Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328
The stork, the plow, rural social structure and tropical deforestation in poor countries?
Rock, M T
1996-01-01
This study is an exploration of the relationships between income, demographic pressure, technological change in agriculture, and the structure of political economies in light of cross-country differences in deforestation. The study focuses on small farmers and shifting cultivation. The analysis is based on a model developed by Larson (1994) that accounts for rural poverty, rootlessness, and distribution of landholdings. Regression equations model the average annual rate of deforestation, the relative area under forests, and a recursive model that includes both the deforestation rate and the forested area. Deforestation was reasonably well explained by a dummy variable for Asia, a rank order variable of the amount of forested area in 1980, the gross domestic product per capita in 1990, the average annual population growth rate during 1981-90, and the percentage increase in value added to agriculture during 1981-90 in 1990 dollars. Findings indicate that a 10% increase in the population growth rate increased the rate of deforestation by 10.6%. A 10% increase in income per capita increased deforestation by 49.5%. The influence of income on deforestation followed Kuznet's U-shaped curve. The turning point for reduced deforestation was income of $3500 per capita. Only Central and South America are near this income level. An increase in 1 agricultural worker per household increased deforestation by 50%. A 10% increase in smallholders' share of agricultural land reduced deforestation by 3.4%. Countries with high rural rootlessness had 23.6% less relative area under forests, suggesting that rural rootlessness rather than poverty per se leads to deforestation. The recursive model shows that demographic pressures led to deforestation and were mediated by technological change. Political economy theories of deforestation received strong empirical support.
Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon
Morton, Douglas C.; DeFries, Ruth S.; Shimabukuro, Yosio E.; Anderson, Liana O.; Arai, Egidio; del Bon Espirito-Santo, Fernando; Freitas, Ramon; Morisette, Jeff
2006-01-01
Intensive mechanized agriculture in the Brazilian Amazon grew by >3.6 million hectares (ha) during 2001–2004. Whether this cropland expansion resulted from intensified use of land previously cleared for cattle ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps, field surveys, and satellite-based information on vegetation phenology to characterize the fate of large (>25-ha) clearings as cropland, cattle pasture, or regrowing forest in the years after initial clearing in Mato Grosso, the Brazilian state with the highest deforestation rate and soybean production since 2001. Statewide, direct conversion of forest to cropland totaled >540,000 ha during 2001–2004, peaking at 23% of 2003 annual deforestation. Cropland deforestation averaged twice the size of clearings for pasture (mean sizes, 333 and 143 ha, respectively), and conversion occurred rapidly; >90% of clearings for cropland were planted in the first year after deforestation. Area deforested for cropland and mean annual soybean price in the year of forest clearing were directly correlated (R2 = 0.72), suggesting that deforestation rates could return to higher levels seen in 2003–2004 with a rebound of crop prices in international markets. Pasture remains the dominant land use after forest clearing in Mato Grosso, but the growing importance of larger and faster conversion of forest to cropland defines a new paradigm of forest loss in Amazonia and refutes the claim that agricultural intensification does not lead to new deforestation. PMID:16973742
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson
2011-01-01
Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.
RCCM2-BATS model over tropical South America: Applications to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahmann, A.N.; Dickinson, R.E.
A multiyear simulation of the global climate uses a revised version of the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2) coupled to the Biosphere-Atmosphere Transfer Scheme (BATS). It is compared with global and rain gauge precipitation climatologies to evaluate precipitation fields and European Centre for Medium-Range Forecasts analyses to evaluate the atmospheric circulation. The near-surface climate is compared with data from Amazonian field campaigns. The model simulation of the South American climate agrees closely with the observational record and is much improved from past simulations with previous versions of the NCAR Community Climate model overmore » this portion of the Tropics. The model is then used to study the local and regional response to tropical deforestation over Amazonia. In addition to the standard deforestation forcing, consisting mainly of increased albedo and decreased roughness length, two additional sensitivity experiments were conducted to assess the individual contributions from these forcings to the deforestation changes. The standard deforestation simulation shows slight increases in annually averaged surface temperature (+1{degrees}C) and reductions in annually averaged precipitation and evaporation (-363 and -149 mm yr{sup -1}, respectively). As expected, increases in surface albedo over Amazonia produce a reduction in net downward solar radiation at the surface and consequently a reduction in net surface radiation and surface latent heat flux. The roughness decrease, on the other hand, reduces the surface latent heat fluxes through decreases in the surface drag coefficient. The regional changes in moisture convergence and precipitation during the Amazonian wet season display a shift in the area of maximum precipitation rather than an overall decrease over the deforested area. 45 refs., 16 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Saranya, K. R. L.; Reddy, C. Sudhakar
2016-04-01
The spatial changes in forest cover of Similipal biosphere reserve, Odisha, India over eight decades (1930-2012) has been quantified by using multi-temporal data from different sources. Over the period, the forest cover reduced by 970.8 km2 (23.6% of the total forest), and most significantly during the period, 1930-1975. Human-induced activities like conversion of forest land for agriculture, construction of dams and mining activities have been identified as major drivers of deforestation. Spatial analysis indicates that 399 grids (1 grid = 1 × 1 km) have undergone large-scale changes in forest cover (>75 ha) during 1930-1975, while only 3 grids have shown >75 ha loss during 1975-1990. Annual net rate of deforestation was 0.58 during 1930-1975, which has been reduced substantially during 1975-1990 (0.04). Annual gross rate of deforestation in 2006-2012 is indeed low (0.01) as compared to the national and global average. This study highlights the impact and effectiveness of conservation practices in minimizing the rate of deforestation and protecting the Similipal Biosphere Reserve.
2011-01-01
Background Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results Deforestation estimates showed good agreement for multi-year periods of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by > 20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C ha-1, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions Estimates of source data uncertainties are essential for REDD+. Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions. PMID:22208947
NASA Astrophysics Data System (ADS)
Müller, Hannes; Griffiths, Patrick; Hostert, Patrick
2016-02-01
The great success of the Brazilian deforestation programme "PRODES digital" has shown the importance of annual deforestation information for understanding and mitigating deforestation and its consequences in Brazil. However, there is a lack of similar information on deforestation for the 1990s and 1980s. Such maps are essential to understand deforestation frontier development and related carbon emissions. This study aims at extending the deforestation mapping record backwards into the 1990s and 1980s for one of the major deforestation frontiers in the Amazon. We use an image compositing approach to transform 2224 Landsat images in a spatially continuous and cloud free annual time series of Tasseled Cap Wetness metrics from 1984 to 2012. We then employ a random forest classifier to derive annual deforestation patterns. Our final deforestation map has an overall accuracy of 85% with half of the overall deforestation being detected before the year 2000. The results show for the first time detailed patterns of the expanding deforestation frontier before the 2000s. The high degree of automatization exhibits the great potential for mapping the whole Amazon biome using long-term and freely accessible remote sensing collections, such as the Landsat archive and forthcoming Sentinel-2 data.
Measurement of deforestation in the Brazilian Amazon using satellite remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skole, D.L.
1992-01-01
Understanding of the role of the biota in the global carbon cycle is limited by an absence of accurate measurements of deforestation rates in the tropics. This study measures the rate and extent of deforestation in the Brazilian Amazon, the largest extant tropical forest biome in the world. The study uses remote sensing measurements of deforestation rates, the area of secondary vegetation, and tabular data to document deforestation. The analysis concludes: (1) AVHRR will greatly overestimate deforestation and be highly variable; the use of a brightness temperature threshold is highly sensitive and unreliable. The upward bias of AVHRR is amore » function of the density of deforestation. (2) Accurate measurement of deforestation requires Landsat TM data, and can be accomplished using low cost visual interpretation of photographic products at 1:250,000 scales. (3) Secondary growth in the Brazilian Amazon represents a large fraction of the total deforested area, and the abandonment of agricultural land is an important land cover transition. Abandonment rates were 70--83% of clearing rates from primary forests. At any one point in time, approximately 30% of the deforested area is in some stage of abandonment, and quite likely nearly all deforested land becomes abandoned after approximately 5 years. (4) Previous estimates of the total area deforested in the Amazon, as well as deforestation rates, have been too high by as much as 4-fold. A complete assessment of the entire Legal Amazon using over 200 Landsat images measures 251 [times] 10[sup 3] km[sup 2] deforestation as of 1988, or approximately 6% of the closed forests of the region. The average annual rate of deforestation between 1978 and 1988 was 18 [times] 10[sup 3] km[sup 2] yr[sup [minus]1]. These findings suggest the estimates of carbon emissions from the Amazon for the late 1980s have been too high, since the area of regrowth is large and rates of deforestation are lower than previously believed.« less
Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven
2017-01-01
Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357
Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven
2017-01-01
Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon.
Godar, Javier; Gardner, Toby A; Tizado, E Jorge; Pacheco, Pablo
2014-10-28
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000-7,000 km(2). We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km(2)) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km(2)) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68-85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies.
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon
Godar, Javier; Gardner, Toby A.; Tizado, E. Jorge
2014-01-01
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000–7,000 km2. We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km2) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km2) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68–85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies. PMID:25313087
Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan
2008-05-27
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.
Can carbon emissions from tropical deforestation drop by 50% in 5 years?
Zarin, Daniel J; Harris, Nancy L; Baccini, Alessandro; Aksenov, Dmitry; Hansen, Matthew C; Azevedo-Ramos, Claudia; Azevedo, Tasso; Margono, Belinda A; Alencar, Ane C; Gabris, Chris; Allegretti, Adrienne; Potapov, Peter; Farina, Mary; Walker, Wayne S; Shevade, Varada S; Loboda, Tatiana V; Turubanova, Svetlana; Tyukavina, Alexandra
2016-04-01
Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001-2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr(-1). Brazil did not sign the NYDF, yet from 2001 to 2013, Brazil ranks first for both carbon emissions from gross tropical deforestation and reductions in those emissions - its share of the total declined from a peak of 69% in 2003 to a low of 20% in 2012. Indonesia, an NYDF signatory, is the second highest emitter, peaking in 2012 at 0.362 Gt CO2 yr(-1) before declining to 0.205 Gt CO2 yr(-1) in 2013. The other 14 NYDF tropical country signatories were responsible for a combined average of 0.317 Gt CO2 yr(-1) , while the other 86 tropical country non-signatories were responsible for a combined average of 0.688 Gt CO2 yr(-1). We outline two scenarios for achieving the 50% emission reduction target by 2020, both emphasizing the critical role of Brazil and the need to reverse the trends of increasing carbon emissions from gross tropical deforestation in many other tropical countries that, from 2001 to 2013, have largely offset Brazil's reductions. Achieving the target will therefore be challenging, even though it is in the self-interest of the international community. Conserving rather than cutting down tropical forests requires shifting economic development away from a dependence on natural resource depletion toward recognition of the dependence of human societies on the natural capital that tropical forests represent and the goods and services they provide. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Changes in size of deforested patches in the Brazilian Amazon.
Rosa, Isabel M D; Souza, Carlos; Ewers, Robert M
2012-10-01
Different deforestation agents, such as small farmers and large agricultural businesses, create different spatial patterns of deforestation. We analyzed the proportion of deforestation associated with different-sized clearings in the Brazilian Amazon from 2002 through 2009. We used annual deforestation maps to determine total area deforested and the size distribution of deforested patches per year. The size distribution of deforested areas changed over time in a consistent, directional manner. Large clearings (>1000 ha) comprised progressively smaller amounts of total annual deforestation. The number of smaller clearings (6.25-50.00 ha) remained unchanged over time. Small clearings accounted for 73% of all deforestation in 2009, up from 30% in 2002, whereas the proportion of deforestation attributable to large clearings decreased from 13% to 3% between 2002 and 2009. Large clearings were concentrated in Mato Grosso, but also occurred in eastern Pará and in Rondônia. In 2002 large clearings accounted for 17%, 15%, and 10% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. Even in these states, where there is a highly developed agricultural business dominated by soybean production and cattle ranching, the proportional contribution of large clearings to total deforestation declined. By 2009 large clearings accounted for 2.5%, 3.5%, and 1% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. These changes in deforestation patch size are coincident with the implementation of new conservation policies by the Brazilian government, which suggests that these policies are not effectively reducing the number of small clearings in primary forest, whether these are caused by large landholders or smallholders, but have been more effective at reducing the frequency of larger clearings. ©2012 Society for Conservation Biology.
Céline, Ernst; Philippe, Mayaux; Astrid, Verhegghen; Catherine, Bodart; Musampa, Christophe; Pierre, Defourny
2013-04-01
This research refers to an object-based automatic method combined with a national expert validation to produce regional and national forest cover change statistics over Congo Basin. A total of 547 sampling sites systematically distributed over the whole humid forest domain are required to cover the six Central African countries containing tropical moist forest. High resolution imagery is used to accurately estimate not only deforestation and reforestation but also degradation and regeneration. The overall method consists of four steps: (i) image automatic preprocessing and preinterpretation, (ii) interpretation by national expert, (iii) statistic computation and (iv) accuracy assessment. The annual rate of net deforestation in Congo Basin is estimated to 0.09% between 1990 and 2000 and of net degradation to 0.05%. Between 2000 and 2005, this unique exercise estimates annual net deforestation to 0.17% and annual net degradation to 0.09%. An accuracy assessment reveals that 92.7% of tree cover (TC) classes agree with independent expert interpretation. In the discussion, we underline the direct causes and the drivers of deforestation. Population density, small-scale agriculture, fuelwood collection and forest's accessibility are closely linked to deforestation, whereas timber extraction has no major impact on the reduction in the canopy cover. The analysis also shows the efficiency of protected areas to reduce deforestation. These results are expected to contribute to the discussion on the reduction in CO2 emissions from deforestation and forest degradation (REDD+) and serve as reference for the period. © 2012 Blackwell Publishing Ltd.
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.
2011-10-01
Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.
Understorey fire frequency and the fate of burned forests in southern Amazonia.
Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C
2013-06-05
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.
Understorey fire frequency and the fate of burned forests in southern Amazonia
Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.
2013-01-01
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169
Searching Sinks and Sources: CO2 Fluxes Before and After Partial Deforestation of a Spruce Forest
NASA Astrophysics Data System (ADS)
Ney, P.; Graf, A.; Druee, C.; Esser, O.; Klosterhalfen, A.; Valler, V.; Pick, K.; Vereecken, H.
2017-12-01
Forest ecosystems in the northern mid-latitudes act as a sink for atmospheric carbon dioxide (CO2) and hence play an important role in the terrestrial carbon cycle. Disturbances of these landscapes may have a significant impact on their ecosystem carbon budget. We present seven years of eddy covariance (EC) measurements (September 2013 to September 2017) over a 70 year old spruce stock, including three years prior to and four years after partial deforestation. We analyzed the seasonal and inter-annual changes of carbon fluxes as affected mainly by the forest transition. The measurements were carried out in a small headwater catchment (38.5 ha) within the TERENO (TERrestrial Environmental Observatories) network in the Eifel National Park Germany (50°30'N, 06°19'E, 595-629 m a.s.l.). An EC system, mounted on the top of a 38 m high tower, continuously samples fluxes of momentum, sensible heat, latent heat and CO2. In August and September 2013, more than 20% of the catchment was deforested and planned for regeneration towards natural deciduous vegetation, and a second EC station (2.5 m height) was installed in the middle of this clearcut. Flux partitioning and gap filling methods were used to calculate full time series and annual carbon budgets of the measured net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco). Additionally, soil respiration was measured with manual chambers on a monthly to bi-monthly basis at 25 transect points in the forest and deforested area. Annual sums of NEE represent the forest as a carbon sink with small inter-annual variability. In contrast, the deforested area showed a clear trend. In the first year after partial deforestation, regrowth on the deforested area consisted mainly of grasses and red foxglove (Digitalis purpurea L.), while since the second year also growth of mountain ash (Sorbus aucuparia L.) and broom (Cytisus scoparius L.) increased. The regrowth of biomass is reflected in the annual sums of NEE, which decreased from + 500 g C m-2 y-1 to nearly zero over the past four years, due to an increase in the magnitude of GPP.
Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G.; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V.; Margono, Belinda; Hansen, Matthew C.; Baccini, Alessandro
2015-01-01
To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas (“concessions”) for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17–127%, 44–129%, or 3.1–11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia’s moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241–615 MtCO2e (2.8–7.2%) lower without leakage, or 213–545 MtCO2e (2.5–6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30–7.50/tCO2e (mandatory) or $12.95–19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880
NASA Astrophysics Data System (ADS)
Costa, Marcos Heil; Foley, Jonathan A.
2000-01-01
It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: 1) increasing areas of forest will be converted to pasture and cropland, and 2) concentrations of atmospheric CO2 will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO2 concentrations (including both physiological and radiative effects) on Amazonian climate.In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day1 over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO2 concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day1. The combined effect of deforestation and doubled CO2, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day1. While the effects of deforestation and increasing CO2 concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO2 concentrations both tend to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO2. The combined effect of deforestation and doubled CO2, including the interactions among the processes, increases the basin-average temperature by roughly 3.5°C.
Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico
Návar-Chaidez, Jose de Jesus
2008-01-01
Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, M.H.; Foley, J.A.
2000-01-01
It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73more » mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.« less
Effectiveness of China's National Forest Protection Program and nature reserves.
Ren, Guopeng; Young, Stephen S; Wang, Lin; Wang, Wei; Long, Yongcheng; Wu, Ruidong; Li, Junsheng; Zhu, Jianguo; Yu, Douglas W
2015-10-01
There is profound interest in knowing the degree to which China's institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China's 2 most important forest-protection policies are its National Forest Protection Program (NFPP) and its national-level nature reserves (NNRs). The NFPP was implemented in 2000 in response to deforestation-caused flooding. We undertook the first national, quantitative assessment of the NFPP and NNRs to examine whether the NFPP achieved its deforestation-reduction target and whether the NNRs deter deforestation altogether. We used MODIS data to estimate forest cover and loss across mainland China (2000-2010). We also assembled the first-ever polygon dataset for China's forested NNRs (n = 237, 74,030 km(2) in 2000) and used both conventional and covariate-matching approaches to compare deforestation rates inside and outside NNRs (2000-2010). In 2000, 1.765 million km(2) or 18.7% of mainland China was forested (12.3% with canopy cover of ≥70%)) or woodland (6.4% with canopy cover <70% and tree plus shrub cover ≥40%). By 2010, 480,203 km(2) of forest and woodland had been lost, an annual deforestation rate of 2.7%. Forest-only loss was 127,473 km(2) (1.05% annually). In the NFPP provinces, the forest-only loss rate was 0.62%, which was 3.3 times lower than in the non-NFPP provinces. Moreover, the Landsat data suggest that these loss rates are overestimates due to large MODIS pixel size. Thus, China appears to have achieved, and even exceeded, its target of reducing deforestation to 1.1% annually in the NFPP provinces. About two-thirds of China's NNRs were effective in protecting forest cover (prevented loss 4073 km(2) unmatched approach; 3148 km(2) matched approach), and within-NNR deforestation rates were higher in provinces with higher overall deforestation. Our results indicate that China's existing institutions can protect domestic forest cover. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.
Annual measurements of gain and loss in aboveground carbon density
NASA Astrophysics Data System (ADS)
Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.
2017-12-01
Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research by providing novel, annual measurements of carbon losses and gains, from forest loss, degradation, and growth, with reduced uncertainty that stems from an unconventional shift in emphasis away from classifications of land area change toward direct estimation of carbon density dynamics.
Terrazas, Wagner Cosme Morhy; Sampaio, Vanderson de Souza; de Castro, Daniel Barros; Pinto, Rosemary Costa; de Albuquerque, Bernardino Cláudio; Sadahiro, Megumi; Dos Passos, Ricardo Augusto; Braga, José Ueleres
2015-09-30
Malaria is a major public health problem worldwide. In Brazil, an average of 420,000 cases of malaria have been reported annually in the last 12 years, of which 99.7 % occurred in the Amazon region. This study aimed to analyse the distribution of malaria in the State of Amazonas and the influence of indigenous malaria in this scenario, to evaluate the correlation between incidence rates and socio-economic and environmental factors, and to evaluate the performance of health surveillance services. This ecological study used secondary data obtained from the SIVEP-MALARIA malaria surveillance programme. The relationship between demographic, socio-economic and environmental factors, the performance of health surveillance services and the incidence of malaria in Amazonas, a multiple linear regression model was used. The crude rate of malaria in Amazonas was 4142.72 cases per 100,000 inhabitants between 2003 and 2012. The incidence rates for the indigenous and non-indigenous populations were 12,976.02 and 3749.82, respectively, with an indigenous population attributable fraction of only 8 %. The results of the linear regression analysis indicated a negative correlation between the two socio-economic indicators (municipal human development index (MHDI) and poverty rate) and the incidence of malaria in the period. With regard to the environmental indicators (average annual deforestation rate and percentage of areas under the influence of watercourses), the correlation with the incidence rate was positive. The findings underscore the importance of implementing economic and social development policies articulated with strategic actions of environmental protection and health care for the population.
Development of national database on long-term deforestation (1930-2014) in Bangladesh
NASA Astrophysics Data System (ADS)
Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.
2016-04-01
The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.
NASA Technical Reports Server (NTRS)
TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.
2010-01-01
This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.
CARBON BUDGET OF BRAZIL: A 1990 ASSESSMENT
The global carbon cycle is affected by the annual addition of 7.0 x 10 9 Mg CO2-C to the atmosphere from deforestation and burning of fossil fuels. ecause of its large area of high C density forests and high deforestation rate, Brazil may play an important role in the global C cy...
Alam, Syed Ashraful; Starr, Mike
2009-01-01
The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr(-1)) was converted into harvested biomass (m(3)) using a wood density value of 0.65 t dm m(-3). For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4x10(3) m(3) of wood biomass, including 267.6x10(3) m(3) round wood and 240.8x10(3) m(3) branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378028 t CO(2), 15554 t CO, 1778 t CH(4), 442 t NO(X), 288 t NO and 12 t N(2)O per annum. The combined CO(2)-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO(X) and NO) is 455666 t yr(-1). While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.
Landscape hydrology. The hydrological legacy of deforestation on global wetlands.
Woodward, C; Shulmeister, J; Larsen, J; Jacobsen, G E; Zawadzki, A
2014-11-14
Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it. Copyright © 2014, American Association for the Advancement of Science.
The neglected nonlocal effects of deforestation
NASA Astrophysics Data System (ADS)
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation and the more realistic pattern. Globally averaged, the deforestation-induced warming of the local effects is counteracted by the nonlocal effects, which are about three times as strong as the local effects (up to 0.1K local warming versus -0.3K nonlocal cooling). Thus, the nonlocal effects are more cooling than the local effects are warming, and this is valid not only for idealized simulations of large-scale deforestation, but also for a more realistic deforestation scenario. We conclude that the local effects of deforestation only yield an incomplete picture of the total climate effects by biogeophysical pathways. While the local effects capture the direct climatic response at the site of deforestation, the nonlocal effects have to be included if the biogeophysical effects of deforestation are considered for an implementation in climate policies.
