 ± 0.03% of THI event in disagreement; P < 0.01). The average magnitude of the difference during these events was 11.4 ± 7.6°F and was not affected by transportation factors (P > 0.05). Despite association between indicators of calf welfare and microclimate, all cattle arrived in good condition and there was 0.96% treatment rate within the first 30 d after arrival. Management and auditing decisions related to transportation of feeder cattle should consider the relationship between animal-level and ambient conditions and conditions before transportation. Under the commercial conditions of the current study, the transportation process did not appear to cause distress according to the dimensions of animal welfare that were assessed.

  9. Brachial Artery Responses to Ambient Pollution, Temperature, and Humidity in People with Type 2 Diabetes: A Repeated-Measures Study

    PubMed Central

    Luttmann-Gibson, Heike; Horton, Edward S.; Cohen, Allison; Coull, Brent A.; Hoffmann, Barbara; Schwartz, Joel D.; Mittleman, Murray A.; Li, Yongsheng; Stone, Peter H.; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, Diane R.

    2014-01-01

    Background: Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. Objectives: In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Methods: Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Results: Baseline BAD was negatively associated with particle pollution, including home/trip–integrated BC (–0.02 mm; 95% CI: –0.04, –0.003, for a 0.28 μg/m3 increase in BC), OC (–0.08 mm; 95% CI: –0.14, –0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Conclusion: Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Citation: Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B, Schwartz JD, Mittleman MA, Li Y, Stone PH, de Souza C, Lamparello B, Koutrakis P, Gold DR. 2014. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect 122:242–248; http://dx.doi.org/10.1289/ehp.1206136 PMID:24398072

  10. Temperature environment for 9975 packages stored in KAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. Themore » long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.« less

  11. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  12. Estimation of ring tensile properties of steam oxidized Zircaloy-4 fuel cladding under simulated LOCA condition

    NASA Astrophysics Data System (ADS)

    Shriwastaw, R. S.; Sawarn, Tapan K.; Banerjee, Suparna; Rath, B. N.; Dubey, J. S.; Kumar, Sunil; Singh, J. L.; Bhasin, Vivek

    2017-09-01

    The present study involves the estimation of ring tensile properties of Indian Pressurised Heavy Water Reactor (IPHWR) fuel cladding made of Zircaloy-4, subjected to experiments under a simulated loss-of-coolant-accident (LOCA) condition. Isothermal steam oxidation experiments were conducted on clad tube specimens at temperatures ranging from 900 to 1200 °C at an interval of 50 °C for different soaking periods with subsequent quenching in water at ambient temperature. The specimens, which survived quenching, were then subjected to ambient temperature ring tension test (RTT). The microstructure was correlated with the mechanical properties. The yield strength (YS) and ultimate tensile strength (UTS) increased initially with rise in oxidation temperature and time duration but then decreased with further increase in oxidation. Ductility is adversely affected with rising oxidation temperature and longer holding time. A higher fraction of load bearing phase and lower oxygen content in it ensures higher residual ductility. Cladding shows almost zero ductility behavior in RIT when load bearing phase fraction is less than 0.72 and its average oxygen concentration is greater than 0.58 wt%.

  13. Low temperature sodium-beta battery

    DOEpatents

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  14. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity

    PubMed Central

    Nguyen, Jennifer L.; Schwartz, Joel; Dockery, Douglas W.

    2013-01-01

    Introduction Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. Methods and Results The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 - April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is non-linear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). AH exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Conclusions Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. PMID:23710826

  15. Meteorology and the physical activity of the elderly: the Nakanojo Study

    NASA Astrophysics Data System (ADS)

    Togo, Fumiharu; Watanabe, Eiji; Park, Hyuntae; Shephard, Roy J.; Aoyagi, Yukitoshi

    2005-11-01

    Seasonal changes in ambient temperature and day length are thought to modify habitual physical activity. However, relationships between such environmental factors and the daily physical activity of older populations remain unclear. The present study thus examined associations between meteorological variables and the number of steps taken per day by elderly Japanese. Continuous pedometer counts over a 450-day period were collected from 41 healthy subjects (age 71±4 years), none of whom engaged in any specific occupational activity or exercise programs. An electronic physical activity monitor was attached to a belt worn on the left side of the body throughout the day. Daily values for mean ambient temperature, duration of bright sunshine, mean wind speed, mean relative humidity, and precipitation were obtained from local meteorological stations. The day length was calculated from times of sunrise and sunset. Based on the entire group of 41 subjects (ensemble average), a subject’s step count per day decreased exponentially with increasing precipitation (r2=0.19, P<0.05). On days when precipitation was <1 mm, the step count increased with the mean ambient temperature over the range of 2 to 17°C, but decreased over the range 17 29°C. The daily step count also tended to increase with day length, but the regression coefficient of determination attributable to step count and mean ambient temperature (r2=0.32, P<0.05) exceeded that linking the step count and day length (r2=0.13, P<0.05). The influence of other meteorological factors was small (r2≤0.03) and of little practical significance. On days when precipitation is <1 mm, physical activity is associated more strongly with ambient temperature than with day length, duration of bright sunshine, wind speed, or relative humidity. Our findings have practical implications for health promotion efforts designed to increase the physical activity of elderly people consistently in the face of seasonal variations in environmental conditions.

  16. Increasing ambient temperature reduces emotional well-being.

    PubMed

    Noelke, Clemens; McGovern, Mark; Corsi, Daniel J; Jimenez, Marcia P; Stern, Ari; Wing, Ian Sue; Berkman, Lisa

    2016-11-01

    This study examines the impact of ambient temperature on emotional well-being in the U.S. population aged 18+. The U.S. is an interesting test case because of its resources, technology and variation in climate across different areas, which also allows us to examine whether adaptation to different climates could weaken or even eliminate the impact of heat on well-being. Using survey responses from 1.9 million Americans over the period from 2008 to 2013, we estimate the effect of temperature on well-being from exogenous day-to-day temperature variation within respondents' area of residence and test whether this effect varies across areas with different climates. We find that increasing temperatures significantly reduce well-being. Compared to average daily temperatures in the 50-60°F (10-16°C) range, temperatures above 70°F (21°C) reduce positive emotions (e.g. joy, happiness), increase negative emotions (e.g. stress, anger), and increase fatigue (feeling tired, low energy). These effects are particularly strong among less educated and older Americans. However, there is no consistent evidence that heat effects on well-being differ across areas with mild and hot summers, suggesting limited variation in heat adaptation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    PubMed

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  18. The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study.

    PubMed

    Chen, Gongbo; Zhang, Wenyi; Li, Shanshan; Zhang, Yongming; Williams, Gail; Huxley, Rachel; Ren, Hongyan; Cao, Wei; Guo, Yuming

    2017-01-01

    There is good evidence that air pollution is a risk factor for adverse respiratory and vascular health outcomes. However, data are limited as to whether ambient fine particles contribute to the transmission of influenza and if so, how the association is modified by weather conditions. We examined the relationship between ambient PM 2.5 and influenza incidence at the national level in China and explored the associations at different temperatures. Daily data on concentrations of particulate matter with aerodynamic diameter<2.5μm (PM 2.5 ) and influenza incidence counts were collected in 47 Chinese cities. A Poisson regression model was used to estimate the city-specific PM 2.5 -influenza association, after controlling for potential confounders. Then, a random-effect meta-analysis was used to pool the effects at national level. In addition, stratified analyses were performed to examine modification effects of ambient temperature. For single lag models, the highest effect of ambient PM 2.5 on influenza incidence appeared at lag day 2, with relative risk (RR) of 1.015 (95% confidence interval (CI): 1.004, 1.025) associated with a 10μg/m 3 increase in PM 2.5 . For moving average lag models, the significant association was found at lag 2-3days, with RR of 1.020 (95% CI: 1.006, 1.034). The RR of influenza transmission associated with PM 2.5 was higher for cold compared with hot days. Overall, 10.7% of incident influenza cases may result from exposure to ambient PM 2.5 . Ambient PM 2.5 may increase the risk of exposure to influenza in China especially on cooler days. Control measures to reduce PM 2.5 concentrations could potentially also be of benefit in lowering the risk of exposure and subsequent transmission of influenza in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 40 CFR 86.107-98 - Sampling and analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... automatic sealing opening of the boot during fueling. There shall be no loss in the gas tightness of the... system (recorder and sensor) shall have an accuracy of ±3 °F (±1.7 °C). The recorder (data processor... ambient temperature sensors, connected to provide one average output, located 3 feet above the floor at...

  20. 40 CFR 86.107-98 - Sampling and analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... automatic sealing opening of the boot during fueling. There shall be no loss in the gas tightness of the... system (recorder and sensor) shall have an accuracy of ±3 °F (±1.7 °C). The recorder (data processor... ambient temperature sensors, connected to provide one average output, located 3 feet above the floor at...

  1. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  2. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  3. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  4. [Time-series analysis of ambient PM₁₀ pollution on residential mortality in Beijing].

    PubMed

    Xue, Jiang-li; Wang, Qi; Cai, Yue; Zhou, Mai-geng

    2012-05-01

    To explore the short-term impact of ambient PM(10) on daily non-accidental death, cardiovascular and respiratory death of residents in Beijing. Mortality data of residents in Beijing during 2006 to 2009 were obtained from public health surveillance and information service center of Chinese Center for Disease Control and Prevention, contemporaneous data of average daily air concentration of PM(10), SO(2), NO(2) were obtained from Beijing Environment Protection Bureau (year 2005 - 2006) and public website of Beijing environmental protection (year 2007 - 2009), respectively, contemporaneous meteorological data were obtained from china meteorological data sharing service system. Generalized addictive model (GAM) of time serial analysis was applied. In additional to the control of confounding factors such as long-term trend, day of the week effect, meteorological factors, lag effect and the effects of other atmospheric pollutants were also analyzed. During year 2006 to 2009, the number of average daily non-accidental death, respiratory disease caused death, cardiovascular and cerebrovascular diseases caused death among Beijing residents were 140.1, 15.0, 65.8, respectively;contemporaneous medians of average daily air concentration of PM(10), SO(2), NO(2) were 123.0, 26.0, 58.0 µg/m(3), respectively;contemporaneous average atmosphere pressure, temperature and relative humidity were 10.1 kPa, 13.5°C and 51.9%, respectively. An exposure-response relationship between exposure to ambient PM(10) and increased daily death number was found as every 10 µg/m(3) increase in daily average concentration of PM(10), there was a 0.1267% (95%CI: 0.0824% - 0.1710%) increase in daily non-accidental death of residents, 0.1365% (95%CI: 0.0010% - 0.2720%) increase in respiratory death and 0.1239% (95%CI: 0.0589% - 0.1889%) increase in cardiovascular death. Ambient PM(10) had greatest influence on daily non-accidental and cardiovascular death of the same day, while its greatest influence on respiratory death occurred 5 days later. The ambient PM(10) pollution increased daily non-accidental, respiratory disease caused, cardiovascular and cerebrovascular diseases caused deaths among residents in Beijing, and lag effect existed as for the effect of ambient PM(10) pollution on respiratory disease caused death.

  5. Numerical study of a cryogen-free vuilleumier type pulse tube cryocooler operating below 10 K

    NASA Astrophysics Data System (ADS)

    Wang, Y. N.; Wang, X. T.; Dai, W.; Luo, E. C.

    2017-12-01

    This paper presents a numerical investigation on a Vuilleumier (VM) type pulse tube cooler. Different from previous systems that use liquid nitrogen, Stirling type pre-coolers are used to provide the cooling power for the thermal compressor, which leads to a convenient cryogen-free system and offers the flexibility of changing working temperature range of the thermal compressor to obtain an optimum efficiency. Firstly, main component dimensions were optimized with lowest no-load temperature as the target. Then the dependence of system performance on average pressure, frequency, displacer displacement amplitude and thermal compressor pre-cooling temperature were studied. Finally, the effect of pre-cooling temperature on overall cooling efficiency at 5 K was studied. A highest relative Carnot efficiency of 0.82 % was predicted with an average pressure of 2.5 MPa, a frequency of 3 Hz, a displacer displacement amplitude of 6.5 mm, ambient end temperature 300 K and pre-cooling temperature 65 K, respectively.

  6. Death from respiratory diseases and temperature in Shiraz, Iran (2006-2011).

    PubMed

    Dadbakhsh, Manizhe; Khanjani, Narges; Bahrampour, Abbas; Haghighi, Pegah Shoae

    2017-02-01

    Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007-2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted for humidity, rainfall, wind speed and direction, and air pollutants including CO, NO x , PM 10 , SO 2 , O 3 , and THC. Spearman and Pearson correlations were also calculated between air temperature and respiratory-related deaths. The analysis was done using MINITAB16 and STATA 11. During this period, 2598 respiratory-related deaths occurred in Shiraz. The minimum number of respiratory-related deaths among all subjects happened in an average temperature of 25 °C. There was a significant inverse relationship between average temperature- and respiratory-related deaths among all subjects and women. There was also a significant inverse relationship between average temperature and respiratory-related deaths among all subjects, men and women in the next month. The results suggest that cold temperatures can increase the number of respiratory-related deaths and therefore policies to reduce mortality in cold weather, especially in patients with respiratory diseases should be implemented.

  7. Death from respiratory diseases and temperature in Shiraz, Iran (2006-2011)

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Manizhe; Khanjani, Narges; Bahrampour, Abbas; Haghighi, Pegah Shoae

    2017-02-01

    Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007-2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted for humidity, rainfall, wind speed and direction, and air pollutants including CO, NOx, PM10, SO2, O3, and THC. Spearman and Pearson correlations were also calculated between air temperature and respiratory-related deaths. The analysis was done using MINITAB16 and STATA 11. During this period, 2598 respiratory-related deaths occurred in Shiraz. The minimum number of respiratory-related deaths among all subjects happened in an average temperature of 25 °C. There was a significant inverse relationship between average temperature- and respiratory-related deaths among all subjects and women. There was also a significant inverse relationship between average temperature and respiratory-related deaths among all subjects, men and women in the next month. The results suggest that cold temperatures can increase the number of respiratory-related deaths and therefore policies to reduce mortality in cold weather, especially in patients with respiratory diseases should be implemented.

  8. Improving turbine performance by cooling inlet air using a waste heat powered ejector refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G.J.

    1996-12-31

    Stationary turbines are used to produce electricity in many areas of the world. Their performance is adversely affected by high ambient temperatures. Several means of reducing the turbine inlet temperature (offpeak water chiller and ice storage and absorption refrigeration systems) are being proposed as a means of increasing turbine output. In the present investigation the feasibility of increasing turbine output power by using its exhaust gases to power an ejector refrigeration system is demonstrated. The advantages of the ejector refrigeration are: it operates on a non-CFC fluid, its small number of moving parts and its small size. The analysis focusesmore » on United Technologies FT4 turbine with a base load output of 21.6 MW. It is demonstrated that the proposed system can decrease the turbine inlet temperature from 296.2 K to 277.6 K which increases the turbine output by 12.8% during periods of high ambient temperature and improves yearly averaged power output by 5.5% in a temperature climate. It is shown that the energy in the turbine exhaust has the potential of producing additional cooling beyond that required to reduce the inlet temperature.« less

  9. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior.

    PubMed

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-11-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed.

  10. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior

    PubMed Central

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-01-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed. PMID:26632780

  11. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  16. Effects of climate change on residential infiltration and air pollution exposure.

    PubMed

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  17. Effects of post-sampling conditions on ambient carbon aerosol filter measurements

    NASA Astrophysics Data System (ADS)

    Dillner, Ann M.; Phuah, Chin H.; Turner, Jay R.

    2009-12-01

    Ambient carbonaceous material collected on quartz filters is prone to measurement artifacts due to material gained or lost during post-sampling field latency, shipping, and storage. In seventeen sampling events over a one year period, ambient PM 2.5 aerosols were collected on quartz filters (without denuders) and subjected to various filter treatments to assess the potential for and extent of artifacts. The filter treatments simulated post-sampling environments that filters may be exposed to and included: storage at 40 °C for up to 96 h, storage at -16 °C for 48 h, and storage at room temperature (˜21 °C) for 48 h. Carbon mass on the filters was measured using a thermal-optical method. The total carbon (TC), total organic carbon (TOC) and total elemental carbon (TEC) as well as carbon thermal fraction masses were obtained. Statistical analyses were performed to identify significant differences in carbon fraction concentrations between filters analyzed immediately after sampling and after being subjected to treatment. TOC and TC concentrations decreased by on average 15 ± 5% and 10 ± 4%, respectively, for filters maintained at 40 °C for 96 h but did not change for filters stored at room temperature or frozen for 48 h. TEC did not change for any of the filter treatments. The mass concentration for the organic carbon thermal fraction that evolves at the lowest temperature step (OC1) decreased with increasing storage time at 40 °C with average losses of 70 ± 7% after 96 h. Therefore, OC1 is not a stable measurement due to post-sampling conditions that may be encountered. This work demonstrates that TOC and TC can have substantial measurement artifacts on filters subjected to field latency and other non-temperature controlled post-sampling handling, compared to the carbon loadings on the filter at the end of the sampling period.

  18. Space environmental effects: Construction and utilization of a system to measure low thermal strain in one meter graphite epoxy tubes

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Rives, C.

    1982-01-01

    A system for measuring the expansion of low coefficient of thermal expansion (CTE) materials was constructed around a H.P. 5526-A laser measuring system. The vacuum CTE measurements in the -150 F to +120 F range were made over a 6 month period on a graphite epoxy tube yielding CTE values of 2.5 to one fifty-millionth/F above ambient and 2 + or - one ten-millionth F below ambient temperature. To assure that the below ambient, approximately 10 microns high open loop nature of the delta L/L vs. T curves was not apparatus related, similar size quartz tubes (A and B) were checked and found to have only a 2 micron (negligable for quartz) open loop component. These two quartz tubes, A and B, had ambient CTE values 20% and 45% respectively higher than the average handbook value. The overnight microcreep diminished an order of magnitude during the first several cycles after the system had been reopened.

  19. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature

    PubMed Central

    Hosseini, Seyed Abdollah

    2018-01-01

    Objective Spirulina has been recognized formerly as a filamentous spiral-shaped blue-green algae but more recently as a genus of photosynthetic bacteria (Arthrospira). This microorganism is considered as a rich source of essential nutrients for human and animals. The present study was conducted to determine potential application of Spirulina for heat-exposed broilers. Methods Two hundred and fifty Cobb 500 chicks with male to female in equal ratio with average initial weight of 615.6 g at 17 days of age were divided into 5 treatments with 5 replicates of 10 chicks. Treatment groups were as follows: positive and negative controls with 0% Spirulina supplement and three Spirulina receiving groups with 5 g/kg (0.5%), 10 g/kg (1%), and 20 g/kg (2%) supplementation. Spirulina receiving groups as well as positive control were exposed to high ambient temperature at 36°C for 6 h/d from 38 to 44 days of age. Biochemical variables were measured in serum samples at 35, 38, 42, and 45 days of broiler chickens age. Results The results showed that supplementation of the diet with Spirulina decreased concentration of stress hormone and some serum lipid parameters while enhanced humoral immunity response and elevated antioxidant status whereas it didn’t meaningfully affect performance characteristics. Nevertheless, feed conversion ratio was improved numerically but not statistically in broilers fed with 1% Spirulina under high ambient temperature. Conclusion Overall, the present study suggests that alleviation of adverse impacts due to high ambient temperature at biochemical level including impaired enzymatic antioxidant system, elevated stress hormone and lipid profile can be approached in broiler chickens through supplementation of the diet with Spirulina platensis. PMID:28920419

  20. Thermoregulation of foraging honeybees on flowering plants: seasonal variability and influence of radiative heat gain

    PubMed Central

    Kovac, Helmut; Stabentheiner, Anton

    2011-01-01

    1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated. 2. The bees (Apis mellifera carnica Pollman) were always endothermic. On average, the thorax surface temperature (Tth) was regulated at a high and rather constant level over a broad range of ambient temperatures (Tth = 33.7–35.7°C, Ta = 10–27°C). However, at a certain Ta, Tth showed a strong variation, depending on the plants from which the bees were foraging. At warmer conditions (Ta = 27–32°C) the Tth increased nearly linearly with Ta to a maximal average level of 42.6 °C. The thorax temperature excess decreased strongly with increasing Ta (Tth−Ta = 21.6 − 3.6°C). 3. The bees used the heat gain from solar radiation to elevate the temperature excess of thorax, head, and abdomen. Seasonal dependance was reflected in a 2.7 °C higher mean Tth in the spring than in the summer. An anova revealed that season had the greatest effect on Tth, followed by Ta and radiation. 4. It was presumed the foragers' motivational status to be the main factor responsible for the variation of Tth between seasons and different plants. PMID:22419834

  1. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    NASA Astrophysics Data System (ADS)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  2. Outdoor performance results for NBS Round Robin collector no. 1

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  3. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  4. Association between temperature and maternal stress during pregnancy.

    PubMed

    Lin, Yanfen; Hu, Wenjing; Xu, Jian; Luo, Zhongcheng; Ye, Xiaofang; Yan, Chonghuai; Liu, Zhiwei; Tong, Shilu

    2017-10-01

    Maternal psychological stress during pregnancy has essentially been conceptualized as a teratogen. However, little is known about the effect of temperature on maternal stress during pregnancy. The aim of this study is to investigate the relationship between temperature and maternal stress during pregnancy. In 2010, a total of 1931 eligible pregnant women were enrolled across Shanghai from four prenatal-care clinics during their mid-to-late pregnancy. Maternal life-event stress and emotional stress levels during pregnancy were assessed by the "Life Event Scale for Pregnant Women" (LESPW) and "Symptom Checklist-90-Revised Scale" (SCL-90-R), respectively. Exposure to ambient temperature was evaluated based on daily regional average in different moving average and lag days. The generalized estimating equations were used to evaluate the relationship between daily average temperature/temperature difference and maternal stress. After adjusting for relevant confounders, an U-shaped relationship was observed between daily average temperature and maternal Global-Severity-Index (GSI) of the SCL-90-R. Cumulative exposures to extremely low temperatures (< P5, 1.4-10.5℃, lag 0-1 days, 0-2 days and 0-5 days) and extremely high temperatures (≥ P95, 31.2-34.1℃, lag 0-1 days and 0-2 days), and acute exposures to extremely low (lag day 0, 1, 2 and 3) and high (lag day 0, 1) temperatures, all induced higher risks of high GSI (the highest tertile), compared to the risk induced by exposed to an optimal temperature range (20-25℃) (P< 0.05). Increased temperature difference was associated with high maternal GSI (P< 0.05). However, non-significant associations were observed between daily average temperatures/temperature differences and maternal log-transferred LESPW scores. Cumulative and acute exposures to extremely low/high temperatures may both induce emotional stress during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    NASA Technical Reports Server (NTRS)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  6. Vertical resolving power of a satellite temperature sounding system

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1979-01-01

    The paper examines the vertical resolving power of satellite temperature retrieval systems. Attention is given to sounding instrument proposed by Kaplan, et al., (1977) which has been conceived to have greatly improved vertical resolving capabilities. Two types of tests are reported. The first, based on the work of Conrath (1972), involves a theoretical assessment of the manner by which the ambient temperature profile is averaged over height in order to produce an estimate of temperature at a given level. The second test is empirical involving the actual retrieval of temperature signals superimposed on a standard atmosphere with an emphasis on determining the minimum separation of the signals for which the sounder system is still capable of distinguishing individual signals.

  7. Do Uniparental Sanderlings Calidris alba Increase Egg Heat Input to Compensate for Low Nest Attentiveness?

    PubMed Central

    Reneerkens, Jeroen; Grond, Kirsten; Schekkerman, Hans; Tulp, Ingrid; Piersma, Theunis

    2011-01-01

    Birds breeding in cold environments regularly have to interrupt incubation to forage, causing a trade-off between two mutually exclusive behaviours. Earlier studies showed that uniparental Arctic sandpipers overall spend less time incubating their eggs than biparental species, but interspecific differences in size and ecology were potential confounding factors. This study reports on a within-species comparison of breeding schedules and metal egg temperatures in uni- and biparental sanderlings (Calidris alba) in Northeast Greenland in relation to ambient temperature. We recorded incubation schedules with nest temperature loggers in 34 sanderling clutches (13 uniparentals, 21 biparentals). The temperature of a metal egg placed within the clutch of 17 incubating birds (6 uniparentals, 9 biparentals) was measured as an indicator of the heat put into eggs. Recess frequency, recess duration and total recess time were higher in uniparentals than in biparentals and positively correlated with ambient temperatures in uniparentals only. Uniparental sanderlings maintained significantly higher metal egg temperatures during incubation than biparentals (1.4°C difference on average). Our results suggest that uniparental sanderlings compensate for the lower nest attendance, which may prolong the duration of the incubation period and negatively affect the condition of the hatchlings, by maintaining a higher heat flux into the eggs. PMID:21347377

  8. Ambient temperature and biomarkers of heart failure: a repeated measures analysis.

    PubMed

    Wilker, Elissa H; Yeh, Gloria; Wellenius, Gregory A; Davis, Roger B; Phillips, Russell S; Mittleman, Murray A

    2012-08-01

    Extreme temperatures have been associated with hospitalization and death among individuals with heart failure, but few studies have explored the underlying mechanisms. We hypothesized that outdoor temperature in the Boston, Massachusetts, area (1- to 4-day moving averages) would be associated with higher levels of biomarkers of inflammation and myocyte injury in a repeated-measures study of individuals with stable heart failure. We analyzed data from a completed clinical trial that randomized 100 patients to 12 weeks of tai chi classes or to time-matched education control. B-type natriuretic peptide (BNP), C-reactive protein (CRP), and tumor necrosis factor (TNF) were measured at baseline, 6 weeks, and 12 weeks. Endothelin-1 was measured at baseline and 12 weeks. We used fixed effects models to evaluate associations with measures of temperature that were adjusted for time-varying covariates. Higher apparent temperature was associated with higher levels of BNP beginning with 2-day moving averages and reached statistical significance for 3- and 4-day moving averages. CRP results followed a similar pattern but were delayed by 1 day. A 5°C change in 3- and 4-day moving averages of apparent temperature was associated with 11.3% [95% confidence interval (CI): 1.1, 22.5; p = 0.03) and 11.4% (95% CI: 1.2, 22.5; p = 0.03) higher BNP. A 5°C change in the 4-day moving average of apparent temperature was associated with 21.6% (95% CI: 2.5, 44.2; p = 0.03) higher CRP. No clear associations with TNF or endothelin-1 were observed. Among patients undergoing treatment for heart failure, we observed positive associations between temperature and both BNP and CRP-predictors of heart failure prognosis and severity.