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.
Deforestation effects on soil moisture, streamflow, and water balance in the central Appalachians
James H. Patric; James H. Patric
1973-01-01
Soil moisture, precipitation, and streamflow were measured on three watersheds in West Virginia, two deforested and one forested. Water content of barren soil always exceeded that of forest soil throughout the growing season and especially in dry weather. Streamflow increased 10 inches annually on the watersheds that were cleared, most of the increase occurring between...
Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study
NASA Technical Reports Server (NTRS)
Walker, G. K.; Sud, Y. C.; Atlas, R.
1995-01-01
Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.
Albedo as a modulator of climate response to tropical deforestation
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Shukla, J.
1994-01-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.
Albedo as a modulator of climate response to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirmeyer, P.A.; Shukla, J.
1994-10-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less
Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.K.; Sud, Y.C.; Atlas, R.
1995-03-01
Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres GCM that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations.more » The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm d{sup {minus}1} (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm d{sup {minus}1} (roughly 8%) that begins to emerge even in 1-2-day averages and exhibits complex evolution that extends downstream with the winds. A larger decrease in precipitation as compared to evapotranspiration produces some drying and warming. The precipitation differences are consistent with the decrease in atmospheric moisture flux convergence and are consistent with earlier simulation studies of local climate change due to large-scale deforestation. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages. 34 refs., 9 figs., 2 tabs.« less
Predictive modelling of contagious deforestation in the Brazilian Amazon.
Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation.
Predictive Modelling of Contagious Deforestation in the Brazilian Amazon
Rosa, Isabel M. D.; Purves, Drew; Souza, Carlos; Ewers, Robert M.
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges “bottom up”, as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated–pre- and post-PPCDAM (“Plano de Ação para Proteção e Controle do Desmatamento na Amazônia”)–the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation. PMID:24204776
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681
Attributing land-use change carbon emissions to exported biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikku, Laura, E-mail: laura.saikku@helsinki.fi; Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi; Pingoud, Kim, E-mail: kim.pingoud@vtt.fi
2012-11-15
In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The mostmore » important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.« less
NASA Astrophysics Data System (ADS)
Toomey, Michael; Roberts, Dar A.; Caviglia-Harris, Jill; Cochrane, Mark A.; Dewes, Candida F.; Harris, Daniel; Numata, Izaya; Sales, Marcio H.; Sills, Erin; Souza, Carlos M.
2013-06-01
We performed high-spatial and high-temporal resolution modeling of carbon stocks and fluxes in the state of Rondônia, Brazil for the period 1985-2009, using annual Landsat-derived land cover classifications and a modified bookkeeping modeling approach. According to these results, Rondônia contributed 3.5-4% of pantropical humid forest deforestation emissions over this period. Similar to well-known figures reported by the Brazilian Space Agency, we found a decline in deforestation rates since 2006. However, we estimate a lesser decrease, with deforestation rates continuing at levels similar to the early 2000s. Forest carbon stocks declined at an annual rate of 1.51%; emissions from postdisturbance land use nearly equaled those of the initial deforestation events. Carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Net carbon emissions represented 93% of initial forest carbon stocks, due in part to repeated slash and pasture burnings and secondary forest clearing. We analyzed potential error incurred when spatially aggregating land cover by comparing results based on coarser-resolution (250 m) and full-resolution land cover products. At the coarser resolution, more than 90% of deforestation and secondary forest would be unresolvable, assuming that a 50% change threshold is necessary for detection. Therefore, we strongly suggest the use of Landsat-scale ( 30m) resolution carbon monitoring in tropical regions dominated by nonmechanized, smallholder land use change.
Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil.
Kastens, Jude H; Brown, J Christopher; Coutinho, Alexandre Camargo; Bishop, Christopher R; Esquerdo, Júlio César D M
2017-01-01
Previous research has established the usefulness of remotely sensed vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon soy production, across periods of several years. Annual land cover (LC) maps support investigation of the spatiotemporal dynamics of agriculture as they relate to forest cover and governance and policy efforts to lower deforestation rates. We use a unique, spatially extensive 9-year (2005-2013) ground reference dataset to classify, with approximately 80% accuracy, MODIS VI data, merging the results with carefully processed annual forest and sugarcane coverages developed by Brazil's National Institute for Space Research to produce LC maps for MT for the 2001-2014 crop years. We apply the maps to an evaluation of forest and agricultural intensification dynamics before and after the Soy Moratorium (SoyM), a governance effort enacted in July 2006 to halt deforestation for the purpose of soy production in the Brazilian Amazon. We find the pre-SoyM deforestation rate to be more than five times the post-SoyM rate, while simultaneously observing the pre-SoyM forest-to-soy conversion rate to be more than twice the post-SoyM rate. These observations support the hypothesis that SoyM has played a role in reducing both deforestation and subsequent use for soy production. Additional analyses explore the land use tendencies of deforested areas and the conceptual framework of horizontal and vertical agricultural intensification, which distinguishes production increases attributable to cropland expansion into newly deforested areas as opposed to implementation of multi-cropping systems on existing cropland. During the 14-year study period, soy production was found to shift from predominantly single-crop systems to majority double-crop systems.
Afrane, Yaw A.; Little, Tom J.; Lawson, Bernard W.; Githeko, Andrew K.
2008-01-01
We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher temperatures and relative humidities, and the overall infection rate of mosquitoes was increased compared with that in forested sites. Sporozoites appeared on average 1.1 days earlier in deforested areas. Vectorial capacity was estimated to be 77.7% higher in the deforested site than in the forested site. We showed that deforestation changes microclimates, leading to more rapid sporogonic development of P. falciparum and to a marked increase of malaria risk in the western Kenyan highland. PMID:18826815
Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993-2012.
Exbrayat, Jean-François; Liu, Yi Y; Williams, Mathew
2017-11-15
Since the 1960s, large-scale deforestation in the Amazon Basin has contributed to rising global CO 2 concentrations and to climate change. Recent advances in satellite observations enable estimates of gross losses of above-ground biomass (AGB) stocks due to deforestation. However, because of simultaneous regrowth, the net contribution of deforestation emissions to rising atmospheric CO 2 concentrations is poorly quantified. Climate change may also reduce the potential for forest regeneration in previously disturbed regions. Here, we address these points of uncertainty with a machine-learning approach that combines satellite observations of AGB with climate data across the Amazon Basin to reconstruct annual maps of potential AGB during 1993-2012, the above-ground C storage potential of the undisturbed landscape. We derive a 2.2 Pg C loss of AGB over the study period, and, for the regions where these losses occur, we estimate a 0.7 Pg C reduction in potential AGB. Thus, climate change has led to a decline of ~1/3 in the capacity of these disturbed forests to recover and recapture the C lost in disturbances during 1993-2012. Our approach further shows that annual variations in land use change mask the natural relationship between the El Niño/Southern Oscillation and AGB stocks in disturbed regions.
Cost-effectiveness of reducing emissions from tropical deforestation, 2016-2050
NASA Astrophysics Data System (ADS)
Busch, Jonah; Engelmann, Jens
2017-12-01
Reducing tropical deforestation is potentially a large-scale and low-cost strategy for mitigating climate change. Yet previous efforts to project the cost-effectiveness of policies to reduce greenhouse gas emissions from future deforestation across the tropics were hampered by crude available data on historical forest loss. Here we use recently available satellite-based maps of annual forest loss between 2001-2012, along with information on topography, accessibility, protected status, potential agricultural revenue, and an observed inverted-U-shaped relationship between forest cover loss and forest cover, to project tropical deforestation from 2016-2050 under alternative policy scenarios and to construct new marginal abatement cost curves for reducing emissions from tropical deforestation. We project that without new forest conservation policies 289 million hectares of tropical forest will be cleared from 2016-2050, releasing 169 GtCO2. A carbon price of US20/tCO2 (50/tCO2) across tropical countries would avoid 41 GtCO2 (77 GtCO2) from 2016-2050. By comparison, we estimate that Brazil’s restrictive policies in the Amazon between 2004-2012 successfully decoupled potential agricultural revenue from deforestation and reduced deforestation by 47% below what would have otherwise occurred, preventing the emission of 5.2 GtCO2. All tropical countries enacting restrictive anti-deforestation policies as effective as those in the Brazilian Amazon between 2004-2012 would avoid 58 GtCO2 from 2016-2050.
Spatial and temporal patterns of deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil.
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve.
Spatial and Temporal Patterns of Deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve. PMID:23284806
Remote Sensing of Forest Loss and Human Land Use to Predict Biodiversity Impacts in Myanmar
NASA Astrophysics Data System (ADS)
Connette, G.; Huang, Q.; Leimgruber, P.; Songer, M.
2017-12-01
Myanmar's ongoing transition from military rule towards a democratic government has largely ended decades of economic isolation. The resulting expansion of foreign investment, infrastructure development, and natural resource extraction has led to high rates of deforestation and the concurrent loss of critical wildlife habitat. To identify and mitigate the impacts of rapid land use change on Myanmar's globally-unique biodiversity, researchers at Smithsonian's Conservation Biology Institute have used moderate-resolution satellite imagery to map forest cover change at the national scale, while performing regional- or local-scale analyses to identify ecologically-distinct forest types. At the national scale, forest was lost at a rate of 0.55% annually from 2002-2014. Deforestation was more pronounced in Myanmar's closed-canopy forests (>80% cover), which experienced an annual rate of forest loss of 0.95%. Studies at regional and local scales show that ecologically-distinct forest types vary considerably in both geographic extent and risk of conversion to human land use. For instance, local deforestation rates around a proposed national park in Myanmar's Tanintharyi Region were 7.83% annually and have been accelerating. Recent integration of such results into wildlife habitat mapping and national conservation planning can play an important role in ensuring that future development in Myanmar is both informed and sustainable.
Identifying areas of deforestation risk for REDD+ using a species modeling tool
Riveros, Juan Carlos; Forrest, Jessica L
2014-01-01
Background To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. Results We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Conclusions Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+. PMID:25489336
Identifying areas of deforestation risk for REDD+ using a species modeling tool.
Aguilar-Amuchastegui, Naikoa; Riveros, Juan Carlos; Forrest, Jessica L
2014-01-01
To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+.
An integrated framework for evaluating the effects of deforestation on ecosystem services
NASA Astrophysics Data System (ADS)
Song, X. P.; Huang, C.; Townshend, J. R.
2014-03-01
Deforestation often results in massive carbon emissions and loss of ecosystem services. The objective of this paper is to develop an integrated approach to quantitatively derive changes in forest carbon stock and changes in the economic value of forest carbon due to deforestation. Combining the best available remote sensing and socioeconomic datasets, this approach establishes a comprehensive baseline of deforestation in terms of area, carbon and monetary value change. We applied this end-to-end evaluation method in the Brazilian state of Rondonia to assess the ecological and economic effects of its recent deforestation from 2000 to 2005. Our results suggest that deforestation occurred at an average rate of 2834 km2/yr during the study period, leading to 31 TgC/yr "committed carbon emissions" from deforestation. Coupling with the social cost of carbon at 23/tC and a market discount rate at 7%, this translates to 622 million U.S. dollars/yr loss in the economic value of forest carbon.
Pre-Columbian deforestation as an amplifier of drought in Mesoamerica
NASA Astrophysics Data System (ADS)
Cook, B. I.; Anchukaitis, K. J.; Kaplan, J. O.; Puma, M. J.; Kelley, M.; Gueyffier, D.
2012-08-01
Droughts in pre-Columbian Mesoamerica caused significant societal disruptions during the Late Classic and Post-Classic Periods. While the primary causes of these droughts are still debated, it has been speculated that they may be linked to extensive deforestation associated with high population densities during these intervals. Here we show that pre-Columbian deforestation would have biased the climate in Mesoamerica towards a drier mean state, amplifying drought in the region. In climate model simulations using a pre-Columbian land cover reconstruction, annual precipitation decreases by 5%-15% throughout southern Mexico and the Yucatán compared to simulations using either natural forest cover or forest regrowth associated with population declines after 1500 C.E. These changes are driven primarily by large reductions (10%-20%) in precipitation during the late summer wet season (August-September). When compared to precipitation changes estimated to have occurred during the Maya collapse, our results suggest that deforestation could account for up to sixty percent of the mean drying during this interval. Many regions previously deforested in the pre-Columbian era are now under dense forest cover, indicating potential future climate impacts should tropical deforestation of these areas accelerate.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon.
Jusys, Tomas
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001-2004 and 2005-2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009-2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001–2004 and 2005–2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009–2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation. PMID:29689071
Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon.
Börner, Jan; Kis-Katos, Krisztina; Hargrave, Jorge; König, Konstantin
2015-01-01
Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD) will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities.
Post-Crackdown Effectiveness of Field-Based Forest Law Enforcement in the Brazilian Amazon
Börner, Jan; Kis-Katos, Krisztina; Hargrave, Jorge; König, Konstantin
2015-01-01
Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD) will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities. PMID:25875656
NASA Astrophysics Data System (ADS)
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E. O. C.; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E O C; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
Land Use Change Increases Streamflow Across the Arc of Deforestation in Brazil
NASA Astrophysics Data System (ADS)
Levy, M. C.; Lopes, A. V.; Cohn, A.; Larsen, L. G.; Thompson, S. E.
2018-04-01
Nearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional- and time-averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin-scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow-reducing effects of climate change in this region.
Naming and Shaming for Conservation: Evidence from the Brazilian Amazon
Cisneros, Elías; Zhou, Sophie Lian; Börner, Jan
2015-01-01
Deforestation in the Brazilian Amazon has dropped substantially after a peak of over 27 thousand square kilometers in 2004. Starting in 2008, the Brazilian Ministry of the Environment has regularly published blacklists of critical districts with high annual forest loss. Farms in blacklisted districts face additional administrative hurdles to obtain authorization for clearing forests. In this paper we add to the existing literature on evaluating the Brazilian anti-deforestation policies by specifically quantifying the impact of blacklisting on deforestation. We first use spatial matching techniques using a set of covariates that includes official blacklisting criteria to identify control districts. We then explore the effect of blacklisting on change in deforestation in double difference regressions with panel data covering the period from 2002 to 2012. Multiple robustness checks are conducted including an analysis of potential causal mechanisms behind the success of the blacklist. We find that the blacklist has considerably reduced deforestation in the affected districts even after controlling for the potential mechanism effects of field-based enforcement, environmental registration campaigns, and rural credit. PMID:26398096
Including carbon emissions from deforestation in the carbon footprint of Brazilian beef.
Cederberg, Christel; Persson, U Martin; Neovius, Kristian; Molander, Sverker; Clift, Roland
2011-03-01
Effects of land use changes are starting to be included in estimates of life-cycle greenhouse gas (GHG) emissions, so-called carbon footprints (CFs), from food production. Their omission can lead to serious underestimates, particularly for meat. Here we estimate emissions from the conversion of forest to pasture in the Legal Amazon Region (LAR) of Brazil and present a model to distribute the emissions from deforestation over products and time subsequent to the land use change. Expansion of cattle ranching for beef production is a major cause of deforestation in the LAR. The carbon footprint of beef produced on newly deforested land is estimated at more than 700 kg CO(2)-equivalents per kg carcass weight if direct land use emissions are annualized over 20 years. This is orders of magnitude larger than the figure for beef production on established pasture on non-deforested land. While Brazilian beef exports have originated mainly from areas outside the LAR, i.e. from regions not subject to recent deforestation, we argue that increased production for export has been the key driver of the pasture expansion and deforestation in the LAR during the past decade and this should be reflected in the carbon footprint attributed to beef exports. We conclude that carbon footprint standards must include the more extended effects of land use changes to avoid giving misleading information to policy makers, retailers, and consumers.
The potential of Indonesian mangrove forests for global climate change mitigation
NASA Astrophysics Data System (ADS)
Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan
2015-12-01
Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.
Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.
Jones, Kelly W.; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A.
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities’ dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 –years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context. PMID:29267356
Stan, Kayla; Sanchez-Azofeifa, Arturo; Espírito-Santo, Mário; Portillo-Quintero, Carlos
2015-01-01
Agricultural expansion is causing deforestation in Minas Gerais, Brazil, converting savanna and tropical dry forest to farmland, and in 2012, Brazil's Forest Code was revised with the government reducing deforestation restrictions. Understanding the effects of policy change on rates and locations of natural ecosystem loss is imperative. In this paper, deforestation in Minas Gerais was simulated annually until 2020 using Dinamica Environment for Geoprocessing Objects (Dinamica EGO). This system is a state-of-the-art land use and cover change (LUCC) model which incorporates government policy, landscape maps, and other biophysical and anthropogenic datasets. Three studied scenarios: (i) business as usual, (ii) increased deforestation, and (iii) decreased deforestation showed more transition to agriculture from shrubland compared to forests, and consistent locations for most deforestation. The probability of conversion to agriculture is strongly tied to areas with the smallest patches of original biome remaining. Increases in agricultural revenue are projected to continue with a loss of 25% of the remaining Cerrado land in the next decade if profit is maximized. The addition of biodiversity value as a tax on land sale prices, estimated at over $750,000,000 USD using the cost of extracting and maintaining current species ex-situ, can save more than 1 million hectares of shrubland with minimal effects on the economy of the State of Minas Gerais. With environmental policy determining rates of deforestation and economics driving the location of land clearing, site-specific protection or market accounting of externalities is needed to balance economic development and conservation.
Stan, Kayla; Sanchez-Azofeifa, Arturo; Espírito-Santo, Mário; Portillo-Quintero, Carlos
2015-01-01
Agricultural expansion is causing deforestation in Minas Gerais, Brazil, converting savanna and tropical dry forest to farmland, and in 2012, Brazil’s Forest Code was revised with the government reducing deforestation restrictions. Understanding the effects of policy change on rates and locations of natural ecosystem loss is imperative. In this paper, deforestation in Minas Gerais was simulated annually until 2020 using Dinamica Environment for Geoprocessing Objects (Dinamica EGO). This system is a state-of-the-art land use and cover change (LUCC) model which incorporates government policy, landscape maps, and other biophysical and anthropogenic datasets. Three studied scenarios: (i) business as usual, (ii) increased deforestation, and (iii) decreased deforestation showed more transition to agriculture from shrubland compared to forests, and consistent locations for most deforestation. The probability of conversion to agriculture is strongly tied to areas with the smallest patches of original biome remaining. Increases in agricultural revenue are projected to continue with a loss of 25% of the remaining Cerrado land in the next decade if profit is maximized. The addition of biodiversity value as a tax on land sale prices, estimated at over $750,000,000 USD using the cost of extracting and maintaining current species ex-situ, can save more than 1 million hectares of shrubland with minimal effects on the economy of the State of Minas Gerais. With environmental policy determining rates of deforestation and economics driving the location of land clearing, site-specific protection or market accounting of externalities is needed to balance economic development and conservation. PMID:26371876
Evidence of Incipient Forest Transition in Southern Mexico
Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc
2012-01-01
Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990–2000 period to 0.67% in the 2000–2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing deforestation and enhancing forest growth. PMID:22905123
NASA Astrophysics Data System (ADS)
Roberts, D. A.; Numata, I.; Holmes, K.; Batista, G.; Krug, T.; Monteiro, A.; Powell, B.; Chadwick, O. A.
2002-10-01
We describe spatiotemporal variation in land cover over 80,000 km2 in central Rondônia. We use a multistage process to map primary forest, pasture, second growth, urban, rock/savanna, and water using 33 Landsat scenes acquired over three contiguous areas between 1975 and 1999. Accuracy of the 1999 classified maps was assessed as exceeding 85% based on digital airborne videography. Rondônia is highly fragmented, in which forests outside of restricted areas consist of numerous, small irregular patches. Pastures in Rondônia persist over many years and are not typically abandoned to second growth, which when present rarely remains unchanged longer than 8 years. Within the state, annual deforestation rates, pasture area, and ratio of second growth to cleared area varied spatially. Highest initial deforestation rates occurred in the southeast (Luiza), at over 2%, increasing to 3% by the late 1990s. In this area, the percentage of cleared land in second growth averaged 18% and few pastures were abandoned. In central Rondônia (Ji-Paraná), deforestation rates rose from 1.2% between 1978 and 1986 to a high of 4.2% in 1999. In the northwest (Ariquemes), initial deforestation rates were lowest at 0.5% but rose substantially in the late 1990s, peaking at 3% in 1998. The ratio of second growth to cleared area was more than double the ratio in Luiza and few pastures remained unchanged beyond 8 years. Land clearing was most intense close to the major highway, BR364, except in Ariquemes. Intense forest clearing extended at least 50 km along the margins of BR364 in Ji-Paraná and Luiza. Spatial differences in land use are hypothesized to result from a combination of economic factors and soil fertility.
Evidence of incipient forest transition in Southern Mexico.
Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc
2012-01-01
Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing deforestation and enhancing forest growth.
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.
2017-08-01
This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.
Decoupling of deforestation and soy production in the southern Amazon during the late 2000s
Macedo, Marcia N.; DeFries, Ruth S.; Morton, Douglas C.; Stickler, Claudia M.; Galford, Gillian L.; Shimabukuro, Yosio E.
2012-01-01
From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996–2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion. PMID:22232692
Decoupling of deforestation and soy production in the southern Amazon during the late 2000s.
Macedo, Marcia N; DeFries, Ruth S; Morton, Douglas C; Stickler, Claudia M; Galford, Gillian L; Shimabukuro, Yosio E
2012-01-24
From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion.
Decoupling of Deforestation and Soy Production in the Southern Amazon During the Late 2000s
NASA Technical Reports Server (NTRS)
Macedo, Marcia N.; DeFries, Ruth S.; Morton, Douglas C.; Stickler, Claudia M.; Galford, Gillian L.; Shimabukuro, Yosio E.
2011-01-01
From 2006-2010 deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) while agricultural production reached an all time high, achieving the oft-cited objective of increasing production while maintaining forest cover. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001-2005 was entirely due to cropland expansion into previously cleared areas (74%) or forests (26%). From 2006-2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10% to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels while deforestation continued to decline, suggesting that anti-deforestation measures may have influenced the agricultural sector. We found little evidence of leakage of soy expansion into cerrado in Mato Grosso or forests in neighboring Amazon states during the late 2000s, although leakage to more distant regions is possible. This study provides empirical evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers through productive use of already cleared lands. It remains uncertain whether government and industry-led policies can contain deforestation when market conditions again favor a boom in agricultural expansion.
Population growth, human development, and deforestation in biodiversity hotspots.
Jha, S; Bawa, K S
2006-06-01
Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.