  9. Evidence that higher CO2 increases tree growth sensitivity to ...

    EPA Pesticide Factsheets

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. During the deglacial period, [CO2] averaged about 230 ppm, whereas modern [CO2] averaged about 330 ppm.Location: Paleo oaks were sampled from Northern Missouri, USA. The paleo temperature reconstruction was from a lake in Northern Illinois, USA. Data used to quantify the growth-sensitivity to temperature for modern oaks were collected across the Great Plains, Midwest and Upper Great Lakes regions.Methods: Growth data were from 53 paleo bur oak log cross-sections collected in Missouri that were preserved in river and stream sediments. These oaks were radiocarbon-dated to between 10.5 and 13.3 cal kyr BP, which spans rapid warming during the last deglaciation. Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data. Paleotemperatures were obtained from a high-resolution pollen-based reconstruction and modern temperatures were obtained from gridded meteorological data. Results: Growth-sensitivity to temperature (i.e. the slope of growth rate versus temperature) was significantly greater for modern oaks growing at an average [CO2

  10. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    PubMed

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  11. Operating temperatures of open-rack installed photovoltaic inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Wang, L.; Kurtz, S.

    This paper presents a model for evaluating the heat-sink and component temperatures of open-rack installed photovoltaic inverters. These temperatures can be used for predicting inverter reliability. Inverter heat-sink temperatures were measured for inverters connected to three grid-connected PV (photovoltaic) test systems in Golden, Colorado, US. A model is proposed for calculating the inverter heat-sink temperature based on the ambient temperature, the ratio of the consumed power to the rated power of the inverter, and the measured wind speed. To verify and study this model, more than one year of inverter DC/AC power, irradiance, wind speed, and heat sink temperature risemore » data were collected and analyzed. The model is shown to be accurate in predicting average inverter temperatures, but will require further refinement for prediction of transient temperatures.« less

  12. Raman Channel Temperature Measurement of SiC MESFET as a Function of Ambient Temperature and DC Power

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.

    2009-01-01

    Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.

  13. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    PubMed Central

    Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature. PMID:28878790

  14. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    PubMed

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri , indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

  15. Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures.

    PubMed

    Ishiwata, Takayuki; Saito, Takehito; Hasegawa, Hiroshi; Yazawa, Toru; Kotani, Yasunori; Otokawa, Minoru; Aihara, Yasutsugu

    2005-06-28

    Action of gamma-aminobutyric acid (GABA) in the preoptic area and anterior hypothalamus (PO/AH) has been implicated to regulate body temperature (T(b)). However, its precise role in thermoregulation remains unclear. Moreover, little is known about its release pattern in the PO/AH during active thermoregulation. Using microdialysis and telemetry techniques, we measured several parameters related to thermoregulation of freely moving rats during pharmacological stimulation of GABA in normal (23 degrees C), cold (5 degrees C), and hot (35 degrees C) ambient temperatures. We also measured extracellular GABA levels in the PO/AH during cold (5 degrees C) and heat (35 degrees C) exposure combined with microdialysis and high performance liquid chromatography (HPLC). Perfusion of GABA(A) agonist muscimol into the PO/AH increased T(b), which is associated with increased heart rate (HR), as an index of heat production in all ambient temperatures. Although tail skin temperature (T(tail)) as an index of heat loss increased only under normal ambient temperatures, its response was relatively delayed in comparison with HR and T(b), suggesting that the increase in T(tail) was a secondary response to increased HR and T(b). Locomotor activity also increased in all ambient temperatures, but its response was not extraordinary. Interestingly, thermoregulatory responses were different after perfusion of GABA(A) antagonist bicuculline at each ambient temperature. In normal ambient temperature conditions, perfusion of bicuculline had no effect on any parameter. However, under cold ambient temperature, the procedure induced significant hypothermia concomitant with a decrease in HR in spite of hyperactivity and increase of T(tail). It induced hyperthermia with the increase of HR but no additional change of T(tail) in hot ambient temperature conditions. Furthermore, the extracellular GABA level increased significantly during cold exposure. Its release was lower during heat exposure than in a normal environment. These results indicate that GABA in the PO/AH is an important neurotransmitter for disinhibition of heat production and inhibition of heat loss under cold ambient temperature. It is a neurotransmitter for inhibition of heat production under hot ambient temperature.

  16. Mach number effect on jet impingement heat transfer.

    PubMed

    Brevet, P; Dorignac, E; Vullierme, J J

    2001-05-01

    An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number.

  17. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; MacNutt, M J; Hinch, S G; Healey, M C

    2003-09-01

    Our knowledge of the swimming capabilities and metabolic rates of adult salmon, and particularly the influence of temperature on them, is extremely limited, and yet this information is critical to understanding the remarkable upstream migrations that these fish can make. To remedy this situation, we examined the effects of temperature on swimming performance and metabolic rates of 107 adult fish taken from three stocks of sockeye salmon Oncorhynchus nerka and one stock of coho salmon O. kisutch at various field and laboratory locations, using large, portable, swim tunnels. The salmon stocks were selected because of differences in their ambient water temperature (ranging from 5 degrees C to 20 degrees C) and the total distance of their in-river migrations (ranging from approximately 100 km for coastal stocks to approximately 1100 km for interior stocks). As anticipated, differences in routine metabolic rate observed among salmon stocks were largely explained by an exponential dependence on ambient water temperature. However, the relationship between water temperature and maximum oxygen consumption (MO2max), i.e. the MO2 measured at the critical swimming speed (Ucrit), revealed temperature optima for MO2max that were stock-specific. These temperature optima were very similar to the average ambient water temperatures for the natal stream of a given stock. Furthermore, at a comparable water temperature, the salmon stocks that experienced a long and energetically costly in-river migration were characterized by a higher MO2max, a higher scope for activity, a higher Ucrit and, in some cases, a higher cost of transport, relative to the coastal salmon stocks that experience a short in-river migration. We conclude that high-caliber respirometry can be performed in a field setting and that stock-specific differences in swimming performance of adult salmon may be important for understanding upstream migration energetics and abilities.

  18. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  19. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    PubMed Central

    Chen, Song; Zheng, Xi; Wang, Dangying; Xu, Chunmei; Laza, Ma. Rebecca C.; Zhang, Xiufu

    2013-01-01

    An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes. PMID:24089603

  20. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  1. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON GROWTH, BIOCHEMISTRY AND PHYSIOLOGY OF DOUGLAS-FIR

    EPA Science Inventory

    We examined the interactive effects of CO2 concentration and mean annual temperature on physiology, biochemistry and growth of Douglas fir seedlings. Seedlings were grown at ambient CO2 or ambient + 200 ppm CO2 and at ambient temperature or ambient + 4 ?C. Needle gas exchange m...

  2. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate.

    PubMed

    Ikäheimo, Tiina M; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J K

    2016-09-02

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was -9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m³. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00-1.15)) and maximal (OR 1.08 (1.01-1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03-1.40)) and maximal decrease (OR 1.13 (CI 0.96-1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m³ decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00-1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects.

  3. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate

    PubMed Central

    Ikäheimo, Tiina M.; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J.K.

    2016-01-01

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was −9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m3. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00–1.15)) and maximal (OR 1.08 (1.01–1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03–1.40)) and maximal decrease (OR 1.13 (CI 0.96–1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m3 decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00–1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects. PMID:27598190

  4. Synthesis of covalently linked dimeric derivatives of chlorophyll a, pyrochlorophyll a, chlorophyll b, and bacteriochlorophyll a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M.R.; Svec, W.A.

    1980-05-09

    Bis(chlorophyllide) ethylene glycol diesters were prepared for each of the title compounds. Pheophytins a and b isolated from alfalfa and bacteriochlorophyll a isolated from R. sphaeroides were treated with 80% aqueous trifluoroacetic acid to yield the corresponding pheophorbides. Pyropheophorbide was prepared by a literature procedure. Carbonic anhydride and benzotriazole-1-methanesulfonate activation methods were used in the esterification of the pheophorbides with ethylene glycol at ambient temperature. Each method yielded 75%+ of the pheophorbide ethylene glycol monoester. These monoesters were treated with equimolar amounts of the corresponding pheophorbide by using benzotriazol-1-methanesulfonate/4-(dimethylamino)pyridine in CH/sub 2/Cl/sub 2/ or dicyclohexylcarbodiimide/4-(dimethylamino)pyridine in CH/sub 2/Cl/sub 2/ atmore » ambient temperature. Yields of bis(phenophorbide) ethylene glycol diesters averaged about 50% for the former method and 70% for the latter method. Insertion of the magnesium atoms into the a series macrocycles was accomplished with iodomagnesium 2,6-di-tert-butyl-4-methylphenolate, IMgBHT, in CH/sub 2/Cl/sub 2/, while the metalation of the b and bacterial series macrocycles was carried out with a mixture of IMgBHT and lithium 2,2,6,6-tetramethylpiperidide in thiophen, all at ambient temperature. Both mono- and dimetalated derivatives were isolated and characterized in each case.« less

  5. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  6. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  7. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird.

    PubMed

    Amininasab, Seyed Mehdi; Kingma, Sjouke A; Birker, Martje; Hildenbrandt, Hanno; Komdeur, Jan

    Incubation is an important aspect of avian life history. The behaviour is energetically costly, and investment in incubation strategies within species, like female nest attentiveness and the feeding by the non-incubating partner during incubation, can therefore vary depending on environmental and individual characteristics. However, little is known about the combined effect of these characteristics. We investigated the importance of ambient temperature, habitat quality, and bird age on female incubation behaviour and male feeding of the incubating female (incubation feeding) in blue tits Cyanistes caeruleus , a socially monogamous songbird. An increase in ambient temperature resulted in a higher nest temperature, and this enabled females to increase the time off the nest for self-maintenance activities. Probably as a consequence of this, an increase in ambient temperature was associated with fewer incubation feedings by the male. Moreover, in areas with more food available (more deciduous trees), females had shorter incubation recesses and males fed females less often. Additionally, males fed young females more, presumably to increase such females' investment in their eggs, which were colder on average (despite the length of recesses and female nest attentiveness being independent of female age). Male age did not affect incubation feeding rate. In conclusion, the patterns of incubation behaviour were related to both environmental and individual characteristics, and male incubation feeding was adjusted to females' need for food according these characteristics, which can facilitate new insights to the study of avian incubation energetics. Parents often invest a substantial amount of energy in raising offspring. How much they do so depends on several environmental factors and on the extent they cooperate to raise the offspring. In birds, males can feed incubating females, which may allow females to stay longer on the nest, which, in turn, may ultimately improve reproductive success. The interplay between environmental factors and such incubation feeding on incubation attendance has, however, received little attention. Here, we show that favourable circumstances (higher ambient temperature and food availability) allowed incubating blue tit females to increase the time off the nest to improve self-maintenance and males to feed them less, whereas males also fed inexperienced partners more often. Thus, we show a concerted effect of several environmental and intrinsic factors on parental effort during incubation, which will help to improve the general understanding of avian incubation and parental care.

  8. [Heat exchange of the rat in thermoneutral zone temperature and comparison with heat exchange in ambient temperature over and under it].

    PubMed

    Rumiantsev, G V

    2011-08-01

    With the help of thermonetry and general calorimetry body temperature and heat production in ambient temperatures 20 degrees C, 28 degrees C, 33 degrees C were recorded. The experiments showed, that at the temperature 20 degrees C the rectal temperature was changing very little. But in ambient temperature 33 degrees C the rectal temperature was 40.5 +/- 0.1 degrees C.

  9. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  10. Thermal response to firefighting activities in residential structure fires: impact of job assignment and suppression tactic.

    PubMed

    Horn, Gavin P; Kesler, Richard M; Kerber, Steve; Fent, Kenneth W; Schroeder, Tad J; Scott, William S; Fehling, Patricia C; Fernhall, Bo; Smith, Denise L

    2018-03-01

    Firefighters' thermal burden is generally attributed to high heat loads from the fire and metabolic heat generation, which may vary between job assignments and suppression tactic employed. Utilising a full-sized residential structure, firefighters were deployed in six job assignments utilising two attack tactics (1. Water applied from the interior, or 2. Exterior water application before transitioning to the interior). Environmental temperatures decreased after water application, but more rapidly with transitional attack. Local ambient temperatures for inside operation firefighters were higher than other positions (average ~10-30 °C). Rapid elevations in skin temperature were found for all job assignments other than outside command. Neck skin temperatures for inside attack firefighters were ~0.5 °C lower when the transitional tactic was employed. Significantly higher core temperatures were measured for the outside ventilation and overhaul positions than the inside positions (~0.6-0.9 °C). Firefighters working at all fireground positions must be monitored and relieved based on intensity and duration. Practitioner Summary: Testing was done to characterise the thermal burden experienced by firefighters in different job assignments who responded to controlled residential fires (with typical furnishings) using two tactics. Ambient, skin and core temperatures varied based on job assignment and tactic employed, with rapid elevations in core temperature in many roles.

  11. Silicon Photomultiplier charaterization

    NASA Astrophysics Data System (ADS)

    Munoz, Leonel; Osornio, Leo; Para, Adam

    2014-03-01

    Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.

  12. W-band Heterodyne Receiver Module with 27 K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.; hide

    2012-01-01

    We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.

  13. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  14. Analysis of geothermal temperatures for heat pumps application in Paraná (Brasil)

    NASA Astrophysics Data System (ADS)

    Santos, Alexandre F.; de Souza, Heraldo J. L.; Cantao, Mauricio P.; Gaspar, Pedro D.

    2016-11-01

    Geothermal heat pumps are broadly used in developed countries but scarcely in Brazil, in part because there is a lack of Brazilian soil temperature data. The aims of this work are: to present soil temperature measurements and to compare geothermal heat pump system performances with conventional air conditioning systems. Geothermal temperature measurement results are shown for ten Paraná State cities, representing different soil and climate conditions. The measurements were made yearlong with calibrated equipment and digital data acquisition system in different measuring stations. Geothermal and ambient temperature data were used for simulations of the coeficient of performance (COP), by means of a working fluid pressure-enthalpy diagram based software for vapor-compression cycle. It was verified that geothermal temperature measured between January 13 to October 13, 2013, varied from 16 to 24 °C, while room temperature has varied between 2 and 35 °C. Average COP values for conventional system were 3.7 (cooling mode) and 5.0 kW/kW (heating mode), corresponding to 5.9 and 7.9 kW/kW for geothermal system. Hence it was verified an average eficiency gain of 59%with geothermal system utilization in comparison with conventional system.

  15. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  16. Can wastewater-based epidemiology be used to evaluate the health impact of temperature? - An exploratory study in an Australian population.

    PubMed

    Phung, Dung; Mueller, Jochen; Lai, Foon Yin; O'Brien, Jake; Dang, Nhung; Morawska, Lidia; Thai, Phong K

    2017-07-01

    Ambient temperature is known to have impact on population health but assessing its impact by the traditional cohort approach is resource intensive. Wastewater-based epidemiology (WBE) could be an alternative for the traditional approach. This study was to provide the first evaluation to see if WBE can be used to assess the impact of temperature exposure to a population in South East Queensland, Australia using selected pharmaceuticals and personal care products (PPCPs) as biomarkers. Daily loads of eight PPCPs in wastewater collected from a wastewater treatment plant were measured from February 2011 to June 2012. Corresponding daily weather data were obtained from the closest weather station. Missing data of PPCPs were handled using the multiple imputation (MI) method, then we used a one-way between-groups analysis of variance to examine the seasonal effect on daily variation of PPCPs by seasons. Finally, an MI estimate was performed to evaluate the continuous relationship between daily average temperature and each multiply-imputed PPCP using time-series regression analysis. The results indicated that an increase of 1°C in average temperature associated with decrease at 1.3g/d (95% CI: -2.2 to (-0.4), p<0.05) for atenolol, increase at 36.5g/d (95% CI: 25.2-47.8, p<0.01) for acesulfame, and increase at 0.8g/d (95% CI: 0.02-1.55, p=0.05) for naproxen. No significant association was observed between temperature and the remaining PPCPs, comprising: caffeine, carbamazepine, codeine, hydrochlorothiazide, and salicylic acid. The findings suggested that consumption of sweetened drinks, risk of worsening cardiovascular conditions and pains are associated with variation in ambient temperature. WBE can thus be used as a complementary method to traditional cohort studies in epidemiological evaluation of the association between environmental factors and health outcomes provided that specific biomarkers of such health outcomes can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  18. Short-term departures from an optimum ambient temperature are associated with increased risk of out-of-hospital cardiac arrest.

    PubMed

    Dahlquist, Marcus; Raza, Auriba; Bero-Bedada, Getahun; Hollenberg, Jacob; Lind, Tomas; Orsini, Nicola; Sjögren, Bengt; Svensson, Leif; Ljungman, Petter L

    2016-07-01

    Associations have been reported between daily ambient temperature and all-cause and cardiovascular mortality. However, the potential harmful effect of temperature on out-of-hospital cardiac arrest (OHCA) is insufficiently studied. The objective of this study was to investigate the short-term association between ambient temperature and the occurrence of OHCA. In 5961 cases of OHCAs treated by Emergency Medical Service occurring in Stockholm County we investigated the association between the preceding 24-h and 1h mean ambient temperature, obtained from a fixed monitoring station, and OHCA using a time-stratified case-crossover design. We observed a V-shaped relationship between preceding mean 24-h and 1-h ambient temperature and the occurrence of OHCAs. For mean 24-h temperature we observed an odds ratio (OR) of 1.05 (1.00-1.11) for each 5°C below the optimum temperature and 1.05 (0.96-1.18) for each 5°C above the optimum. We observed similar results for 1-h mean temperature exposure. Results for temperatures above the optimum temperature showed evidence of confounding by ozone. Ambient temperature below an optimum temperature was associated with increased risk of OHCA in Stockholm. Temperature above an optimum temperature was not significantly associated with OHCA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Transient climate and ambient health impacts due to national solid fuel cookstove emissions

    PubMed Central

    Lacey, Forrest G.; Henze, Daven K.; Lee, Colin J.; van Donkelaar, Aaron; Martin, Randall V.

    2017-01-01

    Residential solid fuel use contributes to degraded indoor and ambient air quality and may affect global surface temperature. However, the potential for national-scale cookstove intervention programs to mitigate the latter issues is not yet well known, owing to the spatial heterogeneity of aerosol emissions and impacts, along with coemitted species. Here we use a combination of atmospheric modeling, remote sensing, and adjoint sensitivity analysis to individually evaluate consequences of a 20-y linear phase-out of cookstove emissions in each country with greater than 5% of the population using solid fuel for cooking. Emissions reductions in China, India, and Ethiopia contribute to the largest global surface temperature change in 2050 [combined impact of −37 mK (11 mK to −85 mK)], whereas interventions in countries less commonly targeted for cookstove mitigation such as Azerbaijan, Ukraine, and Kazakhstan have the largest per cookstove climate benefits. Abatement in China, India, and Bangladesh contributes to the largest reduction of premature deaths from ambient air pollution, preventing 198,000 (102,000–204,000) of the 260,000 (137,000–268,000) global annual avoided deaths in 2050, whereas again emissions in Ukraine and Azerbaijan have the largest per cookstove impacts, along with Romania. Global cookstove emissions abatement results in an average surface temperature cooling of −77 mK (20 mK to −278 mK) in 2050, which increases to −118 mK (−11 mK to −335 mK) by 2100 due to delayed CO2 response. Health impacts owing to changes in ambient particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) amount to ∼22.5 million premature deaths prevented between 2000 and 2100. PMID:28115698

  20. Prediction of moisture and temperature changes in composites during atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Tenney, D. R.; Unnan, J.

    1978-01-01

    The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.

  1. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Seasonality of diarrheagenic Escherichia coli pathotypes in the US students acquiring diarrhea in Mexico.

    PubMed

    Paredes-Paredes, Mercedes; Okhuysen, Pablo C; Flores, Jose; Mohamed, Jamal A; Padda, Ranjit S; Gonzalez-Estrada, Alexei; Haley, Clinton A; Carlin, Lily G; Nair, Parvathy; DuPont, Herbert L

    2011-01-01

    Up to 60% of the US visitors to Mexico develop travelers' diarrhea (TD). In Mexico, rates of diarrhea have been associated with the rainy season and increase in ambient temperature. However, the seasonality of the various diarrheagenic Escherichia coli pathotypes in travelers has not been well described. A study was undertaken to determine if ambient temperature and rainfall have an impact on the acquisition of TD due to different diarrheagenic E coli pathotypes in Mexico. We conducted a cohort study of the US adult students traveling to Cuernavaca, Mexico, who were followed during their stay and provided a stool sample with the onset of TD. The presence of E coli was analyzed by a direct fecal multiplex polymerase chain reaction for common E coli pathotypes including enterotoxigenic, enteropathogenic, enteroinvasive, shiga toxin-producing, and enteroaggregative E coli (ETEC, EPEC, EIEC, STEC, and EAEC respectively). The presence of pathotypes was correlated with daily rainfall, average, maximum, and minimum temperatures. A total of 515 adults were enrolled from January 2006 to February 2007. The weekly attack rate of TD for newly arrived travelers was lower in the winter months (range 6.8%-16.3%) than in summer months (range 11.5%-25%; p = 0.05). The rate of ETEC infection increased by 7% for each degree centigrade increase in weekly ambient temperature (p = 0.003). In contrast, EPEC and EAEC were identified in similar proportions during the winter and summer seasons. Temperature variations in central Mexico influenced the rate of ETEC but not EAEC-associated diarrhea in the US visitors. This epidemiological finding could influence seasonal recommendations for the use of ETEC vaccines in Mexico. © 2011 International Society of Travel Medicine.

  3. Intercomparison of thermal-optical method with different temperature protocols: Implications from source samples and solvent extraction

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2012-12-01

    Three temperature protocols with different peak inert mode temperature (Tpeak-inert) were compared based on source and ambient samples (both untreated and extracted using a mixture of hexane, methylene chloride, and acetone) collected in Beijing, China. The ratio of EC580 (elemental carbon measured by the protocol with a Tpeak-inert of 580 °C; similar hereinafter) to EC850 could be as high as 4.8 for biomass smoke samples whereas the ratio was about 1.0 for diesel and gasoline exhaust samples. The EC580 to EC850 ratio averaged 1.95 ± 0.89 and 1.13 ± 0.20 for the untreated and extracted ambient samples, whereas the EC580 to EC650 ratio of ambient samples was 1.22 ± 0.10 and 1.20 ± 0.12 before and after extraction. It was suggested that there are two competing mechanisms for the effects of Tpeak-inert on the EC results such that when Tpeak-inert is increased, one mechanism tends to decrease EC by increasing the amount of charring whereas the other tends to increase EC through promoting more charring to evolve before native EC. Results from this study showed that EC does not always decrease when increasing the peak inert mode temperature. Moreover, reducing the charring amount could improve the protocols agreement on EC measurements, whereas temperature protocol would not influence the EC results if no charring is formed. This study also demonstrated the benefits of allowing for the OC and EC split occurring in the inert mode when a high Tpeak-inert is used (e.g., 850 °C).

  4. Time budgets of Snow Geese Chen caerulescens and Ross's Geese Chen rossii in mixed flocks: Implications of body size, ambient temperature and family associations

    USGS Publications Warehouse

    Jonsson, J.E.; Afton, A.D.

    2009-01-01

    Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.

  5. Alterations in sheep peripheral blood mononuclear cell proliferation and cytokine release by polyunsaturated fatty acid supplementation in the diet under high ambient temperature.

    PubMed

    Ciliberti, Maria Giovanna; Albenzio, Marzia; Annicchiarico, Giovanni; Sevi, Agostino; Muscio, Antonio; Caroprese, Mariangela

    2015-02-01

    The aim of this study was to investigate the effects of polyunsaturated fatty acid (PUFA) supplementation from different sources in the diet of dairy sheep under high ambient temperatures on ex vivo lymphocyte proliferation and inflammatory responses. The experiment was carried out during summer: 32 Comisana ewes were divided into 4 groups of 8. The FS group was supplemented with whole flaxseed, the AG group was supplemented with Ascophyllum nodosum, the FS+AG group was supplemented with a combination of flaxseed and A. nodosum. The fourth group (CON group) was a control and received a diet containing no supplement. The average maximum temperature was around 33°C during wk 2 and 3, whereas the mean temperature never decreased below 26°C. Following 15 d of treatment with respective diets, peripheral blood mononuclear cells (PBMC) from sheep who received a diet supplemented with A. nodosum had impaired cell proliferation responses and IL-6 production after mitogen stimulation compared with PBMC from FS+AG sheep. In addition, PBMC from AG sheep displayed impaired cell proliferation compared with cells from the CON group. The FS+AG cells produced lower levels of IL-10 than CON cells, and higher IL-6 than AG and CON cells. Results demonstrated that the supplementation with PUFA from different sources in a sheep's diet can influence their immunological responses under high ambient temperatures depending on the composition of fatty acid supplementation. In particular, synergistic effects of different PUFA from flaxseed and A. nodosum, simultaneously administrated in the sheep diet, were observed on activation of inflammation response. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Prolonged self-paced exercise in the heat – environmental factors affecting performance

    PubMed Central

    Junge, Nicklas; Jørgensen, Rasmus; Flouris, Andreas D.; Nybo, Lars

    2016-01-01

    ABSTRACT In this review we examine how self-paced performance is affected by environmental heat stress factors during cycling time trial performance as well as considering the effects of exercise mode and heat acclimatization. Mean power output during prolonged cycling time trials in the heat (≥30°C) was on average reduced by 15% in the 14 studies that fulfilled the inclusion criteria. Ambient temperature per se was a poor predictor of the integrated environmental heat stress and 2 of the prevailing heat stress indices (WBGT and UTCI) failed to predict the environmental influence on performance. The weighing of wind speed appears to be too low for predicting the effect for cycling in trained acclimatized subjects, where performance may be maintained in outdoor time trials at ambient temperatures as high as 36°C (36°C UTCI; 28°C WBGT). Power output during indoor trials may also be maintained with temperatures up to at least 27°C when humidity is modest and wind speed matches the movement speed generated during outdoor cycling, whereas marked reductions are observed when air movement is minimal. For running, representing an exercise mode with lower movement speed and higher heat production for a given metabolic rate, it appears that endurance is affected even at much lower ambient temperatures. On this basis we conclude that environmental heat stress impacts self-paced endurance performance. However, the effect is markedly modified by acclimatization status and exercise mode, as the wind generated by the exercise (movement speed) or the environment (natural or fan air movement) exerts a strong influence. PMID:28090557

  7. Effects of ingested crude and dispersed crude oil on thermoregulation in ducks (Anas platyrhynchos)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenssen, B.M.

    1989-02-01

    Thermoregulatory effects of ingested doses of Statfjord A crude oil and of this oil mixed with the dispersant Finasol OSR-5 were studied in adult domestic ducks (Anas platyrhynchos) exposed to ambient temperatures of +16 degrees C and -17 degrees C. The data show that ingestion of both the crude and the oil-dispersant mixture resulted in an increased body temperature during exposure to the low ambient temperature (-17 degrees C). Neither contaminant had any effect on body temperature during exposure to +16 degrees C. Ingestion of the contaminants had no effect on metabolic heat production at either ambient temperature. The breastmore » skin temperature of the ducks in both contaminated groups was significantly decreased when the ducks were exposed to the low ambient temperature. This indicates that the increase in body temperature observed in the contaminated ducks at the low ambient temperature is due to an increase in peripheral vasoconstriction.« less

  8. Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera:Vespertilionidae) when euthermic and torpid.

    PubMed

    Hosken, D J; Withers, P C

    1997-01-01

    The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 degrees C. Torpid bats thermoconform at moderate ambient temperature, with body temperature approximately ambient temperature, and have a low rate of oxygen consumption determined primarily by Q10 effects. At low ambient temperature (< 10 degrees C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature.

  9. Freely chosen cadence during a covert manipulation of ambient temperature.

    PubMed

    Hartley, Geoffrey L; Cheung, Stephen S

    2013-01-01

    The present study investigated relationships between changes in power output (PO) to torque (TOR) or freely chosen cadence (FCC) during thermal loading. Twenty participants cycled at a constant rating of perceived exertion while ambient temperature (Ta) was covertly manipulated at 20-min intervals of 20 °C, 35 °C, and 20 °C. The magnitude responses of PO, FCC and TOR were analyzed using repeated-measures ANOVA, while the temporal correlations were analyzed using Auto-Regressive Integrated Moving Averages (ARIMA). Increases in Ta caused significant thermal strain (p < .01), and subsequently, a decrease in PO and TOR magnitude (p < .01), whereas FCC remained unchanged (p = .51). ARIMA indicates that changes in PO were highly correlated to TOR (stationary r2 = .954, p = .04), while FCC was moderately correlated (stationary r2 = .717, p = .01) to PO. In conclusion, changes in PO are caused by a modulation in TOR, whereas FCC remains unchanged and therefore, unaffected by thermal stressors.

  10. Plant molecular responses to the elevated ambient temperatures expected under global climate change.

    PubMed

    Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng

    2018-01-02

    Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.

  11. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of...

  12. Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean?

    PubMed

    Matis, Paloma A; Donelson, Jennifer M; Bush, Stephen; Fox, Rebecca J; Booth, David J

    2018-07-01

    Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models. © 2018 John Wiley & Sons Ltd.

  13. Effect of Ambient Temperature on the Human Tear Film.

    PubMed

    Abusharha, Ali A; Pearce, E Ian; Fagehi, Raied

    2016-09-01

    During everyday life, the tear film is exposed to a wide range of ambient temperatures. This study aims to investigate the effect of ambient temperature on tear film physiology. A controlled environment chamber was used to create different ambient temperatures (5, 10, 15, 20, and 25°C) at a constant relative humidity of 40%. Subjects attended for two separate visits and were exposed to 25, 20, and 15°C at one visit and to 10 and 5°C at the other visit. The subjects were exposed to each room temperature for 10 min before investigating tear film parameters. The order of the visits was random. Tear physiology parameters assessed were tear evaporation rate, noninvasive tear break-up time (NITBUT), lipid layer thickness (LLT), and ocular surface temperature (OST). Each parameter was assessed under each condition. A threefold increase in tear evaporation rate was observed as ambient temperature increased to 25°C (P=0.00). The mean evaporation rate increased from 0.056 μL/min at 5°C to 0.17 μL/min at 25°C. The mean NITBUT increased from 7.31 sec at 5°C to 12.35 sec at 25°C (P=0.01). A significant change in LLT was also observed (P=0.00), LLT median ranged between 20 and 40 nm at 5 and 10°C and increased to 40 and 90 nm at 15, 20, and 25°C. Mean reduction of 4°C OST was observed as ambient temperature decreased from 25 to 5°C. Ambient temperature has a considerable effect on human tear film characteristics. Tear evaporation rate, tear LLT, tear stability, and OST were considerably affected by ambient temperature. Chronic exposure to low ambient temperature would likely result in symptoms of dry eye and ultimately ocular surface disorders.

  14. A simple technique to prolong molding time during application of a fiberglass cast: An in vitro study

    PubMed Central

    Ayzenberg, Mark; Narvaez, Michael; Raphael, James

    2018-01-01

    Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts. PMID:29770174

  15. Electrical bushing for a superconductor element

    DOEpatents

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  16. Associations between Changes in City and Address Specific Temperature and QT Interval - The VA Normative Aging Study

    PubMed Central

    Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population. PMID:25238150

  17. Effect of developer temperature changes on the sensitometric properties of direct exposure and screen-film imaging systems.

    PubMed

    Kircos, L T; Staninec, M; Chou, L S

    1989-02-01

    A heat exchanger was developed and incorporated into the recirculation system of a dental processor to maintain strict temperature control. Without the heat exchanger, developer temperature rose steadily over 8 h to a maximum of 35.7 degrees C: with the heat exchanger it was maintained, regardless of ambient conditions, at the desired temperature with virtually no fluctuation. Sensitometric properties of base and fog, speed, and average gradient were measured for D and E speed films and Lanex Regular/T-Mat G and Lanex Fast/T-Mat Hscreen-film systems at developer temperatures of 21.1, 23.8, 26.7, 29.4 and 32.2 degrees C. Small changes in these properties were found for D and E speed films: on the other hand, Lanex Regular/T-Mat G showed a 65% increase in base and fog and Lanex Fast/T-Mat H a 43% increase in average gradient over the temperature range studied. Although these changes may not be clinically significant for intra-oral and dental radiography, the variations in image quality may compromise controlled imaging experiments and clinically compromise radiographic quality when using screen-film systems.

  18. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    PubMed

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  19. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  20. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  1. Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Hu, Bing; Som, Sibendu

    2016-03-16

    An n-dodecane spray flame was simulated using a dynamic structure large eddy simulation (LES) model coupled with a detailed chemistry combustion model to understand the ignition processes and the quasi-steady state flame structures. This study focuses on the effect of different ambient oxygen concentrations, 13%, 15% and 21% at an ambient temperature of 900 K and an ambient density of 22.8 kg/m3, which are typical diesel-engine relevant conditions with different levels of exhaust gas recirculation (EGR). The liquid spray was treated with a traditional Lagrangian method. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. It ismore » observed that the main ignitions occur in rich mixture and the flames are thickened around 35 to 40 mm off the spray axis due to the enhanced turbulence induced by the strong recirculation upstream, just behind the head of the flames at different oxygen concentrations. At 1 ms after the start of injection, the soot production is dominated by the broader region of high temperature in rich mixture instead of the stronger oxidation of the high peak temperature. Multiple realizations were performed for the 15% O2 condition to understand the realization to realization variation and to establish best practices for ensembleaveraging diesel spray flames. Two indexes are defined. The structure-similarity index analysis suggests at least 5 realizations are needed to obtain 99% similarity for mixture fraction if the average of 16 realizations are used as the target at 0.8 ms. However, this scenario may be different for different scalars of interest. It is found that 6 realizations would be enough to reach 99% of similarity for temperature, while 8 and 14 realizations are required to achieve 99% similarity for soot and OH mass fraction, respectively. Similar findings are noticed at 1 ms. More realizations are needed for the magnitude-similarity index for the similar level of similarity as the structure-similarity index« less

  2. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  3. Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study.

    PubMed

    Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S

    2015-01-01

    As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target <140 mmHg) vs. guideline-recommended (systolic target <180 mmHg) blood pressure (BP) lowering in 404 patients with acute ICH. Data on ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P < 0·05). All temperature parameters except diurnal temperature range were positively associated with edema volume after adjustment for confounding variables (all P < 0·02). An apparent positive association exists between ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.

  4. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages

    NASA Astrophysics Data System (ADS)

    Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.

    2017-12-01

    Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.

  5. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.

    PubMed

    Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard

    2015-06-01

    Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration. The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.

  6. Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.

    PubMed

    Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-03-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.

  7. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  8. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  9. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  10. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  11. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  12. Influence of p-GaN annealing on the optical and electrical properties of InGaN/GaN MQW LEDs

    NASA Astrophysics Data System (ADS)

    Sun, Li; Weng, Guo-En; Liang, Ming-Ming; Ying, Lei-Ying; Lv, Xue-Qin; Zhang, Jiang-Yong; Zhang, Bao-Ping

    2014-06-01

    Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.

  13. The effects of ambient temperature, humidity and season of year on urine composition in patients with nephrolithiasis.

    PubMed

    Eisner, Brian H; Sheth, Sonali; Herrick, Benjamin; Pais, Vernon M; Sawyer, Mark; Miller, Nicole; Hurd, Kimberly J; Humphreys, Mitchell R

    2012-12-01

    Study Type--Prognosis (cohort series) Level of Evidence 2b. What's known on the subject? and What does the study add? Epidemiologic studies have shown that warmer climates are associated with increased incidence of nephrolithiasis. Many hypothesize that this is due to dehydration and lower urine volumes. The current study of stone formers reports that greater temperatures are associated with significant increases in urine calcium which may shed light on the mechanism underlying the increased stone incidence associated with increased ambient temperature. • To understand the effects of temperature, humidity and season of year on 24-h urine composition in patients with nephrolithiasis. • A retrospective review was performed of patients evaluated at four metabolic stone clinics. • Multivariate linear regression models examined the relationship between mean temperature, average humidity, season of year and 24-h urine composition. • Multivariate models adjusted for known risk factors for stone disease. • Mean temperature and average humidity data were obtained from http://www.weatherunderground.com based on patient-provided addresses. • A total of 599 patients were included in the study, comprising 239 women and 360 men with a mean age of 53.6 years (sd 15.0). • Mean temperature was 16.9 °C (sd 4.8, range -21.1 to 38.3 °C) and average humidity was 58.1% (sd 23.5, range 11-100%). • On multivariate linear regression, increasing temperature was associated with increasing urine calcium (β = 11.3, 95% CI 2.2-20.0), super-saturation of calcium oxalate (β = 0.6, 95% CI 0.2-0.9), super-saturation of calcium phosphate (β = 0.14, 95% CI 0.03-0.2), and decreasing urine sodium (β = -5.2, 95% CI -10.3 to -0.1). • As seasons become warmer (i.e. from winter to autumn to spring to summer), changes were increased urine volume (β = 0.09, 95% CI 0.01-0.2) and decreased super-saturation of calcium phosphate (β = -0.2, 95% CI -0.3 to -0.03). • There were no associations between quintile of humidity and any 24-h urine constituents. • Increasing temperature may increase stone risk by increasing urine excretion of calcium, and the super-saturation of calcium oxalate and calcium phosphate. • These findings were independent of humidity and of season of year. • This appears to be related to a physiological impact of temperature itself, rather than to geographic location. © 2012 BJU INTERNATIONAL.

  14. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  15. Polymerase chain reaction amplification of DNA from aged blood stains: quantitative evaluation of the "suitability for purpose" of four filter papers as archival media.

    PubMed

    Kline, Margaret C; Duewer, David L; Redman, Janette W; Butler, John M; Boyer, David A

    2002-04-15

    In collaboration with the Armed Forces Institute of Pathology's Department of Defense DNA Registry, the National Institute of Standards and Technology recently evaluated the performance of a short tandem repeat multiplex with dried whole blood stains on four different commercially available identification card matrixes. DNA from 70 stains that had been stored for 19 months at ambient temperature was extracted or directly amplified and then processed using routine methods. All four storage media provided fully typeable (qualitatively identical) samples. After standardization, the average among-locus fluorescence intensity (electropherographic peak height or area) provided a suitable metric for quantitative analysis of the relative amounts of amplifiable DNA in an archived sample. The amounts of DNA in Chelex extracts from stains on two untreated high-purity cotton linter pulp papers and a paper treated with a DNA-binding coating were essentially identical. Average intensities for the aqueous extracts from a paper treated with a DNA-releasing coating were somewhat lower but also somewhat less variable than for the Chelex extracts. Average intensities of directly amplified punches of the DNA-binding paper were much larger but somewhat more variable than the Chelex extracts. Approximately 25% of the observed variation among the intensity measurements is shared among the four media and thus can be attributed to intrinsic variation in white blood count among the donors. All of the evaluated media adequately "bank" forensically useful DNA in well-dried whole blood stains for at least 19 months at ambient temperature.

  16. AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.

    DTIC Science & Technology

    1986-07-01

    mass MAP Manifold pressure - inHg MON Motor Octane Number NIPER National Institute of Petroleum and Energy Resources Pamb Ambient pressure - inHg...pressure - psig si Sea level (used as a subscript) STC Supplemental Type Certificate Tamb Ambient temperature - degC or degF Tdew Dew point - degC or degF...temperature deg C #2 exhaust gas temperature deg C #3 exhaust gas temperature deg C #4 exhaust gas temperature deg C Ambient air temperature deg C 6

  17. No relevant impact of ambient temperature on disability measurements in a large cohort of patients with multiple sclerosis.

    PubMed

    Stellmann, J-P; Young, K L; Vettorazzi, E; Pöttgen, J; Heesen, C

    2017-06-01

    Many patients with multiple sclerosis (MS) report a worsening of symptoms due to high ambient temperatures, but objective data about this association are rare and contradictory. The aim of this study was to investigate the influence of ambient temperature on standard clinical tests. We extracted the Symbol Digit Modality Test, Nine Hole Peg Test, Timed 25 Foot Walk (T25FW), Timed Tandem Walk, Expanded Disability Status Scale (EDSS) and quality-of-life items on cognition, fatigue and depression from our clinical database and matched them to historical temperatures. We used linear mixed-effect models to investigate the association between temperature and outcomes. A total of 1254 patients with MS (mean age, 42.7 years; 69.9% females; 52.1% relapsing-remitting MS, mean EDSS, 3.8) had 5751 assessments between 1996 and 2012. We observed a worsening in the T25FW with higher ambient temperatures in moderately disabled patients (EDSS ≥ 4) but not in less disabled patients. However, an increase of 10°C prolonged the T25FW by just 0.4 s. Other outcomes were not associated with ambient temperatures. Higher ambient temperature might compromise walking capabilities in patients with MS with a manifest walking impairment. However, effects are small and not detectable in mildly disabled patients. Hand function, cognition, mood and fatigue do not appear to be correlated with ambient temperature. © 2017 EAN.

  18. [Influence of daily ambient temperature on mortality and years of life lost in Chongqing].

    PubMed

    Li, Jing; Luo, Shuquan; Ding, Xianbin; Yang, Jun; Li, Jing; Liu, Xiaobo; Gao, Jinghong; Xu, Lei; Tang, Wenge; Liu, Qiyong

    2016-03-01

    To evaluate the influence of extreme ambient temperature on mortality and years of life lost (YLL) in Chongqing. The daily mortality, meteorology and air pollution index data in Chongqing from the 1(st) January 2010 to the 31(st) December 2013 were collected. Distributed lag non-linear model (DLNM) was used to assess the influence of daily ambient temperature on daily number of deaths and daily YLL respectively. The delayed and cumulative effects of extreme temperature on sex, age, and cause-specific mortality were also assessed. The relationships between ambient temperature and non-accidental, cardiovascular disease and respiratory disease mortalities and YLL were U-shaped or W-shaped. The effect of heat was obvious on that day, peaked on day 7, and lasted for two weeks, whereas the effect of cold was obvious a week later and lasted for a month. As 1 ℃ increase of ambient temperature, the cumulative relative risks (CRR) of high temperature across lag 0-7 days on non-accidental, respiratory disease and cardiovascular disease mortalities were 1.05 (95%CI: 1.03-1.07), 1.08 (95%CI: 1.05-1.11) and 1.05 (95%CI: 1.01-1.09) respectively. The effects of heat on YLL for each cause were 23.81 (95%CI: 12.31-35.31), 14.34 (95%CI: 8.98-19.70) and 4.43 (95%CI: 1.64-7.21), respectively. On cold days, 1 ℃ decrease of ambient temperature was correlated with an increase in CRR of 1.06 (95%CI: 1.04-1.08), 1.09 (95%CI:1.06-1.12) and 1.06 (95%CI: 1.02-1.11) from lag 0 to 14 for non-accidental, respiratory disease and cardiovascular disease mortalities, respectively. The estimated YLL were 23.34 (95%CI: 10.04-36.64), 16.39 (95%CI: 10.19-22.59) and 2.61 (95%CI: -0.61-5.82). People aged ≥65 years tend to have higher CRR and YLL than those aged <65 years. On high temperature days, the CRR in women was higher than that in men, while the YLL in women was lower than that in men. On low temperature days, both the CRR and YLL in women were higher than those in men. Both high and low ambient temperature have adverse health effects. People aged ≥65 years are more sensitive to both high and low ambient temperature. Younger men are more sensitive to high ambient temperature and women and elder men are sensitive to low ambient temperature. It is necessary to take targeted measures to protect the population in Chongqing from the adverse influence of extreme ambient temperature.

  19. The Genetic Control of Reproductive Development under High Ambient Temperature.

    PubMed

    Ejaz, Mahwish; von Korff, Maria

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN

    PubMed Central

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855

  1. Lumen degradation analysis of LED lamps based on the subsystem isolation method.

    PubMed

    Ke, Hong-Liang; Hao, Jian; Tu, Jian-Hui; Miao, Pei-Xian; Wang, Chao-Quan; Cui, Jing-Zhong; Sun, Qiang; Sun, Ren-Tao

    2018-02-01

    The lumen degradation of LED lamps undergoing an accelerated aging test is investigated. The entire LED lamp is divided into three subsystems, namely, driver, lampshade, and LED light source. The parameters of output power [Watts (W)], transmittance (%), and lumen flux (lm) are adopted in the analysis of the degradation of the driver, lampshade, and LED light source, respectively. Two groups of LED lamps are aged under the ambient temperatures of 25°C and 85°C, respectively, with the aging time of 2000 h. The lumen degradation of the lamps is from 3.8% to 4.9% for the group under a temperature of 25°C and from 10.6% to 12.7% for the group under a temperature of 85°C. The LED light source is the most aggressive part of the three subsystems, which accounts for 70.5% of the lumen degradation of the LED lamp on average. The lampshade is the second degradation source, which causes 21.5% of the total amount on average. The driver is the third degradation source, which causes 6.5% under 25°C and 2.8% under 85°C of the total amount on average.

  2. Ambient Ozone Concentrations and the Risk of Perforated and Nonperforated Appendicitis: A Multicity Case-Crossover Study

    PubMed Central

    Tanyingoh, Divine; Dixon, Elijah; Johnson, Markey; Wheeler, Amanda J.; Myers, Robert P.; Bertazzon, Stefania; Saini, Vineet; Madsen, Karen; Ghosh, Subrata; Villeneuve, Paul J.

    2013-01-01

    Background: Environmental determinants of appendicitis are poorly understood. Past work suggests that air pollution may increase the risk of appendicitis. Objectives: We investigated whether ambient ground-level ozone (O3) concentrations were associated with appendicitis and whether these associations varied between perforated and nonperforated appendicitis. Methods: We based this time-stratified case-crossover study on 35,811 patients hospitalized with appendicitis from 2004 to 2008 in 12 Canadian cities. Data from a national network of fixed-site monitors were used to calculate daily maximum O3 concentrations for each city. Conditional logistic regression was used to estimate city-specific odds ratios (ORs) relative to an interquartile range (IQR) increase in O3 adjusted for temperature and relative humidity. A random-effects meta-analysis was used to derive a pooled risk estimate. Stratified analyses were used to estimate associations separately for perforated and nonperforated appendicitis. Results: Overall, a 16-ppb increase in the 7-day cumulative average daily maximum O3 concentration was associated with all appendicitis cases across the 12 cities (pooled OR = 1.07; 95% CI: 1.02, 1.13). The association was stronger among patients presenting with perforated appendicitis for the 7-day average (pooled OR = 1.22; 95% CI: 1.09, 1.36) when compared with the corresponding estimate for nonperforated appendicitis [7-day average (pooled OR = 1.02, 95% CI: 0.95, 1.09)]. Heterogeneity was not statistically significant across cities for either perforated or nonperforated appendicitis (p > 0.20). Conclusions: Higher levels of ambient O3 exposure may increase the risk of perforated appendicitis. PMID:23842601

  3. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  4. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  5. Body Temperature Regulation in Hot Environments.

    PubMed

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future.

  6. Body Temperature Regulation in Hot Environments

    PubMed Central

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  7. Chemical Variability in Ocean Frontal Areas: Results of a Workshop Conducted 19-22 September 1983

    DTIC Science & Technology

    1988-07-01

    tidal mixing and is separated from the seasonally stratified waters of the Bering Sea Shelf by a front at approximately 50 m. Salinity, temperature...the concentration of dissolved methane at the entrance to Port Moller is seasonably variable, it averages about a factor of 10 above the ambient...coastal levels regardless of season . By fitting the distribution of dissolved methane to a 2-D advection-diffusion model, we estimated a mean velocity

  8. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2006: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2006-01-01

    For the eight monitoring stations in water year 2006, an average of 99.1% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. 

  9. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2005: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2005-01-01

    For the eight monitoring sites in water year 2005, an average of 98.2% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. 

  10. Total dissolved gas and water temperature in the lower Columbia river, Oregon and Washington, 2004: quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew

    2004-01-01

    For the seven monitoring sites used to regulate spill in water year 2004, an average of 99.0% of the total- dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites.

  11. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    PubMed

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  12. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  13. Initial steps in defining the environment of the prepuce of the bull by measuring pH and temperature.

    PubMed

    Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F

    2017-12-01

    To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s  = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.