Accelerated deforestation driven by large-scale land acquisitions in Cambodia
NASA Astrophysics Data System (ADS)
Davis, Kyle Frankel; Yu, Kailiang; Rulli, Maria Cristina; Pichdara, Lonn; D'Odorico, Paolo
2015-10-01
Investment in agricultural land in the developing world has rapidly increased in the past two decades. In Cambodia, there has been a surge in economic land concessions, in which long-term leases are provided to foreign and domestic investors for economic development. More than two million hectares have been leased so far, sparking debate over the consequences for local communities and the environment. Here we combined official records of concession locations with a high-resolution data set of changes in forest cover to quantify the contribution of land concessions to deforestation between 2000 and 2012. We used covariate matching to control for variables other than classification as a concession that may influence forest loss. Nearly half of the area where concessions were granted between 2000 and 2012 was forested in 2000; this area then represented 12.4% of forest land cover in Cambodia. Within concessions, the annual rate of forest loss was between 29% and 105% higher than in comparable land areas outside concessions. Most of the deforestation within concessions occurred after the contract date, and whether an investor was domestic or foreign had no effect on deforestation rates. We conclude that land acquisitions can act as powerful drivers of deforestation.
Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009
NASA Technical Reports Server (NTRS)
Morton, Douglas
2010-01-01
Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.
Tropical deforestation and the global carbon budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melillo, J.M.; Kicklighter, D.W.; Houghton, R.A.
1996-12-31
The CO{sub 2} concentration of the atmosphere has increased by almost 30% since 1800. This increase is due largely to two factors: the combustion of fossil fuel and deforestation to create croplands and pastures. Deforestation results in a net flux of carbon to the atmospheric because forests contain 20--50 times more carbon per unit area than agricultural lands. In recent decades, the tropics have been the primary region of deforestation.The annual rate of CO{sub 2} released due to tropical deforestation during the early 1990s has been estimated at between 1.2 and 2.3 gigatons C. The range represents uncertainties about bothmore » the rates of deforestation and the amounts of carbon stored in different types of tropical forests at the time of cutting. An evaluation of the role of tropical regions in the global carbon budget must include both the carbon flux to the atmosphere due to deforestation and carbon accumulation, if any, in intact forests. In the early 1990s, the release of CO{sub 2} from tropical deforestation appears to have been mostly offset by CO{sub 2} uptake occurring elsewhere in the tropics, according to an analysis of recent trends in the atmospheric concentrations of O{sub 2} and N{sub 2}. Interannual variations in climate and/or CO{sub 2} fertilization may have been responsible for the CO{sub 2} uptake in intact forests. These mechanisms are consistent with site-specific measurements of net carbon fluxes between tropical forests and the atmosphere, and with regional and global simulations using process-based biogeochemistry models. 86 refs., 1 fig., 6 tabs.« less
Global forestry emission projections and abatement costs
NASA Astrophysics Data System (ADS)
Böttcher, H.; Gusti, M.; Mosnier, A.; Havlik, P.; Obersteiner, M.
2012-04-01
In this paper we present forestry emission projections and associated Marginal Abatement Cost Curves (MACCs) for individual countries, based on economic, social and policy drivers. The activities cover deforestation, afforestation, and forestry management. The global model tools G4M and GLOBIOM, developed at IIASA, are applied. GLOBIOM uses global scenarios of population, diet, GDP and energy demand to inform G4M about future land and commodity prices and demand for bioenergy and timber. G4M projects emissions from afforestation, deforestation and management of existing forests. Mitigation measures are simulated by introducing a carbon tax. Mitigation activities like reducing deforestation or enhancing afforestation are not independent of each other. In contrast to existing forestry mitigation cost curves the presented MACCs are not developed for individual activities but total forest land management which makes the estimated potentials more realistic. In the assumed baseline gross deforestation drops globally from about 12 Mha in 2005 to below 10 Mha after 2015 and reach 0.5 Mha in 2050. Afforestation rates remain fairly constant at about 7 Mha annually. Although we observe a net area increase of global forest area after 2015 net emissions from deforestation and afforestation are positive until 2045 as the newly afforested areas accumulate carbon rather slowly. About 200 Mt CO2 per year in 2030 in Annex1 countries could be mitigated at a carbon price of 50 USD. The potential for forest management improvement is very similar. Above 200 USD the potential is clearly constrained for both options. In Non-Annex1 countries avoided deforestation can achieve about 1200 Mt CO2 per year at a price of 50 USD. The potential is less constrained compared to the potential in Annex1 countries, achieving a potential of 1800 Mt CO2 annually in 2030 at a price of 1000 USD. The potential from additional afforestation is rather limited due to high baseline afforestation rates assumed. In addition we present results of several sensitivity analyses that were run to understand better model uncertainties and the mechanisms of drivers such as agricultural productivity, GDP, wood demand and national corruption rates.
Litter mercury deposition in the Amazonian rainforest.
Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa
2015-11-01
The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fire patterns in the Amazonian biome
NASA Astrophysics Data System (ADS)
Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan
2010-05-01
This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).
The Environmental Legacy of Modern Tropical Deforestation.
Rosa, Isabel M D; Smith, Matthew J; Wearn, Oliver R; Purves, Drew; Ewers, Robert M
2016-08-22
Tropical deforestation has caused a significant share of carbon emissions and species losses, but historical patterns have rarely been explicitly considered when estimating these impacts [1]. A deforestation event today leads to a time-delayed future release of carbon, from the eventual decay either of forest products or of slash left at the site [2]. Similarly, deforestation often does not result in the immediate loss of species, and communities may exhibit a process of "relaxation" to their new equilibrium over time [3]. We used a spatially explicit land cover change model [4] to reconstruct the annual rates and spatial patterns of tropical deforestation that occurred between 1950 and 2009 in the Amazon, in the Congo Basin, and across Southeast Asia. Using these patterns, we estimated the resulting gross vegetation carbon emissions [2, 5] and species losses over time [6]. Importantly, we accounted for the time lags inherent in both the release of carbon and the extinction of species. We show that even if deforestation had completely halted in 2010, time lags ensured there would still be a carbon emissions debt of at least 8.6 petagrams, equivalent to 5-10 years of global deforestation, and an extinction debt of more than 140 bird, mammal, and amphibian forest-specific species, which if paid, would increase the number of 20(th)-century extinctions in these groups by 120%. Given the magnitude of these debts, commitments to reduce emissions and biodiversity loss are unlikely to be realized without specific actions that directly address this damaging environmental legacy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effects of coffee management on deforestation rates and forest integrity.
Hylander, Kristoffer; Nemomissa, Sileshi; Delrue, Josefien; Enkosa, Woldeyohannes
2013-10-01
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest-agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973-2010) across elevations in 2 forest-agriculture mosaic landscapes (1100 km(2) around Bonga and 3000 km(2) in Goma-Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee-growing elevations compared with at higher elevations (-10/20% vs. -40/50% comparing relative rates at 1800 m asl and 2300-2500 m asl, respectively). Within the coffee-growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest-specialist species. Even if the presence of coffee slows down the conversion of forest to annual-crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. © 2013 Society for Conservation Biology.
Predicting the deforestation-trend under different carbon-prices
Kindermann, Georg E; Obersteiner, Michael; Rametsteiner, Ewald; McCallum, Ian
2006-01-01
Background Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Results Baseline scenario calculations show that close to 200 mil ha or around 5% of todays forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Conclusion Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this problem. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax. PMID:17150095
Predicting the deforestation-trend under different carbon-prices.
Kindermann, Georg E; Obersteiner, Michael; Rametsteiner, Ewald; McCallum, Ian
2006-12-06
Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Baseline scenario calculations show that close to 200 mil ha or around 5% of today's forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this problem. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax.
Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome
NASA Astrophysics Data System (ADS)
Noojipady, Praveen; Morton, C. Douglas; Macedo, N. Marcia; Victoria, C. Daniel; Huang, Chengquan; Gibbs, K. Holly; Edson Bolfe, L.
2017-02-01
Land use, land use change, and forestry accounted for two-thirds of Brazil’s greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil’s forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil’s definition of forest cover in 2000 (≥0.5 ha with ≥10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003-2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of Maranhão, Tocantins, Piauí, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr-1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010-2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-to-cropland transitions offset 5%-7% of the avoided emissions from reduced Amazon deforestation rates during 2011-2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry.
Pérez, A; Machado, W; Gutiérrez, D; Borges, A C; Patchineelam, S R; Sanders, C J
2018-01-01
A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm -2 yr -1 ) and after three decades of deforestation (59.7±7.2gm -2 yr -1 ). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (<400) and C:N (~20) molar ratios, as well as increased nutrient accumulation, reflect the dominance of phytoplankton-derived organic matter after deforestation, resulting in less-efficient sedimentary carbon sinks. These results indicate that the organic material deposited from eutrophication may not compensate mangrove deforestation losses on carbon accumulation in mangrove ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deforestation and stream warming affect body size of Amazonian fishes.
Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A
2018-01-01
Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.
Deforestation and stream warming affect body size of Amazonian fishes
Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.
2018-01-01
Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledec, G.
1992-01-01
Panama's rapid deforestation for cattle pasture is causing serious environmental problems, as well as negative economic and social consequences. Bank credit encourages deforestation by making cattle pasture expansion more affordable, more profitable, or less risky. Two governmental banks in Panama supply most of the institutional credit provided to small- and medium-scale ranchers, through loans from the Inter-American Development Bank and World Bank. Panama's large-scale ranchers obtain credit mostly from private commercial banks at subsidized interest rates. This study estimates that at least 7-10 percent of Panama's annual deforestation is due to governmental bank cattle credit. Cattle credit is more importantmore » in the loss of remaining forest fragments in long-settled areas than in forest-to-pasture conversion in frontier areas. However, because of the high environmental value of these forest remnants, their credit-induced loss is a serious public policy problem. Other incentives for cattle pasture expansion include beef markets, securing land claims, land price speculation, tax advantages, and the prestige value of cattle ranching. With care, the findings from this study can be generalized to many other tropical Latin American countries. Options available for minimizing deforestation include prohibiting or reducing institutional credit to cattle ranchers, restricting cattle credit to areas where little or no potential exists for additional deforestation, and eliminating interest rate subsidies on cattle credit. Such credit policy reforms would also improve economic efficiency and income distribution. other policy variables also influence Panama's deforestation rate: road construction and improvement, establishment and enforcement of protected areas, land titling laws and procedures, taxes, commercial forestry policies, beef pricing and export policies, the siting of hydroelectric projects, and policies that promote alternative employment for forest settlers.« less
NASA Astrophysics Data System (ADS)
Bholanath, P.; Cort, K.
2015-04-01
Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana's REDD+ Programme. Based on Guyana's MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana's forest definition) and a country-specific definition of 0.25 ha for degradation. The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana's forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.
Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sud, Y.C.; Lau, W.K.M.; Walker, G.K.
1996-12-01
Two 3-year (1979-1982) integrations were carried out with a version of the GLA GCM that contains the Simple Biosphere Model (SiB) for simulating land-atmosphere interactions. The control case used the usual SiB vegetation cover (comprising 12 vegetation types), while its twin, the deforestation case, imposed a scenario in which all tropical rainforests were entirely replaced by grassland. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both integrations. An intercomparison of the integrations shows that tropical: deforestation decreases evapotranspiration and increases land surface outgoing longwave radiation and sensible heat flux, thereby warming and dryingmore » the planetary boundary layer. This happens despite the reduced absorption of solar radiation due to higher surface albedo of the deforested land. Produces significant and robust local as well as global climate changes. The local effect includes significant changes (mostly reductions) in precipitation and diabatic heating, while the large-scale effect is to weaken the Hadley circulation but invigorate the southern Ferrel cell, drawing larger air mass from the indirect polar cells. Decreases the surface stress (drag force) owing to reduced surface roughness of deforested land, which in turn intensifies winds in the planetary boundary layer, thereby affecting the dynamic structure of moisture convergence. The simulated surface winds are about 70% stronger and are accompanied by significant changes in the power spectrum of the annual cycle of surface and PBL winds and precipitation. Our results broadly confirm several findings of recent tropical deforestation simulation experiments. In addition, some global-scale climatic influences of deforestation not identified in earlier studies are delineated. 57 refs., 10 figs., 3 tabs.« less
Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.
Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik
2011-09-01
We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.
Ge Sun; Steve G. McNulty; J. Lu; Devendra M. Amatya; Y. Liang; R.K. Kolka
2005-01-01
Regional water yield at a meso-scale can be estimated as the difference between precipitation input and evapotranspiration output. Forest water yield from the southeastern US varies greatly both in space and time. Because of the hot climate and high evapotranspiration, less than half of the annual precipitation that falls on forest lands is available for stream flow...
Satish, K V; Saranya, K R L; Reddy, C Sudhakar; Krishna, P Hari; Jha, C S; Rao, P V V Prasada
2014-12-01
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920's to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km × 1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920-1973-1989-1999-2006-2012). The total forest area of biosphere reserve was found to be 5,806.5 km(2) (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km(2) (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920-1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920-1973 while, only 15 grids have shown >75 ha loss during 1973-1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.
El Niño and health risks from landscape fire emissions in Southeast Asia.
Marlier, Miriam E; DeFries, Ruth S; Voulgarakis, Apostolos; Kinney, Patrick L; Randerson, James T; Shindell, Drew T; Chen, Yang; Faluvegi, Greg
2013-01-01
Emissions from landscape fires affect both climate and air quality 1 . In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change 2,3 . We show that during strong El Niño years, fires contribute up to 200 μg/m 3 and 50 ppb in annual average fine particulate matter (PM 2.5 ) and ozone (O 3 ) surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization (WHO) 50 μg/m 3 24-hour PM 2.5 interim target (IT-2) 4 and an estimated 10,800 (6,800-14,300) person (~2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity, and maintaining ecosystem services.
El Niño and health risks from landscape fire emissions in southeast Asia
NASA Astrophysics Data System (ADS)
Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg
2013-02-01
Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Niño-induced droughts and anthropogenic land-use change. We show that during strong El Niño years, fires contribute up to 200μgm-3 and 50ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50μgm-3 24-hr PM2.5 interim target and an estimated 10,800 (6,800-14,300)-person (~ 2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.
El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia
NASA Technical Reports Server (NTRS)
Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg
2013-01-01
Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.
Serio-Silva, Juan Carlos; Olguín, Eugenia J; Garcia-Feria, Luis; Tapia-Fierro, Karla; Chapman, Colin A
2015-01-01
To construct informed conservation plans, researchers must go beyond understanding readily apparent threats such as habitat loss and bush-meat hunting. They must predict subtle and cascading effects of anthropogenic environmental modifications. This study considered a potential cascading effect of deforestation on the howler monkeys (Alouatta pigra) of Balancán, Mexico. Deforestation intensifies flooding. Thus, we predicted that increased flooding of the Usumacinta River, which creates large bodies of water that slowly evaporate, would produce increased lead content in the soils and plants, resulting in lead exposure in the howler monkeys. The average lead levels were 18.18 ± 6.76 ppm in the soils and 5.85 ± 4.37 ppm in the plants. However, the average lead content of the hair of 13 captured howler monkeys was 24.12 ± 5.84 ppm. The lead levels in the animals were correlated with 2 of 15 blood traits (lactate dehydrogenase and total bilirubin) previously documented to be associated with exposure to lead. Our research illustrates the urgent need to set reference values indicating when adverse impacts of high environmental lead levels occur, whether anthropogenic or natural, and the need to evaluate possible cascading effects of deforestation on primates.
Reddy, C Sudhakar; Jha, C S; Dadhwal, V K
2013-05-01
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924-1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km(2) (52.5 %), 56,661.1 km(2) (36.4 %), 51,642.3 km(2) (33.2 %), 49,773 km(2) (32 %) and 48,669.4 km(2) (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 % year(-1) during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km(2)) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.
NASA Astrophysics Data System (ADS)
Sanford, L.
2017-12-01
When do politicians' re-election strategies cause serious environmental damage? This paper focuses on a case of deforestation, and argues that the protection of forested areas is a long-term public good while their destruction provides short-term, private goods for local voters and elected officials. Politicians give voters access to forested areas for commercial use of timber and small-scale farming in exchange for electoral support. I test the theory that competitive elections are associated with higher rates of deforestation using remote sensed satellite data of forest cover and data on national elections cross-nationally. The findings suggest that rates of forest cover loss are 50% higher in anocracies during election years, and more than double the average rate in years when there are competitive elections in anocracies and democracies. This suggests that democratic elections can be an important source of environmental damage, such as deforestation, contrary to the conventional wisdom that democratization improves environmental protection.
Carbon Emissions from Deforestation in the Brazilian Amazon Region
NASA Technical Reports Server (NTRS)
Potter, C.; Klooster, S.; Genovese, V.
2009-01-01
A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.
Impact of Amazon deforestation on climate simulations using the NCAR CCM2/BATS model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahmann, A.N.; Dickinson, R.E.
Model validation and results are briefly presented for a simulation of deforestation of the Amazon rainforest. This initial study is made using assumptions regarding deforestation similar to those in earlier studies with several versions of the NCAR Community Climate Model (CCM) couples to the Biosphere-Atmosphere Transfer Scheme (BATS). The model used is a revised version of the NCAR CCM Version 2 coupled to BATS Version 1e. This paper discusses the portion of validation dealing with the distribution of precipitation; the simulation displays very good agreement with observed rainfall rates for the austral summer. Preliminary results from an 8-year simulation ofmore » deforestation are similar to that of previous studies. Annual precipitation and evaporation are reduced, while surface air temperatures show a slight increase. A substantial bimodal pattern appears in the results, with the Amazon decrease of precipitation and temperature increase accompanied by changes in the opposite sign to the southeast of the Amazon. Similar patterns have occurred in other studies, but not always in exactly the same locations. Evidently, how much of the region of rainfall increase occurs in the deforested area over the Amazon strongly affects the inferred statistics. It is likely that this pattern depends on the model control climatology and possibly other features. 16 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Bala, G.; N, D.; Modak, A.
2015-12-01
In this study, we investigate the bio-geophysical effects of large-scale deforestation on monsoon regions using idealized deforestation simulations. The simulations are performed using the NCAR CAM5 atmospheric model coupled to a mixed layer ocean model. The four deforestation experiments are named Global, Boreal, Temperate and Tropical, respectively. In these deforestation experiments, trees are replaced by grasses around the globe, between 20oS and 20oN, between 20oN and 50oN and poleward of 50oN, respectively. We find that the remote forcing from large-scale deforestation in the Temperate and Boreal cases shift the Inter-tropical Convergence Zone (ITCZ) southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America and Australia). The magnitude of the monsoonal precipitation changes depend on the location of deforestation with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most with 18% decline in precipitation over India in the Global deforestation case. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation besides the large local impacts on temperatures and carbon sequestration benefits. Our results also demonstrate the linkages between any large scale forcing that causes large warming/cooling in the high latitudes and rainfall changes in tropical monsoonal regions via ITCZ shifts. Figure Caption: Changes in annual mean precipitation (mm/day) between the deforestation experiments and the control simulation. Hatched areas are regions where changes are statistically significant at the 95% confidence level. Shading in line plots represents the ±1 standard deviation estimated from the control simulation. Comparison of (b) with (d) clearly indicates that the remote effect has a larger influence on tropical precipitation than local effect.The location of the precipitation centroid in the ITCZ region in the CTL case and the shifts in the experiments are shown above the panels.
Effect of oil palm sustainability certification on deforestation and fire in Indonesia.
Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire
2018-01-02
Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.
Effect of oil palm sustainability certification on deforestation and fire in Indonesia
Gibbs, Holly K.; Noojipady, Praveen; Burns, David N.; Morton, Douglas C.; Walker, Nathalie F.; Paoli, Gary D.; Kremen, Claire
2018-01-01
Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. PMID:29229857
The rate and extent of deforestation in watersheds of the southwestern Amazon basin.
Biggs, Trent W; Dunne, Thomas; Roberts, Dar A; Matricardi, E
2008-01-01
The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rondônia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.
Feedbacks between land cover and climate changes in the Brazilian Amazon and Cerrado biomes
NASA Astrophysics Data System (ADS)
Coe, M. T.; Silverio, D. V.; Bustamante, M.; Macedo, M.; Shimbo, J.; Brando, P. M.
2016-12-01
An estimated 20% of Amazon forests and 45% of Cerrado savannas have been cleared to make way for the expansion of croplands and pasturelands in Brazil. Although deforestation rates have decreased or remained steady over the last decade, the cumulative area deforested continues to grow in both biomes. These land-use transitions are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperatures (LST), and ultimately reducing regional precipitation. Here we present results from spatial analyses to quantify the impact of land-use transitions on the regional climate of the Amazon-Cerrado agricultural frontier. The analyses combine satellite observations and model outputs from the MODIS dataset. Results from the southeastern Amazon indicate that transitions from forest to pasture or cropland decreased mean annual ET (by 24% and 32%, respectively) and increased LST (by 4.2°C and 6.4°C). Preliminary results from the Cerrado indicate that transitions from woody savannas to pasture or cropland also result in substantial reductions in mean annual ET (23% and 20%, respectively) and increases in LST (by 1.6°C in both cases). These results reinforce the need to better understand how land-use change at regional scales may alter climate by changing ecosystem properties (beyond carbon stocks and fluxes). It is important to evaluate these responses across different biomes, particularly in tropical regions under increasing deforestation pressure.
Tropical forest extent and changes
NASA Astrophysics Data System (ADS)
Gwynne, M. D.; Torres, Cristina Boelcke; Croze, H. J.
A UNEP/FAO assessment of the extent and rate of change of the tropical forest resources of 76 countries found that during the period 1976-1980 the amount of closed forest removed annually in the Americas, Asia and Africa was 4.1 million hectares, 1.8 million hectares and 1.3 million hectares respectively. Projections for 1981-1985 suggest that closed forest annual removal will remain at these same levels in Asia and Africa but will rise to 4.3 million hectares in the Americas thus giving a world removal total of 7.5 million hectares per year. No reliable information is available on the open forest areas cleared during 1975-1980 but annual open forest clearance during 1981-1985 is expected to be 2.3 million hectares for Africa, 1.2 million hectares for the Americas, and 0.19 million hectares for Asia. Shifting cultivation is the greatest single cause of deforestation. Removal of wood for energy purposes is a significant cause of deforestation in the drier tropics. If current removal rates are maintained, some 88 percent of the present world cover of tropical broad leaved forests will still remain at the end of the century.
NASA Astrophysics Data System (ADS)
Fawzi, N. I.; Husna, V. N.; Helms, J. A.
2018-05-01
Gunung Palung National Park (1,080 km2, 1°3’ – 1°22’ S, 109°54’ – 110°28’ E) was first protected in 1937 and is now one of the largest remaining primary lowland mixed dipterocarp forests on Borneo. To help inform conservation efforts, we measured forest cover change in the protected area using 11 multi-temporal Landsat series images with path/row 121/61. Annual deforestation rates have declined since measurement began in 1989, to around 68 hectares per year in 2011 and 112 hectares per year in 2017. Halting deforestation in this protected area requires to tackle its underlying economic and social causes, and find ways for communities to meet their needs without resorting to forest clearing. Community empowerment, forest rehabilitation, and health care incentives as payment for ecosystem services can help reduce deforestation in Gunung Palung National Park. This becomes a positive trend which we must continue to always work in forest conservation. Future forest monitoring will be dependency with remote sensing analysis and open source remote sensing data such as Landsat and Sentinel data remain an important data source for historical forest change monitoring.