  14. Effects of reproductive condition, roost microclimate, and weather patterns on summer torpor use by a vespertilionid bat

    PubMed Central

    Johnson, Joseph S; Lacki, Michael J

    2014-01-01

    A growing number of mammal species are recognized as heterothermic, capable of maintaining a high-core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big-eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day-roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day-roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context. PMID:24558571

  15. Crop responses to elevated CO2 and interactions with H2O, N, and temperature.

    PubMed

    Kimball, Bruce A

    2016-06-01

    About twenty-seven years ago, free-air CO2 enrichment (FACE) technology was developed that enabled the air above open-field plots to be enriched with CO2 for entire growing seasons. Since then, FACE experiments have been conducted on cotton, wheat, ryegrass, clover, potato, grape, rice, barley, sugar beet, soybean, cassava, rape, mustard, coffee (C3 crops), and sorghum and maize (C4 crops). Elevated CO2 (550ppm from an ambient concentration of about 353ppm in 1990) decreased evapotranspiration about 10% on average and increased canopy temperatures about 0.7°C. Biomass and yield were increased by FACE in all C3 species, but not in C4 species except when water was limiting. Yields of C3 grain crops were increased on average about 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ambient Temperature, Fuel Economy, Emissions, and Trip Length

    DOT National Transportation Integrated Search

    1979-08-01

    This report examines the relationship among automotive fuel economy, ambient temperature, cold-start trip length, and drive-train component temperatures of four 1977 vehicles. Fuel economy, exhaust emission, and drive-train temperatures were measured...

  17. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis.

    PubMed

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates-including geographic latitude of the study site, male percentage, average temperature, and time interval-were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association (Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  18. Ambient Temperature and Morbidity: A Review of Epidemiological Evidence

    PubMed Central

    Ye, Xiaofang; Wolff, Rodney; Yu, Weiwei; Vaneckova, Pavla; Pan, Xiaochuan

    2011-01-01

    Objective: In this paper, we review the epidemiological evidence on the relationship between ambient temperature and morbidity. We assessed the methodological issues in previous studies and proposed future research directions. Data sources and data extraction: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of noncommunicable diseases published in refereed English journals before 30 June 2010. Forty relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heat wave on morbidity, and 1 assessed both temperature and heat wave effects. Data synthesis: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of nonlinear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared with that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded or modified by sociodemographic factors and air pollution. Conclusions: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable. PMID:21824855

  19. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  20. Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis.

    PubMed

    Blank, Jason M; Morrissette, Jeffery M; Farwell, Charles J; Price, Matthew; Schallert, Robert J; Block, Barbara A

    2007-12-01

    Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8-25 degrees C and swimming speeds of 0.75-1.75 body lengths (BL) s(-1). Pacific bluefin swimming at 1 BL s(-1) per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15 degrees C to 20 degrees C. Minimum MO2 of 175+/-29 mg kg(-1) h(-1) was recorded at 15 degrees C, while both cold and warm temperatures resulted in increased metabolic rates of 331+/-62 mg kg(-1) h(-1) at 8 degrees C and 256+/-19 mg kg(-1) h(-1) at 25 degrees C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.

  1. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  2. A New Black Carbon Sensor for Dense Air Quality Monitoring Networks

    PubMed Central

    Caubel, Julien J.; Cados, Troy E.; Kirchstetter, Thomas W.

    2018-01-01

    Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)—a major component of particulate matter pollution associated with adverse human health risks—is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD’s sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval). PMID:29494528

  3. A New Black Carbon Sensor for Dense Air Quality Monitoring Networks.

    PubMed

    Caubel, Julien J; Cados, Troy E; Kirchstetter, Thomas W

    2018-03-01

    Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)-a major component of particulate matter pollution associated with adverse human health risks-is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD's sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval).

  4. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.

    PubMed

    Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2014-12-10

    In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.

  5. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  6. Effect of four different reflective barriers on black-globe temperatures in calf hutches

    NASA Astrophysics Data System (ADS)

    Friend, T. H.; Haberman, J. A.; Binion, W. R.

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher ( P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature.

  7. 40 CFR 1042.515 - Test procedures related to not-to-exceed standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... altitudes up to 1,100 feet above sea level. (2) Ambient air temperature must be between 13 and 35 °C (or... the engine). (3) Ambient water temperature must be between 5 and 27 °C. (4) Ambient humidity must be... operating temperatures. For example, this would include only engine operation after starting and after the...

  8. Microbiological Studies of Semi-Preserved Natural Condiments Paste Stored in Refrigerator and Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Dien, H. A.; Montolalu, R. I.; Mentang, F.; Mandang, A. S. K.; Rahmi, A. D.; Berhimpon, S.

    2018-01-01

    The aims of this studies were to prepare juice and raw condiment to be come semipreserve pastes, and to do microbial assessments on the both pastes during storing in refrigerator and ambient temperatures. For both pastes in refrigerator, samples were taken at 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, and 30 days, and in ambient temperature samples were taken at 0, 1, 2, 3, 4, and 6 days. Assessment were done for TPC, total coliform and E. coli, Salmonella sp, Staphylococcus sp., Vibrio sp., pH and water content. The results shown that juice paste stored in refrigerator still good until 30 days (TPC 1,5x104 CFU/g), and in ambient temperature still good until 6 days (2x104 CFU/g). Condiment paste stored in refrigerator still good until 30 days (6.5x103 CFU/g), and in ambient temperature still good until 6 days (1.17x104 CFU/g). However, recommended that condiment paste stored in ambient temperature only until 4 days (7.3x103CFU/g), while that juice paste until 5 days (7.8x103CFU/g). There were no pathogenic bacteria found in all samples.

  9. Effect of complementation of cattle cooling systems with feedline soakers on lactating dairy cows in a desert environment.

    PubMed

    Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A

    2011-02-01

    Two experiments were conducted on a commercial dairy farm in eastern Saudi Arabia to investigate the effects of Korral Kool (KK; Korral Kool Inc., Mesa, AZ) cattle cooling systems complemented with feedline soakers on core body temperature (CBT) of dairy cows. In both experiments, cows had access to KK 24h/d. In the first experiment, 7 primiparous and 6 multiparous lactating Holstein dairy cows were assigned to 1 of 2 pens, which were assigned randomly to treatment sequence over 4 d in a switchback design. Soakers were on (ON24) or off (OFF24) for 24h/d. For the second experiment, 20 multiparous lactating Holstein cows were assigned randomly to 1 of 2 pens, which were assigned randomly to treatment sequence in a switchback design. This experiment lasted 4 d and feedline soakers alternately remained off or were on (ON12) for 12h/d. In experiment 1, average ambient temperature was 30 ± 0.9°C and average relative humidity was 44 ± 14% (mean ± SD). Feedline soakers complementing KK systems for 24 h/d decreased the mean CBT of lactating dairy cows compared with KK systems alone (38.80 vs. 38.98 ± 0.061°C, respectively). A significant treatment by time interaction was found. The greatest treatment effects occurred at 2100 h; treatment means at this time were 39.26 and 38.85 ± 0.085°C for OFF24 and ON24 treatments, respectively. In experiment 2, average ambient temperature was 35 ± 1.5°C and average relative humidity was 33 ± 16%. Feedline soakers running for 12 h/d significantly decreased the mean 24-h CBT from 39.16 to 38.99 ± 0.084°C. Treatment by time interaction was also significant; the greatest treatment effects occurred at 1500 h, when ON12 reduced CBT from 39.38 to 38.81 ± 0.088°C. These results demonstrate that complementing the KK system with feedline soakers decreased the CBT of dairy cows housed in desert environments. However, the combined systems were not sufficient to lower CBT to normal temperatures in this extreme environment. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Air pollution and ED visits for asthma in Australian children: a case-crossover analysis.

    PubMed

    Jalaludin, Bin; Khalaj, Behnoosh; Sheppeard, Vicky; Morgan, Geoff

    2008-08-01

    We aimed to determine the effects of ambient air pollutants on emergency department (ED) visits for asthma in children. We obtained routinely collected ED visit data for asthma (ICD9 493) and air pollution (PM(10), PM(2.5), O(3), NO(2), CO and SO(2)) and meteorological data for metropolitan Sydney for 1997-2001. We used the time stratified case-crossover design and conditional logistic regression to model the association between air pollutants and ED visits for four age-groups (1-4, 5-9, 10-14 and 1-14 years). Estimated relative risks for asthma ED visits were calculated for an exposure corresponding to the inter-quartile range in pollutant level. We included same day average temperature, same day relative humidity, daily temperature range, school holidays and public holidays in all models. Associations between ambient air pollutants and ED visits for asthma in children were most consistent for all six air pollutants in the 1-4 years age-group, for particulates and CO in the 5-9 years age-group and for CO in the 10-14 years age-group. The greatest effects were most consistently observed for lag 0 and effects were greater in the warm months for particulates, O(3) and NO(2). In two pollutant models, effect sizes were generally smaller compared to those derived from single pollutant models. We observed the effects of ambient air pollutants on ED attendances for asthma in a city where the ambient concentrations of air pollutants are relatively low.

  11. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  12. Ambient intelligence application based on environmental measurements performed with an assistant mobile robot.

    PubMed

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-03-27

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.

  13. Ambient Intelligence Application Based on Environmental Measurements Performed with an Assistant Mobile Robot

    PubMed Central

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-01-01

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poenkae, A.

    The weekly changes in ambient sulfur dioxide, nitrogen dioxide, and temperature were compared with the figures for respiratory infection in children and adults and for absenteeism from day-care centers (DCC), schools, and workplaces during a 1-year period in Helsinki. The annual average level of sulfur dioxide was 21 micrograms/m3 and of nitrogen dioxide 47 micrograms/m3; the average temperature was +3.1 degrees C. The levels of these pollutants and the temperature were significantly correlated with the number of upper respiratory infections reported from health centers. Low temperature also correlated with increased frequency of acute tonsillitis, of lower respiratory tract infection amongmore » DCC children, and of absenteeism from day-care centers, schools and workplaces. Furthermore, a significant association was found between levels of sulfur dioxide and absenteeism. After statistical standardization for temperature, no other correlations were observed apart from that between high levels of sulfur dioxide and numbers of upper respiratory tract infections diagnosed at health centers (P = 0.04). When the concentrations of sulfur dioxide were above the mean, the frequency of the upper respiratory tract infections was 15% higher than that during the periods of low concentration. The relative importance of the effects of low-level air pollution and low temperature on health is difficult to assess.« less

  15. Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms

    USGS Publications Warehouse

    McCormick, S.D.; Moriyama, S.

    2000-01-01

    We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.

  16. High Ambient Temperatures and Risk of Motor Vehicle Crashes in Catalonia, Spain (2000–2011): A Time-Series Analysis

    PubMed Central

    Escalera-Antezana, Juan Pablo; Dadvand, Payam; Llatje, Òscar; Barrera-Gómez, Jose; Cunillera, Jordi; Medina-Ramón, Mercedes; Pérez, Katherine

    2015-01-01

    Background Experimental studies have shown a decrease in driving performance at high temperatures. The epidemiological evidence for the relationship between heat and motor vehicle crashes is not consistent. Objectives We estimated the impact of high ambient temperatures on the daily number of motor vehicle crashes and, in particular, on crashes involving driver performance factors (namely distractions, driver error, fatigue, or sleepiness). Methods We performed a time-series analysis linking daily counts of motor vehicle crashes and daily temperature or occurrence of heat waves while controlling for temporal trends. All motor vehicle crashes with victims that occurred during the warm period of the years 2000–2011 in Catalonia (Spain) were included. Temperature data were obtained from 66 weather stations covering the region. Poisson regression models adjusted for precipitation, day of the week, month, year, and holiday periods were fitted to quantify the associations. Results The study included 118,489 motor vehicle crashes (an average of 64.1 per day). The estimated risk of crashes significantly increased by 2.9% [95% confidence interval (CI): 0.7%, 5.1%] during heat wave days, and this association was stronger (7.7%, 95% CI: 1.2%, 14.6%) when restricted to crashes with driver performance–associated factors. The estimated risk of crashes with driver performance factors significantly increased by 1.1% (95% CI: 0.1%, 2.1%) for each 1°C increase in maximum temperature. Conclusions Motor vehicle crashes involving driver performance–associated factors were increased in association with heat waves and increasing temperature. These findings are relevant for designing preventive plans in a context of global warming. Citation Basagaña X, Escalera-Antezana JP, Dadvand P, Llatje Ò, Barrera-Gómez J, Cunillera J, Medina-Ramón M, Pérez K. 2015. High ambient temperatures and risk of motor vehicle crashes in Catalonia, Spain (2000–2011): a time-series analysis. Environ Health Perspect 123:1309–1316; http://dx.doi.org/10.1289/ehp.1409223 PMID:26046727

  17. Incubation behavior of Spectacled Eiders on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Grand, J.B.

    1999-01-01

    We studied incubation behavior of Spectacled Eiders (Somateria fischeri) on the Yukon-Kuskokwim Delta in 1996. We trapped 19 females on their nests and weighed them in early incubation and again at hatch. Average daily weight loss for incubating females was 16.6 ?? 1.0 g day-1, which resulted in a cumulative loss of 26% of body weight throughout incubation. Nest attendance was monitored for a portion of the incubation period using temperature sensing artificial eggs. Incubation constancy averaged 90 ?? 1%. Average recess length was 37.1 ?? 0.9 min, and nests cooled an average of 4.2 ?? 0.1??C during recesses. Recess frequency averaged 2.5 ?? 0.1 recesses day-1, and most recesses (70%) occurred between 10:00 and 22: 00. Incubation constancy varied among females, but was not related to changes in body weight or incubation period. There was no influence of ambient temperature on incubation recess length, however most recesses were taken during the warmest part of the day. We found considerable variation among females in patterns of daily incubation constancy, nest cooling, recess frequency, and recess length. It is not clear from our results what factors constrain incubation behavior of Spectacled Eiders, but we suggest that individual females respond to a complex suite of variables.

  18. Correlation between corneal and ambient temperature with particular focus on polar conditions.

    PubMed

    Slettedal, Jon Klokk; Ringvold, Amund

    2015-08-01

    To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Decline in temperature and humidity increases the occurrence of influenza in cold climate.

    PubMed

    Jaakkola, Kari; Saukkoriipi, Annika; Jokelainen, Jari; Juvonen, Raija; Kauppila, Jaana; Vainio, Olli; Ziegler, Thedi; Rönkkö, Esa; Jaakkola, Jouni Jk; Ikäheimo, Tiina M

    2014-03-28

    Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. The average temperature preceding the influenza onset was -6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate.

  20. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    PubMed Central

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  1. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.

    2018-04-01

    We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.

  2. FOLIAR NITROGEN CONCENTRATIONS AND NATURAL ABUNDANCE OF 15N SUGGEST NITROGEN ALLOCATION PATTERNS OF DOUGLAS-FIR AND MYCORRHIZAL FUNGI DURING DEVELOPMENT IN ELEVATED CARBON DIOXIDE CONCENTRATION AND TEMPERATURE

    EPA Science Inventory

    In an experiment using Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings and a 2x2 factorial design in enclosed mesocosms, temperatures were maintained at ambient or +3.5 degrees C above ambient, and CO2 levels were maintained at ambient or 179 ppm above ambient. Two ...

  3. Leaching behaviour of hazardous waste under the impact of different ambient conditions.

    PubMed

    Pecorini, Isabella; Baldi, Francesco; Bacchi, Donata; Carnevale, Ennio Antonio; Corti, Andrea

    2017-05-01

    The overall objective of this study is to provide an improved basis for the assessment of the leaching behaviour of waste marked as hazardous partly stabilised (European waste catalogue code 19 03 04 ∗ ). Four samples of hazardous partly stabilised waste were subjected to two leaching tests: up-flow column tests and batch equilibrium tests. The research was carried out in two directions: the first aims at comparing the results of the two experimental setups while the second aims at assessing the impact of different ambient conditions on the leaching behaviour of waste. Concerning this latter objective the effect of mesophilic temperature, mechanical constraints and acid environment were tested through column percolation tests. Results showed no significant differences between batch and column leaching test outcomes when comparing average concentrations calculated at a liquid to solid ratio of 10:1 l kg -1  TS. Among the tested ambient conditions, the presence of an acid environment (pH=4.5) accelerated the leaching process resulting in a higher cumulative released quantity measured on the majority of the investigated polluting substances. On the contrary, the effect of temperature and mechanical constraints seemed to not affect the process showing final contents even lower than values found for the standard test. This result was furthermore confirmed by the application of the principal component analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  5. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  6. Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources

    EPA Science Inventory

    Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...

  7. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions

    PubMed Central

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456

  8. Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature

    NASA Astrophysics Data System (ADS)

    Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan

    2010-02-01

    The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.

  9. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  10. Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module

    NASA Astrophysics Data System (ADS)

    Wiesenfarth, Maike; Gamisch, Sebastian; Kraus, Harald; Bett, Andreas W.

    2013-09-01

    The thermal flow in a FLATCON®-type CPV module is investigated theoretically and experimentally. For the simulation a model in the computational fluid dynamics (CFD) software SolidWorks Flow Simulation was established. In order to verify the simulation results the calculated and measured temperatures were compared assuming the same operating conditions (wind speed and direction, direct normal irradiance (DNI) and ambient temperature). Therefore, an experimental module was manufactured and equipped with temperature sensors at defined positions. In addition, the temperature distribution on the back plate of the module was displayed by infrared images. The simulated absolute temperature and the distribution compare well with an average deviation of only 3.3 K to the sensor measurements. Finally, the validated model was used to investigate the influence of the back plate material on the temperature distribution by replacing the glass material by aluminum. The simulation showed that it is important to consider heat dissipation by radiation when designing a CPV module.

  11. The effect of acclimatization and ambient temperature on heat withdrawal threshold in rats.

    PubMed

    Vítková, J; Loučka, M; Boček, J; Vaculín, S

    2015-01-01

    Nociception in rats is frequently measured in terms of latency of withdrawal reaction to radiant heat (thermal nociceptive threshold). The aim of this study was to determine how much housing acclimatization and ambient temperature affect the results of thermal pain threshold testing. All experiments used adult male Wistar rats. Thermal pain thresholds were tested using the radiant heat withdrawal reaction at three different body sites: forepaws, hind paws and tail. Skin temperature was measured using an Infrared thermometer and ambient temperature was set at 18, 20, 24 or 26 °C. The results demonstrate that (1) thermal pain threshold was inversely related to both ambient and skin temperature; (2) housing acclimatization and repeated testing had no effect on nociceptive thresholds at any of the three body sites; (3) a resting, cranio-caudal distribution, of nociceptive sensitivity was observed; (4) hind paws and tail were more sensitive to changes of skin and ambient temperature than forepaws. These findings show the importance of recording laboratory conditions in experiments and their influence on results. © 2014 European Pain Federation - EFIC®

  12. Cold Spots in Neonatal Incubators Are Hot Spots for Microbial Contamination▿

    PubMed Central

    de Goffau, Marcus C.; Bergman, Klasien A.; de Vries, Hendrik J.; Meessen, Nico E. L.; Degener, John E.; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    2011-01-01

    Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments. We therefore investigated whether the level of microbial contamination (i.e., the bacterial load) inside neonatal incubators can be predicted on the basis of their average temperature and relative humidity settings, paying special attention to local temperature differences. Swab samples were taken from the warmest and coldest spots found within Caleo incubators, and these were plated to determine the number of microbial CFU per location. In incubators with high average temperature (≥34°C) and relative humidity (≥60%) values, the level of microbial contamination was significantly higher at cold spots than at hot spots. This relates to the fact that the local equilibrium relative humidity at cold spots is sufficiently high to sustain microbial growth. The abundance of staphylococci, which are the main causative agents of late-onset sepsis in preterm neonates, was found to be elevated significantly in cold areas. These findings can be used to improve basic incubator hygiene. PMID:22003021

  13. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  14. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  15. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  16. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  17. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning.

    PubMed

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. SUBCOOLING DETECTOR

    DOEpatents

    McCann, J.A.

    1963-12-17

    A system for detecting and measuring directly the subcooling margin in a liquid bulk coolant is described. A thermocouple sensor is electrically heated, and a small amount of nearly stagnant bulk coolant is heated to the boiling point by this heated thermocouple. The sequential measurement of the original ambient temperature, zeroing out this ambient temperature, and then measuring the boiling temperature of the coolant permits direct determination of the subcooling margin of the ambient liquid. (AEC)

  19. Ambient temperature effects on broadband UV-B measurements using fluorescent phosphor (MgWO4)-based detectors

    NASA Technical Reports Server (NTRS)

    Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.

    1994-01-01

    Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.

  20. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  1. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    1995-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  2. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-02-05

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  3. High ambient temperature increases intravenous methamphetamine self-administration on fixed and progressive ratio schedules in rats.

    PubMed

    Cornish, Jennifer L; Clemens, Kelly J; Thompson, Murray R; Callaghan, Paul D; Dawson, Bronwyn; McGregor, Iain S

    2008-01-01

    Methamphetamine is a drug that is often consumed at dance parties or nightclubs where the ambient temperature is high. The present study determined whether such high ambient temperatures alter intravenous methamphetamine self-administration in the rat. Male Hooded Wistar rats were trained to self-administer intravenous methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 1 (FR1) or progressive ratio (PR) schedule of reinforcement at an ambient temperature of 23 +/- 1 degrees C. They were then given their daily self-administration session at a raised ambient temperature of 30 +/- 1 degrees C. Methamphetamine self-administration was increased at 30 degrees C under both FR1 and PR reinforcement schedules, with the latter effect indicating that heat enhances the motivation to obtain methamphetamine. High temperatures did not alter self-administration of the D1 receptor agonist SKF 82958 in methamphetamine-experienced rats suggesting some specificity in the methamphetamine effect. When rats were given access to drink isotonic saline solution during methamphetamine self-administration sessions they drank much more solution at 30 degrees C than 23 degrees C. However, availability of isotonic saline to drink did not alter the heat-induced facilitation of methamphetamine self-administration (PR schedule) indicating that the heat effect does not simply reflect increased motivation for intravenous fluids. Hyperthermia was evident in rats self-administering methamphetamine at high ambient temperatures and fluid consumption did not prevent this effect. Heat did not affect blood levels of methamphetamine, or its principal metabolite amphetamine indicating that the facilitatory effect of heat did not reflect altered methamphetamine pharmacokinetics. Overall, these results show that high ambient temperatures increase the reinforcing efficacy of methamphetamine and encourage higher levels of drug intake.

  4. Field study of dried blood spot specimens for HIV-1 drug resistance genotyping.

    PubMed

    Parry, C M; Parkin, N; Diallo, K; Mwebaza, S; Batamwita, R; DeVos, J; Bbosa, N; Lyagoba, F; Magambo, B; Jordan, M R; Downing, R; Zhang, G; Kaleebu, P; Yang, C; Bertagnolio, S

    2014-08-01

    Dried blood spots (DBS) are an alternative specimen type for HIV drug resistance genotyping in resource-limited settings. Data relating to the impact of DBS storage and shipment conditions on genotyping efficiency under field conditions are limited. We compared the genotyping efficiencies and resistance profiles of DBS stored and shipped at different temperatures to those of plasma specimens collected in parallel from patients receiving antiretroviral therapy in Uganda. Plasma and four DBS cards from anti-coagulated venous blood and a fifth card from finger-prick blood were prepared from 103 HIV patients with a median viral load (VL) of 57,062 copies/ml (range, 1,081 to 2,964,191). DBS were stored at ambient temperature for 2 or 4 weeks or frozen at -80 °C and shipped from Uganda to the United States at ambient temperature or frozen on dry ice for genotyping using a broadly sensitive in-house method. Plasma (97.1%) and DBS (98.1%) stored and shipped frozen had similar genotyping efficiencies. DBS stored frozen (97.1%) or at ambient temperature for 2 weeks (93.2%) and shipped at ambient temperature also had similar genotyping efficiencies. Genotyping efficiency was reduced for DBS stored at ambient temperature for 4 weeks (89.3%, P = 0.03) or prepared from finger-prick blood and stored at ambient temperature for 2 weeks (77.7%, P < 0.001) compared to DBS prepared from venous blood and handled similarly. Resistance profiles were similar between plasma and DBS specimens. This report delineates the optimal DBS collection, storage, and shipping conditions and opens a new avenue for cost-saving ambient-temperature DBS specimen shipments for HIV drug resistance (HIVDR) surveillances in resource-limited settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin.

    PubMed

    Pang, Toh Yen; Subic, Aleksandar; Takla, Monir

    2014-03-01

    The main objective of this study is to establish an approach for measuring the dry and evaporative heat dissipation cricket helmets. A range of cricket helmets has been tested using a sweating manikin within a controlled climatic chamber. The thermal manikin experiments were conducted in two stages, namely the (i) dry test and (ii) wet test. The ambient air temperature for the dry tests was controlled to ~ 23 °C, and the mean skin temperatures averaged ~ 35 °C. The thermal insulation value measured for the manikin with helmet ensemble ranged from 1.0 to 1.2 clo. The results showed that among the five cricket helmets, the Masuri helmet offered slightly more thermal insulation while the Elite helmet offered the least. However, under the dry laboratory conditions and with minimal air movement (air velocity = 0.08 ± 0.01 ms(-1)), small differences exist between the thermal resistance values for the tested helmets. The wet tests were conducted in an isothermal condition, with an ambient and skin mean temperatures averaged ~ 35 °C, the evaporative resistance, Ret, varied between 36 and 60 m(2) Pa W(-1). These large variations in evaporative heat dissipation values are due to the presence of a thick layer of comfort lining in certain helmet designs. This finding suggests that the type and design of padding may influence the rate of evaporative heat dissipation from the head and face; hence the type of material and thickness of the padding is critical for the effectiveness of evaporative heat loss and comfort of the wearer. Issues for further investigations in field trials are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  7. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...

  8. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis1[C][W][OA

    PubMed Central

    Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon

    2012-01-01

    The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less

  10. Implications of depleted flux tubes in the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-10-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the Io orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to Io, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  11. Implications of Depleted flux Tubes in the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-01-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the lo orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to lo, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  12. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.

    PubMed

    Shin, Hangsik

    2016-12-01

    Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.

  13. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008

    PubMed Central

    2009-01-01

    Background This review examines recent evidence on mortality from elevated ambient temperature for studies published from January 2001 to December 2008. Methods PubMed was used to search for the following keywords: temperature, apparent temperature, heat, heat index, and mortality. The search was limited to the English language and epidemiologic studies. Studies that reported mortality counts or excess deaths following heat waves were excluded so that the focus remained on general ambient temperature and mortality in a variety of locations. Studies focusing on cold temperature effects were also excluded. Results Thirty-six total studies were presented in three tables: 1) elevated ambient temperature and mortality; 2) air pollutants as confounders and/or effect modifiers of the elevated ambient temperature and mortality association; and 3) vulnerable subgroups of the elevated ambient temperature-mortality association. The evidence suggests that particulate matter with less than 10 um in aerodynamic diameter and ozone may confound the association, while ozone was an effect modifier in the warmer months in some locations. Nonetheless, the independent effect of temperature and mortality was withheld. Elevated temperature was associated with increased risk for those dying from cardiovascular, respiratory, cerebrovascular, and some specific cardiovascular diseases, such as ischemic heart disease, congestive heart failure, and myocardial infarction. Vulnerable subgroups also included: Black racial/ethnic group, women, those with lower socioeconomic status, and several age groups, particularly the elderly over 65 years of age as well as infants and young children. Conclusion Many of these outcomes and vulnerable subgroups have only been identified in recent studies and varied by location and study population. Thus, region-specific policies, especially in urban areas, are vital to the mitigation of heat-related deaths. PMID:19758453

  14. Effect of water addition to a total mixed ration on feed temperature, feed intake, sorting behavior, and milk production of dairy cows.

    PubMed

    Felton, C A; DeVries, T J

    2010-06-01

    The objective of this study was to determine the effects of water addition to a high-moisture total mixed ration (TMR) on feed temperature, feed intake, feed sorting behavior, and milk production of dairy cows. Twelve lactating Holstein cows (155.8+/-60.1 DIM), individually fed once daily at 1000 h, were exposed to 3 diets in a Latin square design with 28-d treatment periods. Diets had the same ingredient composition [30.9% corn silage, 30.3% alfalfa haylage, 21.2% high-moisture corn, and 17.6% protein supplement; dry matter (DM) basis] and differed only in DM concentration, which was reduced by the addition of water. Treatment diets averaged 56.3, 50.8, and 44.1% DM. The study was conducted between May and August when environmental temperature was 18.2+/-3.6 degrees C and ambient temperature in the barn was 24.4+/-3.3 degrees C. Dry matter intake (DMI) was monitored for each animal for the last 14 d of each treatment period. For the final 7 d of each period, milk production was monitored, feed temperature and ambient temperature and humidity were recorded (daily at 1000, 1300, and 1600 h), and fresh feed and orts were sampled for determination of sorting. For the final 4 d of each period, milk samples were taken for composition analysis. Samples taken for determining sorting were separated using a Penn State Particle Separator that had 3 screens (19, 8, and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short, and fine). Sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. Greater amounts of water added to the TMR resulted in greater increases in feed temperature in the hours after feed delivery, greater sorting against long particles, and decreased DMI, reducing the overall intake of starch and neutral detergent fiber. Milk production and composition were not affected by the addition of water to the TMR. Efficiency of production of milk was, however, increased with greater amounts of water added to the TMR. The increases in feed temperature in the hours after feed delivery were enhanced by higher ambient temperatures; this may be indicative of feed spoilage and thus may have contributed to the reduced DMI observed. Overall, these results suggest that the addition of water to high-moisture TMR (less than 60% DM) containing primarily haylage and silage forage sources will not always discourage cows from sorting, but rather may increase this behavior and limit the nutrient consumption of cows, particularly when ambient temperature is high. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Transient natural convection with density inversion from a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Wang, P.; Kahawita, R.; Nguyen, D. L.

    1992-01-01

    This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C

  16. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation

    PubMed Central

    Levin, Eran; Plotnik, Brit; Amichai, Eran; Braulke, Luzie J.; Landau, Shmulik; Yom-Tov, Yoram; Kronfeld-Schor, Noga

    2015-01-01

    We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution. PMID:25740890

  17. Ambient Air Pollution, Meteorological Factors and Outpatient Visits for Eczema in Shanghai, China: A Time-Series Analysis.

    PubMed

    Li, Qiao; Yang, Yingying; Chen, Renjie; Kan, Haidong; Song, Weimin; Tan, Jianguo; Xu, Feng; Xu, Jinhua

    2016-11-08

    Environmental irritants are important risk factors for skin diseases, but little is known about the influence of environmental factors on eczema incidence. In this time-series study, our objective was to examine the associations of environmental factors with outpatient visits for eczema. Daily outpatient visits between 2007 and 2011 (1826 days) were collected from Huashan Hospital in Shanghai, China. We used an overdispersed generalized additive model to investigate the short-term association between environmental factors and outpatient visits for eczema. Daily outpatient visits for eczema were significantly associated with air pollution and meteorological factors. For example, a 10 μg/m³ increase of 7-day (lag 06) average concentrations of PM 10 (particulate matter no greater than 10 microns), SO₂, NO₂ was associated with 0.81% (95% confidence intervals (CI) 0.39%, 1.22%), 2.22% (95% CI: 1.27%, 3.16%) and 2.31% (95% CI: 1.17%, 3.45%) increase in outpatient visits for eczema, respectively. A 10 °C elevation of temperature on lag 0 day were associated with 8.44% (95% CI: 4.66%, 12.22%) increase in eczema visits, whereas 10 unit decrease of 7-day average relative humidity were associated with 10.86% (95% CI: 8.83%, 12.89%) increase in eczema visits. This study provided clear evidence of ambient air pollution, high temperature and low relative humidity on increasing the incidence of eczema in Shanghai, China.

  18. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  19. Application of Natural Air Drying on Shelled Corn in Timor

    NASA Astrophysics Data System (ADS)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  20. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    PubMed

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and milk production.

  1. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.

    PubMed

    Jung, Inuk; Kang, Hyejin; Kim, Jang Uk; Chang, Hyeonsook; Kim, Sun; Jung, Woosuk

    2018-03-19

    Ginseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level. To investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature. Collectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6/9) and growth regulating genes (GRF) respectively.

  2. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    PubMed

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    PubMed

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  4. Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula?

    PubMed

    Sun, Zhihong; Copolovici, Lucian; Niinemets, Ülo

    2012-03-01

    Changes in isoprene emission (Φ(isoprene)), and foliage photosynthetic (A) rates, isoprene precursor dimethylallyldiphosphate (DMADP), and nitrogen and carbon contents were studied from late summer to intensive leaf fall in Populus tremula to gain insight into the emission controls by temperature and endogenous, senescence-induced, modifications. Methanol emissions, characterizing degradation of cell wall pectins, were also measured. A rapid reduction in Φ(isoprene) and A of 60-70% of the initial value was observed in response to a rapid reduction of ambient temperature by ca. 15°C (cold stress). Later phases of senescence were associated with further reductions in Φ(isoprene) and A, with simultaneous major decrease in nitrogen content. However, during episodes of temperature increase, A and in particular, Φ(isoprene) partly recovered. Variation in Φ(isoprene) during senescence was correlated with average temperature of preceding days, with the highest degree of explained variance observed with average temperature of 6 days. Throughout the study, methanol emissions were small, but a large burst of methanol emission was associated with leaf yellowing and abscission. Overall, these data demonstrate that the capacity for isoprene emission can adjust to environmental conditions in senescing leaves as well, but the responsiveness is low compared with mid-season and is also affected by stress.

  5. Influence of the Environment on Body Temperature of Racing Greyhounds.

    PubMed

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted.

  6. Influence of the Environment on Body Temperature of Racing Greyhounds

    PubMed Central

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted. PMID:27446941

  7. Evaluation of Two Matrices for Long-Term, Ambient Storage of Bacterial DNA.

    PubMed

    Miernyk, Karen M; DeByle, Carolynn K; Rudolph, Karen M

    2017-12-01

    Culture-independent molecular analyses allow researchers to identify diverse microorganisms. This approach requires microbiological DNA repositories. The standard for DNA storage is liquid nitrogen or ultralow freezers. These use large amounts of space, are costly to operate, and could fail. Room temperature DNA storage is a viable alternative. In this study, we investigated storage of bacterial DNA using two ambient storage matrices, Biomatrica DNAstable ® Plus and GenTegra ® DNA. We created crude and clean DNA extracts from five Streptococcus pneumoniae isolates. Extracts were stored at -30°C (our usual DNA storage temperature), 25°C (within the range of temperatures recommended for the products), and 50°C (to simulate longer storage time). Samples were stored at -30°C with no product and dried at 25°C and 50°C with no product, in Biomatrica DNAstable Plus or GenTegra DNA. We analyzed the samples after 0, 1, 2, 4, 8, 16, 32, and 64 weeks using the Nanodrop 1000 to determine the amount of DNA in each aliquot and by real-time PCR for the S. pneumoniae genes lytA and psaA. Using a 50°C storage temperature, we simulated 362 weeks of 25°C storage. The average amount of DNA in aliquots stored with a stabilizing matrix was 103%-116% of the original amount added to the tubes. This is similar to samples stored at -30°C (average 102%-121%). With one exception, samples stored with a stabilizing matrix had no change in lytA or psaA cycle threshold (Ct) value over time (Ct range ≤2.9), similar to samples stored at -30°C (Ct range ≤3.0). Samples stored at 25°C with no stabilizing matrix had Ct ranges of 2.2-5.1. DNAstable Plus and GenTegra DNA can protect dried bacterial DNA samples stored at room temperature with similar effectiveness as at -30°C. It is not effective to store bacterial DNA at room temperature without a stabilizing matrix.

  8. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  9. Thermal monitoring, measurement, and control system for a Volatile Condensable Materials (VCM) test apparatus

    NASA Technical Reports Server (NTRS)

    Ives, R. E.

    1982-01-01

    A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.

  10. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  11. An epidemiological assessment of the effect of ambient temperature on the incidence of preterm births: Identifying windows of susceptibility during pregnancy.

    PubMed

    Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong

    2018-05-01

    It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Influence of preservation methods on the quality of colostrum sourced from New Zealand dairy farms.

    PubMed

    Denholm, K S; Hunnam, J C; Cuttance, E L; McDougall, S

    2017-09-01

    To assess the effect of two temperatures (ambient temperature and 4°C), three preservation methods (no preservative, yoghurt and potassium sorbate), and two periods of storage (3 and 7 days) on Brix and total bacterial and coliform counts of colostrum collected from New Zealand dairy farms. One litre of colostrum destined to be fed to newborn calves was collected from 55 New Zealand dairy farms in the spring of 2015. Six aliquots of 150 mL were obtained from each colostrum sample, with two aliquots left untreated, two treated with potassium sorbate and two with yoghurt, and one of each pair of aliquots stored at ambient temperature and the other at 4°C. All samples were tested for Brix, total bacterial counts and coliform counts before treatment (Day 0), and after 3 and 7 days of storage. The effect of preservation method and storage temperature on the change in Brix, bacterial and coliform counts after 3 or 7 days of storage was analysed using multivariable random effects models. For all outcome variables there was a temperature by preservation interaction. For aliquots preserved with potassium sorbate, changes in Brix and bacterial counts did not differ between aliquots stored at ambient temperature or 4°C, but for aliquots preserved with yoghurt or no preservative the decrease in Brix and increase in bacterial counts was greater for aliquots stored at ambient temperature than 4°C (p<0.001). For aliquots preserved with potassium sorbate, coliform counts decreased at both temperatures, but for aliquots preserved with yoghurt or no preservative coliform counts increased for aliquots stored at 4°C, but generally decreased at ambient temperatures (p<0.001). There was also an interaction between duration of storage and temperature for bacterial counts (p<0.001). The difference in the increase in bacterial counts between aliquots stored at 4°C and ambient temperature after 3 days was greater than between aliquots stored at 4°C and ambient temperature after 7 days. Use of potassium sorbate to preserve colostrum for 3 or 7 days resulted in little or no reduction in Brix and a lower increase in total bacterial counts than colostrum stored without preservative or with yoghurt added. Colostrum quality was not affected by storage temperature for samples preserved with potassium sorbate, but storage at 4°C resulted in better quality colostrum than storage at ambient temperatures for colostrum with no preservative or yoghurt added.

  13. Time Series Analysis of Cholera in Matlab, Bangladesh, during 1988-2001

    PubMed Central

    Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-01-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab. PMID:23617200

  14. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.

    PubMed

    Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György

    2018-06-01

    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.

  15. Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection.

    PubMed

    Gloster, John; Ebert, Katja; Gubbins, Simon; Bashiruddin, John; Paton, David J

    2011-11-21

    Thermal imagers have been used in a number of disciplines to record animal surface temperatures and as a result detect temperature distributions and abnormalities requiring a particular course of action. Some work, with animals infected with foot-and-mouth disease virus, has suggested that the technique might be used to identify animals in the early stages of disease. In this study, images of 19 healthy cattle have been taken over an extended period to determine hoof and especially coronary band temperatures (a common site for the development of FMD lesions) and eye temperatures (as a surrogate for core body temperature) and to examine how these vary with time and ambient conditions. The results showed that under UK conditions an animal's hoof temperature varied from 10°C to 36°C and was primarily influenced by the ambient temperature and the animal's activity immediately prior to measurement. Eye temperatures were not affected by ambient temperature and are a useful indicator of core body temperature. Given the variation in temperature of the hooves of normal animals under various environmental conditions the use of a single threshold hoof temperature will be at best a modest predictive indicator of early FMD, even if ambient temperature is factored into the evaluation.

  16. The impact of household cooking and heating with solid fuels on ambient PM2.5 in peri-urban Beijing

    NASA Astrophysics Data System (ADS)

    Liao, Jiawen; Zimmermann Jin, Anna; Chafe, Zoë A.; Pillarisetti, Ajay; Yu, Tao; Shan, Ming; Yang, Xudong; Li, Haixi; Liu, Guangqing; Smith, Kirk R.

    2017-09-01

    Household cooking and space heating with biomass and coal have adverse impacts on both indoor and outdoor air quality and are associated with a significant health burden. Though household heating with biomass and coal is common in northern China, the contribution of space heating to ambient air pollution is not well studied. We investigated the impact of space heating on ambient air pollution in a village 40 km southwest of central Beijing during the winter heating season, from January to March 2013. Ambient PM2.5 concentrations and meteorological conditions were measured continuously at rooftop sites in the village during two winter months in 2013. The use of coal- and biomass-burning cookstoves and space heating devices was measured over time with Stove Use Monitors (SUMs) in 33 households and was coupled with fuel consumption data from household surveys to estimate hourly household PM2.5 emissions from cooking and space heating over the same period. We developed a multivariate linear regression model to assess the relationship between household PM2.5 emissions and the hourly average ambient PM2.5 concentration, and a time series autoregressive integrated moving average (ARIMA) regression model to account for autocorrelation. During the heating season, the average hourly ambient PM2.5 concentration was 139 ± 107 μg/m3 (mean ± SD) with strong autocorrelation in hourly concentration. The average primary PM2.5 emission per hour from village household space heating was 0.736 ± 0.138 kg/hour. The linear multivariate regression model indicated that during the heating season - after adjusting for meteorological effects - 39% (95% CI: 26%, 54%) of hourly averaged ambient PM2.5 was associated with household space heating emissions from the previous hour. Our study suggests that a comprehensive pollution control strategy for northern China, including Beijing, should address uncontrolled emissions from household solid fuel combustion in surrounding areas, particularly during the winter heating season.

  17. Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories

    PubMed Central

    Carrera, Olaia; Adan, Roger A. H.; Gutierrez, Emilio; Danner, Unna N.; Hoek, Hans W.; van Elburg, Annemarie A.; Kas, Martien J. H.

    2012-01-01

    Excessive physical activity is a common feature in Anorexia Nervosa (AN) that interferes with the recovery process. Animal models have demonstrated that ambient temperature modulates physical activity in semi-starved animals. The aim of the present study was to assess the effect of ambient temperature on physical activity in AN patients in the acute phase of the illness. Thirty-seven patients with AN wore an accelerometer to measure physical activity within the first week of contacting a specialized eating disorder center. Standardized measures of anxiety, depression and eating disorder psychopathology were assessed. Corresponding daily values for ambient temperature were obtained from local meteorological stations. Ambient temperature was negatively correlated with physical activity (p = −.405) and was the only variable that accounted for a significant portion of the variance in physical activity (p = .034). Consistent with recent research with an analogous animal model of the disorder, our findings suggest that ambient temperature is a critical factor contributing to the expression of excessive physical activity levels in AN. Keeping patients warm may prove to be a beneficial treatment option for this symptom. PMID:22848634

  18. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  19. 16 CFR § 1203.13 - Test schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  20. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  1. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).

    PubMed

    Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  2. Urban sprawl and air quality in large US cities.

    PubMed

    Stone, Brian

    2008-03-01

    This study presents the results of a paper of urban spatial structure and exceedances of the 8-h national ambient air quality standard for ozone in 45 large US metropolitan regions. Through the integration of a published index of sprawl with metropolitan level data on annual ozone exceedances, precursor emissions, and regional climate over a 13-year period, the association between the extent of urban decentralization and the average number of ozone exceedances per year, while controlling for precursor emissions and temperature, is measured. The results of this analysis support the hypothesis that large metropolitan regions ranking highly on a quantitative index of sprawl experience a greater number of ozone exceedances than more spatially compact metropolitan regions. Importantly, this relationship was found to hold when controlling for population size, average ozone season temperatures, and regional emissions of nitrogen oxides and volatile organic compounds, suggesting that urban spatial structure may have effects on ozone formation that are independent of its effects on precursor emissions from transportation, industry, and power generation facilities.

  3. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    PubMed

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  4. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  5. Ambient temperature and air quality in relation to small for gestational age and term low birthweight

    PubMed Central

    Ha, Sandie; Zhu, Yeyi; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2017-01-01

    Background Exposures to extreme ambient temperature and air pollution are linked to adverse birth outcomes, but the associations with small for gestational age (SGA) and term low birthweight (tLBW) are unclear. We aimed to investigate exposures to site-specific temperature extremes and selected criteria air pollutants in relation to SGA and tLBW. Methods We linked medical records of 220,572 singleton births (2002–2008) from 12 US sites to local temperature estimated by the Weather Research and Forecasting model, and air pollution estimated by modified Community Multiscale Air Quality models. Exposures to hot (>95th percentile) and cold (<5th percentile) were defined using site-specific distributions of daily temperature over three-month preconception, each trimester, and whole-pregnancy. Average concentrations of five criteria air pollutants and six fine particulate matter constituents were also calculated for these pregnancy windows. Poisson regression with generalized estimating equations calculated the relative risks (RR) and 95% confidence intervals for SGA (weight <10th percentile conditional on gestational age and sex) and tLBW (≥37 weeks and <2,500 grams) associated with an interquartile range increment of air pollutants, and cold or hot compared to mild (5–95th percentile) temperature. Models were adjusted for maternal demographics, lifestyle, and clinical factors, season, and site. Results Compared to mild temperature, cold exposure during trimester 2 [RR: 1.21 (1.05–1.38)], trimester 3 [RR: 1.18 (1.03–1.36)], and whole-pregnancy [RR: 2.57 (2.27–2.91)]; and hot exposure during trimester 3 [RR: 1.31 (1.15–1.50)] and whole-pregnancy [RR: 2.49 (2.20–2.83)] increased tLBW risk. No consistent association was observed between temperature and SGA. Air pollutant analyses were generally null but preconception elemental carbon was associated with a 4% increase in SGA while dust particles increased tLBW by 10%. Particulate matter ≤10 microns in the second trimester and whole pregnancy also appeared related to tLBW. Conclusions: Our findings suggest prenatal exposures to extreme ambient temperature relative to usual environment may increase tLBW risk. Given concerns related to climate change, these findings merit further investigation. PMID:28258738

  6. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na supplementation did not affect either water intake or water evaporation. This study demonstrates that the development of predictive models for water intake that include environmental variables could be based on mechanistic models of evaporation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Measurements of argon-, helium-, hydrogen-, and nitrogen-broadened widths of methane lines near 9000 per cm

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth; Jennings, Donald E.; Stern, Elizabeth A.; Hubbard, Rob

    1988-01-01

    Pressure-broadened widths of rotational-vibrational lines in CH4 have been measured at very high spectral resolution in the R-branch of the 3nu3 overtone. The broadening gases were Ar, He, H2, and N2. Results are presented as averages for J-multiplets at ambient temperature. The overall values (per cm per atm) for these R-branch lines are 0.0651 (CH4-Ar), 0.0508 (CH4-He), 0.0728 (CH4-H2), and 0.0715 (CH4-N2).

  8. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2007: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2007-01-01

    For the eight monitoring sites in water year 2007, an average of 99.5% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the sites ranged from 97.9% to 100.0% complete.

  9. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2008: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2008-01-01

    For the eight monitoring stations in water year 2008, an average of 99.6 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.8 to 100.0 percent complete.

  10. Interactive effect of elevated CO2 and temperature on coral physiology

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.

    2011-12-01

    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  11. Conditioning of inspired air by a hygroscopic condenser humidifier.

    PubMed

    Primiano, F P; Moranz, M E; Montague, F W; Miller, R B; Sachs, D P

    1984-08-01

    The heat and water content of inspired air is critical to the pulmonary viability of patients with artificial airways. By continuously measuring gas conditions in the ventilator circuits of 6 adult ICU patients, we studied the heat and water reclaimed from expired air by a hygroscopic condenser humidifier (HCH) in the circuit. Temperature, partial pressure of water vapor (PH2O) and relative humidity (RH) were determined at the tracheal outlet of the endotracheal tube. The HCH was 63% efficient; the end-inspiratory gas delivered to the patients averaged 30.9 degrees C with a PH2O of 32.5 mm Hg and an RH of 97.3% or, equivalently, an RH of 69.2% referenced to 37 degrees C. These values are lower than those reported in the literature for gas in the trachea during nose breathing of ambient air, but greater than the values reported for mouth breathing of ambient air.

  12. [An auto-iatrogenic disease].

    PubMed

    Reinhart, W H

    2004-12-01

    A 55-year-old practitioner from an island in the northern sea felt an increasing hypersensitivity of his entire body to various ambient and nutritional allergens and toxics. He started to treat himself with increasing doses of glucocorticoids and moved to a southern climate in Lanzarote and later on to the Swiss mountains in the grisons. On admission to our hospital in December he was in a disastrous psychotic condition, trying to cool down his body by laying naked on his bed at ambient temperatures around the freezing point. He had consumed on average 250 mg prednisone daily over weeks. As we found out later his personal assistant travelling with him was giving him glucocorticoids through the infusion during his hospital stay. He developed a necrotizing septic phlebitis at the infusion site followed by a Pseudomonas aeruginosa sepsis with fatal multiorgan failure. This case illustrates the dangers of self-treatment by doctors and the difficulties in treating a physician.

  13. Preservation of Biospecimens at Ambient Temperature: Special Focus on Nucleic Acids and Opportunities for the Biobanking Community.

    PubMed

    Muller, Rolf; Betsou, Fay; Barnes, Michael G; Harding, Keith; Bonnet, Jacques; Kofanova, Olga; Crowe, John H

    2016-04-01

    Several approaches to the preservation of biological materials at ambient temperature and the relative impact on sample stability and degradation are reviewed, with a focus on nucleic acids. This appraisal is undertaken within the framework of biobank risk, quality management systems, and accreditation, with a view to assessing how best to apply ambient temperature sample storage to ensure stability, reduce costs, improve handling logistics, and increase the efficiency of biobank procedures.

  14. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  15. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  16. Exhaled breath temperature in children: reproducibility and influencing factors.

    PubMed

    Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P

    2014-09-01

    This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.

  17. Cloud motion in relation to the ambient wind field

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1975-01-01

    Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.

  18. Insect eggs protected from high temperatures by limited homeothermy of plant leaves.

    PubMed

    Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur

    2009-11-01

    Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.

  19. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  20. Cold Tolerance of Megacopta cribraria (Hemiptera: Plataspidae): An Invasive Pest of Soybeans.