Gaveau, David L. A.; Salim, Mohammad A.; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E.; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas
2014-01-01
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands. PMID:25135165
NASA Astrophysics Data System (ADS)
Gaveau, David L. A.; Salim, Mohammad A.; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E.; Molidena, Elis; Yaen, Husna; Defries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas
2014-08-01
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 - a non-drought year - Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated ``very unhealthy''). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 +/- 59 Tg CO2-eq (or 31 +/- 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
Gaveau, David L A; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas
2014-08-19
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013--a non-drought year--Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated "very unhealthy"). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
NASA Astrophysics Data System (ADS)
Makar, N. I.; Butler, K.; Fox, T.; Geddes, Q. A.; Janse van Vuuren, L.; Li, A.; Sharma, A.
2012-12-01
As the most densely populated country in Africa, Rwanda relies heavily on a limited supply of natural resources to sustain its agrarian economy. Population pressures, economic policy, and the aftermath of the genocide have placed particular stress on the Gishwati Forest in Rwanda's Western Province. Deforestation for agricultural purposes and fuel consumption has disrupted the local climate, soil structure, and topography, leading to increased erosion, landslides and flooding. Once 280 km2, by 1995 the Gishwati Forest was only 6 km2. The Rwandan government and international NGOs have started initiatives to reverse deforestation, which would benefit from monitoring and evaluation using remote sensing technology. This study filled the gaps in the tumultuous history of Gishwati Forest since 1982 using NASA's Earth Observing System, specifically Landsat 5 and AVHRR. In collaboration with partner organizations, we developed a robust, yet simple to use, forest monitoring tool employing MODIS NDVI product and Landsat that provide annual estimates of the forest's health.
Tropical forest cover change in the 1990s and options for future monitoring
Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne
2005-01-01
Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of −0.8 to −0.9%. The annual area deforested in Latin America is large, but the relative rate (−0.4 to −0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (−0.4 to −0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent. PMID:15814351
Tropical forest cover change in the 1990s and options for future monitoring.
Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne
2005-02-28
Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent.
The Amazon Basin in transition
Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy
2012-01-01
Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...
Henderson, Kirsten A; Anand, Madhur; Bauch, Chris T
2013-01-01
Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, "rational" cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks.
Henderson, Kirsten A.; Anand, Madhur; Bauch, Chris T.
2013-01-01
Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, “rational” cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks. PMID:24204942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, W.; Sathaye, J.; Fearnside, P.M.
Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous yearsmore » will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, W.; Sathaye, J.; Fearnside, P.M.
Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous yearsmore » will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.« less
Global demand for gold is another threat for tropical forests
NASA Astrophysics Data System (ADS)
Alvarez-Berríos, Nora L.; Aide, T. Mitchell
2015-01-01
The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ˜1600 potential gold mining sites between 2001-2006 and 2007-2013. Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007-2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós-Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena-Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ˜32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well beyond the actual mining sites.
Börner, Jan; Marinho, Eduardo; Wunder, Sven
2015-01-01
Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix. PMID:25650966
Börner, Jan; Marinho, Eduardo; Wunder, Sven
2015-01-01
Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix.
Agriculture-driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties
NASA Astrophysics Data System (ADS)
Carter, Sarah; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; De Sy, Veronique; Kooistra, Lammert; Rufino, Mariana C.
2018-01-01
Limited data exists on emissions from agriculture-driven deforestation, and available data are typically uncertain. In this paper, we provide comparable estimates of emissions from both all deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and emissions factors) were used to combine the datasets, where most certain datasets contribute the most. This method utilizes all the input data, while minimizing the uncertainty of the emissions estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size (for sample-based datasets), and the extent to which the timeframe of the data matches the period of interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives deforestation), were the most uncertain components of the emissions estimates, thus improvement in the uncertainties related to these estimates will provide the greatest reductions in uncertainties of emissions estimates. Over the period of the study, Latin America had the highest proportion of deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the highest emissions from agriculture-driven deforestation, and these peaked at 974 ± 148 Mt CO2 yr-1 in 2000-2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from 154 ± 21-412 ± 75 Mt CO2 yr-1), so mitigation initiatives could be prioritized there. Uncertainties for emissions from agriculture-driven deforestation are ± 62.4% (average over 1990-2015), and uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate that uncertainty data can also be useful when combining multiple open datasets, so we recommend new data providers to include this information.
NASA Astrophysics Data System (ADS)
de Oliveira, G. S.; Cardoso, M. F.; Sanches, M. B.; Alexandre, F. F.
2014-12-01
Since the late 1980s a large number of numerical experiments with atmospheric general circulation models has been used to assess the impacts of deforestation on global and regional climate, and one of the main motivations is the Amazon rainforest. In the same way, in the last decade several studies have shown that a higher concentration of CO2 in the atmosphere could lead changes in climate in the Amazon region. In this study we performed new analyses to quantify how deforestation, fire and the increase in atmospheric CO2 concentration may combine to affect the climate in Amazonia during this century. For the projection of land use was considered a spatially explicit land use scenario from Aguiar et al. (2013). The scenario was built using LuccME generic modelling framework and the potential of change considering the proximity to previously deforested areas and also spatial drivers (roads and protected areas). In order to quantify the response of Brazilian Earth System Model, with INLAND-IBIS surface model, to climate change, deforestation and forest fire we performed a suite of simulations in two main categories: 1) the model was running under historical and RCP8.5 greenhouse gas concentration, and 2) the model was forced by the same configuration in 1 but also considering the effects of deforestation and forest fire in Amazon. In summary, the most important changes occur in the East/Northeast and South of the Amazonia and are more evident when are considered all effects (climate change, deforestation and fire). The results show warmer near-surface air temperature in all cases compared to the control case. This relative warming of the deforested land surface is consistent with the reduction in evapotranspiration, the lower leaf area and the lower surface roughness length. There is a reduction in annual precipitation in both cases mainly over eastern/northeastern Amazonia. The reduction in precipitation occurs mainly during the dry season (June-November) in both cases, and there is an increase in dry season length that is more evident when are considered all effects. In summary, we conclude that the synergistic combination of deforestation and climate change resulting from global warming may lead to important impacts that add considerably to the vulnerability of tropical forest ecosystems in the region.
Global Food Security Index Studies and Satellite Information
NASA Astrophysics Data System (ADS)
Medina, T. A.; Ganti-Agrawal, S.; Joshi, D.; Lakhankar, T.
2017-12-01
Food yield is equal to the total crop harvest per unit cultivated area. During the elapsed time of germination and frequent harvesting, both human and climate related effects determine a country's' contribution towards global food security. Each country across the globe's annual income per capita was collected to then determine nine countries for further studies. For a location to be chosen, its income per capita needed to be considered poor, uprising or wealthy. Both physical land cover and regional climate helped categorize potential parameters thought to be studied. Once selected, Normalized Difference Vegetation Index (NDVI) data was collected for Ethiopia, Liberia, Indonesia, United States, Norway, Russia, Kuwait and Saudi Arabia over the recent 16 years for approximately every 16 days starting from early in the year 2000. Software languages such as Geographic Information System (GIS), MatLab and Excel were used to determine how population size, income and deforestation directly determines agricultural yields. Because of high maintenance requirements for large harvests when forest areas are cleared, they often have a reduction in soil quality, requiring fertilizer use to produce sufficient crop yields. Total area and vegetation index of each country is to be studied, to determine crop and deforestation percentages. To determine how deforestation impacts future income and crop yield predictions of each country studied. By using NDVI results a parameter is to be potentially found that will help define an index, to create an equation that will determine a country's annual income and ability to provide for their families and themselves.
Condition and fate of logged forests in the Brazilian Amazon.
Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M
2006-08-22
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.
Condition and fate of logged forests in the Brazilian Amazon
Asner, Gregory P.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Knapp, David E.; Silva, José N. M.
2006-01-01
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained. PMID:16901980
Historical deforestation locally increased the intensity of hot days in northern mid-latitudes
NASA Astrophysics Data System (ADS)
Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.
2018-05-01
The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.
Ebeling, Johannes; Yasué, Maï
2008-05-27
Recent proposals to compensate developing countries for reducing emissions from deforestation (RED) under forthcoming climate change mitigation regimes are receiving increasing attention. Here we demonstrate that if RED credits were traded on international carbon markets, even moderate decreases in deforestation rates could generate billions of Euros annually for tropical forest conservation. We also discuss the main challenges for a RED mechanism that delivers real climatic benefits. These include providing sufficient incentives while only rewarding deforestation reductions beyond business-as-usual scenarios, addressing risks arising from forest degradation and international leakage, and ensuring permanence of emission reductions. Governance may become a formidable challenge for RED because some countries with the highest RED potentials score poorly on governance indices. In addition to climate mitigation, RED funds could help achieve substantial co-benefits for biodiversity conservation and human development. However, this will probably require targeted additional support because the highest biodiversity threats and human development needs may exist in countries that have limited income potentials from RED. In conclusion, how successfully a market-based RED mechanism can contribute to climate change mitigation, conservation and development will strongly depend on accompanying measures and carefully designed incentive structures involving governments, business, as well as the conservation and development communities.
A large-scale field assessment of carbon stocks in human-modified tropical forests.
Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos
2014-12-01
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation
NASA Astrophysics Data System (ADS)
Rappaport, Danielle I.; Morton, Douglas C.; Longo, Marcos; Keller, Michael; Dubayah, Ralph; Nara dos-Santos, Maiza
2018-06-01
Despite sustained declines in Amazon deforestation, forest degradation from logging and fire continues to threaten carbon stocks, habitat, and biodiversity in frontier forests along the Amazon arc of deforestation. Limited data on the magnitude of carbon losses and rates of carbon recovery following forest degradation have hindered carbon accounting efforts and contributed to incomplete national reporting to reduce emissions from deforestation and forest degradation (REDD+). We combined annual time series of Landsat imagery and high-density airborne lidar data to characterize the variability, magnitude, and persistence of Amazon forest degradation impacts on aboveground carbon density (ACD) and canopy structure. On average, degraded forests contained 45.1% of the carbon stocks in intact forests, and differences persisted even after 15 years of regrowth. In comparison to logging, understory fires resulted in the largest and longest-lasting differences in ACD. Heterogeneity in burned forest structure varied by fire severity and frequency. Forests with a history of one, two, and three or more fires retained only 54.4%, 25.2%, and 7.6% of intact ACD, respectively, when measured after a year of regrowth. Unlike the additive impact of successive fires, selective logging before burning did not explain additional variability in modeled ACD loss and recovery of burned forests. Airborne lidar also provides quantitative measures of habitat structure that can aid the estimation of co-benefits of avoided degradation. Notably, forest carbon stocks recovered faster than attributes of canopy structure that are critical for biodiversity in tropical forests, including the abundance of tall trees. We provide the first comprehensive look-up table of emissions factors for specific degradation pathways at standard reporting intervals in the Amazon. Estimated carbon loss and recovery trajectories provide an important foundation for assessing the long-term contributions from forest degradation to regional carbon cycling and advance our understanding of the current state of frontier forests.
Accelerated losses of protected forests from gold mining in the Peruvian Amazon
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Tupayachi, Raul
2016-09-01
Gold mining in Amazonia involves forest removal, soil excavation, and the use of liquid mercury, which together pose a major threat to biodiversity, water quality, forest carbon stocks, and human health. Within the global biodiversity hotspot of Madre de Dios, Peru, gold mining has continued despite numerous 2012 government decrees and enforcement actions against it. Mining is now also thought to have entered federally protected areas, but the rates of miner encroachment are unknown. Here, we utilize high-resolution remote sensing to assess annual changes in gold mining extent from 1999 to 2016 throughout the Madre de Dios region, including the high-diversity Tambopata National Reserve and buffer zone. Regionally, gold mining-related losses of forest averaged 4437 ha yr-1. A temporary downward inflection in the annual growth rate of mining-related forest loss following 2012 government action was followed by a near doubling of the deforestation rate from mining in 2013-2014. The total estimated area of gold mining throughout the region increased about 40% between 2012 and 2016, including in the Tambopata National Reserve. Our results reveal an urgent need for more socio-environmental effort and law enforcement action to combat illegal gold mining in the Peruvian Amazon.
Fusion of optical and SAR remote sensing images for tropical forests monitoring
NASA Astrophysics Data System (ADS)
Wang, C.; Yu, M.; Gao, Q.; Wang, X.
2016-12-01
Although tropical deforestation prevails in South America and Southeast Asia, reforestation appeared in some tropical regions due to economic changes. After the economic shift from agriculture to industry, the tropical island of Puerto Rico has experienced rapid reforestation as well as urban expansion since the late 1940s. Continued urban growth without the guide of sustainable planning might prevent further forest regrowth. Accurate and timely mapping of LULC is of great importance for evaluating the consequences of reforestation and urban expansion on the coupled human and nature systems. However, owning to persistent cloud cover in tropics, it remains a challenge to produce reliable LULC maps in fine spatial resolution. Here, we retrieved cloud-free Landsat surface reflectance composite data by removing clouds and shades from the USGS Landsat Surface Reflectance (SR) product for each scene using the CFmask and Fmask algorithms in Google Earth Engine. We then produced high accuracy land cover classification maps using SR optical data for the year of 2000 and fused optical and ALOS SAR data for 2010 and 2015, with an overall accuracy of 92.0%, 92.5%, and 91.6%, respectively. The classification result indicated that a successive forest gain of 6.52% and 1.03% occurred between the first (2000-2010) and second (2010-2015) study periods, respectively. We also conducted a comparative spatial analysis of patterns of deforestation and reforestation based on a series of forest cover zones (50 × 50 pixels, 150 ha). The annual rates of deforestation and reforestation against forest cover presented the similar trends during two periods: decreasing with the forest cover increasing. However, the annual net forest change rate was different in the zones with forest cover less than 30%, presenting significant gain (2.2-8.4% yr-1) for the first period and significant loss (2.3-6.4% yr-1) for the second period. It indicated that both deforestation and reforestation mostly occurred near the forest edges and low density secondary forests.
NASA Astrophysics Data System (ADS)
Bovolo, C. Isabella; Pereira, Ryan; Parkin, Geoff; Wagner, Thomas
2010-05-01
The tropical rainforests of the Guianas, north of the Amazon, are home to several Amerindian communities, hold high levels of biodiversity and, importantly, remain some of the world's most pristine and intact rainforests. Not only do they have important functions in the global carbon cycle, but they regulate the local and regional climate and help generate rain over vast distances. Despite their significance however, the climate and hydrology of this region is poorly understood. It is important to establish the current climate regime of the area as a baseline against which any impacts of future climate change or deforestation can be measured but observed historical climate datasets are generally sparse and of low quality. Here we examine the available precipitation and temperature datasets for the region and derive tentative precipitation and temperature maps focussed on Guyana. To overcome the limitations in the inadequate observational data coverage we also make use of a reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ECMWF). The ECMWF ERA40 dataset comprises a spatially consistent global historical climate for the period 1957-2002 at a ~125 km2 (1.125 degree) resolution at the equator and is particularly valuable for establishing the climate of data-poor areas. Once validated for the area of interest, ERA40 is used to determine the precipitation and temperature regime of the Guianas. Grid-cell by grid-cell analysis provides a complete picture of spatial patterns of averaged monthly precipitation variability across the area, vital for establishing a basis from which to compare any future effects of climate change. This is the first comprehensive study of the recent historical climate and its variability in this area, placing a new hydroclimate monitoring and research program at the Iwokrama International Centre for Rainforest Conservation and Development, Guyana, into the broader climate context. Mean differences (biases) and annual average spatial correlations are examined between modelled ERA40 and observed time series comparing the seasonal cycles and the yearly, monthly and monthly anomaly time series. This is to evaluate if the reanalysis data correctly reproduces the areally averaged observed mean annual precipitation, interannual variability and seasonal precipitation cycle over the region. Results show that reanalysis precipitation for the region compares favourably with areally averaged observations where available, although the model underestimates precipitation in some zones of higher elevation. Also ERA40 data is slightly positively biased along the coast and negatively biased inland. Comparisons between observed and modelled data show that although correlations of annual time series are low (<0.6), correlations of monthly time series reach 0.8 demonstrating that the model captures much of the seasonal variation in precipitation. However correlations between monthly precipitation anomalies, where the averaged seasonal cycle has been removed from the comparison, are lower (< 0.6). As precipitation observations are not assimilated into the reanalysis these results provide a good validation of model performance. The seasonal cycle of precipitation is found to be highly variable across the region. Two wet-seasons (June and December) occur in northern Guyana which relate to the twice yearly passage of the inter-tropical convergence zone whereas a single wet season (April-August) occurs in the savannah zone, which stretches from Venezuela through the southern third of Guyana. The climate transition zone lies slightly north of the distinctive forest-savannah boundary which suggests that the boundary may be highly sensitive to future alterations in climate, such as those due to climate change or deforestation.
NASA Astrophysics Data System (ADS)
Neupane, R. P.; White, J. D.
2014-12-01
Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that area. Future slope stability and sediment deposition in downstream reservoirs are important future potential vulnerabilities for these basins of which land management plays an important mediating role.
NASA Astrophysics Data System (ADS)
Dümenil Gates, Lydia; Ließ, Stefan
2001-10-01
For two reasons it is important to study the sensitivity of the global climate to changes in the vegetation cover over land. First, in the real world, changes in the vegetation cover may have regional and global implications. Second, in numerical simulations, the sensitivity of the simulated climate may depend on the specific parameterization schemes employed in the model and on the model's large-scale systematic errors. The Max-Planck-Institute's global general circulation model ECHAM4 has been used to study the sensitivity of the local and global climate during a full annual cycle to deforestation and afforestation in the Mediterranean region. The deforestation represents an extreme desertification scenario for this region. The changes in the afforestation experiment are based on the pattern of the vegetation cover 2000 years before present when the climate in the Mediterranean was more humid. The comparison of the deforestation integration to the control shows a slight cooling at the surface and reduced precipitation during the summer as a result of less evapotranspiration of plants and less evaporation from the assumption of eroded soils. There is no significant signal during the winter season due to the stronger influence of the mid-latitude baroclinic disturbances. In general, the results of the afforestation experiment are opposite to those of the deforestation case. A significant response was found in the vicinity of grid points where the land surface characteristics were modified. The response in the Sahara in the afforestation experiment is in agreement with the results from other general circulation model studies.
Implications of heterogeneous impacts of protected areas on deforestation and poverty
Hanauer, Merlin M.; Canavire-Bacarreza, Gustavo
2015-01-01
Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. PMID:26460125
Implications of heterogeneous impacts of protected areas on deforestation and poverty.
Hanauer, Merlin M; Canavire-Bacarreza, Gustavo
2015-11-05
Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. © 2015 The Author(s).
Conservation performance of different conservation governance regimes in the Peruvian Amazon.
Schleicher, Judith; Peres, Carlos A; Amano, Tatsuya; Llactayo, William; Leader-Williams, Nigel
2017-09-12
State-controlled protected areas (PAs) have dominated conservation strategies globally, yet their performance relative to other governance regimes is rarely assessed comprehensively. Furthermore, performance indicators of forest PAs are typically restricted to deforestation, although the extent of forest degradation is greater. We address these shortfalls through an empirical impact evaluation of state PAs, Indigenous Territories (ITs), and civil society and private Conservation Concessions (CCs) on deforestation and degradation throughout the Peruvian Amazon. We integrated remote-sensing data with environmental and socio-economic datasets, and used propensity-score matching to assess: (i) how deforestation and degradation varied across governance regimes between 2006-2011; (ii) their proximate drivers; and (iii) whether state PAs, CCs and ITs avoided deforestation and degradation compared with logging and mining concessions, and the unprotected landscape. CCs, state PAs, and ITs all avoided deforestation and degradation compared to analogous areas in the unprotected landscape. CCs and ITs were on average more effective in this respect than state PAs, showing that local governance can be equally or more effective than centralized state regimes. However, there were no consistent differences between conservation governance regimes when matched to logging and mining concessions. Future impact assessments would therefore benefit from further disentangling governance regimes across unprotected land.
Deforestation and cultivation mobilize mercury from topsoil.
Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R
2015-11-01
Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Callahan, R. P.; Riebe, C. S.; Ferrier, K.
2017-12-01
For more than two decades, cosmogenic nuclides have been used to quantify catchment-wide erosion rates averaged over tens of thousands of years. These rates have been used as baselines for comparison with sediment yields averaged over decades, leading to insights on how human activities such as deforestation and agriculture have influenced the production and delivery of sediment to streams and oceans. Here we present new data from the southern Sierra Nevada, California, where sediment yields have been measured over the last ten years using sediment trapping and gauging methods. Cosmogenic nuclides measured in stream sediment reveal erosion rates that are between 13 and 400 (average = 94) times faster than erosion rates inferred from annual accumulations in sediment traps. We show that the discrepancy can be explained by extremely low sediment trapping efficiency, which leads to bias in the short-term rates due to incomplete capture of suspended sediment. Thus the short-term rates roughly agree with the long-term rates, despite intensive timber harvesting in the study catchments over the last century. This differs from results obtained in similar forested granitic catchments of Idaho, where long-term rates are more than ten times greater than short-term rates because large, rare events do not contribute to the short-term averages. Our analysis of a global database indicates that both the magnitude and sign of differences between short- and long-term average erosion rates are difficult to predict, even when the history of land use in known.
Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012
NASA Astrophysics Data System (ADS)
Hamilton, Stuart E.; Friess, Daniel A.
2018-03-01
Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.
Afrane, Yaw A; Zhou, Goufa; Lawson, Bernard W; Githeko, Andrew K; Yan, Guiyun
2007-10-01
In high-elevation areas in western Kenya, the abundance of Anopheles arabiensis is either very low or absent. The western Kenya highlands (an area with an elevation > 1,500m above sea level) have also been experiencing extensive deforestation, and deforestation has been suggested as one of the important factors that facilitate malaria transmission in the highlands. This study investigated whether climate conditions in the western Kenya highlands (Kakamega, elevation 1,500 m above sea level) were permissive to the development and survival of An. arabiensis and whether deforestation promoted An. arabiensis survivorship of immature and adult stages, using life-table analysis. We found that in larval habitats located in forested areas, only 4-9% of first-instar larvae developed into adults and the development length exceeded 20 days. Mean water temperature of aquatic habitats in the deforested area was 4.8-6.1 degrees C higher than that in the forested area, larval-to-adult survivorship was increased to 65-82%, and larval-to-adult development time was shortened by 8-9 days. The average indoor temperature in houses in the deforested area was 1.7-1.8 degrees C higher than in the forested area, and the relative humidity was 22-25% lower. The median survival time of adult mosquitoes in the deforested area was 49-55% higher than those in the forested area. The net reproductive rate of female mosquitoes in the deforested area was 1.7- to 2.6-fold higher than that in the forested area. Compared with previously published data on An. gambiae, the net reproductive rate of An. arabiensis was only 0.8-1.3% of Anopheles gambiae in the forested area and 2.3-2.6% in the deforested area. Therefore, the current ambient climate condition is less permissive to An. arabiensis than to An. gambiae in western Kenya highlands. However, environmental changes such as deforestation and global warming may facilitate the establishment of An. arabiensis populations in the highlands.
NASA Astrophysics Data System (ADS)
Lean, J.; Rowntree, P. R.
1997-06-01
The experiment reported on here presents a realistic portrayal of Amazonian deforestation that uses measurements of vegetation characteristics, taken as part of the Anglo-Brazilian Amazonian Climate Observation Study field campaigns, to define the forest and replacement pasture vegetation in the Hadley Centre GCM. The duration of the main experiment (10 yr) leads to greater confidence in assessing regional changes than in previous shorter experiments.Complete removal of the Amazonian forest produced area-mean changes that resemble earlier experiments with decreases in evaporation of 0.76 mm day1 (18%) and rainfall of 0.27 mm day1 (4%) and a rise in surface temperature of 2.3°C. However, the relative changes in magnitude indicate that increased moisture convergence partly compensates for the reduced evaporation, in contrast to many previous deforestation experiments. Results also showed large regional variations in the change in annual mean rainfall over South America, with widespread decreases over most of the deforested area and increases near the Andes.A better understanding of the mechanisms responsible for the final deforested climate has been gained by carrying out additional experiments that examine the response to separate changes in roughness and albedo. Increased albedo resulted in widespread significant decreases in rainfall due to less moisture convergence and ascent. The response to reduced roughness is more complex but of comparable importance; in this experiment it was dominated by an increase in low-level wind speeds resulting in decreased moisture convergence and rainfall near the upwind edge of the area and the opposite near the downwind boundary where the increased flow meets the Andes.In the standard deforestation scenario all vegetation parameters were modified together with one soil parameter-the maximum infiltration rate, which is reduced to represent the observed compaction of soil following deforestation. Results from a further experiment, in which the maximum infiltration rate was left unchanged, showed much smaller reductions in evaporation of 0.3 mm day1 (7%) and indicated that the predicted regional changes in rainfall and evaporation were very sensitive to this parameter.
NASA Astrophysics Data System (ADS)
Layzell, Anthony L.; Mandel, Rolfe D.
2014-05-01
Streambanks are the primary source of sediment for watersheds in the Midwestern USA. In much of this region, deposits of fine-grained Holocene alluvium comprising streambanks have been assigned to a single lithostratigraphic unit, the DeForest Formation. This study examines the stratigraphic relationships and measures the erodibility of the different members of the DeForest Formation in three watersheds in northeastern Kansas. Distinct differences in erodibility, measured in terms of critical shear stress (τc) by a submerged jet-test device, were observed between the different members of the DeForest Formation. The most erodible member is the Camp Creek Member (average τc = 1.0 Pa) while the most resistant is the Gunder Member (average τc = 10.4 Pa). Variability in erodibility between and within the members of the DeForest Formation is attributed to the magnitude of post-depositional soil-forming processes, including the presence of buried soils, as well as the inherent natural variability in the different parent materials. A weak positive correlation was found between percent clay and τc. Resistance to erosion by fluid flow was found to be significantly greater where clay contents exceed 28%. Although the Camp Creek Member was found to be the most erodible, it always occurs, stratigraphically, as the uppermost member. Available bankfull stage indicators suggest that bankfull discharges rarely attain elevations sufficient to erode Camp Creek Member deposits. Therefore, other members of the DeForest Formation are able to exert some control on the rate of bank erosion by hydraulic flow. Furthermore, given the observed differences in lithology, soil development and erodibility, the susceptibility to mass wasting processes is also likely to vary between the different members. Therefore, lithostratigraphic and soil-stratigraphic relationships have important implications for streambank erodibility and are crucial for accurately determining areas prone to streambank erosion in alluvial settings.
Fire and Deforestation Dynamics in South America over the Past 50 Years
NASA Astrophysics Data System (ADS)
van Marle, M.; Field, R. D.; van der Werf, G.
2015-12-01
Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.
NASA Astrophysics Data System (ADS)
Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.; Yue, C.
2013-11-01
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.8 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.6 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr-1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and assuming and ELUC of 0.9 ± 0.5 GtC yr-1 (based on 2001-2010 average), SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1-3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870-2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).
NASA Technical Reports Server (NTRS)
Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.
2004-01-01
"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.
The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon.
Lacerda, Luiz D; de Souza, Margareth; Ribeiro, Mario G
2004-05-01
This study presents the spatial distribution, degree of contamination and storage capacity of Hg in surface forest and pasture soils from Alta Floresta, Southern Amazon, a significant gold mining site from 1980 to 1996. During that period, average annual gold production was about 6.5 tons, with an estimated Hg annual emission to the environment of about 8.8 tons, 60-80% of it being emitted to the atmosphere. Mercury sources to the region are mining sites and gold-dealer shops at the city of Alta Floresta, where gold is smelted and commercialized. Mercury concentrations in forest soils (15-248 ng g(-1), average=61.9 ng g(-1)) were 1.5-3.0 times higher than in pasture soils (10-74 ng g(-1), average=33.8 ng g(-1)), suggesting strong re-mobilization after deforestation. Highest Hg concentrations were found within a distance of 20-30 km from mining sites in both soil types. The influence of the refining operations within the city of Alta Floresta, however, was less clear. Somewhat higher concentrations were observed only within a 5 km radius from the city center where gold-dealer shops are located. Wind direction controls the spatial distribution of Hg. Background concentrations (15-50 ng g(-1)) were generally found at the outer perimeter of the sampling grid, about 40 km from sources. This suggests that Hg released from mining and refining activities undergoes rapid deposition. Estimated cumulative Hg burdens for the first 10 cm of soil averaged 8.3 mg m(-2) and 4.9 mg m(-2), for forest and pasture soils respectively and compare well with ultisols and hydromorphic oxisols, but were lower than those found in yellow-red and yellow latosols and podsols from other Amazonian areas. Our results show that changing land use in the Amazon is a strong re-mobilizing agent of Hg deposited on soils from the atmosphere.
Land Use Induced Hydroclimatic Variability Over Large Deforested Areas in Southern Amazon Rainforest
NASA Astrophysics Data System (ADS)
Khanna, J.; Medvigy, D.
2017-12-01
Contemporary Amazonian deforestation, which occurs at scales of a few hundreds of kilometers, has been found to induce systematic changes in the regional dry season precipitation. The replacement of rough forest with smooth pasture induces a low level atmospheric convergence and uplift in the downwind and divergence and subsidence in the upwind deforested areas. The resulting precipitation change is about ±30% of the deforested area mean in the two regions respectively. Compared with the increase in non-precipitating cloudiness triggered by small scale clearings prevalent in the early phases of deforestation, this `dynamical mesoscale circulation' can have regional ecological impacts by altering precipitation seasonality and in turn ecosystem dynamics. However, the seasonality and variability of this phenomenon hasn't been studied. Using observations and numerical simulations this study investigates the relationships between the dynamical mechanism and the local- and continental-scale atmospheric conditions to understand the physical controls on this phenomenon on the inter-annual, inter-seasonal and daily time scales. We find that the strength of the dynamical mechanism is controlled mostly by regional scale thermal and dynamical conditions of the boundary layer and not the continental and global scale atmospheric state. The lifting condensation level (thermodynamic control) and wind speed (dynamic control) within the boundary layer have the largest and positive correlations with the dipole strength, which is true although not always significant across time scales. Due to this dependence it is found to be strongest during parts of the year when the atmosphere is relatively stable. Hence, overall this phenomenon is found to be the prevalent convective triggering mechanism during the dry and parts of transition seasons (especially spring), significantly affecting the hydroclimate during this period.
Determination of tropical deforestation rates and related carbon losses from 1990 to 2010
Achard, Frédéric; Beuchle, René; Mayaux, Philippe; Stibig, Hans-Jürgen; Bodart, Catherine; Brink, Andreas; Carboni, Silvia; Desclée, Baudouin; Donnay, François; Eva, Hugh D; Lupi, Andrea; Raši, Rastislav; Seliger, Roman; Simonetti, Dario
2014-01-01
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan-tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr−1 in the 1990s and 7.6 million ha yr−1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr−1 (range: 646–1238) and 880 MtC yr−1 (range: 602–1237) respectively, with humid regions contributing two-thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr−1 (range: 61–168) and 97 MtC yr−1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates. PMID:24753029
Determination of tropical deforestation rates and related carbon losses from 1990 to 2010.
Achard, Frédéric; Beuchle, René; Mayaux, Philippe; Stibig, Hans-Jürgen; Bodart, Catherine; Brink, Andreas; Carboni, Silvia; Desclée, Baudouin; Donnay, François; Eva, Hugh D; Lupi, Andrea; Raši, Rastislav; Seliger, Roman; Simonetti, Dario
2014-08-01
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990-2000 and 2000-2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan-tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr(-1) in the 1990s and 7.6 million ha yr(-1) in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr(-1) (range: 646-1238) and 880 MtC yr(-1) (range: 602-1237) respectively, with humid regions contributing two-thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000-2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr(-1) (range: 61-168) and 97 MtC yr(-1) (53-141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Nitrous oxide flux following tropical land clearing
NASA Technical Reports Server (NTRS)
Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter
1989-01-01
The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.
Nitrous oxide flux following tropical land clearing
NASA Astrophysics Data System (ADS)
LuizãO, FláVio; Matson, Pamela; Livingston, Gerald; LuizãO, Regina; Vitousek, Peter
1989-09-01
The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.
Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent
2013-01-31
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.
NASA Astrophysics Data System (ADS)
Schultz, Natalie M.; Lawrence, Peter J.; Lee, Xuhui
2017-04-01
Uncertainties remain about the spatial pattern and magnitude of the biophysical effects of deforestation. In particular, a diurnal asymmetry in the magnitude and sign of the surface temperature response to deforestation (ΔTS) has been observed, but the biophysical processes that contribute to day and nighttime ΔTS are not fully understood. In this study, we use a space-for-time approach with satellite and reanalysis data to investigate the biophysical processes that control the day and nighttime ΔTS. Additionally, we incorporate flux-tower data to examine two hypotheses for nighttime forest warming relative to open lands: (1) that forests generate turbulence in the stable nocturnal boundary layer, which brings heat aloft down to the surface, and (2) that forests store more heat during the day and release it at night. Our results confirm a diurnal asymmetry in ΔTS. Over most regions of the world, deforestation results in daytime warming and nighttime cooling. The strongest daytime warming is in the tropics, where the average ΔTS is 4.4 ± 0.07 K. The strongest nighttime cooling is observed in the boreal zone, where open lands are cooler than forests by an average of 1.4 ± 0.04 K. Daytime patterns of ΔTS are explained by differences in the latent heat flux (ΔLE) and absorbed solar radiation (ΔKa). We find that nighttime ΔTS is related to the strength of the nocturnal temperature inversion, with stronger temperature inversions at high latitudes and weak inversions in the tropics. Forest turbulence at night combined with stored heat release drives nighttime ΔTS patterns.
Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.; Vazeed Pasha, S.; Satish, K. V.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.; Rao, P. V. N.; Krishna Murthy, Y. V. N.
2018-02-01
The present study, first of its kind, has analyzed the land cover and investigated the spatial patterns of deforestation and forest fragmentation in South Asian region since the 1930's. This region comprises of eight countries: India, Bangladesh, Bhutan, Nepal, Pakistan, Afghanistan, Sri Lanka and Maldives. In South Asia, agricultural land is predominant constituting 43% of the total geographical area followed by barren land (19.99%) and forests (14.72%). The long-term change analysis using the classified maps of 1930 and 2014 indicated a loss of 29.62% of the forest cover. Higher annual net deforestation rates were observed in the period from 1930-1975 (0.68%) followed by 1975-1985 (0.23%), 1985-1995 (0.12%), 1995-2005 (0.06%) and 2005-2014 (0.04%) for the region. Forest fragmentation had significant spatio-temporal variation across the South Asian countries. In 1930, 88.91% of the South Asian forest was classified as large core forest, 8.18% as edge forest and 1.18% as perforated forest. The large core forest category has decreased significantly in area over last eight decades. The results of the present study are expected to serve as a reference for the evaluation of globally agreed Aichi biodiversity target 5 for South Asian countries. This study will be a valuable basis for developing management strategies and restoration programs as it tracks the spatial changes in deforestation and forest fragmentation.
Seasonal Forecasting of Fires across Southern Borneo, 1997-2010
NASA Astrophysics Data System (ADS)
Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich
2014-05-01
Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while several studies using historical data have established negative relationships between fires and antecedent rainfall, and/or positive relationships between fires and deforestation in regions affected by El Nino, comparatively little work has attempted to predict fires and emissions in such regions. Ensemble seasonal climate forecasts issued with several months lead-time have been applied to support risk assessment systems in many fields, notably agricultural production and natural disaster management of flooding, heat waves, drought and fire. The USA, for example, has a long-standing seasonal fire danger prediction system. Fire danger monitoring systems have been operating in Indonesia for over a decade, but, as of yet, no fire danger prediction systems exist. Given the effort required to mobilise suppression and prevention measures in Indonesia, one could argue that high fire danger periods must be anticipated months in advance for mitigation and response measures to be effective. To address this need, the goal of our work was to examine the utility of seasonal rainfall forecasts in predicting severe fires in Indonesia more than one month in advance, using southern Borneo (comprising the bulk of Kalimantan) as a case study. Here we present the results of comparing seasonal forecasts of monthly rainfall from ECMWF's System 4 against i) observed rainfall (GPCP), and ii) burnt area and deforestation (MODIS, AVHRR and Landsat) across southern Borneo for the period 1997-2010. Our results demonstrate the utility of using ECMWF's seasonal climate forecasts for predicting fire activity in the region. Potential applications include improved fire mitigation and responsiveness, and improved risk assessments of biodiversity and carbon losses through fire. These are important considerations for forest protection programmes (e.g. REDD+), forest carbon markets and forest (re)insurance enterprises.
NASA Astrophysics Data System (ADS)
Guimberteau, Matthieu; Ciais, Philippe; Ducharne, Agnès; Boisier, Juan Pablo; Dutra Aguiar, Ana Paula; Biemans, Hester; De Deurwaerder, Hannes; Galbraith, David; Kruijt, Bart; Langerwisch, Fanny; Poveda, German; Rammig, Anja; Andres Rodriguez, Daniel; Tejada, Graciela; Thonicke, Kirsten; Von Randow, Celso; Von Randow, Rita C. S.; Zhang, Ke; Verbeeck, Hans
2017-03-01
Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3 °C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14 %, respectively. However, in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs produce a 6 % decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31 % in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34 % over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27 % in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.
Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012.
Richards, Daniel R; Friess, Daniel A
2016-01-12
The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.
Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012
Richards, Daniel R.; Friess, Daniel A.
2016-01-01
The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation. PMID:26712025
NASA Astrophysics Data System (ADS)
Ray, D. K.; Nair, U. S.; Welch, R. M.; Lawton, R. O.; Oglesby, R. J.; Pielke, R. A.; Sever, T. A.; Irwin, D.
2005-12-01
The classic Maya civilization produced thriving cities that attained population densities comparable to modern day cities during the zenith of its growth approximately around 750 A.D. The Mayan civilization then experienced a catastrophic collapse between 750-950 A.D. Among the various hypothesis forwarded to explain the sudden collapse, one that has recently attracted attention, is the role of deforestation and decreases of regional rainfall that could have affected the day-to-day lives of the ancient Mayas. Deep-rooted rainforest vegetation has access to water stored in deep soil layers, and this deep water is made available to the hydrological cycle through transpiration. Removal of rainforests for agricultural purposes, which is accompanied by soil compaction and reduction in the organic material at the surface, leads to increased runoff and decreased soil water storage. Shallow-rooted vegetation that replaces the deep-rooted rainforests cannot efficiently access the moisture in the deep soil layers, reducing flux of water vapor to the atmosphere. In this study the Colorado State University Regional Atmospheric Modeling System (CSU RAMS) is utilized to examine differences in precipitation between current and forested conditions and between current and deforested conditions similar to those that archaeologists believe were prevalent prior to the collapse. Moreover, current deforestation rates in this region is converting the landscape into one that is similar to those prior to the Maya collapse. The simulated rainfall is compared against climatological rain gauge rainfall values. The statistical scores such as probability of detection, false alarm ratio, and the threat scores all compare favorably with those reported in the literature. Our results suggest that with the removal of forests the rainfall can be expected to decrease by 10 to 100mm in the Maya lowlands. Averaged over the entire Maya lowlands region, dry season rainfall for the forested conditions is 143.3mm compared to 142.7 mm for current conditions (a negligible decrease of 0.4% over the forested scenario). However, domain averaged dry season rainfall in the Maya lowlands decreases to 128.9mm for the deforested scenario, a decrease in 9.7% over current conditions. The model simulations suggest that to-date deforestation has played an insignificant role in creating drier conditions in the Mayan lowlands, except in the regions in northern Guatemala and adjacent Mexico. However, continued deforestation that would be representative of those prior to the collapse of the Maya civilization in the region can be expected to lead to additional decreases in dry season precipitation throughout the entire region by about 10mm to 100mm. Improper land use management in this region could lead to futures catastrophes for the modern humans similar
Monirul Islam, Md; Kanungoe, P
2005-01-01
This paper presents the results of water balance study and aquifer simulation modeling for preliminary estimation of the recharge rate and sustainable yield for the semi arid Barind Tract region of Bangladesh. The outcomes of the study are likely to be useful for planning purposes. It is found from detailed water balance study for the area that natural recharge rates in the Barind Tract vary widely year to year. It may have resulted from the method used for the calculation. If the considered time interval had been smaller than the monthly rainfall, the results could have been different. Aquifer Simulation Modeling (ASM) for the Barind aquifer is used to estimate long-term sustainable yield of the groundwater considering limiting drawdown from the standpoint of economic pumping cost. In managing a groundwater basin efficiently and effectively, evaluation of the maximum annual groundwater yield of the basin that can be withdrawn and used without producing any undesirable effect is one of the most important issues. In investigating such recharge rate, introduction of certain terms such as sustainable yield and safe yield has been accompanied. Development of this area involves proper utilization of this vast land, which is possible only through ensured irrigation for agriculture. The Government of Bangladesh has a plan to develop irrigation facilities by optimum utilization of available ground and surface water. It is believed that the groundwater table is lowering rapidly and the whole region is in an acute state of deforestation. Indiscriminate groundwater development may accelerate deforestation trend. In this context estimation of actual natural recharge rate to the aquifer and determination of sustainable yield will assist in proper management and planning of environmentally viable abstraction schemes. It is revealed from the study that the sustainable yield of ground water (204 mm/y) is somewhat higher than the long-term annual average recharge (152.7 mm) to the groundwater reservoir. The reason behind this is that the rivers within and around the Barind Tract might have played the role of influent rivers.
T.G. Soares Neto; J.A. Carvalho J.A.; C.A.G. Veras; E.C. Alvarado; R. Gielow; E.N. Lincoln; T.J. Christian; R.J. Yokelson; J.C. Santos
2009-01-01
Biomass consumption and C02, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48 percent and the estimated average moisture content...
Smoke and fire characteristics for cerrado and deforestation burns in Brazil - BASE-B experiment
NASA Technical Reports Server (NTRS)
Ward, D. E.; Susott, R. A.; Kauffman, J. B.; Babbitt, R. E.; Cummings, D. L.; Dias, B.; Holben, B. N.; Kaufman, Y. J.; Rasmussen, R. A.; Setzer, A. W.
1992-01-01
Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads, and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 micron diam (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to less than 0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.
Forest carbon stocks and fluxes in physiographic zones of India.
Sheikh, Mehraj A; Kumar, Munesh; Bussman, Rainer W; Todaria, Np
2011-12-25
Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007. The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation.
Forest carbon stocks and fluxes in physiographic zones of India
2011-01-01
Background Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007. Results The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. Conclusion With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation. PMID:22196920
Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports.
Swenson, Jennifer J; Carter, Catherine E; Domec, Jean-Christophe; Delgado, Cesar I
2011-04-19
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2) = 0.93, p = 0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Cash for carbon: A randomized trial of payments for ecosystem services to reduce deforestation.
Jayachandran, Seema; de Laat, Joost; Lambin, Eric F; Stanton, Charlotte Y; Audy, Robin; Thomas, Nancy E
2017-07-21
We evaluated a program of payments for ecosystem services in Uganda that offered forest-owning households annual payments of 70,000 Ugandan shillings per hectare if they conserved their forest. The program was implemented as a randomized controlled trial in 121 villages, 60 of which received the program for 2 years. The primary outcome was the change in land area covered by trees, measured by classifying high-resolution satellite imagery. We found that tree cover declined by 4.2% during the study period in treatment villages, compared to 9.1% in control villages. We found no evidence that enrollees shifted their deforestation to nearby land. We valued the delayed carbon dioxide emissions and found that this program benefit is 2.4 times as large as the program costs. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
NASA Astrophysics Data System (ADS)
Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas
2017-03-01
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.
Mapping Tropical Forest Change in the Greater Marañón and Ucayali regions of Peru using CLASlite
NASA Astrophysics Data System (ADS)
Perez-Leiva, P.; Knapp, D. E.; Clark, J. K.; Asner, G. P.
2012-12-01
The Carnegie Landsat Analysis System-lite (CLASlite) was used to map and monitor tropical forest change in two large tropical watersheds in Peru: Greater Marañón and Ucayali. CLASlite uses radiometric and atmospheric correction algorithms as well as an Automated Monte Carlo Unmixing (AutoMCU) to obtain consistent fractional land cover per-pixel at high spatial resolution. Fractional land cover is automatically extracted from universal spectral libraries which allow for a differentiation between live photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrate (S). Fractional cover information is directly translated to maps of forest cover based in the physical characteristics of the forest canopy. Rates of deforestation and disturbance are estimated through analysis of change in fractional land cover over time. The Greater Marañón and Ucayali watersheds were studied over the period 1985 to 2012, through analysis of 1900 multi-spectral images from Landsat 4, 5 and 7. These images were processed and analyzed using CLASlite to obtain fractional cover and forest cover information for each year within the period. Annualization of the collected maps provided detailed information on the gross rates of disturbance and deforestation throughout the region. Further, net deforestation and disturbance maps were used to show the general forest change in these watersheds over the past 25 years. We found that deforestation accounts for just ~50% of the total forest losses, and that forest disturbance (degradation) is critically important to consider when making forest change estimates associated with losses in habitat and carbon in the region. These results also provide spatially-detailed, temporally-specific information on forest change for nearly three decades. Information provided by this study will assist decision-makers in Peru to improve their regional environmental management. The results, unprecedented in spatial and temporal scope, are another example showing the fidelity of tropical deforestation and forest degradation monitoring made routine using the CLASlite system.