    PubMed

    Grant, Jessica I; Lamp, William O

    2017-12-08

    Kudzu bug, Megacopta cribraria Fabricius (Hemiptera: Plataspidae), first discovered in the United States in 2009, is an invasive pest of soybeans. From 2013 to 2016, Maryland has been the northern limit of its distribution in the United States. We sought to determine the physiological cold temperature limits, timing of movement to overwintering locations, and to characterize overwintering microhabitat temperature. We measured supercooling point (SCP) on three populations from distinct USDA plant hardiness zones in Maryland and Virginia between October and December of 2015. The average SCP across all sample months and populations was -12.6°C and no consistent trend of month or population location were observed. Additionally, we assessed the lower lethal temperature to kill 50% of the population (LLT50) at the same population locations in October and November 2015. The average LLT50 over both months and all three population locations was -5.1°C. Again, no consistent trend based on population location was observed but we did find a modest depression in the LLT50 values between October and November. We observed that kudzu bug overwinters in leaf litter and begins to move into the litter in late November to early December. Leaf litter moderates day to night temperature differences and was warmer than ambient temperature by an average of 0.7°C. Evidence suggests that the cold tolerance of the kudzu bug limits its distribution north of Maryland. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Preliminary Final Environmental Impact Statement

    DTIC Science & Technology

    2000-12-01

    Suitabilities - Brooks AFB .................................................................... 3-49 3.5-2 National and Texas Ambient Air Quality...night average sound level NAAQS = National Ambient Air Quality Standards NPDES = National Pollutant Discharge Elimination System ROI = region of...Dos Rios, and Medio Creek plants. These plants treat an average of 130 MG of wastewater per day, with a total capacity (including an excess margin

  2. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  3. Thermal Pollution Mathematical Model. Volume 6; Verification of Three-Dimensional Free-Surface Model at Anclote Anchorage; [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1980-01-01

    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.

  4. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  5. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions

    PubMed Central

    2013-01-01

    Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405

  6. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  7. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions.

    PubMed

    Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br

    2013-01-08

    The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.

  8. The influence of season and ambient temperature on birth outcomes: a review of the epidemiological literature.

    PubMed

    Strand, Linn B; Barnett, Adrian G; Tong, Shilu

    2011-04-01

    Seasonal patterns of birth outcomes, such as low birth weight, preterm birth and stillbirth, have been found around the world. As a result, there has been an increasing interest in evaluating short-term exposure to ambient temperature as a determinant of adverse birth outcomes. This paper reviews the epidemiological evidence on seasonality of birth outcomes and the impact of prenatal exposure to ambient temperature on birth outcomes. We identified 20 studies that investigated seasonality of birth outcomes, and reported statistically significant seasonal patterns. Most of the studies found peaks of preterm birth, stillbirth and low birth weight in winter, summer or both, which indicates the extremes of temperature may be an important determinant of poor birth outcomes. We identified 13 studies that investigated the influence of exposure to ambient temperature on birth weight and preterm birth (none examined stillbirth). The evidence for an adverse effect of high temperatures was stronger for birth weight than for preterm birth. More research is needed to clarify whether high temperatures have a causal effect on fetal health. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. White LED performance

    NASA Astrophysics Data System (ADS)

    Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul

    2004-10-01

    Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.

  10. Effect of climatological factors on respiratory syncytial virus epidemics

    PubMed Central

    NOYOLA, D. E.; MANDEVILLE, P. B.

    2008-01-01

    SUMMARY Respiratory syncytial virus (RSV) presents as yearly epidemics in temperate climates. We analysed the association of atmospheric conditions to RSV epidemics in San Luis Potosí, S.L.P., Mexico. The weekly number of RSV detections between October 2002 and May 2006 were correlated to ambient temperature, barometric pressure, relative humidity, vapour tension, dew point, precipitation, and hours of light using time-series and regression analyses. Of the variation in RSV cases, 49·8% was explained by the study variables. Of the explained variation in RSV cases, 32·5% was explained by the study week and 17·3% was explained by meteorological variables (average daily temperature, maximum daily temperature, temperature at 08:00 hours, and relative humidity at 08:00 hours). We concluded that atmospheric conditions, particularly temperature, partly explain the year to year variability in RSV activity. Identification of additional factors that affect RSV seasonality may help develop a model to predict the onset of RSV epidemics. PMID:18177520

  11. Differential effects of environment-induced changes in body temperature on modafinil’s actions against methamphetamine-induced striatal toxicity in mice

    PubMed Central

    Raineri, Mariana; González, Betina; Echeto, Celeste Rivero; Muñiz, Javier A.; Gutierrez, María Laura; Ghanem, Carolina I.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Veronica, Bisagno

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg , 2h apart; modafinil (90mg/kg) was injected twice, 1h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out six days after treatments and processed for TH, DAT, GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by sriatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures. PMID:25261212

  12. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice.

    PubMed

    Raineri, Mariana; González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A; Gutiérrez, María Laura; Ghanem, Carolina I; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.

  13. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  14. Humid microclimates within the plumage of mallard ducks (Anas platyrhynchos) can potentially facilitate long distance dispersal of propagules

    NASA Astrophysics Data System (ADS)

    Coughlan, Neil E.; Kelly, Tom C.; Davenport, John; Jansen, Marcel A. K.

    2015-05-01

    Birds as carriers of propagules are major agents in the dispersal of plants, animals, fungi and microbes. However, there is a lack of empirical data in relation to bird-mediated, epizoochorous dispersal. The microclimate found within the plumage likely plays a pivotal role in survival during flight conditions. To investigate the potential of epizoochory, we have analysed the microclimatic conditions within the plumage of mallard ducks (Anas platyrhynchos). Under similar ambient conditions of humidity and temperature, a sample of mallards showed a consistent microclimatic regime with variation across the body surface. The highest (mean) temperature and specific humidity occurred between feathers of the postpatagium. The lowest humidity was found between feathers of the centre back and the lowest temperature in the crissum. Observed differences in plumage depth and density, and distance from the skin, are all likely to be determining factors of microclimate condition. Specific humidity found within the plumage was on average 1.8-3.5 times greater than ambient specific humidity. Thus, the plumage can supply a microclimate buffered from that of the exterior environment. Extrapolating survival data for Lemna minor desiccation at various temperature and humidity levels to the measured plumage microclimatic conditions of living birds, survival for up to 6 h can be anticipated, especially in crissum, crural and breast plumage. The results are discussed in the context of potential long distance epizoochorous dispersal by A. platyrhynchos and similar species.

  15. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  16. 40 CFR 1066.105 - Ambient controls and vehicle cooling fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range of ambient temperature and humidity. Use good engineering judgment to maintain relatively uniform temperatures throughout the test cell before testing. You are generally not required to maintain uniform temperatures throughout the test cell while the vehicle is running due to the heat generated by the vehicle...

  17. Evaluation of 25-Percent ATJ Fuel Blends in the John Deere 4045HF 280 Engine

    DTIC Science & Technology

    2014-08-01

    25% ATJ Blend ........ 26 Figure 16 . THC Emissions, Pre-Test, Ambient Temperature ...................................................... 28 Figure...17 . THC Emissions, Pre-Test, Desert Temperature ......................................................... 28 Figure 18 . NOx Emissions, Pre-Test...Emissions, Pre-Test, Desert Temperature (Scaled) ............................................. 32 Figure 23 . THC Emissions, Post-Test, Ambient

  18. THERMOREGULATION AT A HIGH AMBIENT TEMPERATURE FOLLOWING THE ORAL ADMINISTRATION OF ETHANOL IN THE RAT

    EPA Science Inventory

    This study was designed to assess the thermoregulatory mechanisms responsible for the elevation in body temperature following ethanol administration when exposed to a high ambient temperature (Ta). ale rats of the Fischer 344 strain were gavaged with 20% ethanol at doses of 0, 2....

  19. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; ...

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OS C) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular Omore » : C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H 2O + and CO + ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H 2O +, CO +, and CO 2 + fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO + and H 2O + produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C and H : C values is smaller (12% and 4% respectively) for synthetic mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  20. Advancing breeding phenology does not affect incubation schedules in chestnut-crowned babblers: Opposing effects of temperature and wind.

    PubMed

    Capp, Elliot; Liebl, Andrea L; Cones, Alexandra G; Russell, Andrew F

    2018-01-01

    Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler ( Pomatostomus ruficeps ), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

  1. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  2. Detailed chemical analysis of regional-scale air pollution in western Portugal using an adapted version of MCM v3.1.

    PubMed

    Pinho, P G; Lemos, L T; Pio, C A; Evtyugina, M G; Nunes, T V; Jenkin, M E

    2009-03-01

    A version of the Master Chemical Mechanism (MCM) v3.1, refined on the basis of recent chamber evaluations, has been incorporated into a Photochemical Trajectory Model (PTM) and applied to the simulation of boundary layer photochemistry in the Portuguese west coast region. Comparison of modelled concentrations of ozone and a number of other species (NO(x) and selected hydrocarbons and organic oxygenates) was carried out, using data from three connected sites on two case study days when well-defined sea breeze conditions were established. The ozone concentrations obtained through the application of the PTM are a good approximation to the measured values, the average difference being ca. 15%, indicating that the model was acceptable for evaluation of the details of the chemical processing. The detailed chemistry is examined, allowing conclusions to be drawn concerning chemical interferences in the measurements of NO(2), and in relation to the sensitivity of ozone formation to changes in ambient temperature. Three important, and comparable, contributions to the temperature sensitivity are identified and quantified, namely (i) an effect of increasing biogenic emissions with temperature; (ii) an effect of increasing ambient water vapour concentration with temperature, and its influence on radical production; and (iii) an increase in VOC oxidation chain lengths resulting from the temperature-dependence of the kinetic parameters, particularly in relation to the stability of PAN and its higher analogues. The sensitivity of the simulations to the refinements implemented into MCM v3.1 are also presented and discussed.

  3. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5

    PubMed Central

    Kim, Sara; Hwang, Geonhee; Lee, Seulgi; Zhu, Jia-Ying; Paik, Inyup; Nguyen, Thom Thi; Kim, Jungmook; Oh, Eunkyoo

    2017-01-01

    Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module. PMID:29104579

  4. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  5. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens.

    PubMed

    Tan, G-Y; Yang, L; Fu, Y-Q; Feng, J-H; Zhang, M-H

    2010-01-01

    This study investigated the effects of different acute high ambient temperatures on dysfunction of hepatic mitochondrial respiration, the antioxidative enzyme system, and oxidative injury in broiler chickens. One hundred twenty-eight 6-wk-old broiler chickens were assigned randomly to 4 groups and subsequently exposed to 25 (control), 32, 35, and 38 degrees C (RH, 70 +/- 5%) for 3 h, respectively. The rectal temperatures, activity of antioxidative enzymes (superoxide dismutase, catalase, and glutathione peroxidase), content of malondialdehyde and protein carbonyl, and the activity of mitochondrial respiratory enzymes were determined. The results showed that exposure to high ambient temperature induced a significant elevation of rectal temperature, antioxidative enzyme activity, and formation of malondialdehyde and protein carbonyl, as well as dysfunction of the mitochondrial respiratory chain in comparison with control (P < 0.05). Almost all of the indicators changed in a temperature-dependent manner with the gradual increase of ambient temperature from 32 to 38 degrees C; differences in each parameter (except catalase) among the groups exposed to different high ambient temperatures were also statistically significant (P < 0.05). The results of the present study suggest that, in the broiler chicken model used here, acute exposure to high temperatures may depress the activity of the mitochondrial respiratory chain. This inactivation results subsequently in overproduction of reactive oxygen species, which ultimately results in oxidative injury. However, this hypothesis needs to be evaluated more rigorously in future studies. It has also been shown that, with the gradual increase in temperature, the oxidative injury induced by heat stress in broiler chickens becomes increasingly severe, and this stress response presents in a temperature-dependent manner in the temperature range of 32 to 38 degrees C.

  6. Effect of sodium bicarbonate supplementation on carcass characteristics of lambs fed concentrate diets at different ambient temperature levels.

    PubMed

    Jallow, Demba B; Hsia, Liang Chou

    2014-08-01

    The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks). The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate) or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C) in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period). Ambient temperature had significant (p<0.05, p<0.05, p<0.01, and p<0.001) effects on meat color from the ribeye area (REA), fat, leg and longissimus dorsi muscles with higher values recorded for lambs in the lower temperature group than those from the higher ambient temperature group. Significant differences (p<0.05) in shear force value (kg/cm(2)) recorded on the leg muscles showed higher values (5.32 vs 4.16) in lambs under the lower ambient temperature group compared to the other group. Dietary treatments had significant (p<0.01, p<0.01, and p<0.05) effects on meat color from the REA, fat, and REA fat depth (cm(2)) with higher values recorded for lambs in the NaHCO3 supplementation group than the non supplemented group. Similarly, dietary treatments had significant differences (p<0.05) in shear force value (kg/cm(2)) of the leg muscles with the NaHCO3 groups recording higher (5.30 vs 4.60) values than those from the other group. Neither ambient temperature nor dietary treatments had any significant (p>0.05) effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  7. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.

    PubMed

    Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L

    2013-12-01

    Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.

  8. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus)

    PubMed Central

    Haupt, Ryan J.; Avey-Arroyo, Judy A.; Wilson, Rory P.

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg−1day−1 (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths. PMID:25861559

  9. Studies on preparation of mixed toffee from guava and strawberry.

    PubMed

    Chavan, U D; Pawar, U B; Pawar, G H

    2015-10-01

    The present investigation was carried out to develop a technology for preparation of mixed toffee from guava and strawberry pulp and to study the changes in chemical composition and sensory properties of toffee during storage at ambient temperature as well as refrigerated condition. Preliminary experiments were conducted to find out optimum levels of guava and strawberry pulp. The toffees prepared were wrapped in metallic coated polythene wrapper, packed in 200 gauge polythene bags and stored at ambient (27 ± 2 oC) as well as refrigerated (5 ± 2 oC) condition for 90 days. The stored samples were drawn periodically at 30 days interval for organoleptic and chemical analysis. Preliminary studies were carried out to standardize the optimum levels of guava and strawberry pulp. Among various combinations of guava and strawberry pulp, 70 : 30 w/w (guava : strawberry) ratios toffee was found better than other combinations in respect to organoleptic properties and nutritional quality. The yield of fresh toffee was higher (868 g/kg of pulp) in toffee prepared from 100 % guava (control). The chemical composition indicated that the fresh toffees contained on an average moisture 8.73 %, TSS 83.21 oBrix, titrable acidity 0.3 %, total sugars 73.1 % and ascorbic acid 64.1 mg/100 g. The mean score of fresh toffees for colour and appearance was 8.29, texture 8.02, flavour 8.22, taste 8.32 and overall acceptability 8.16 on 9 point Hedonic scale. The cost of fresh toffee was Rs. 282/kg which was prepared from 70 : 30 guava and strawberry pulp level. The storage studies indicated that the TSS and total sugars increased with the advancement of storage period, while moisture content, ascorbic acid and acidity decreased. The rates of increase or decrease were relatively higher at ambient temperature than refrigerated temperature. The sensory quality of toffees also decreased at faster rate during 90 days storage period at ambient condition than the refrigerated condition. The toffee prepared from 70: 30 guava and strawberry pulp was found superior over other combinations in respect of organoleptic properties throughout storage period. However, toffees were found to be acceptable even after 90 days storage at ambient as well as refrigerated conditions.

  10. Elevated CO2 Reduced Floret Death in Wheat Under Warmer Average Temperatures and Terminal Drought

    PubMed Central

    Dias de Oliveira, Eduardo; Palta, Jairo A.; Bramley, Helen; Stefanova, Katia; Siddique, Kadambot H. M.

    2015-01-01

    Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables. PMID:26635837

  11. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  13. Effects of Temperature and Relative Humidity on DNA Methylation

    PubMed Central

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. Methods We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the normative aging Study (1999–2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Results Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°c increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (−8% to −1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. Conclusions DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects. PMID:24809956

  14. Effects of temperature and relative humidity on DNA methylation.

    PubMed

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  15. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  16. High-temperature fiber-optic lever microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.

    1995-01-01

    The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.

  17. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  18. Influence of ambient temperatures on the production of restraint ulcers in the rat

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Gallaire, D.

    1980-01-01

    A study of the influence of ambient temperature on the production of restraint ulcers in the rat is described. It concludes that the production of restrain ulcers, is favored by the reduction of the environmental temperature, whether the rat has been subjected to a fast or not.

  19. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    PubMed

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  20. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  1. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  2. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution.

    PubMed

    Delfino, Ralph J; Wu, Jun; Tjoa, Thomas; Gullesserian, Sevan K; Nickerson, Bruce; Gillen, Daniel L

    2014-01-01

    Ambient air pollution has been associated with asthma-related hospital admissions and emergency department visits (hospital encounters). We hypothesized that higher individual exposure to residential traffic-related air pollutants would enhance these associations. We studied 11,390 asthma-related hospital encounters among 7492 subjects 0-18 years of age living in Orange County, California. Ambient exposures were measured at regional air monitoring stations. Seasonal average traffic-related exposures (PM2.5, ultrafine particles, NOx, and CO) were estimated near subjects' geocoded residences for 6-month warm and cool seasonal periods, using dispersion models based on local traffic within 500 m radii. Associations were tested in case-crossover conditional logistic regression models adjusted for temperature and humidity. We assessed effect modification by seasonal residential traffic-related air pollution exposures above and below median dispersion-modeled exposures. Secondary analyses considered effect modification by traffic exposures within race/ethnicity and insurance group strata. Asthma morbidity was positively associated with daily ambient O3 and PM2.5 in warm seasons and with CO, NOx, and PM2.5 in cool seasons. Associations with CO, NOx, and PM2.5 were stronger among subjects living at residences with above-median traffic-related exposures, especially in cool seasons. Secondary analyses showed no consistent differences in association, and 95% confidence intervals were wide, indicating a lack of precision for estimating these highly stratified associations. Associations of asthma with ambient air pollution were enhanced among subjects living in homes with high traffic-related air pollution. This may be because of increased susceptibility (greater asthma severity) or increased vulnerability (meteorologic amplification of local vs. correlated ambient exposures).

  4. Weekly agricultural emissions and ambient concentrations of ammonia: Validation of an emission inventory

    NASA Astrophysics Data System (ADS)

    Bittman, Shabtai; Jones, Keith; Vingarzan, Roxanne; Hunt, Derek E.; Sheppard, Steve C.; Tait, John; So, Rita; Zhao, Johanna

    2015-07-01

    Weekly inventories for emissions of agricultural ammonia were calculated for 139 4 × 4 km grid cells over 52 weeks in the intensely farmed Lower Fraser Valley, BC. The grid cells were located both inside and outside an area that had been depopulated of poultry due to an outbreak of Avian Influenza prior to the start of the study. During the study period, ambient ammonia concentrations were measured hourly at two locations outside the cull area and one location inside the cull area. Large emission differences between grid cells and differences in temporal variation between cells were related to farming practices and meteorological factors such as temperature and rainfall. Weekly average ambient concentrations at the three sampling locations were significantly correlated with estimates of weekly emissions for many of the grid cells in the study area. Inside the cull area, ambient concentrations during the cull (week 1) were 37% of the concentrations after the cull (week 52), while outside the cull there was almost no difference between week 1 and week 52, suggesting that in normal (non-cull) conditions, about 60% of the ambient ammonia was due to poultry farms. Estimated emissions in weeks 1 and 52 for grid cells affected by the cull indicated that over 90% of the emissions came from poultry. The discrepancy in difference between week 1 and 52 for emissions and ambient concentrations could be due to atmospheric factors like transport, atmospheric reactions, dispersion or deposition; to errors in the inventory including farming data, emission factors; and omission of some non-poultry emission sources. Overall the study supports the ammonia emission inventory estimates. Detailed emission data helps in modeling ammonia in the atmosphere and is useful for developing abatement policy.

  5. Relationship between prostate-specific antigen levels and ambient temperature

    NASA Astrophysics Data System (ADS)

    Ohwaki, Kazuhiro; Endo, Fumiyasu; Hattori, Kazunori; Muraishi, Osamu

    2014-07-01

    We examined the association between prostate-specific antigen (PSA) and daily mean ambient temperature on the day of the test in healthy men who had three annual checkups. We investigated 9,694 men who visited a hospital for routine health checkups in 2007, 2008, and 2009. Although the means and medians of ambient temperature for the three years were similar, the mode in 2008 (15.8 °C) was very different from those in 2007 and 2009 (22.4 °C and 23.2 °C). After controlling for age, body mass index, and hematocrit, a multiple regression analysis revealed a U-shaped relationship between ambient temperature and PSA in 2007 and 2009 ( P < 0.001 and P = 0.004, respectively), but not in 2008 ( P = 0.779). In 2007, PSA was 13.5 % higher at 5 °C and 10.0 % higher at 30 °C than that at 18.4 °C (nadir). In 2009, PSA was 7.3 % higher at 5 °C and 6.8 % at 30 °C compared with the level at 17.7 °C (nadir). In logistic regression analysis, a U-shaped relationship was found for the prevalence of a higher PSA (> 2.5 ng/mL) by ambient temperature, with the lowest likelihood of having a high PSA at 17.8 °C in 2007 ( P = 0.038) and 15.5 °C in 2009 ( P = 0.033). When tested at 30 °C, there was a 57 % excess risk of having a high PSA in 2007 and a 61 % higher risk in 2009 compared with those at each nadir temperature. We found a U-shaped relationship between PSA and ambient temperature with the lowest level of PSA at 15-20 °C.

  6. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-03

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.

  7. Ca++ induced hypothermia in a hibernator /Citellus beechyi/

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1975-01-01

    Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.

  8. Effect of ambient temperature on human pain and temperature perception.

    PubMed

    Strigo, I A; Carli, F; Bushnell, M C

    2000-03-01

    Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P < 0.0001). Ambient temperature affected both heat (44-50 degrees C) and cold (25-0 degrees C) perception (P < 0.01). Stimulus intensity ratings tended to be lower in the cool than in the neutral environment (P < 0.07) but were not different between the neutral and warm environments. Unpleasantness ratings revealed that cold stimuli were more unpleasant than hot stimuli in the cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.

  9. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor.

    PubMed

    Shi, Shanshan; Chen, Chen; Zhao, Bin

    2017-01-01

    Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover, considering the inter-individual difference of F inf and α may lead to a brand new perspective of particle-health associations in further epidemiological study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nitrous oxide causes a regulated hypothermia: rats select a cooler ambient temperature while becoming hypothermic.

    PubMed

    Ramsay, Douglas S; Seaman, Jana; Kaiyala, Karl J

    2011-04-18

    An initial administration of 60% nitrous oxide (N(2)O) evokes hypothermia in rats and if the administration continues for more than 1-2h, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N(2)O-induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7-37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N(2)O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity >7days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700-1900h) during sessions lasting 45.5h. Rats entered the temperature gradient at 1100h, and the 5-h N(2)O or control gas period did not start until 23h later to provide a long habituation/training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N(2)O administration occurred at 0.9h and was -2.05±0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9h during control gas administration (0.01±0.14°C). The maximum decrease of the mean selected ambient temperature during N(2)O administration occurred at 0.7h and was -13.58±1.61°C; this differed significantly (p<0.0001) from the corresponding mean change in the selected ambient temperature at 0.7h during control gas administration (0.30±1.49°C). N(2)O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N(2)O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Nitrous Oxide Causes a Regulated Hypothermia: Rats Select a Cooler Ambient Temperature While Becoming Hypothermic

    PubMed Central

    Ramsay, Douglas S.; Seaman, Jana; Kaiyala, Karl J.

    2011-01-01

    An initial administration of 60% nitrous oxide (N2O) evokes hypothermia in rats and if the administration continues for more than 1 – 2 hours, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N2O -induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7 – 37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N2O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity > 7 days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700 – 1900 h) during sessions lasting 45.5 hours. Rats entered the temperature gradient at 1100 h, and the 5-h N2O or control gas period did not start until 23 hours later to provide a long habituation / training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N2O administration occurred at 0.9 h and was −2.05 ± 0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9 h during control gas administration (0.01 ± 0.14°C). The maximum decrease of mean selected ambient temperature during N2O administration occurred at 0.7 h and was −13.58 ± 1.61°C; this differed significantly (p < 0.0001) from the corresponding mean change in selected ambient temperature at 0.7 h during control gas administration (0.30 ± 1.49°C). N2O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N2O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. PMID:21184766

  12. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  13. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Matteo, Edward N.

    An example case is presented for testing analytical thermal models. The example case represents thermal analysis of a generic repository in bedded salt at 500 m depth. The analysis is part of the study reported in Matteo et al. (2016). Ambient average ground surface temperature of 15°C, and a natural geothermal gradient of 25°C/km, were assumed to calculate temperature at the near field. For generic salt repository concept crushed salt backfill is assumed. For the semi-analytical analysis crushed salt thermal conductivity of 0.57 W/m-K was used. With time the crushed salt is expected to consolidate into intact salt. In thismore » study a backfill thermal conductivity of 3.2 W/m-K (same as intact) is used for sensitivity analysis. Decay heat data for SRS glass is given in Table 1. The rest of the parameter values are shown below. Results of peak temperatures at the waste package surface are given in Table 2.« less

  15. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change.

    PubMed

    Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle

    2006-09-01

    A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.

  16. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions.

    PubMed

    Kaiyala, Karl J; Ogimoto, Kayoko; Nelson, Jarrell T; Schwartz, Michael W; Morton, Gregory J

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity.