Role of Brazilian Amazon protected areas in climate change mitigation
Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio
2010-01-01
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation. PMID:20505122
Role of Brazilian Amazon protected areas in climate change mitigation.
Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio
2010-06-15
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.
A long-term perspective on deforestation rates in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Velasco Gomez, M. D.; Beuchle, R.; Shimabukuro, Y.; Grecchi, R.; Simonetti, D.; Eva, H. D.; Achard, F.
2015-04-01
Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth's largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km x 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.
T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos
2009-01-01
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, M.; Reiners, W.A.
We investigated changes in soil-atmosphere flux of CH{sub 4}, N{sub 2}O, and NO resulting from the succession of pasture to forest in the Atlantic lowlands of Costa Rica. We studied a dozen sites intensively for over one year in order to measure rates and to understand controlling mechanisms for gas exchange. CH{sub 4} flux was controlled primarily by soil moisture content. Soil consumption of atmospheric CH{sub 4} was greatest when soils were relatively dry. Forest soils consumed CH{sub 4} while pasture soils which had poor drainage generally produced CH{sub 4}. The seasonal pattern of N{sub 2}O emissions from forest soilsmore » was related exponentially to soil water-filled pore space. Annual average N{sub 2}O emissions correlated with soil exchangeable NO{sub 3}{sup -} concentrations. Soil-atmosphere NO flux was greatest when soils were relatively dry. We found the largest NO emissions from abandoned pasture sites. Combining these data with those from another study in the Atlantic lowlands of Costa Rica that focused on deforestation, we present a 50-year chronosequence of trace gas emissions that extends from natural conditions, through disturbance and natural recovery. The soil-atmosphere fluxes of CH{sub 4} and N{sub 2}O and NO may be restored to predisturbance rates during secondary succession. The changes in trace gas emissions following deforestation, through pasture use and secondary succession, may be explained conceptually through reference to two major controlling factors, nitrogen availability and soil-atmosphere diffusive exchange of gases as it is influenced by soil moisture content and soil compaction. 59 refs., 6 figs., 3 tabs.« less
Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code
NASA Astrophysics Data System (ADS)
Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin
2017-09-01
In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.
Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code.
Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin
2017-09-01
In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.
Policies for reduced deforestation and their impact on agricultural production.
Angelsen, Arild
2010-11-16
Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future.
NASA Astrophysics Data System (ADS)
Graham, Victoria; Laurance, Susan G.; Grech, Alana; Venter, Oscar
2017-04-01
Carbon emissions from the conversion and degradation of tropical forests contribute to anthropogenic climate change. Implementing programs to reduce emissions from tropical forest loss in Southeast Asia are perceived to be expensive due to high opportunity costs of avoided deforestation. However, these costs are not representative of all REDD+ opportunities as they are typically based on average costs across large land areas and are primarily for reducing deforestation from oil palm or pulp concessions. As mitigation costs and carbon benefits can vary according to site characteristics, spatially-explicit information should be used to assess cost-effectiveness and to guide the allocation of scarce REDD+ resources. We analyzed the cost-effectiveness of the following REDD+ strategies in Indonesia, one of the world’s largest sources of carbon emissions from deforestation: halting additional deforestation in protected areas, timber and oil palm concessions, reforesting degraded land and employing reduced-impact logging techniques in logging concessions. We discover that when spatial variation in costs and benefits is considered, low-cost options emerged even for the two most expensive strategies: protecting forests from conversion to oil palm and timber plantations. To achieve a low emissions reduction target of 25%, we suggest funding should target deforestation in protected areas, and oil palm and timber concessions to maximize emissions reductions at the lowest cumulative cost. Low-cost opportunities for reducing emissions from oil palm are where concessions have been granted on deep peat deposits or unproductive land. To achieve a high emissions reduction target of 75%, funding is allocated across all strategies, emphasizing that no single strategy can reduce emissions cost-effectively across all of Indonesia. These findings demonstrate that by using a spatially-targeted approach to identify high priority locations for reducing emissions from deforestation and forest degradation, REDD+ resources can be allocated cost-effectively across Indonesia.
NASA Astrophysics Data System (ADS)
van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.
2010-12-01
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.
Optimal use of land surface temperature data to detect changes in tropical forest cover
NASA Astrophysics Data System (ADS)
van Leeuwen, Thijs T.; Frank, Andrew J.; Jin, Yufang; Smyth, Padhraic; Goulden, Michael L.; van der Werf, Guido R.; Randerson, James T.
2011-06-01
Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the buildup of atmospheric CO2. Here we examined different ways to use land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05° × 0.05° Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of LST and Program for the Estimation of Deforestation in the Brazilian Amazon (PRODES) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10° × 10° included the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (˜1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pantropical deforestation classifiers. Combined with the normalized difference vegetation index, a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES.
Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports
Swenson, Jennifer J.; Carter, Catherine E.; Domec, Jean-Christophe; Delgado, Cesar I.
2011-01-01
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006–2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003–2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground. PMID:21526143
NASA Astrophysics Data System (ADS)
Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia
To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.
NASA Astrophysics Data System (ADS)
Spessa, Allan; Weber, Ulrich; Langner, Andreas; Siegert, Florian; Heil, Angelika
2010-05-01
The peatland forests of equatorial SE Asia cover over 20 Mha with most located in Indonesia. Indonesian peatlands are globally one of the largest near-surface reserves of terrestrial organic carbon, with peat deposits of up to 20m thick and an estimated carbon storage of 55-61 Gt. The destructive fires in Indonesia during the exceptionally strong drought of late 1997 and early 1998 mark some of the largest peak emissions events in recorded history of global fires. Past studies estimate that about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997- equivalent to 14% of the average global annual fossil fuel emissions released during the 1990s. Previous studies have established a non-linear negative correlation between fires and antecedent rainfall in Borneo, with ENSO-driven droughts being identified as the main cause of below-average rainfall events over the past decade or so. However, while these studies suggest that this non-linear relationship is mediated by ignitions associated with land use and land cover change (LULCC), they have not demonstrated it. A clear link between fires and logging in Borneo has been reported, but this work was restricted to eastern Kalimantan and the period 1997-98. The relationship between fires, emissions, rainfall and LULCC across the island of Borneo therefore remains to be examined using available fine resolution data over a multi-year period. Using rainfall data, up-to-date peat maps and state-of-the art satellite sensor data to determine burnt area and deforestation patterns over the decade 1997-2007, we show at a pixel working resolution of 0.25 degrees the following: Burning across Borneo predominated in southern Kalimantan. Fire activity is negatively and non-linearly correlated to rainfall mainly in pixels that have undergone a significant reduction in forest cover, and that the bigger the reduction, the stronger the correlation. Such pixels occur overwhelmingly in southern Kalimantan. These correlations are noticeably much weaker or absent in Sarawak and Sabah, and central Borneo, where little or no deforestation was observed. Emissions from biomass burning reflect fire activity, and that fires in the carbon-rich peats of southern Kalimantan dominate the emissions profile during the El Nino years of 1997-98, 2002, 2004 and 2006. Previous work in southern Amazon forests demonstrates that recurrent fires promote a change from tree-dominated to grass-dominated ecosystems which, in turn, promotes even more fires. We show that recurrent fire and deforestation are also linked as part of a similar positive feedback process in Kalimantan. Our results support the detailed field work undertaken in 1997-98 in East Kalimantan, and reinforce these findings across time and space. Emissions from fires in Kalimantan peatlands represent a serious perturbation in terms of forcing from trace gases and aerosols on regional and global climate. Several global and regional climate modelling studies have reported that equatorial SE Asia, including Borneo, will experience reduced rainfall in future decades. At the same time, demands for establishing pulp paper and palm oil plantations to replace native rainforests, especially on peatlands where tenure conflicts among land owners tend to be minimal, is forecast to increase. These joint scenarios imply even more fires and emissions in future. It is critical therefore that present efforts to mitigate emissions through reduced deforestation programs in the region works, otherwise the consequences will be disastrous.
NASA Astrophysics Data System (ADS)
Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.
2016-11-01
The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from this land use change. The total emission from this savanna woodland was 148.3 Mg CO2-e ha-1 with the debris burning responsible for 121.9 Mg CO2-e ha-1 or 82 % of the total emission. The remaining emission was attributed to CO2 efflux from soil disturbance during site preparation for agriculture (10 % of the total emission) and decay of debris during the curing period prior to burning (8 %). Over the same period, fluxes at the uncleared savanna woodland site were measured using a second flux tower and over the 22-month observation period, cumulative net ecosystem exchange (NEE) was a net carbon sink of -2.1 Mg C ha-1, or -7.7 Mg CO2-e ha-1. Estimated emissions for this savanna type were then extrapolated to a regional-scale to (1) provide estimates of the magnitude of GHG emissions from any future deforestation and (2) compare them with GHG emissions from prescribed savanna burning that occurs across the northern Australian savanna every year. Emissions from current rate of annual savanna deforestation across northern Australia was double that of reported (non-CO2 only) savanna burning. However, if the total GHG emission, CO2 plus non-CO2 emissions, is accounted for, burning emissions are an order of magnitude larger than that arising from savanna deforestation. We examined a scenario of expanded land use that required additional deforestation of savanna woodlands over and above current rates. This analysis suggested that significant expansion of deforestation area across the northern savanna woodlands could add an additional 3 % to Australia's national GHG account for the duration of the land use change. This bottom-up study provides data that can reduce uncertainty associated with land use change for this extensive tropical ecosystem and provide an assessment of the relative magnitude of GHG emissions from savanna burning and deforestation. Such knowledge can contribute to informing land use decision making processes associated with land and water resource development.
Policies for reduced deforestation and their impact on agricultural production
Angelsen, Arild
2010-01-01
Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and—more importantly—create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win–lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3–3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935
Long-term carbon loss in fragmented Neotropical forests.
Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas
2014-10-07
Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.
Protecting the Amazon with protected areas
Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-01-01
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819
Protecting the Amazon with protected areas.
Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-06-30
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.
A New EO-Based Indicator for Assessing and Monitoring Climate-Related Vegetation Stress
NASA Astrophysics Data System (ADS)
McCormick, Niall; Gobron, Nadine
2016-08-01
This paper describes a study in which a new environmental indicator, called Annual Vegetation Stress (AVS), has been developed, based on annual anomalies of satellite-measured Fraction of Absorbed Photosynthetically Active Radiation (FAPAR ), and used to map the area affected annually by vegetation stress during the period 2003-2014, for 108 selected developing countries. Analysis of the results for six countries in the "tropical and subtropical forests" ecoregion, reveals good correspondence between high AVS values, and the occurrence of climatic extremes (droughts) and anthropogenic disturbance (deforestation). The results for Equatorial Guinea suggest that the recent trend of large-scale droughts and rainfall deficits in Central and Western Africa, contribute to increased vegetation stress in the region's tropical rainforests. In East Timor there is evidence of a "biological lag" effect, whereby the main impacts of drought on the country's seasonally dry tropical forests are delayed until the year following the climate event.
Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia
Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A.
2008-01-01
Aim We aimed to estimate the present extent of tsunami-affected mangrove forests and determine the rates and causes of deforestation from 1975 to 2005.Location Our study region covers the tsunami-affected coastal areas of Indonesia, Malaysia, Thailand, Burma (Myanmar), Bangladesh, India and Sri Lanka in Asia.Methods We interpreted time-series Landsat data using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of plus-or-minus half a pixel, an accuracy necessary for change analysis. Each image was normalized for solar irradiance by converting digital number values to the top-of-the atmosphere reflectance. Ground truth data and existing maps and data bases were used to select training samples and also for iterative labelling. We used a post-classification change detection approach. Results were validated with the help of local experts and/or high-resolution commercial satellite data.Results The region lost 12% of its mangrove forests from 1975 to 2005, to a present extent of c. 1,670,000 ha. Rates and causes of deforestation varied both spatially and temporally. Annual deforestation was highest in Burma (c. 1%) and lowest in Sri Lanka (0.1%). In contrast, mangrove forests in India and Bangladesh remained unchanged or gained a small percentage. Net deforestation peaked at 137,000 ha during 1990–2000, increasing from 97,000 ha during 1975–90, and declining to 14,000 ha during 2000–05. The major causes of deforestation were agricultural expansion (81%), aquaculture (12%) and urban development (2%).Main conclusions We assessed and monitored mangrove forests in the tsunami-affected region of Asia using the historical archive of Landsat data. We also measured the rates of change and determined possible causes. The results of our study can be used to better understand the role of mangrove forests in saving lives and property from natural disasters such as the Indian Ocean tsunami, and to identify possible areas for conservation, restoration and rehabilitation.
Tubiello, Francesco N; Salvatore, Mirella; Ferrara, Alessandro F; House, Jo; Federici, Sandro; Rossi, Simone; Biancalani, Riccardo; Condor Golec, Rocio D; Jacobs, Heather; Flammini, Alessandro; Prosperi, Paolo; Cardenas-Galindo, Paola; Schmidhuber, Josef; Sanz Sanchez, Maria J; Srivastava, Nalin; Smith, Pete
2015-01-10
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO 2 eq yr -1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO 2 eq yr -1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO 2 eq yr -1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Teklemariam Gebremeskel, Dereje; Witlox, Frank; Azadi, Hossein; Haile, Mitiku; Nyssen, Jan
2013-04-01
Following the global raise in demand for food and biofuel production, transnational companies are acquiring large scale agricultural land in developing countries such as Ethiopia. Considering land as one of the factors to be outsourced for development, the government of Ethiopia is supplying millions of hectares of land to transnational companies in the form of longterm lease. Many of the companies which engage in large scale land acquisition are of Indian, Chinese, Ethiopian diaspora, German, Malaysian, Italian, British, Dutch, Turkish, and Saudi-Arabian origin. The boom in the acquisition of farm land in the country has sparked an all-rounded debate among civil society groups, international institutions, nongovernmental organizations and independent development experts. The common reflections concerning the land deals in Ethiopia and elsewhere contain much rhetoric and hype which lack analysis of the real situation "on the ground" giving different connotations such as 'land grabbing', 'agricultural outsourcing', 'neo-colonialism', 'agrarian colonialism', and 'land underdevelopment'. However, deforestation, soil degradation, marginalization of local indigenous communities, and minimally unfair gains from investment by the host country are among the real points of concern arising out of the long term land lease contracts. Scientific evidence is lacking concerning the pragmatic impacts of large scale agricultural land acquisitions by transnational companies upon the natural environment (forest and land), local peoples' livelihood, and the contacting parties (the host country and the companies). The major objective of this study is to investigate the impacts in the context of Ethiopia, orienting to reinvent win-win land use models which constitute sustainable land use, local peoples' livelihood and the company-host country interests. To achieve this overall objective, the study employs a number of methods and methodologies constituting both qualitative and quantitative data analyses at different levels of focus ranging from household and farm levels to national and transnational. The study focuses on the western lowlands of Ethiopia where there are many companies engaged in large scale commercial farming, where 75% of it is below 1500 m a.s.l with average annual temperature of 20-25°C and annual rainfall of 500-1800 mm. Some preliminary exploratory findings indicate that there is massive land use conversion (deforestation) and 'voluntary' displacement of indigenous communities, which requires further triangulation. Key words: agricultural outsourcing; environmental services; land grabbing; sustainable livelihood; soil conservation
Modeled impact of anthropogenic land cover change on climate
Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.
2007-01-01
Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad
2015-12-01
Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.
Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin
2014-01-01
Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.
Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin
2014-01-01
Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block. PMID:25258742
NASA Astrophysics Data System (ADS)
Welch, R. M.; Ray, D. K.; Lawton, R. O.; Nair, U.
2005-12-01
In the region stretching between Mexico and Panama, the proposed Mesoamerican Biological Corridor (MBC) is an ambitious effort to stem and turn back the erosion of biodiversity in one of the world's biologically richest regions by connecting large existing parks and reserves with new protected areas by means of an extensive network of biological corridors. The success of this effort will depend in part on the ability of the connecting corridors to provide adequate habitats permitting the sustainability of some populations and the migratory movements of others. Ideally these connecting corridors would contain the biological communities which were originally present. Currently, however, many of these connecting corridors do not contain their original forest, but are instead occupied by agricultural landscapes containing croplands, grasslands and degraded woodlands. The forest types in northern Mesoamerica generally are those that require dry season rainfall for their survival, and it is not clear whether current environmental and climatological conditions are sufficient to maintain existing forests and regenerate the pristine forests in the deforested patches. Hourly climatological rainfall rates have been averaged for the time period of 1961 to 1997 at 266 stations in Guatemala and adjacent areas. These climatological rainfall rates have been segregated for forested and deforested regions of each of the major Holdridge life zones. Dry season cloud frequency of occurrences derived from GOES satellite imagery then are. correlated with the March climalogical data in order to generate regression estimates of current local rainfall. Differences between estimated current rainfall and historical values define regions under increased dry season water stress. In general dry season rainfall in March is markedly lower in deforested areas than in forested areas of the same life zone for most of the Holdridge life zones. In some deforested areas within the Holdridge wet forest life zones, estimated March rainfall deficits are >25 mm. Dry season deforested habitats tend to have higher daytime temperatures, are less cloudy, have lower estimated soil moisture and lower values of Normalized Difference Vegetation Index (NDVI) than do forested habitats in the same life zone. The result is hotter and drier air over deforested regions, with lower values of cloud formation and precipitation. The data suggest that deforestation is locally intensifying the dry season and increasing the risk of fire, especially for the long corridor connecting regions. In addition, forest regeneration in some parts of the MBC may not result in second-growth forest that is characteristic of that life zone but rather in forest regeneration more typical of drier conditions. The extent to which this would influence the conservation utility of any given corridor depends upon the ecological requirements of the organisms concerned.
James N. Kochenderfer; Mary Beth Adams; Gary W. Miller; David J. Helvey
2007-01-01
Data collected since 1951 on the Fernow Experimental Forest near Parsons, West Virginia, and at a gaging station on the nearby Cheat River since 1913 were used to evaluate factors affecting large peakflows on forested watersheds. Treatments ranged from periodic partial cuts to complete deforestation using herbicides. Total storm precipitation and average storm...
Moving forward socio-economically focused models of deforestation.
Dezécache, Camille; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno
2017-09-01
Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environmental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to create a map of predicted deforestation over the period 2001-2014 in French Guiana. This map was compared to a reference map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq. km. Highly significant relationships were explicitly established between deforestation intensity and several socio-economic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggesting a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geographical process contributes to the creation of conservative models unable to effectively assess changes in the socio-economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ordway, E.; Asner, G. P.; Naylor, R. L.; Nkongho, R.; Lambin, E.
2017-12-01
Rapid integration of global agricultural markets and subsequent cropland displacement in recent decades increased large-scale tropical deforestation in South America and Southeast Asia. Growing land scarcity and more stringent land use regulations in these regions could incentivize the offshoring of export-oriented commodity crop production to sub-Saharan Africa (SSA). We assess the effects of domestic- and export-oriented agricultural expansion on deforestation in SSA in recent decades at the global, regional and local scales. Using Cameroon as a case-study, we explore the influence of emerging oil palm expansion on deforestation in greater depth. We found that commodity crops are expanding in SSA, increasing pressure on tropical forests. Four Congo Basin countries, Sierra Leone, Liberia, and Cote d'Ivoire were most at risk in terms of exposure, vulnerability and pressures from agricultural expansion. These countries averaged the highest percent forest cover (58% ±17.9) and lowest proportions of potentially available cropland outside forest areas (1% ±0.9). Foreign investment in these countries was concentrated in oil palm production (81%), with a median investment area of 41,582 thousand ha. Based on remote sensing and field survey results, however, medium- and large-scale non-industrial producers are driving a substantial fraction of the oil palm expansion leading to deforestation in Cameroon. Additionally, unlike Southeast Asia, oil palm expansion in sub-Saharan Africa is associated primarily with domestic market demands. In contrast, cocoa, the fastest expanding export-oriented crop across SSA, accounted for 57% of global expansion in 2000-2013 at a rate of 132 thousand ha yr-1, yet only amounted to 0.9% of foreign land investment. Commodity crop expansion in SSA appears largely driven by small- and medium-scale farmers rather than industrial plantations. Findings highlight that, although most agricultural expansion was associated with domestic demand, there is evidence of a growing influence of distant markets on land-use change in SSA.
NASA Astrophysics Data System (ADS)
Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.
2017-02-01
Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.
NASA Astrophysics Data System (ADS)
Uhía, E.; Briones, M. J. I.
2002-12-01
In order to increase our present knowledge of the potential impacts of deforestation on the soil ecosystem, we investigated the responses of enchytraeid and tardigrade populations to tree harvesting. The study was conducted in an area of ca. 10 ha located at an altitude of approximately 450 m in the surroundings of the University campus (Vigo, Pontevedra, Spain). Pine forest ( Pinus pinaster Aiton), with an average density of 400 trees/ha ranging between 10 and 20 years of age, and some young oaks ( Quercus robur L.) were covering the area. At the end of the summer 1995, approximately 50% of the area was harvested. Soil and animal samples were taken from May 1996 to April 1997 at monthly intervals in both forested and deforested areas. Removal of the trees resulted in a significant effect on enchytraeid population numbers and their response was species-dependent in terms of changes in both population numbers and vertical distribution. Higher mortality rates of enchytraeids were recorded in the absence of trees. August seemed to have been critical for survival of all enchytraeid species as no individuals were found in that month and only a few recovered in the following month. Only Cognettia sphagnetorum showed vertical migration in order to avoid adverse conditions. Tardigrades were more abundant in the deforested areas; their ability to enter in a resistant stage could have enabled them to overcome adverse environmental conditions. It is concluded that harvesting of the trees has changed the soil environment and that differences in moisture and temperature conditions are not sufficient to explain the observed differences. The forest soils contained more organic matter than those in the deforested area and therefore differences in the amount and/or quality of the organic matter could be one of the possible explanations for the observed changes in enchytraeid abundance when the forest is removed.
Narco-scapes: Cocaine Trafficking and Deforestation in Central America
NASA Astrophysics Data System (ADS)
Wrathall, D.; McSweeney, K.; Nielsen, E.; Pearson, Z.