  17. Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions

    PubMed Central

    Kaiyala, Karl J.; Ogimoto, Kayoko; Nelson, Jarrell T.; Schwartz, Michael W.; Morton, Gregory J.

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity. PMID:25756181

  18. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    PubMed

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  19. Effect of ambient temperature and internal relative humidity on spectral sensitivity of broadband UV detectors

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Blumthaler, Mario; Schreder, Josef

    2002-01-01

    Within the frame of the Austrian UV Monitoring Network, repeated recalibrations of Solar Light Sunburn Meters between December 1997 and March 2000 have shown significant temporal changes in the instruments' relative spectral response function as well as in their absolute calibration. Therefore, laboratory investigations of the effects of ambient temperature and internal relative humidity on the behavior of two Sunburn Meters have been performed. Despite internal temperature stabilization, both instruments show significant dependence of their spectral response function on ambient temperature. When the outside temperature of the detector's housing varies between 13 degree(s)C and 44 degree(s)C, spectral sensitivity changes by up to 10% in the UVB range and by up to a factor of 2 in the UVA range, depending on internal relative humidity. As a consequence, output voltage variations of 10% are observed when the detector is mounted in front of a 1000 W halogen lamp and its internal relative humidity is changed while its ambient temperature is kept constant. Whereas temperature effects take place within several hours, instabilities due to variations in internal relative humidity show typical time constants in the order of several days.

  20. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  1. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  2. [Study of relationship between atmospheric fine particulate matter concentration and one grade a tertiary hospital emergency room visits during 2012 and 2013 in Beijing].

    PubMed

    Wang, Xuying; Li, Guoxing; Jin, Xiaobin; Mu, Jing; Pan, Jie; Liang, Fengchao; Tian, Lin; Chen, Shi; Guo, Qun; Dong, Wentan; Pan, Xiaochuan

    2016-01-01

    To explore the concentration-response relationship between ambient concentration of PM2.5 and daily total hospital emergency room visits in Beijing during 2012 and 2013. This study also examined the effects of ambient PM2.5 during heavy polluted days on emergency room visits compared with the light polluted days. We collected the daily meteorological factors monitoring data and concentrations of air pollutants in Beijing during October 1, 2012 to December 31, 2013. We also collected the daily emergency room visits from a tertiary hospital in Beijing in the same time period. Generalized additive model was fitted to estimate the association between the ambient PM2.5 and the hospital emergency room visits, by using the smooth function to adjust long term trend of time, public holidays and day of week. In addition, constrained piecewise linear function was then used to estimate the excess risk for different segment of concentration-response function. The annual average concentration of PM2.5 was 90.9 µg/m(3) during October 1, 2012 and December 31, 2013. There were total 64 260 cases for total emergency room visits, of which respiratory disease had 9 849 cases and cardiovascular disease had 11 168 cases. PM2.5 was positive related with PM10, NO2 and SO2. The corresponding correlation coefficients were 0.87, 0.78 and 0.62, respectively (P<0.05). And PM2.5 was positively related with relative humidity, with correlation coefficient 0.45 (P<0.05). But PM2.5 was negatively related with mean temperature (r=-0.17, P< 0.05) and wind speed (- 0.32, P<0.05). In the single polluted model, after adjusting the effects of temperature, relative humidity and wind, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits was 0.25% (95% CI: 0.07-0.43). In the two-pollutant model PM2.5+SO2 and PM2.5+NO2, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits were 1.07% (95%CI:0.83-1.30) and 0.56% (95%CI: 0.32-0.80) respectively, which were higher than the effect in single pollutant model. Average concentration of ambient particulate matters (PM2.5) was 204.16 µg/m(3) during heavy pollution, higher than control period (85.24 µg/m(3)). When PM2.5 as the primary air pollutants during heavy polluted days, we observed a significant increase in emergency room visits, and the odd ratios was 1.16 (95% CI:1.09-1.22). There were positive correlation between high concentration of ambient particulate matters (PM2.5) and increasing daily emergency room visits. Especially during the heavy polluted days, the effects of elevated concentration of PM2.5 on hospital emergency room visits were much larger.

  3. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  4. The impact of ambient particle pollution during extreme-temperature days in Guangzhou City, China.

    PubMed

    Li, Guoxing; Jiang, Lai; Zhang, Yajuan; Cai, Yue; Pan, Xiaochuan; Zhou, Maigeng

    2014-11-01

    The aim of this study is to explore whether the effect of PM10 (particulate matter with an aerodynamic diameter of <10 µm) on daily mortality was modified by extreme temperatures in Guangzhou from 2005 to 2009. The present study used time-series analysis to explore the modification effects of temperature on the association between PM10 and the cause-specific mortalities for cardiovascular, respiratory, cardiopulmonary, and nonaccidental mortality. The interactions between PM10 and temperature were statistically significant on respiratory mortality. The effect estimates per 10-µg/m(3) increase in PM10 concentrations at the moving average of lags of 0 and 1 day on high-temperature days were 2.34% (95% confidence interval = 0.55, 4.16) for nonaccidental, 1.35% (-1.69, 4.48) for cardiovascular, 6.09% (2.42, 9.89) for respiratory, and 3.36% (0.92, 5.86) for cardiopulmonary mortalities. The results suggest that it is important to control and reduce the emission of air particles in Guangzhou, particularly on extreme-high-temperature days. © 2014 APJPH.

  5. Features of Creation and Operation of Electric and Hybrid Vehicles in Countries with Difficult Climatic Conditions, for Example, in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Karpukhin, K.; Terenchenko, A.

    2016-11-01

    The trend of increasing fleet of electric or hybrid vehicles and determines the extension of the geographical areas of operation, including the Northern areas with cold winter weather. Practically in all territory of Russia the average winter temperature is negative. With the winter temperatures can be below in Moscow -30°C, in Krasnoyarsk -50°C. Battery system can operate in a wide temperature range, but there are extremes that should be remembered all the time, especially in cold climates like Russia. In the operating instructions of the electric car Tesla Model S indicate that to save the battery don't use at temperatures below -15°C. The paper presents the dependence of the cooling time and heating of the battery cell at different ambient temperatures and provides guidance on allowable cooling time while using and not thermally insulated thermally containers Suggests using the temperature control on the basis of thermoelectric converters Peltier connection from the onboard electrical network of the electric vehicle.

  6. Relationship between ambient temperature and humidity and visits to mental health emergency departments in Québec.

    PubMed

    Vida, Stephen; Durocher, Martin; Ouarda, Taha B M J; Gosselin, Pierre

    2012-11-01

    This study examined whether the number of emergency department visits for "mental and psychosocial problems" varies with temperature or humidity. The number of visits in three geographic areas of Québec were examined as a function of temperature and humidity by using routinely collected May-September data for 1995-2007 (N=347,552 visits). Data for two age groups (under age 65 and age 65 and older) were examined. Incidence rate ratios for mean temperature and humidity were estimated by using Poisson regression and generalized additive models. The number of visits tended to increase with increasing mean temperature. At 22.5 °C (72.5 °F) and 25 °C (77.0 °F), the number was usually significantly higher than average. Visits increased with humidity in the younger age group. Results suggest increased use of emergency departments for mental and psychosocial problems with higher mean temperature and humidity, especially in metropolitan areas and in southern Québec. Climate change may make this effect increasingly important.

  7. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou.

    PubMed

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Chan, Chuen-Yu

    2017-02-15

    Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM 2.5 ) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r s ) between personal exposures and ambient concentrations of sulfate (SO 4 2- ; r s >0.68) were found in contrast to elemental carbon (EC; r s >0.37). The average fraction of personal SO 4 2- to ambient SO 4 2- resulting in an adjusted ambient exposure factor of α=0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO 4 2- . From all data pooled across the districts, the estimated average ambient-generated and non-ambient-generated exposure to PM 2.5 were 55.3μg/m 3 (SD=23.4μg/m 3 ) and 18.1μg/m 3 (SD=29.1μg/m 3 ), respectively. A significant association was found between ambient-generated exposure and ambient PM 2.5 concentrations (Pearson's r=0.51, p<0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO 4 2- as a tracer of personal exposure to PM 2.5 of ambient origin in environmental and epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  9. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subjected to sudden shock, pressure, or high temperature. Flammable means a chemical that falls into one of...: (A) A gas that, at ambient temperature and pressure, forms a flammable mixture with air at a concentration of 13 percent by volume or less; or (B) A gas that, at ambient temperature and pressure, forms a...

  10. Forecasting daily attendances at an emergency department to aid resource planning

    PubMed Central

    Sun, Yan; Heng, Bee Hoon; Seow, Yian Tay; Seow, Eillyne

    2009-01-01

    Background Accurate forecasting of emergency department (ED) attendances can be a valuable tool for micro and macro level planning. Methods Data for analysis was the counts of daily patient attendances at the ED of an acute care regional general hospital from July 2005 to Mar 2008. Patients were stratified into three acuity categories; i.e. P1, P2 and P3, with P1 being the most acute and P3 being the least acute. The autoregressive integrated moving average (ARIMA) method was separately applied to each of the three acuity categories and total patient attendances. Independent variables included in the model were public holiday (yes or no), ambient air quality measured by pollution standard index (PSI), daily ambient average temperature and daily relative humidity. The seasonal components of weekly and yearly periodicities in the time series of daily attendances were also studied. Univariate analysis by t-tests and multivariate time series analysis were carried out in SPSS version 15. Results By time series analyses, P1 attendances did not show any weekly or yearly periodicity and was only predicted by ambient air quality of PSI > 50. P2 and total attendances showed weekly periodicities, and were also significantly predicted by public holiday. P3 attendances were significantly correlated with day of the week, month of the year, public holiday, and ambient air quality of PSI > 50. After applying the developed models to validate the forecast, the MAPE of prediction by the models were 16.8%, 6.7%, 8.6% and 4.8% for P1, P2, P3 and total attendances, respectively. The models were able to account for most of the significant autocorrelations present in the data. Conclusion Time series analysis has been shown to provide a useful, readily available tool for predicting emergency department workload that can be used to plan staff roster and resource planning. PMID:19178716

  11. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  12. Non-Instrumented Incubation of a Recombinase Polymerase Amplification Assay for the Rapid and Sensitive Detection of Proviral HIV-1 DNA

    PubMed Central

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C.; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S.

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25–43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS. PMID:25264766

  13. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA.

    PubMed

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS.

  14. 40 CFR 50.3 - Reference conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.3 Reference conditions. All measurements of air quality that... reported based on actual ambient air volume measured at the actual ambient temperature and pressure at the...

  15. Changes in nitrate and nitrite content of four vegetables during storage at refrigerated and ambient temperatures.

    PubMed

    Chung, J-C; Chou, S-S; Hwang, D-F

    2004-04-01

    The nitrate and nitrite contents of four kinds of vegetables (spinach, crown daisy, organic Chinese spinach and organic non-heading Chinese cabbage) in Taiwan were determined during storage at both refrigerated (5 +/- 1 degrees C) and ambient temperatures (22 +/- 1 degrees C) for 7 days. During storage at ambient temperature, nitrate levels in the vegetables dropped significantly from the third day while nitrite levels increased dramatically from the fourth day of storage. However, refrigerated storage did not lead to changes in nitrate and nitrite levels in the vegetables over 7 days.

  16. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study.

    PubMed

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S

    2016-01-01

    Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150-220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99-1.91) for 10°C, 1.92 (1.31-2.81) for 0°C, 3.13 (1.89-5.19) for -10°C, and 5.76 (2.30-14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Exposure to low ambient temperature within several hours increases the risk of ICH. ClinicalTrials.gov NCT00716079.

  17. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    PubMed Central

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  18. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN

    PubMed Central

    Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya

    2015-01-01

    Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615

  19. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  20. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  1. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  2. Development of rabbit embryos during a 96-h period of in vitro culture after superovulatory treatment under conditions of elevated ambient temperature.

    PubMed

    Cheng, H; Dooley, M P; Hopkins, S M; Anderson, L L; Yibchok-anun, S; Hsu, W H

    1999-08-16

    The effects of elevated ambient temperature on the response to exogenous gonadotropins were evaluated in female New Zealand White rabbits exposed to 33+/-1 degrees C (mean +/- SE) and 10-30% relative humidity (8 h/day) during a 5-day period. Does were treated with pFSH (0.3 mg/0.3 ml Standard Armour) twice daily during three consecutive days with a minimum interval of 8 h between injections. Six hours after the last FSH injection all does were removed from the experimental chamber, given hCG (25 IU/kg) and paired overnight. Nineteen hours after pairing, embryos were flushed from the reproductive tracts, evaluated, and subjected to in vitro culture during a 96-h period. The ovulatory responses to exogenous gonadotropins and fertilization rates did not differ significantly under conditions of elevated ambient temperature, whereas fewer blastocysts and increased number of degenerate embryos were observed after culture. We conclude that although hyperthermia was induced during exposure to elevated ambient temperature, it did not alter the ovulatory responses to gonadotropin treatment and plasma concentrations of FSH and LH compared with does in a thermoneutral environment. Exposure of donor rabbits to elevated ambient temperature before mating, however, increased embryonic degeneration.

  3. The effect of ambient temperature and humidity on the carbon monoxide emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Subramaniam, A. K.

    1977-01-01

    Changes in ambient temperature and humidity affect the exhaust emissions of a gas turbine engine. The results of a test program employing a JT8D combustor are presented which quantize the effect of these changes on carbon monoxide emissions at simulated idle operating conditions. Analytical results generated by a kinetic model of the combustion process and reflecting changing ambient conditions are given. It is shown that for a complete range of possible ambient variations, significant changes do occur in the amount of carbon monoxide emitted by a gas turbine engine.

  4. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  5. The Space Transportation System summer environment on launch pad

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.

    1992-01-01

    This paper describes a 2D flow and thermalanalysis to determine the solar effect on the Space Shuttle launch components subsequent to the external tank (ET) loading operation in extremely hot conditions. An existing CFD code Parabolic Hyperbolic or Elliptical Numerical Integration Code Series was used in the study. The analysis was done for a 2D slice between planes perpendicular to the longitudinal axis of the STS and passing through the lower portions of the Redesigned Solid Rocket Motors (RSRMs), the ET, and the wing of the Orbiter. The results are presented as local and average values of the heat transfer coefficient, and the Nusselt number, and the surface temperature around the RSRMs and the ET. Solar heating effects increased the surface temperatures of the RSRMs by 9-11 F. Higher prelaunch surface temperatures measured on the east and west RSRMs (in the inboard region between the RSRMs and the ET) during 19 most recent launches of the STS are correlated as a function of the ambient temperature.

  6. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  7. Determinants of bovine thermal response to heat and solar radiation exposures in a field environment

    NASA Astrophysics Data System (ADS)

    Scharf, Brad; Leonard, Michael J.; Weaber, Robert L.; Mader, Terry L.; Hahn, G. Leroy; Spiers, Donald E.

    2011-07-01

    Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental ( Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature ( T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature ( T a), and black globe temperatures ( T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core ( R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.

  8. Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory.

    PubMed

    Simons, Mirre J P; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M; Speakman, John R; Gerkema, Menno P

    2011-01-01

    The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success.

  9. Temperature influence on the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon

    USGS Publications Warehouse

    Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.

    2004-01-01

    Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.

  10. Effect of Socioeconomic Status and Underlying Disease on the Association between Ambient Temperature and Ischemic Stroke.

    PubMed

    Cho, Seong Kyung; Sohn, Jungwoo; Cho, Jaelim; Noh, Juhwan; Ha, Kyoung Hwa; Choi, Yoon Jung; Pae, Sangjoon; Kim, Changsoo; Shin, Dong Chun

    2018-07-01

    Inconsistent findings have been reported regarding the effect of ambient temperature on ischemic stroke. Furthermore, little is known about how underlying disease and low socioeconomic status influence the association. We, therefore, investigated the relationship between ambient temperature and emergency department (ED) visits for ischemic stroke, and aimed to identify susceptible populations. Using medical claims data, we identified ED visits for ischemic stroke during 2005-2009 in Seoul, Korea. We conducted piecewise linear regression analyses to find optimum ambient temperature thresholds in summer and winter, and estimated the relative risks (RR) and 95% confidence intervals (CI) per a 1°C increase in temperature above/below the thresholds, adjusting for relative humidity, holidays, day of the week, and air pollutant levels. There were 63564 ED visits for ischemic stroke. In summer, the risk of ED visits for ischemic stroke was not significant, with the threshold at 26.8°C. However, the RRs were 1.055 (95% CI, 1.006-1.106) above 25.0°C in medical aid beneficiaries and 1.044 (1.007-1.082) above 25.8°C in patients with diabetes. In winter, the risk of ED visits for ischemic stroke significantly increased as the temperature decreased above the threshold at 7.2°C. This inverse association was significant also in patients with hypertension and diabetes mellitus above threshold temperatures. Ambient temperature increases above a threshold were positively associated with ED visits for ischemic stroke in patients with diabetes and medical aid beneficiaries in summer. In winter, temperature, to a point, and ischemic stroke visits were inversely associated. © Copyright: Yonsei University College of Medicine 2018.

  11. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.

  12. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    PubMed

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  13. Endothermy in the temperate scarab Cyclocephala signaticollis.

    PubMed

    Zermoglio, Paula F; Castelo, Marcela K; Lazzari, Claudio R

    2018-07-01

    The increase in body temperature over that of the environment has been frequently reported in insects, in particular in relation with flight activity. Scarab beetles of the genus Cyclocephala living in tropical areas are known to exploit the heat produced by thermogenic plants, also producing heat by endothermy. Here, we report the first case of endothermy in a species of this genus living in a temperate region, Cyclocephala signaticollis. We characterised the phenomenon in this beetle using infrared thermography and exposing them to different thermal conditions. We evaluated the frequency of endothermic bouts, the nature of their periodic occurrence and their association with the activity cycles of the beetles. We found that endothermy occurs in both males and females in a cyclic fashion, at the beginning of the night, around 21:00 local time. The mean temperature increase was of 9 °C, and the mean duration of the bouts was 7 min. During endothermic bouts, the temperature of the thorax was on average 3.6 °C higher than that of the head and 4.8 °C above that of the abdomen. We found no differences between females and males in the maximum temperature attained and in the duration of the endothermy bouts. The activity period of the beetles extends throughout the whole night, with maximum activity between 22:00 and 23:00. By subjecting the beetles to different light regimes we were able to determine that the rhythm of endothermy is not controlled by the circadian system. Finally, we experimentally tested if by performing endothermy the scarabs try to reach a particular body temperature or if they invest a given amount of energy in heating up, instead. Our results indicate that at lower ambient temperature beetles show higher increase in body temperature, and that endothermy bouts last longer than at relatively higher ambient temperatures. We discuss our findings in relation to the ecology and behaviour of this beetle pest. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Urban Heat Islands (UHI) and the influence of city parks within the urban environment.

    NASA Astrophysics Data System (ADS)

    Garcia, W.; Shandas, V.; Voelkel, J.; Espinoza, D.

    2016-12-01

    Urban Heat Islands (UHI) and the influence of city parks within the urban environment.As cities grow outward and their populations increase the Urban Heat Island (UHI) phenomena becomes an ever more important topic to reducing environmental stressors. When UHI combines with human sensitivities such as pre-existing health conditions, and other vulnerabilities, finding an effective way to cool our cities is a matter of life and death. One way to cool an area is to introduce vegetation; which is abundant is in city parks. This study measures the cooling effect and temperature gradient of city parks; characterizing the relationship between the cooling effects within parks and surrounding neighborhoods. Past studies of the UHI are largely based on satellite images and, more recently, car traverses across that describe the ambient temperatures. The present project aims to understand the effects of parks on the UHI by asking two research questions: (1) how do the physical characteristics and designs of city parks impact the variation in ambient temperatures? And (2) what effect does the park have on cooling the surrounding neighborhoods? We address these questions by using a bicycle mounted with a temperature probe, and a series of geospatial analytics. The bicycle collects temperature data every one second, and the traverse intervals are an hour long to prevent normal fluctuations of daily temperature. Preliminary analysis shows that there is a temperature gradient within the parks (Figure 1). Further, the average temperature of the urban park could cool the surrounding area by upwards of 2°C, depending on the physical characteristics of then park and neighborhood. Our results suggest that the role of smaller parks and their design can reduce heat stress particularly among the vulnerable populations. These results can help urban planners make informed decisions when developing future city infrastructure.

  15. Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain.

    PubMed

    Mazaheri, Mandana; Reche, Cristina; Rivas, Ioar; Crilley, Leigh R; Álvarez-Pedrerol, Mar; Viana, Mar; Tobias, Aurelio; Alastuey, Andrés; Sunyer, Jordi; Querol, Xavier; Morawska, Lidia

    2016-03-01

    Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development, especially in terms of air quality mitigation and management at schools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.

    PubMed

    Combrink, L; Combrink, H J; Botha, A J; Downs, C T

    2017-05-01

    Southern ground-hornbills Bucorvus leadbeateri inhabit savanna and bushveld regions of South Africa. They nest in the austral summer, which coincides with the wet season and hottest daytime temperatures in the region. They are secondary cavity nesters and typically nest in large cavities in trees, cliffs and earth banks, but readily use artificial nest boxes. Southern ground-hornbills are listed as Endangered in South Africa, with reintroductions into suitable areas highlighted as a viable conservation intervention for the species. Nest microclimate, and the possible implications this may have for the breeding biology of southern ground-hornbills, have never been investigated. We used temperature dataloggers to record nest cavity temperature and ambient temperature for one artificial and 11 natural southern ground-hornbill tree cavity nests combined, spanning two breeding seasons. Mean hourly nest temperature, as well as mean minimum and mean maximum nest temperature, differed significantly between southern ground-hornbill nests in both breeding seasons. Mean nest temperature also differed significantly from mean ambient temperature for both seasons. Natural nest cavities provided a buffer against the ambient temperature fluctuations. The artificial nest provided little insulation against temperature extremes, being warmer and cooler than the maximum and minimum local ambient temperatures, respectively. Nest cavity temperature was not found to have an influence on the breeding success of the southern ground-hornbill groups investigated in this study. These results have potentially important implications for southern ground-hornbill conservation and artificial nest design, as they suggest that the birds can tolerate greater nest cavity temperature extremes than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    PubMed

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.

  18. Hot dogs: High ambient temperatures impact reproductive success in a tropical carnivore.

    PubMed

    Woodroffe, Rosie; Groom, Rosemary; McNutt, J Weldon

    2017-10-01

    Climate change imposes an urgent need to recognise and conserve the species likely to be worst affected. However, while ecologists have mostly explored indirect effects of rising ambient temperatures on temperate and polar species, physiologists have predicted direct impacts on tropical species. The African wild dog (Lycaon pictus), a tropical species, exhibits few of the traits typically used to predict climate change vulnerability. Nevertheless, we predicted that wild dog populations might be sensitive to weather conditions, because the species shows strongly seasonal reproduction across most of its geographical range. We explored associations between weather conditions, reproductive costs, and reproductive success, drawing on long-term wild dog monitoring data from sites in Botswana (20°S, 24 years), Kenya (0°N, 12 years), and Zimbabwe (20°S, 6 years). High ambient temperatures were associated with reduced foraging time, especially during the energetically costly pup-rearing period. Across all three sites, packs which reared pups at high ambient temperatures produced fewer recruits than did those rearing pups in cooler weather; at the non-seasonal Kenya site such packs also had longer inter-birth intervals. Over time, rising ambient temperatures at the (longest-monitored) Botswana site coincided with falling wild dog recruitment. Our findings suggest a direct impact of high ambient temperatures on African wild dog demography, indicating that this species, which is already globally endangered, may be highly vulnerable to climate change. This vulnerability would have been missed by simplistic trait-based assessments, highlighting the limitations of such assessments. Seasonal reproduction, which is less common at low latitudes than at higher latitudes, might be a useful indicator of climate change vulnerability among tropical species. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James; Klett, Lynn

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less

  20. Effects of ambient temperature on mechanomyography of resting quadriceps muscle.

    PubMed

    McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L

    2013-03-01

    It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.

  1. Composite Structure Repair. Addendum

    DTIC Science & Technology

    1984-08-01

    room temperature curing systems . For permanent repairs no reduction in " serciveability with regard to the maximum design temperature and the design...pressure for ply compaction and conformation of bonding surfaces. In certain instances, ambient temperature cure systems may be sufficient. - Noisture...than those placed on radomes. Some of ,the resins used for the repairs were ambient curing systems which also required no additional pressure for

  2. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  3. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  4. Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs.

    PubMed

    Renaudeau, D; Huc, E; Noblet, J

    2007-03-01

    The effect of breed [Creole (CR) vs. Large White (LW)] on performance and physiological responses during acclimation to high ambient temperature was studied in 2 experiments involving 24 (12/breed) growing pigs each. Pigs were exposed to 24 degrees C for 10 d (d -10 to -1) and thereafter to a constant temperature of 31 degrees C for 16 d (d 1 to d 16) in Exp. 1 and for 20 d (d 1 to d 20) in Exp. 2. For both experiments, the temperature change was achieved over 4 h on d 0. The first experiment began at 105 d of age, and the average BW of CR and LW pigs was 36.6 +/- 2.5 kg and 51.7 +/- 3.0 kg, respectively. The second experiment was designed to compare both breeds at a similar BW (about 52 kg on d 0). Pigs were individually housed and given ad libitum access to feed. At 24 degrees C, ADG was lower (P < 0.01) in CR than in LW (602 vs. 913 g/d and 605 vs. 862 g/d in Exp. 1 and 2, respectively), but the ADFI was not affected by breed (190 and 221 g x d(-1) x kg(-0.60) in Exp. 1 and 2, respectively). Short-term thermoregulatory responses during the 4-h transition from 24 to 31 degrees C (d 0) were analyzed according to a linear plateau model to determine the break point temperature, above which rectal temperature (RT), cutaneous temperature (CT), and respiratory rate (RR) began to change. The CT increased linearly with temperature increase (0.22 degrees C/ degrees C) and was less (P < 0.05) in CR than in LW (by -0.3 degrees C on average). In both experiments, the break point temperature for RT was not affected by breed (27.6 degrees C on average), whereas for RR it was greater (P < 0.05) in CR than in LW (27.5 vs. 25.5 degrees C, P < 0.01). On average, ADFI declined by about 50 g x d(-1) x kg(-0.60) from d -1 to d 1 (P < 0.01), and thereafter at 31 degrees C, it gradually increased (23 g x d(-1) x kg(-0.60); P < 0.05), suggesting an acclimation to high exposure. This response was not influenced by breed. After the day that marked the beginning of the acclimation response (i.e., the threshold day), RR, CT, and RT declined over the duration of exposure to 31 degrees C (P < 0.05) in both experiments. During this period, RT and CT were less in CR than in LW pigs (39.6 vs. 39.9 degrees C and 37.9 vs. 38.2 degrees C, respectively; P < 0.05), whereas RR was not affected by breed. The threshold day at which RT began to decline was less in CR than in LW pigs (0.18 vs. 1.17 d and 0.39 vs. 0.93 d in Exp. 1 and 2, respectively; P < 0.05). In conclusion, this study suggests that short- and long-term physiological reactions during heat acclimation differed when CR and LW pigs were compared at the same age or BW.

  5. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  6. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    NASA Astrophysics Data System (ADS)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; Surratt, J. D.; Donahue, N. M.; Jayne, J. T.; Worsnop, D. R.

    2014-07-01

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C and H : C values is smaller (12% and 4% respectively) for synthetic mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OSC values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OSC units). This indicates that OSC is a more robust metric of oxidation than O : C, likely since OSC is not affected by hydration or dehydration, either in the atmosphere or during analysis.

  7. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; ...

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H 2O + and CO + ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H 2O +, CO +, and CO 2 + fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO + and especially H 2O + produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  8. A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.

    2018-02-01

    A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.

  9. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less

  10. Fatigue behavior of AAR Class A railroad wheel steel at ambient and elevated temperatures.

    DOT National Transportation Integrated Search

    2006-12-01

    This report documents a test program to determine the material properties (chemical composition, tensile, and fatigue) at ambient and elevated temperatures of a Class A wheel steel as designated by the Association of American Railroads. The 3 tempera...

  11. Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata.

    PubMed

    Kavousi, Javid; Tanaka, Yasuaki; Nishida, Kozue; Suzuki, Atsushi; Nojiri, Yukihiro; Nakamura, Takashi

    2016-08-01

    Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of sleep monitoring system for observing the effect of the room ambient toward the quality of sleep

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Khoo, C. W.; Rahman, S. I. Ab; Ibrahim, M. M.; Saad, N. H. M.

    2017-06-01

    Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the room ambient and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep and Audio/video-based monitoring system. The functionality test on all sensors is carried out to make sure that all sensors is working properly. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient parameters (humidity, brightness and temperature) are varied and the result shows that someone has a better sleep in a dark and colder ambient. This can prove by lower body temperature and lower heart rate.

  13. Collective thermoregulation in bee clusters

    PubMed Central

    Ocko, Samuel A.; Mahadevan, L.

    2014-01-01

    Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to control its core temperature. Using a continuum model that takes the form of a set of advection–diffusion equations for heat transfer in a mobile porous medium, we show that the equalization of an effective ‘behavioural pressure’, which propagates information about the ambient temperature through variations in density, leads to effective thermoregulation. Our model extends and generalizes previous models by focusing the question of mechanism on the form and role of the behavioural pressure, and allows us to explain the vertical asymmetry of the cluster (as a consequence of buoyancy-driven flows), the ability of the cluster to overpack at low ambient temperatures without breaking up at high ambient temperatures, and the relative insensitivity to large variations in the ambient temperature. Our theory also makes testable hypotheses for the response of the cluster to external temperature inhomogeneities and suggests strategies for biomimetic thermoregulation. PMID:24335563

  14. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  15. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    PubMed

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  16. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats

    PubMed Central

    Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries

    2017-01-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats (Molossus molossus) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature. Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known. PMID:29308259

  17. Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Li, Maosheng; Zhou, Youhe

    2017-07-01

    This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.

  18. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  19. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    PubMed

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  20. Influence of ambient fungal spores on emergency visits for asthma to a regional children's hospital.

    PubMed

    Dales, R E; Cakmak, S; Burnett, R T; Judek, S; Coates, F; Brook, J R

    2000-12-01

    The impact of ambient aeroallergens on morbidity from childhood asthma is largely unknown. To address this issue, we studied the association between daily emergency department visits for asthma to a children's hospital, and daily concentrations of both pollen grains and fungal spores during a 5-yr period between 1993 and 1997. Air pollution and meteorological data accounted for in the analyses included ozone, nitrogen dioxide, sulfur dioxide, sulfates, temperature, barometric pressure, and relative humidity. The daily number of asthma visits ranged from 0 to 36 per day with an average of 7.5. Fungal spores, but not pollen grains, were associated with visits (p < 0.05). The percentage increase associated with each group, independent of the others, was 1.9% (SE 0.9) for deuteromycetes, 4.1% (1.6) for basidiomycetes, 2.8% (1.0) for ascomycetes, and 8.8% for these spores combined. In summary, fungal spores account for a significant proportion of the asthma exacerbations in children that prompt an emergency department visit.

  1. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  2. An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects

    NASA Astrophysics Data System (ADS)

    Mittelmeier, N.; Blodau, T.; Steinfeld, G.; Rott, A.; Kühn, M.

    2016-09-01

    Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated statistical signals based on multiple measurement devices. The significance of these new signals on power production is demonstrated for two wind farms with met masts and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load.

  3. Fecal Immunochemical Test (FIT) for Colon Cancer Screening: Variable Performance with Ambient Temperature

    PubMed Central

    Doubeni, Chyke A.; Jensen, Christopher D.; Fedewa, Stacey A.; Quinn, Virginia P.; Zauber, Ann G.; Schottinger, Joanne E.; Corley, Douglas A.; Levin, Theodore R.

    2017-01-01

    Introduction Fecal immunochemical tests (FITs) are widely used in colorectal cancer (CRC) screening, but hemoglobin degradation, due to exposure of the collected sample to high temperatures, could reduce test sensitivity. We examined the relation of ambient temperature exposure with FIT positivity rate and sensitivity. Methods This was a retrospective cohort study of patients 50 to 75 years in Kaiser Permanente Northern California’s CRC screening program, which began mailing FIT kits annually to screen-eligible members in 2007. Primary outcomes were FIT positivity rate and sensitivity to detect CRC. Predictors were month, season, and daily ambient temperatures of test result dates based on US National Oceanic and Atmospheric Administration data. Results Patients (n =472,542) completed 1,141,162 FITs. Weekly test positivity rate ranged from 2.6% to 8.0% (median, 4.4%) and varied significantly by month (June/July vs December/January rate ratio [RR] =0.79, 95% confidence interval [CI], 0.76 to 0.83) and season. FIT sensitivity was lower in June/July (74.5%; 95% CI, 72.5 to 76.6) than January/December (78.9%; 95% CI, 77.0 to 80.7). Conclusions FITs completed during high ambient temperatures had lower positivity rates and lower sensitivity. Changing kit design, specimen transportation practices, or avoiding periods of high ambient temperatures may help optimize FIT performance, but may also increase testing complexity and reduce patient adherence, requiring careful study. PMID:28076249

  4. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.

    PubMed

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D

    2011-04-01

     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of <1, 1–10, 11–100, 101–1000, >1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  5. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  6. Effect of ambient temperature and humidity on emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.

    1977-01-01

    The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.

  7. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.

    PubMed

    Arnold, Hayley E; Kerrison, Philip; Steinke, Michael

    2013-04-01

    The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS-production and data on growth, DMSP and DMS concentrations in pH-stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2 ), elevated temperature (+T) and elevated temperature and CO2 (+TCO2 ). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L(-1) cell volume (CV) h(-1) in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L(-1) CV h(-1) ). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6-6.1 mmol L(-1) CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L(-1) CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L(-1) CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation. © 2012 Blackwell Publishing Ltd.

  8. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  9. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo

    2005-01-01

    Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.

  10. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  11. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  12. High frequency two-stage pulse tube cryocooler with base temperature below 20 K

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Thummes, G.

    2005-02-01

    High frequency (30-50 Hz) multi-stage pulse tube coolers that are capable of reaching temperatures close to 20 K or even lower are a subject of recent research and development activities. This paper reports on the design and test of a two-stage pulse tube cooler which is driven by a linear compressor with nominal input power of 200 W at an operating frequency of 30-45 Hz. A parallel configuration of the two pulse tubes is used with the warm ends of the pulse tubes located at ambient temperature. For both stages, the regenerator matrix consists of a stack of stainless steel screen. At an operating frequency of 35 Hz and with the first stage at 73 K a lowest stationary temperature of 19.6 K has been achieved at the second stage. The effects of input power, frequency, average pressure, and cold head orientation on the cooling performance are also reported. An even lower no-load temperature can be expected from the use of lead or other regenerator materials of high heat capacity in the second stage.

  13. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate the number of annual excess deaths attributable to increased summer temperatures. Warmer average temperatures are expected to cause 173 additional deaths due to cardiovascular stress, while higher minimum temperatures will cause 67 additional deaths. This work particularly improves on the spatial resolution of published analyses of heat-related mortality in the US.

  14. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  15. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  16. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs. 'Mridula' and 'Bhagwa') at ambient and low temperature.

    PubMed

    Sudhakar Rao, D V

    2018-01-01

    The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.

  17. Effect of temperature on the electric breakdown strength of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai

    2014-03-01

    DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.

  18. Influence of ambient temperature and minute ventilation on passive and active heat and moisture exchangers.

    PubMed

    Lellouche, François; Qader, Siham; Taillé, Solenne; Lyazidi, Aissam; Brochard, Laurent

    2014-05-01

    During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings. We first tested on the bench a device with passive and active humidification properties (Humid-Heat, Teleflex), and 2 passive hydrophobic/hygroscopic HMEs (Hygrobac and Hygrobac S, Tyco Healthcare). The devices were tested at 3 different ambient temperatures (from 22 to 30 °C), and at 2 minute ventilation settings (10 and 20 L/min). Inspired gas hygrometry was measured at the Y-piece with the psychrometric method. In addition to the bench study, we measured the hygrometry of inspired gases in 2 different clinical studies. In 15 mechanically ventilated patients, we evaluated Humid-Heat at different settings. Additionally, we evaluated Humid-Heat and compared it with Hygrobac in a crossover study in 10 patients. On the bench, with the Hygrobac and Hygrobac S the inspired absolute humidity was ∼ 30 mg H2O/L, and with the Humid-Heat, slightly < 35 mg H2O/L. Ambient temperature and minute ventilation did not have a clinically important difference on the performance of the tested devices. During the clinical evaluation, Humid-Heat provided inspired humidity in a range from 28.5 to 42.0 mg H2O/L, depending on settings, and was only weakly influenced by the patient's body temperature. In this study both passive and active HMEs had stable humidification performance with negligible influence of ambient temperature and minute ventilation. This contrasts with previous findings with heated wire-heated humidifiers. Although there are no clear data demonstrating that higher humidification impacts outcomes, it is worth noting that humidity was significantly higher with the active HME.

  19. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains.

    PubMed

    Nielsen, B L

    2012-09-01

    Increased activity improves broiler leg health, but also increases the heat production of the bird. This experiment investigated the effects of early open-field activity and ambient temperature on the growth and feed intake of two strains of broiler chickens. On the basis of the level of activity in an open-field test on day 3 after hatching, fast-growing Ross 208 and slow-growing i657 chickens were allocated on day 13 to one of the 48 groups. Each group included either six active or six passive birds from each strain and the groups were housed in floor-pens littered with wood chips and fitted with two heat lamps. Each group was fed ad libitum and subjected to one of the three temperature treatments: two (HH; 26°C), one (HC; 16°C to 26°C) or no (CC; 16°C) heat lamps turned on. Production and behavioural data were collected every 2 weeks until day 57. For both strains, early open-field activity had no significant effects on their subsequent behaviour or on any of the production parameters measured, and overall, the slow-growing strain was more active than the fast-growing strain. Ambient temperature had significant effects on production measures for i657 broilers, with CC chickens eating and weighing more, and with a less efficient feed conversion than HH chickens, with HC birds intermediate. A similar effect was found for Ross 208 only for feed intake from 27 to 41 days of age. Ross 208 chickens distributed themselves in the pen with a preference for cooler areas in the hottest ambient temperature treatments. In contrast, the behaviour of the slow-growing strain appeared to be relatively unaffected by the ambient temperature. In conclusion, fast-growing broilers use behavioural changes when trying to adapt to warm environments, whereas slow-growing broilers use metabolic changes to adapt to cooler ambient temperatures.

  20. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.

    1996-12-01

    Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  1. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic.

    PubMed

    Livingstone, S D; Romet, T; Keefe, A A; Nolan, R W

    1996-11-01

    Response to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the arctic (average maximum and minimum temperatures -11 and -21 degrees C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11 degrees C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10 degrees C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  2. Early Childhood Lower Respiratory Illness and Air Pollution

    PubMed Central

    Hertz-Picciotto, Irva; Baker, Rebecca James; Yap, Poh-Sin; Dostál, Miroslav; Joad, Jesse P.; Lipsett, Michael; Greenfield, Teri; Herr, Caroline E.W.; Beneš, Ivan; Shumway, Robert H.; Pinkerton, Kent E.; Šrám, Radim

    2007-01-01

    Background Few studies of air pollutants address morbidity in preschool children. In this study we evaluated bronchitis in children from two Czech districts: Teplice, with high ambient air pollution, and Prachatice, characterized by lower exposures. Objectives Our goal was to examine rates of lower respiratory illnesses in preschool children in relation to ambient particles and hydrocarbons. Methods Air monitoring for particulate matter < 2.5 μm in diameter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) was conducted daily, every third day, or every sixth day. Children born May 1994 through December 1998 were followed to 3 or 4.5 years of age to ascertain illness diagnoses. Mothers completed questionnaires at birth and at follow-up regarding demographic, lifestyle, reproductive, and home environmental factors. Longitudinal multivariate repeated-measures analysis was used to quantify rate ratios for bronchitis and for total lower respiratory illnesses in 1,133 children. Results After adjustment for season, temperature, and other covariates, bronchitis rates increased with rising pollutant concentrations. Below 2 years of age, increments in 30-day averages of 100 ng/m3 PAHs and of 25 μg/m3 PM2.5 resulted in rate ratios (RRs) for bronchitis of 1.29 [95 % confidence interval (CI), 1.07–1.54] and 1.30 (95% CI, 1.08–1.58), respectively; from 2 to 4.5 years of age, these RRs were 1.56 (95% CI, 1.22–2.00) and 1.23 (95% CI, 0.94–1.62), respectively. Conclusion Ambient PAHs and fine particles were associated with early-life susceptibility to bronchitis. Associations were stronger for longer pollutant-averaging periods and, among children > 2 years of age, for PAHs compared with fine particles. Preschool-age children may be particularly vulnerable to air pollution–induced illnesses. PMID:17938744

  3. Inferring thermodynamic stability relationship of polymorphs from melting data.

    PubMed

    Yu, L

    1995-08-01

    This study investigates the possibility of inferring the thermodynamic stability relationship of polymorphs from their melting data. Thermodynamic formulas are derived for calculating the Gibbs free energy difference (delta G) between two polymorphs and its temperature slope from mainly the temperatures and heats of melting. This information is then used to estimate delta G, thus relative stability, at other temperatures by extrapolation. Both linear and nonlinear extrapolations are considered. Extrapolating delta G to zero gives an estimation of the transition (or virtual transition) temperature, from which the presence of monotropy or enantiotropy is inferred. This procedure is analogous to the use of solubility data measured near the ambient temperature to estimate a transition point at higher temperature. For several systems examined, the two methods are in good agreement. The qualitative rule introduced this way for inferring the presence of monotropy or enantiotropy is approximately the same as The Heat of Fusion Rule introduced previously on a statistical mechanical basis. This method is applied to 96 pairs of polymorphs from the literature. In most cases, the result agrees with the previous determination. The deviation of the calculated transition temperatures from their previous values (n = 18) is 2% on average and 7% at maximum.

  4. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  5. Low-temperature incubation using a water supply

    USGS Publications Warehouse

    Wolf, K.; Quimby, M.C.

    1967-01-01

    Cell and tissue culture has been concerned primarily with homiothermic vertebrate cells which require incubation at about 37 C, and there is a great variety of incubators designed to maintain temperatures which are usually above ambient. The culture of poikilothermic vertebrate cells--and invertebrate, plant, and some microbial cells--can often be carried out at ambient temperatures, but for some work cooler conditions must be provided. Variety among the so-called low-temperature incubators is somewhat restricted; there are no small units, and all require a power source to maintain temperatures below ambient. We have used a gravity-fed water supply for 5 years to provide trouble-free, constant, low-temperature incubation of stock cultures of fish and amphibian cells. Though it is but a small part of our low-temperature incubator capacity, it has no power requirements and it provides maximal protection against temperature rises which could be lethal to some of the cell lines. Though the system has limitations, there is a considerable likelihood that the domestic water supply in other laboratories can also be used to provide low-temperature incubation.

  6. Wind speed limits to work under hot environments for clothed men.

    PubMed

    Kamon, E; Avellini, B

    1979-02-01

    Four heat-acclimated clothed young adult men exercised (treadmill) at metabolic rate of 191 W.m-2 (27% VO2 max), under five air temperatures (Ta) between 36 and 53 degrees C and three wind velocities (v), 1, 2, and 4 m.s-1, for 2 h. The 2nd h of each experiment involved progressive increases in the ambient vapor pressure (Pa) to force an upward inflection of the rectal temperature (Tre). The Tre point of inflection identified the critical Pa (Pcrit) for each Ta. The average mean skin temperature (Tsk = 36 degrees C for all Pcrit. Straight-line isotherms for Tsk = 36 degrees C, which agreed with the negative regressions of the Pcrit on Ta, represented the limits of exposure for Ta less than or equal to 44 degrees C. The slope characteristics of the isotherms corresponded with skin wettedness (w) of 0.94, 0.71, and 0.58, respectively, for v of 1, 2, and 4 m.s-1. For Ta greater than 44 degrees C the limit line corresponded with steeper negative regressions indicating a lower w than for Ta less than or equal to 44 degrees C. Despite the increase in the ambient evaporative capacity due to the higher v the limit lines describing exposure limits were not significantly different either at Ta less than or equal to 44 degrees C for v of 2 and 4 m.s-1 or at Ta greater than 44 degrees C for all three v.

  7. A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying

    NASA Astrophysics Data System (ADS)

    Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.

    2018-05-01

    One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.

  8. Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.; Long, M.D.; Fehlner, K.S.

    1984-01-01

    Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In amore » separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.« less

  9. Whale contribution to long time series of low-frequency oceanic ambient sound

    NASA Astrophysics Data System (ADS)

    Andrew, Rex K.; Howe, Bruce M.; Mercer, James A.

    2002-05-01

    It has long been known that baleen (mainly blue and fin) whale vocalizations are a component of oceanic ambient sound. Urick reports that the famous ``20-cycle pulses'' were observed even from the first Navy hydrophone installations in the early 1950's. As part of the Acoustic Thermometry Ocean Climate (ATOC) and the North Pacific Acoustic Laboratory (NPAL) programs, more than 6 years of nearly continuous ambient sound data have been collected from Sound Surveillance System (SOSUS) sites in the northeast Pacific. These records now show that the average level of the ambient sound has risen by as much as 10 dB since the 1960's. Although much of this increase is probably attributable to manmade sources, the whale call component is still prominent. The data also show that the whale signal is clearly seasonal: in coherent averages of year-long records, the whale call signal is the only feature that stands out, making strong and repeatable patterns as the whale population migrates past the hydrophone systems. This prominent and sometimes dominant component of ambient sound has perhaps not been fully appreciated in current ambient noise models. [Work supported by ONR.

  10. MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...

  11. Finite Element Modeling and Long Wave Infrared Imaging for Detection and Identification of Buried Objects

    DTIC Science & Technology

    surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided

  12. Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing

    USDA-ARS?s Scientific Manuscript database

    The concept of co-production of liquid fuel (ethanol) along with animal feed on farm was proposed. The strategy of using ambient-temperature acid pretreatment, ensiling, and washing to improve ethanol production from alfalfa stems was investigated. Alfalfa stems were separated and pretreated with su...

  13. Sorption Capacity of Europium for Media #1 and Media #2 from Solution at Ambient Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Garland

    This dataset shows the capacity for Europium of media #1 and media #2 in a shakertable experiment. The experimental conditions were 150mL of 500ppm Eu solution, 2g of media, pH of 3.2, at ambient temperature.

  14. 46 CFR 169.675 - Generators and motors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... designed for an ambient temperature of 50 degrees C. (122 degrees F.). (g) A generator or motor may be designed for an ambient temperature of 40 degrees C. (104 degrees F.) if the vessel is designed so that the...

  15. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  16. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.

    PubMed

    Geiser, F; Drury, R L

    2003-02-01

    The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and suggests that the prevalence of torpor in low latitudes may have been under-estimated in the past.

  17. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")-induced Fos expression in a region-specific manner.

    PubMed

    Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S

    2007-03-16

    3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.

  18. Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season.

    PubMed

    Arias, R A; Keim, J P; Gandarillas, M; Velásquez, A; Alvarado-Gilis, C; Mader, T L

    2018-05-22

    Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P<0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10±0.11 v. 0.36±0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89±0.12 v. 0.57±0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required.

  19. Relationship of ruminal temperature with parturition and estrus of beef cows.

    PubMed

    Cooper-Prado, M J; Long, N M; Wright, E C; Goad, C L; Wettemann, R P

    2011-04-01

    Spring-calving Angus cows (n = 30) were used to evaluate changes in ruminal temperature (RuT) related to parturition and estrus. Cows were synchronized and artificially inseminated with semen from a single sire. Temperature boluses were placed in the rumen at 7.0 ± 0.2 mo of gestation. Boluses were programmed to transmit RuT every 15 min. Cows (BW = 623 ± 44 kg, BCS = 4.9 ± 0.4) calved during 3 wk, and estrus was synchronized at 77 ± 7 d after calving with PGF(2α). Cows were observed every 12 h to detect estrus. Daily average ambient temperatures ranged from 2 to 22 °C during parturition (February to March) and 17 to 25 °C during estrus (May to June). Ruminal temperature from 7 d before to 3 d after parturition and 2 d before to 2 d after visual detection of estrus was analyzed using the MIXED procedure. Ruminal temperatures <37.72 °C were attributed to water consumption and excluded from analyses. Day did not influence (P = 0.36) RuT from d -2 to -7 before parturition (38.94 ± 0.05 °C). Ruminal temperature decreased (P < 0.001) from d -2 to d -1 before parturition (38.88 ± 0.05 to 38.55 ± 0.05 °C, respectively). Ruminal temperature was not influenced (P = 0.23) by day from 1 d before to 3 d after parturition (38.49 ± 0.05 °C). Ruminal temperature at 0 to 8 h after detection of estrus (38.98 ± 0.09 °C) was greater (P < 0.001) compared with RuT at the same daily hour of the day before (38.37 ± 0.11 °C) or the day after estrus (38.30 ± 0.09 °C). Ambient temperature did not influence (P > 0.30) RuT at parturition or estrus. Ruminal temperature decreased the day before parturition and increased at estrus in spring-calving beef cows and has potential use as a predictor of parturition and estrus.

  20. Rechargeability of the ambient temperature cell Li/2Me-THF, LiAsF6/Cr0.5V0.5S2

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Harris, P. B.; Natwig, D. L.

    1983-12-01

    Practical usefulness of Cr0.5V0.5S2 as a rechargeable positive electrode for ambient temperature Li cells has been assesed. The rate-capacity behavior or the Cr0.5V0.5S2 cathode has been evaluated as a function of carbon content, electrolyte, and temperature. Rechargeability of the disulfide has been investigated by extended cycling of Li cells utilizing 2Me-THF/LiAsF6. Cells with cathode capacities as large as 10 Ahr have been constructed and tested. Many cells have exceeded 200 deep discharge-charge cycles. A scheme of studies useful for assessing the practicality of potential solid cathodes for ambient temperature rechargeable Li cells is presented.

Top