2015-12-01
Narcotics trafficking and drug interdiction efforts have resulted in a well-documented social crisis in Central America, but more recently, has been tightly linked to environmental catastrophe and accelerated deforestation in transit zones. This talk will outline synthesis findings from multi-country, interdisciplinary research on cocaine trafficking as an engine of forest loss in Central America. During the "narco-boom" of the mid-2000s, we observed a geographical evolution of cocaine flows into Central America, and the transit of cocaine through new spaces, accompanied by specific patterns of social and environmental change in new nodes of transit. We coarsely estimated that the total amount of cocaine flowing through Central America increased from 70 metric tons in 2000 to 350 mt in 2012, implying that total cocaine trafficking revenue in the region increased from roughly 600 million dollars to 3.5 billion in that time. We describe the mechanism by which these locally captured cocaine rents resulted in a rapid conversion of forest into cattle pasture. Narco-traffickers are drawn to invest in the cattle economy, as a direct means of laundering and formalizing proceeds. Ranching is a land intensive activity, and new narco-enriched cattle pastures can be isolated from other forms forest loss solely by their spatial and temporal change characteristics. A preliminary forest change study in Honduras, for example, indicated that areas of accelerated deforestation were in close proximity to known narcotics trafficking routes and were thirteen times more extensive on average than other forest clearings. Deforested areas commonly appeared in isolated and biodiverse lowland tropical rainforest regions that often intersected with protected areas and indigenous reserves. We find that narco-deforestation is a readily identifiable signal of the extent and health of the cocaine economy. This talk will feature summaries of both ethnographic and land cover change we have observed in cocaine transfer nodes in Honduras, Nicaragua, and Guatemala.
Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures
NASA Astrophysics Data System (ADS)
Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten
2015-10-01
Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.
Soil Carbon and Nutrient Changes Associated with Deforestation for Pasture in Southern Costa Rica
NASA Technical Reports Server (NTRS)
Huth, Timothy J.; Porder, Stephen; Chaves, Joaquin; Whiteside, Jessica H.
2012-01-01
We assessed the effects of deforestation on soil carbon (C) and nutrient stocks in the premontane landscape near Las Cruces Biological Station in southern Costa Rica, where forests were cleared for pasture in the mid-1960s. We excavated six soil pits to a depth of 1 m in both pasture and primary forest, and found that C stocks were 20 kg C per square meters in both settings. Nevertheless, soil delta C-13 suggests 50 percent of the forest-derived soil C above 40 cm depth has turned over since deforestation. Soil nitrogen (N) and phosphorus (P) stocks derived from the soil pits were not significantly different between land uses (P = 0.43 and 0.61, respectively). At a larger spatial scale, however, the ubiquity of ruts produced by cattle-induced erosion indicates that there are substantial soil effects of grazing in this steep landscape. Ruts averaged 13 cm deep and covered 45 percent of the landscape, and thus are evidence of the removal of 0.7 Mg C/ ha/yr, and 70, 9 and 40 kg/ha/yr of N, P and potassium (K), respectively. Subsoils in this region are 10 times less C- and N-rich, and 2 times less P- and K-rich than the topsoil. Thus, rapid topsoil loss may lead to a decline in pasture productivity in the coming decades. These data also suggest that the soil C footprint of deforestation in this landscape may be determined by the fate of soil C as it is transported downstream, rather than C turnover in situ.
Global Crop Yields, Climatic Trends and Technology Enhancement
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.
2016-12-01
During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.
Optimal use of land surface temperature data to detect changes in tropical forest cover
NASA Astrophysics Data System (ADS)
Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.
2011-12-01
Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.
Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015
NASA Astrophysics Data System (ADS)
Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.
2018-03-01
Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.
Effects of Chinese Deforestation and Reforestation Policies on Sediment Sourcing in Yunnan, China
NASA Astrophysics Data System (ADS)
Henck Schmidt, A. C.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Singleton, A.; Qiu, Y.; Bower, J.; Rood, D. H.
2015-12-01
Widespread deforestation from the 1960s through 1980s, blamed for catastrophic flooding in the lower Yangtze in 1998, prompted bans on logging and agriculture on steep slopes in western China. However, despite reports of extensive erosion resulting from the deforestation, sediment yield data show no corresponding increase during this time. Prior work suggested that if the deforestation increased erosion, the sediment is stored in floodplains, terraces, and alluvial fans throughout the region. In order to test this hypothesis, we sampled in-channel and overbank sediments at 38 locations, 19 of which are co-located with Chinese hydrology stations with at least five years of daily sediment yield data. Sediments were analyzed for meteoric and in situ 10-Be, unsupported 210-Pb, and 137-Cs. Unsupported 210-Pb activity is uniformly low throughout the study area and 137-Cs was found only in a few high-altitude, low-relief watersheds. Modern sediment yields, determined from Chinese data, are higher than long term in situ 10-Be-derived erosion rates in all but four watersheds, where we hypothesize sediment is being stored in alluvial features and agricultural terraces or that stochastic events such as landslides were not captured in the sediment yield data. Overall there is no relationship between topographic or climatic metrics, including slope, relief, or mean annual rainfall for any of the four isotopes except for a weak but statistically significant negative relationship between in situ 10-Be derived erosion rate and rainfall. Although paired in-channel and overbank samples are statistically indistinguishable for meteoric and in situ 10-Be, the overbank samples have lower unsupported 210-Pb activity, suggesting deeper sediment sourcing during the monsoon. In summary, in addition to suggesting differences between wet- and dry-season sediment sources, preliminary results support previous hypotheses regarding increased contemporary erosion and low hillslope-channel connectivity.
Deforestation Induced Climate Change: Effects of Spatial Scale.
Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael
2016-01-01
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.
Deforestation Induced Climate Change: Effects of Spatial Scale
Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael
2016-01-01
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change. PMID:27100667
Landscape fragmentation, severe drought, and the new Amazon forest fire regime.
Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E
2015-09-01
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
Regional dry-season climate changes due to three decades of Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
2017-02-01
More than 20% of the Amazon rainforest has been cleared in the past three decades, triggering important hydroclimatic changes. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately +/-25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.
Rubio-Palis, Yasmin; Bevilacqua, Mariapia; Medina, Domingo Alberto; Moreno, Jorge Ernesto; Cárdenas, Lya; Sánchez, Víctor; Estrada, Yarys; Anaya, William; Martínez, Ángela
2013-01-01
To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet(r) Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally. PMID:23579803
Rubio-Palis, Yasmin; Bevilacqua, Mariapia; Medina, Domingo Alberto; Moreno, Jorge Ernesto; Cárdenas, Lya; Sánchez, Víctor; Estrada, Yarys; Anaya, William; Martínez, Ángela
2013-04-01
To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet® Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally.
The spectral changes of deforestation in the Brazilian tropical savanna.
Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R
2015-01-01
The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.
Deforestation in Amazonia impacts riverine carbon dynamics
NASA Astrophysics Data System (ADS)
Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang
2016-12-01
Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.
Deforestation in Amazonia impacts riverine carbon dynamics
NASA Astrophysics Data System (ADS)
Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.
2015-10-01
Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it, depend on terrestrial productivity and discharge, as well as temperature and atmospheric CO2. Both terrestrial productivity and discharge are influenced by climate and land use change. To assess the impact of these changes on the riverine carbon dynamics, the coupled model system of LPJmL and RivCM (Langerwisch et al., 2015) has been used. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. The results suggest that, following deforestation, riverine particulate and dissolved organic carbon will strongly decrease by up to 90 % until the end of the current century. In parallel, discharge increases, leading to roughly unchanged net carbon transport during the first decades of the century, as long as a sufficient area is still forested. During the following decades the amount of transported carbon will decrease drastically. In contrast to the riverine organic carbon, the amount of riverine inorganic carbon is only determined by climate change forcing, namely increased temperature and atmospheric CO2 concentration. Mainly due to the higher atmospheric CO2 it leads to an increase in riverine inorganic carbon by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on the export of carbon, either to the atmosphere via outgassing, or to the Atlantic Ocean via discharge. Basin-wide the outgassed carbon will increase slightly, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. The changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself but also in the adjacent Atlantic Ocean.
Climate regulation of fire emissions and deforestation in equatorial Asia.
van der Werf, G R; Dempewolf, J; Trigg, S N; Randerson, J T; Kasibhatla, P S; Giglio, L; Murdiyarso, D; Peters, W; Morton, D C; Collatz, G J; Dolman, A J; DeFries, R S
2008-12-23
Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000-2006. We found that average fire emissions from this region [128 +/- 51 (1sigma) Tg carbon (C) year(-1), T = 10(12)] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000-2006 mean of 74 +/- 33 Tg C yr(-1)). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year(-2) (approximately doubling during 2000-2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate-carbon cycle feedbacks during the 21st century.
Schwartzman, Stephan; Boas, André Villas; Ono, Katia Yukari; Fonseca, Marisa Gesteira; Doblas, Juan; Zimmerman, Barbara; Junqueira, Paulo; Jerozolimski, Adriano; Salazar, Marcelo; Junqueira, Rodrigo Prates; Torres, Maurício
2013-01-01
The 280 000 km² Xingu indigenous lands and protected areas (ILPAs) corridor, inhabited by 24 indigenous peoples and about 215 riverine (ribeirinho) families, lies across active agriculture frontiers in some of the historically highest-deforestation regions of the Amazon. Much of the Xingu is anthropogenic landscape, densely inhabited and managed by indigenous populations over the past millennium. Indigenous and riverine peoples' historical management and use of these landscapes have enabled their long-term occupation and ultimately their protection. The corridor vividly demonstrates how ILPAs halt deforestation and why they may account for a large part of the 70 per cent reduction in Amazon deforestation below the 1996–2005 average since 2005. However, ongoing and planned dams, road paving, logging and mining, together with increasing demand for agricultural commodities, continued degradation of upper headwaters outside ILPA borders and climate change impacts may render these gains ephemeral. Local peoples will need new, bottom-up, forms of governance to gain recognition for the high social and biological diversity of these territories in development policy and planning, and finance commensurate with the value of their ecosystem services. Indigenous groups' reports of changing fire and rainfall regimes may themselves evidence climate change impacts, a new and serious threat. PMID:23610170
Schwartzman, Stephan; Boas, André Villas; Ono, Katia Yukari; Fonseca, Marisa Gesteira; Doblas, Juan; Zimmerman, Barbara; Junqueira, Paulo; Jerozolimski, Adriano; Salazar, Marcelo; Junqueira, Rodrigo Prates; Torres, Maurício
2013-06-05
The 280,000 km² Xingu indigenous lands and protected areas (ILPAs) corridor, inhabited by 24 indigenous peoples and about 215 riverine (ribeirinho) families, lies across active agriculture frontiers in some of the historically highest-deforestation regions of the Amazon. Much of the Xingu is anthropogenic landscape, densely inhabited and managed by indigenous populations over the past millennium. Indigenous and riverine peoples' historical management and use of these landscapes have enabled their long-term occupation and ultimately their protection. The corridor vividly demonstrates how ILPAs halt deforestation and why they may account for a large part of the 70 per cent reduction in Amazon deforestation below the 1996-2005 average since 2005. However, ongoing and planned dams, road paving, logging and mining, together with increasing demand for agricultural commodities, continued degradation of upper headwaters outside ILPA borders and climate change impacts may render these gains ephemeral. Local peoples will need new, bottom-up, forms of governance to gain recognition for the high social and biological diversity of these territories in development policy and planning, and finance commensurate with the value of their ecosystem services. Indigenous groups' reports of changing fire and rainfall regimes may themselves evidence climate change impacts, a new and serious threat.
Threshold responses of Amazonian stream fishes to timing and extent of deforestation.
Brejão, Gabriel L; Hoeinghaus, David J; Pérez-Mayorga, María Angélica; Ferraz, Silvio F B; Casatti, Lilian
2017-12-06
Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (<20%) and soon after impact (<10 years). Sensitive species were functionally unique and associated with complex habitats and structures of allochthonous origin found in forested watersheds. Positive threshold responses of species were less common and generally occurred at >70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization. © 2017 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.
2014-06-01
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.5 ± 0.5 GtC yr-1, and SLAND 2.8 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr-1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and assuming an ELUC of 1.0 ± 0.5 GtC yr-1 (based on the 2001-2010 average), SLAND was 2.7 ± 0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1-3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870-2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2013_V2.3).
Local and Remote Climate Response to Deforestation in Maritime Continent
NASA Astrophysics Data System (ADS)
Chen, C. C.; Lo, M. H.; Yu, J. Y.
2016-12-01
Deforestation in tropical regions would lead to changes in local energy and moisture budget, resulting in further impacts on regional and global climate. Previous studies have indicated that the reduction of evapotranspiration dominates the influence of tropical deforestation, which causes a warmer and drier climate. Most studies agree that the deforestation leads to an increase in temperature and decline in precipitation over the deforested area. However, unlike Amazon or Africa, Maritime Continent consists of islands surrounded by oceans so the drying effects found in Amazon or Africa may not be the case in Maritime Continent. Thus, our objective is to investigate the local and remote climate responses to deforestation in such unique region. We conduct deforestation experiments using NCAR Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The preliminary results show that deforestation in Maritime Continent leads to an increase in both temperature and precipitation, which is not predicted by earlier studies. We will further perform moisture budget analysis to explore how the precipitation changes with the deforestation forcing.
28 CFR 505.2 - Annual determination of average cost of incarceration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MANAGEMENT AND ADMINISTRATION COST OF INCARCERATION FEE § 505.2 Annual determination of average cost of... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Annual determination of average cost of... average cost of incarceration. This calculation is reviewed annually and the revised figure is published...
NASA Astrophysics Data System (ADS)
Kouame, B. N. P.
2015-12-01
Côte d'Ivoire located in West Africa, registers high level of biodiversity which occurs mainly in forest land. The country has suffered severe deforestation. However, deforestation and forest degradation release Greenhouse Gases into the atmosphere which contributes to Climate Change. In order to address the deforestation, many actions are taken, one of which is the implementation of protected areas within countries. These measures put restrictions on the access of local communities to forest services. However, local communities supplement their daily livelihood from forests, especially from timber and non-timber forest products. What are the effects of forests conservation in protected areas on surrounding population? This study focuses on the Bouaflé protected forest (foret classée de Bouaflé) in the western part of Côte d'Ivoire. The forest is 20350 ha and was made a protected forest in 1974. It is one of the most deforested protected areas in the country. Firstly, we described the perception of forest benefits by the population. Secondly, we estimated the benefits of forest conservation using a contingent valuation approach, particularly the Willingness to Pay (WTP) methodology. From our sample size of 156 households, it appears that most of the individuals are aware of the importance of the forest (94 % against 6%). According to the estimate of the benefits, it results on average, people are willing to pay 1658.491F CFA (2.53 Euros). The median WTP is 1000 FCFA. This study will be helpful by adding to the scientific literature and for inducing local people implication in conservation.
Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya
2015-09-01
Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
NASA Astrophysics Data System (ADS)
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
Otañez, Marty
2011-01-01
Background Tobacco companies have come under increased criticism because of environmental and labor practices related to growing tobacco in developing countries. Methods Analysis of tobacco industry documents, industry web sites and interviews with tobacco farmers in Tanzania and tobacco farm workers, farm authorities, trade unionists, government officials and corporate executives from global tobacco leaf companies in Malawi. Results British American Tobacco and Philip Morris created supply chains in the 1990s to improve production efficiency, control, access to markets, and profits. In the 2000s, the companies used their supply chains in an attempt to legitimize their portrayals of tobacco farming as socially and environmentally friendly, rather than take meaningful steps to eliminate child labor and reduce deforestation in developing countries. The tobacco companies used nominal self-evaluation (not truly independent evaluators) and public relations to create the impression of social responsibility. The companies benefit from $1.2 billion in unpaid labor costs due to child labor and more than $64 million annually in costs that would have been made to avoid tobacco related deforestation in the top twelve tobacco growing developing countries, far exceeding the money they spend nominally working to change these practices. Conclusions The tobacco industry uses green supply chains to make tobacco farming in developing countries appear sustainable while continuing to purchase leaf produced with child labor and high rates of deforestation. Strategies to counter green supply chain schemes include securing implementing protocols for the WHO Framework Convention on Tobacco Control to regulate the companies’ practices at the farm level. PMID:21504915
Land Use Change Driven by Gold Mining; Peruvian Amazon
NASA Astrophysics Data System (ADS)
Swenson, J. J.; Carter, C. E.; domec, J.; Delgado, C. I.
2011-12-01
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (~18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003- 2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (~500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/ artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Otañez, Marty; Glantz, Stanton A
2011-11-01
Tobacco companies have come under increased criticism because of environmental and labour practices related to growing tobacco in developing countries. Analysis of tobacco industry documents, industry websites and interviews with tobacco farmers in Tanzania and tobacco farm workers, farm authorities, trade unionists, government officials and corporate executives from global tobacco leaf companies in Malawi. British American Tobacco and Philip Morris created supply chains in the 1990 s to improve production efficiency, control, access to markets and profits. In the 2000s, the companies used their supply chains in an attempt to legitimise their portrayals of tobacco farming as socially and environmentally friendly, rather than take meaningful steps to eliminate child labour and reduce deforestation in developing countries. The tobacco companies used nominal self-evaluation (not truly independent evaluators) and public relations to create the impression of social responsibility. The companies benefit from $1.2 billion in unpaid labour costs because of child labour and more than $64 million annually in costs that would have been made to avoid tobacco-related deforestation in the top 12 tobacco growing developing countries, far exceeding the money they spend nominally working to change these practices. The tobacco industry uses green supply chains to make tobacco farming in developing countries appear sustainable while continuing to purchase leaf produced with child labour and high rates of deforestation. Strategies to counter green supply chain schemes include securing implementing protocols for the WHO Framework Convention on Tobacco Control to regulate the companies' practices at the farm level.
Land use patterns and related carbon losses following deforestation in South America
NASA Astrophysics Data System (ADS)
De Sy, V.; Herold, M.; Achard, F.; Beuchle, R.; Clevers, J. G. P. W.; Lindquist, E.; Verchot, L.
2015-12-01
Land use change in South America, mainly deforestation, is a large source of anthropogenic CO2 emissions. Identifying and addressing the causes or drivers of anthropogenic forest change is considered crucial for global climate change mitigation. Few countries however, monitor deforestation drivers in a systematic manner. National-level quantitative spatially explicit information on drivers is often lacking. This study quantifies proximate drivers of deforestation and related carbon losses in South America based on remote sensing time series in a systematic, spatially explicit manner. Deforestation areas were derived from the 2010 global remote sensing survey of the Food and Agricultural Organisation Forest Resource Assessment. To assess proximate drivers, land use following deforestation was assigned by visual interpretation of high-resolution satellite imagery. To estimate gross carbon losses from deforestation, default Tier 1 biomass levels per country and eco-zone were used. Pasture was the dominant driver of forest area (71.2%) and related carbon loss (71.6%) in South America, followed by commercial cropland (14% and 12.1% respectively). Hotspots of deforestation due to pasture occurred in Northern Argentina, Western Paraguay, and along the arc of deforestation in Brazil where they gradually moved into higher biomass forests causing additional carbon losses. Deforestation driven by commercial cropland increased in time, with hotspots occurring in Brazil (Mato Grosso State), Northern Argentina, Eastern Paraguay and Central Bolivia. Infrastructure, such as urban expansion and roads, contributed little as proximate drivers of forest area loss (1.7%). Our findings contribute to the understanding of drivers of deforestation and related carbon losses in South America, and are comparable at the national, regional and continental level. In addition, they support the development of national REDD+ interventions and forest monitoring systems, and provide valuable input for statistical analysis and modelling of underlying drivers of deforestation.
50 CFR 216.242 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...
50 CFR 216.242 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...
Brazilian Amazon Roads and Parks: Temporal & Spatial Deforestation Dynamics
NASA Astrophysics Data System (ADS)
Pfaff, A.; Robalino, J.
2011-12-01
Heterogeneous Forest Impacts of Transport Infrastructure: spatial frontier dynamics & impacts of Brazilian Amazon road changes Prior research on road impacts has almost completely ignored heterogeneity of impacts and as a result both empirically understated potential impact and missed policy potential. We note von Thunen's model suggests not only heterogeneity with distance from market but also specifically road impacts rising then falling with distance ('non-monoThunicity') Endogenous development and partial adjustment dynamics support this for the short run. Causal effects result from studying Brazilian Amazon deforestation (1976-87, 2000-04) using matching for short-run responses to lagged new roads changes (1968-75, 1985-00). We show the critical role of prior development, proxied by 1968 and 1985 road distances, for which exact matching addresses development trends and transforms impact estimates. Splitting the sample on this measure finds confirmation of the nonmonotonic predictions: new road impacts are relatively low if a prior road was close, such that prior transport access and endogenous development dynamics compete with the new road for influence, but also if a prior road was far, since first-decade adjustment in pristine areas is limited; yet in between these bounds, investments immediately raise deforestation significantly. This pattern helps to explain lower estimates within research on a single average impact. It suggests potential for REDD if a country chooses to shift its spatial transport networks. Protected Areas & Brazilian Amazon Deforestation: modeling and testing the impacts of varied PA strategies We model and then estimate the impacts of multiple types of protected areas upon 2000 - 2004 deforestation in the Brazilian Amazon. Our modeling starts with federal versus state objectives and predicts differences in both choice and implementation of each PA strategy that we examine. Our empirical examination brings not only breakdowns sufficient to test the model's implications but also, critically, explicit controls for the influences of the characteristics of protected lands. Controlling for how PAs differ from unprotected lands cuts impact estimates roughly in half, implying that accounting for and planning around site characteristics should be a part of REDD. For instance, we highlight differences among the improved impacts estimates across PA subsets: Federal vs. State vs. Indigenous; 1980s vs. 1990s; and Integral Protection vs. Sustainable Use. Without correcting for the differences in land characteristics, each of the subsets we examine is estimated to cause significant reduction in deforestation. Corrections find Federal and Indigenous prevented more clearing than did State, while Sustainable Use areas blocked more deforestation than Integral Protection. The reason for these unequal shifts in estimates is that the different PA subsets were allocated to different types of locations. That protection's impact is not uniform is important for REDD and those designing institutions should note what local planners may favor.
Code of Federal Regulations, 2010 CFR
2010-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
NASA Astrophysics Data System (ADS)
Cai, X.; Riley, W. J.; Zhu, Q.
2017-12-01
Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.
Regional hydro-climatic impacts of contemporary Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya
More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of transition seasons, hence occurring in atmospheric conditions otherwise less conducive to thermal convection. Evidence of this phenomenon is found at two large scale deforested areas considered in this thesis. Hence, the 'dynamical' mechanism, which affects the seasons most important for regional ecology, emerges as an impactful convective triggering mechanism. The phenomenon studied in this thesis provides context for thinking about the climate of a future, more patchily forested Amazonia, by articulating relationships between climate and spatial scales of deforestation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...
Code of Federal Regulations, 2011 CFR
2011-04-01
... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...
Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012.
Bebber, Daniel P; Butt, Nathalie
2017-10-25
Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y -1 ), followed by Asia (25.0 GgC y -1 ) and Africa (12.7 GgC y -1 ). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments.
Deforestation effects on Amazon forest resilience
NASA Astrophysics Data System (ADS)
Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.
2017-06-01
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Phua, Mui-How; Tsuyuki, Satoshi; Furuya, Naoyuki; Lee, Jung Soo
2008-09-01
Tropical deforestation is occurring at an alarming rate, threatening the ecological integrity of protected areas. This makes it vital to regularly assess protected areas to confirm the efficacy of measures that protect that area from clearing. Satellite remote sensing offers a systematic and objective means for detecting and monitoring deforestation. This paper examines a spectral change approach to detect deforestation using pattern decomposition (PD) coefficients from multitemporal Landsat data. Our results show that the PD coefficients for soil and vegetation can be used to detect deforestation using change vector analysis (CVA). CVA analysis demonstrates that deforestation in the Kinabalu area, Sabah, Malaysia has significantly slowed from 1.2% in period 1 (1973 and 1991) to 0.1% in period 2 (1991 and 1996). A comparison of deforestation both inside and outside Kinabalu Park has highlighted the effectiveness of the park in protecting the tropical forest against clearing. However, the park is still facing pressure from the area immediately surrounding the park (the 1 km buffer zone) where the deforestation rate has remained unchanged.
NASA Astrophysics Data System (ADS)
Moore, S.; Gauci, V.; Evans, C.; Page, S. E.
2013-12-01
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be representative at a larger river basin scale and we estimate the fluvial carbon flux from the Sebangau River basin (5,200 km2) to the Java Sea to be 0.58 Tg year-1. This is a 25% increase on the flux calculated for the River Sebangau the preceding year (pre-fire; 0.46 Tg). These new data are the first to demonstrate a large and sustained pulse of fluvial carbon following large scale human-induced fires in carbon rich tropical PSF. (L) Undisturbed PSF, (R) Disturbed PSF Borneo study sites and land-cover class properties Area = area of each catchment (PSF1 = intact, PSF2 & PSF3 = disturbed). Rainfall = total annual. Total annual discharge = standardized by area. TOC concentrations & fluxes = mean × standard error of site means.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M; Soares-Filho, Britaldo S
2013-03-26
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon.
Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Wang, Ying; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun
2016-06-06
Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments. The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment. Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes.
Small farmers and deforestation in Amazonia
NASA Astrophysics Data System (ADS)
Brondízio, Eduardo S.; Cak, Anthony; Caldas, Marcellus M.; Mena, Carlos; Bilsborrow, Richard; Futemma, Celia T.; Ludewigs, Thomas; Moran, Emilio F.; Batistella, Mateus
This chapter discusses the relationship between small farmers' land use and deforestation, with particular attention paid to the past 30 years of Amazonian colonization in Brazil and Ecuador. Our analysis calls attention to common features uniting different social groups as small farmers (e.g., social identity, access to land and resources, technology, market, and credit), as well as the variability between small farmers in terms of time in the region (from native populations to recent colonists), contribution to regional deforestation, types of land use systems. At a regional level, small farmers contribute to the majority of deforestation events, but are responsible for only a fraction of the total deforested area in Amazonia. We discuss three misconceptions that have been used to define small farmers and their contribution to the regional economy, development, and deforestation: (1) small farmers have backward land use systems associated with low productivity and extensive deforestation and subsistence production, (2) small farmers contribute to Amazonian deforestation as much as large farmers, and (3) small farmers, particularly colonist farmers, follow an inexorable path of deforestation unless curbed by government action. We conclude the chapter discussing their growing regional importance and the need for more inclusive public policies concerning infrastructure and services and valorization of resources produced in rural areas of Amazonia.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M.; Soares-Filho, Britaldo S.
2013-01-01
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon. PMID:23479648
Measuring the effectiveness of protected area networks in reducing deforestation.
Andam, Kwaw S; Ferraro, Paul J; Pfaff, Alexander; Sanchez-Azofeifa, G Arturo; Robalino, Juan A
2008-10-21
Global efforts to reduce tropical deforestation rely heavily on the establishment of protected areas. Measuring the effectiveness of these areas is difficult because the amount of deforestation that would have occurred in the absence of legal protection cannot be directly observed. Conventional methods of evaluating the effectiveness of protected areas can be biased because protection is not randomly assigned and because protection can induce deforestation spillovers (displacement) to neighboring forests. We demonstrate that estimates of effectiveness can be substantially improved by controlling for biases along dimensions that are observable, measuring spatial spillovers, and testing the sensitivity of estimates to potential hidden biases. We apply matching methods to evaluate the impact on deforestation of Costa Rica's renowned protected-area system between 1960 and 1997. We find that protection reduced deforestation: approximately 10% of the protected forests would have been deforested had they not been protected. Conventional approaches to evaluating conservation impact, which fail to control for observable covariates correlated with both protection and deforestation, substantially overestimate avoided deforestation (by over 65%, based on our estimates). We also find that deforestation spillovers from protected to unprotected forests are negligible. Our conclusions are robust to potential hidden bias, as well as to changes in modeling assumptions. Our results show that, with appropriate empirical methods, conservation scientists and policy makers can better understand the relationships between human and natural systems and can use this to guide their attempts to protect critical ecosystem services.
Attribution of CO2 emissions from Brazilian deforestation to domestic and international drivers
NASA Astrophysics Data System (ADS)
Karstensen, J.; Peters, G.
2011-12-01
Efforts to address extensive deforestation to reduce climate change and save primary forests are taking place on a global scale. Whilst several studies have estimated the emissions occurring from deforestation in large rainforests, few studies have investigated the domestic and international drivers sustaining and increasing the deforestation rates. Brazil, having the largest rainforest in the world and one of the highest deforestation rates, is also currently one of the world's largest exporters of soybeans and beef. In this case study we establish the link between Brazilian deforestation and cattle and soybean production, and further attribute emissions to countries and economic sectors through export and import of Brazilian commodities. The emissions from deforestation can therefore be allocated to the countries and sectors consuming goods and services produced on deforested land in Brazil. A land-use change model and deforestation data is coupled with a carbon cycle model to create yearly emission estimates and different emission allocation schemes, depending on emission amortizations and discounting functions for past deforestation. We use an economic multi-regional input-output model (with 112 regions and 57 sectors) to distribute these emissions along agricultural trade routes, through domestic and international consumption in 2004. With our implementation we find that around 80 % of emissions from deforested land is due to cattle grazing, while agricultural transition effects suggests soy beans are responsible for about 20 % of the emissions occurring in 2004. Nearly tree quarters of the soy beans are consumed outside Brazil, of which China, Germany and France are the biggest consumers. Soy beans are consumed by a variety of sectors in the food industry. Brazil exports about 30 % of the cattle it produces, where Russia, USA and Germany are among the largest consumers. Cattle consumption mainly occurs in the meat sectors. In this study we estimate the CO2 emissions allocated to the consuming countries and economic sectors, to ultimately distribute responsibility and find the main drivers of Brazilian deforestation.
Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, D.E.; Susott, R.A.; Babbitt, R.E.
1992-09-20
Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumedmore » (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH{sub 4}, CO{sub 2}, CO, H{sub 2}, and particles less than 2.5 {mu}m diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO{sub 2} (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes. 59 refs., 9 figs., 10 tabs.« less
Climate regulation of fire emissions and deforestation in equatorial Asia
van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; DeFries, R. S.
2008-01-01
Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000–2006. We found that average fire emissions from this region [128 ± 51 (1σ) Tg carbon (C) year−1, T = 1012] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000–2006 mean of 74 ± 33 Tg C yr−1). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year−2 (approximately doubling during 2000–2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate–carbon cycle feedbacks during the 21st century. PMID:19075224
Deforestation effects on soil quality and water retention curve parameters in eastern Ardabil, Iran
NASA Astrophysics Data System (ADS)
Asghari, Sh.; Ahmadnejad, S.; Keivan Behjou, F.
2016-03-01
The land use change from natural to managed ecosystems causes serious soil degradation. The main objective of this research was to assess deforestation effects on soil physical quality attributes and soil water retention curve (SWRC) parameters in the Fandoghlou region of Ardabil province, Iran. Totally 36 surface and subsurface soil samples were taken and soil water contents measured at 13 suctions. Alfa (α) and n parameters in van Genuchten (1980) model were estimated by fitting SWRC data by using RETC software. The slope of SWRC at inflection point (SP) was calculated by Dexter (2004) equation. The results indicated that with changing land use from forest (F) to range land (R) and cultivated land (C), and also with increasing soil depth from 0-25 to 75-100 cm in each land use, organic carbon, micropores, saturated and available water contents decreased and macropores and bulk density increased significantly ( P < 0.05). The position of SWRC shape in F was higher than R and C lands at all soil depths. Changing F to R and C lands and also increasing soil depth in each land use significantly ( P < 0.05) increased α and decreased n and SP. The average values of SP were obtained 0.093, 0.051 and 0.031 for F, R and C, respectively. As a result, deforestation reduced soil physical quality by affecting SWRC parameters.
Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.
Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L
2016-03-01
Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.
Neill, Christopher; Piccolo, Marisa C; Cerri, Carlos C; Steudler, Paul A; Melillo, Jerry M; Brito, Marciano
1997-04-01
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO 3 - -N and total inorganic N concentrations than pasture soils, but substantial NO 3 - -N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.
Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya
NASA Astrophysics Data System (ADS)
Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.
2011-09-01
This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.
NASA Astrophysics Data System (ADS)
Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.
2017-12-01
The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L-VOD to monitor the dynamics of carbon loss and gain due to climate variations and deforestation, and second, the importance of the highly dynamic and drought prone carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.
Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San
2017-09-15
Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2017-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2016-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
Returning forests analyzed with the forest identity.
Kauppi, Pekka E; Ausubel, Jesse H; Fang, Jingyun; Mather, Alexander S; Sedjo, Roger A; Waggoner, Paul E
2006-11-14
Amid widespread reports of deforestation, some nations have nevertheless experienced transitions from deforestation to reforestation. In a causal relationship, the Forest Identity relates the carbon sequestered in forests to the changing variables of national or regional forest area, growing stock density per area, biomass per growing stock volume, and carbon concentration in the biomass. It quantifies the sources of change of a nation's forests. The Identity also logically relates the quantitative impact on forest expanse of shifting timber harvest to regions and plantations where density grows faster. Among 50 nations with extensive forests reported in the Food and Agriculture Organization's comprehensive Global Forest Resources Assessment 2005, no nation where annual per capita gross domestic product exceeded 4,600 dollars had a negative rate of growing stock change. Using the Forest Identity and national data from the Assessment report, a single synoptic chart arrays the 50 nations with coordinates of the rates of change of basic variables, reveals both clusters of nations and outliers, and suggests trends in returning forests and their attributes. The Forest Identity also could serve as a tool for setting forest goals and illuminating how national policies accelerate or retard the forest transitions that are diffusing among nations.
Deforestation trends of tropical dry forests in central Brazil
Bianchi, Carlos A.; Haig, Susan M.
2013-01-01
Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.
NASA Astrophysics Data System (ADS)
Rubas, L. C.
2012-12-01
Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that would affect the magnitude of stored carbon. Vegetation density will be derived from 5m SPOT imagery. Digital elevation model at a resolution of 90m will be obtained as part of NASA's Shuttle Radar Topography Mission (SRTM). Land cover data will be sourced from Landsat imagery. Mean annual precipitation data (MAP) will be collected from Worldclim dataset. Change detection analysis will be made using 2-time period of Landsat imagery. Accuracy assessment will be conducted following image classification. Changes in land cover will further be related to recommending necessary land use policies for reducing deforestation and the preservation of this protected area.
NASA Astrophysics Data System (ADS)
Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.
2017-05-01
Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A. P.; Lee, D. C. L.; Soaresmaia, F. C.; Mendonca, F. J.; Assuncao, G. V.; Rodrigues, J. E.; Demouraabdon, M.; Novaes, R. A.
1979-01-01
LANDSAT imagery was used to determine the amount of deforestation in a study area comprising 55 million hectares of the Amazon region. Results show that more than 4 million hectares were deforested. Maps and pictures of the deforested area in relation to the total area of the Amazon are included.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
A generalized land-use scenario generator: a case study for the Congo basin.
NASA Astrophysics Data System (ADS)
Caporaso, Luca; Tompkins, Adrian Mark; Biondi, Riccardo; Bell, Jean Pierre
2014-05-01
The impact of deforestation on climate is often studied using highly idealized "instant deforestation" experiments due to the lack of generalized deforestation scenario generators coupled to climate model land-surface schemes. A new deforestation scenario generator has been therefore developed to fulfill this role known as the deforestation ScenArio GEnerator, or FOREST-SAGE. The model produces distributed maps of deforestation rates that account for local factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. The integrated deforestation risk is scaled to give the deforestation rate as specified by macro-region scenarios such as "business as usual" or "increased protection legislation" which are a function of future time. FOREST-SAGE was initialized and validated using the MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. Despite the high cloud coverage of Congo Basin over the year, we were able to validate the results with high confidence from 2001 to 2010 in a large forested area. Furthermore a set of scenarios has been used to provide a range of possible pathways for the evolution of land-use change over the Congo Basin for the period 2010-2030.
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
Mining drives extensive deforestation in the Brazilian Amazon.
Sonter, Laura J; Herrera, Diego; Barrett, Damian J; Galford, Gillian L; Moran, Chris J; Soares-Filho, Britaldo S
2017-10-18
Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km 2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.
Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.
Fearnside, Philip M
2003-08-01
Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.
Kim, Oh Seok; Newell, Joshua P
2015-10-01
This paper proposes a new land-change model, the Geographic Emission Benchmark (GEB), as an approach to quantify land-cover changes associated with deforestation and forest degradation. The GEB is designed to determine 'baseline' activity data for reference levels. Unlike other models that forecast business-as-usual future deforestation, the GEB internally (1) characterizes 'forest' and 'deforestation' with minimal processing and ground-truthing and (2) identifies 'deforestation hotspots' using open-source spatial methods to estimate regional rates of deforestation. The GEB also characterizes forest degradation and identifies leakage belts. This paper compares the accuracy of GEB with GEOMOD, a popular land-change model used in the UN-REDD (Reducing Emissions from Deforestation and Forest Degradation) Program. Using a case study of the Chinese tropics for comparison, GEB's projection is more accurate than GEOMOD's, as measured by Figure of Merit. Thus, the GEB produces baseline activity data that are moderately accurate for the setting of reference levels.
Assessing deforestation in the coastal zone of the Campeche State, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas, J.F.; Vega, A.P.; Aponte, G.P.
1997-06-01
In order to determine rates of deforestation in the State of Campeche, Mexico, forest maps of 1978/80 and 1992 were compared within a geographic information system (GIS). Results indicate that more than 25 per cent of the tropical forest and mangroves were deforested and other 29 per cent were fragmented during this period. The rate of deforestation in the whole state is about 4.4 per cent per year, but the analysis showed that rates of deforestation are much higher in the coastal zone. For this reason an attempt was made to study deforestation patterns in the coastal zone. Data suchmore » as distance from roads and from settlements images were incorporated in the GIS data base and a model which represents influence of population on its environment was developed in order to establish the influence of socioeconomic factors on forest clearing. Results indicate that deforestation presents a higher correlation with levels of poverty and social abandonment than with demographic aspects.« less
Tropical Deforestation in the Bolivian Amazon
NASA Technical Reports Server (NTRS)
Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur
2000-01-01
Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.
Comparing methods for assessing the effectiveness of subnational REDD+ initiatives
NASA Astrophysics Data System (ADS)
Bos, Astrid B.; Duchelle, Amy E.; Angelsen, Arild; Avitabile, Valerio; De Sy, Veronique; Herold, Martin; Joseph, Shijo; de Sassi, Claudio; Sills, Erin O.; Sunderlin, William D.; Wunder, Sven
2017-07-01
The central role of forests in climate change mitigation, as recognized in the Paris agreement, makes it increasingly important to develop and test methods for monitoring and evaluating the carbon effectiveness of REDD+. Over the last decade, hundreds of subnational REDD+ initiatives have emerged, presenting an opportunity to pilot and compare different approaches to quantifying impacts on carbon emissions. This study (1) develops a Before-After-Control-Intervention (BACI) method to assess the effectiveness of these REDD+ initiatives; (2) compares the results at the meso (initiative) and micro (village) scales; and (3) compares BACI with the simpler Before-After (BA) results. Our study covers 23 subnational REDD+ initiatives in Brazil, Peru, Cameroon, Tanzania, Indonesia and Vietnam. As a proxy for deforestation, we use annual tree cover loss. We aggregate data into two periods (before and after the start of each initiative). Analysis using control areas (‘control-intervention’) suggests better REDD+ performance, although the effect is more pronounced at the micro than at the meso level. Yet, BACI requires more data than BA, and is subject to possible bias in the before period. Selection of proper control areas is vital, but at either scale is not straightforward. Low absolute deforestation numbers and peak years influence both our BA and BACI results. In principle, BACI is superior, with its potential to effectively control for confounding factors. We conclude that the more local the scale of performance assessment, the more relevant is the use of the BACI approach. For various reasons, we find overall minimal impact of REDD+ in reducing deforestation on the ground thus far. Incorporating results from micro and meso level monitoring into national reporting systems is important, since overall REDD+ impact depends on land use decisions on the ground.
Carreiras, João M. B.; Jones, Joshua; Lucas, Richard M.; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973–2011 for an area north of Manaus (in Amazonas state), from 1984–2010 for south of Santarém (Pará state) and 1984–2011 near Machadinho d’Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d’Oeste, 57% and 41% of forests respectively were aged 6–15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth. PMID:25099362
NASA Astrophysics Data System (ADS)
Sousa Neto, E. R.; Ometto, J. P.
2012-12-01
The process of removing a forest to open new agricultural lands, which has been very intensive in developing countries like Brazil during the last decades, contributes to about 12% of the global anthropogenic emissions (Le Quéré et al., 2009). Forest cover removal releases carbon and other greenhouse gases like methane (CH4) and nitrous oxide (N2O), as a result of burning trees, followed by gradual decomposition of the forest biomass left on the ground while pasture or crop plantations are being established (Ramankutty et al., 2007). In Brazil, the 2nd Brazilian National Communication to the United Nations Framework Convention on Climate Change (UNFCCC), presents the mean annual net CO2 emissions caused by changes in land use in each Brazilian biome and the first place in the ranking is occupied by the Amazon Rainforest Biome (860,874 Gg), followed by Savannah (302,715 Gg), Atlantic Forest (79,109 Gg), Caatinga (37,628 Gg), Pantanal (16,172 Gg) and Pampa (-102 Gg) (MCT 2010). The estimates of CO2 emissions caused by land use changes in the Brazilian semiarid region (Caatinga) are very limited and scarce, and associated to uncertainties which are directly related to the estimated biomass in different types of vegetation which are spatially distributed within the biome, as well as the correct representation of the dynamics of the deforestation process itself, and the more accurate mapping use and land cover. This project aims to estimate carbon emissions from land use changes in Pernambuco State, Brazil, by using the INPE-EM model. The model will incorporate the temporal dynamics related to the deforestation process, and accounts for the biophysical and socioeconomic heterogeneity of the region in study
Carreiras, João M B; Jones, Joshua; Lucas, Richard M; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973-2011 for an area north of Manaus (in Amazonas state), from 1984-2010 for south of Santarém (Pará state) and 1984-2011 near Machadinho d'Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d'Oeste, 57% and 41% of forests respectively were aged 6-15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth.
Deforestation of Peano continua and minimal deformation retracts☆
Conner, G.; Meilstrup, M.
2012-01-01
Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120
NASA Astrophysics Data System (ADS)
Wadman, H. M.; Canuel, E. A.; Bauer, J. E.; McNinch, J. E.
2009-12-01
Small, mountainous rivers deliver a disproportionate amount of sediment and associated organic matter to coastal regions globally. The Waiapu River, North Island, New Zealand, is characterized by one of the highest sediment yields on earth, providing a model system for studying episodic delivery and preservation of sedimentary organic matter in an energetic, aggradational setting. Hyperpycnal plumes provide the primary mode of sediment delivery, depositing fine-grained sediment as flood layers on the inner shelf. Severe erosion following colonial-era (~1890-1920) slash and burn deforestation increased the sediment yield to the shelf 4- to 5-fold relative to previous levels. Colonial catchment-wide burning also produced black carbon (BC), which may be used to establish chronological control in the heterogeneous inner shelf sediments that are not easily dateable using traditional techniques. While recent work indicates that these inner shelf flood layers sequester ~16-34% of the total fine-grained sediment budget, comparable to the amount preserved on the mid-outer shelf, little is understood about the organic matter associated with these inner shelf sediments. High-resolution seismic reflection data were used to select four representative cores to characterize total sedimentary BC, total organic carbon (TOC) and total nitrogen (TN) sequestered in the inner shelf fine-grained sediments. Soot and graphitic BC (SGBC) was quantified using chemo-thermal oxidation (CTO-375), while coarse-grained BC (CGBC) was quantified using traditional point-counting methodologies. SGBC weight percentages ranged from ~0.01-0.07, and peaked at ~150cm depth in all four cores. This interval corresponds to peak abundance of CGBC as well. The ~150cm interval is interpreted to represent the height of colonial slash and burn deforestation, and is further supported by fining-upward sequences in all of the cores as well as by multiple 14C dates. Overall, SGBC represented an average of 29% (range 7-75%) of the TOC throughout the cores, with the highest levels found in the deforestation layer at ~150cm (average 44%, range 30-75%). A secondary increase in % SGBC was found in the upper 50cm of the cores and is interpreted as increasing global BC production by diesel combustion in the 1970s. TOC and TN weight percentages associated with the fine-sediment fraction did not differ markedly above and below the deforestation layer. TOC and TN associated with the bulk sediment, however, did show increases in weight percent above ~150cm. This suggests that either 1) increases in fine-grained sedimentary organic material associated with the recent increase in sediment yield have been effectively remineralized, or 2) sedimentary organic matter is bimodal in origin (recent plant material vs. ancient, bedrock-derived carbon), and size-related variations in catchment and burial dynamics are influencing the fate of the different size fractions of organic material.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
Deforestation in Brazil: motivations, journeys and tendencies
NASA Astrophysics Data System (ADS)
Leite, J. C.; Ferreira, A. J. D.; Esteves, T. C. J.; Bento, C. P. M.
2012-04-01
José Carlos Leite1; António José Dinis Ferreira2; Tanya Cristina de Jesus Esteves2; Célia Patrícia Martins Bento2 1Universidade Federal de Mato Grosso, Brazil; 2IPC - Escola Superior Agrária de Coimbra, Portugal Over the last three decades, deforestation in Brazil occurred systematically in the area known as the "arc of deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. This work encompasses the reasons, causes and/or motivations of that recent deforestation, focusing on the Central-West and Northern regions. A number of reasons will be presented, seeking to build an approach able to identify the deepest roots of deforestation of those regions. Our actions over the environment are framed by our cultural matrix that stream from a western philosophic attitude. This way, to understand the framework where the deforestation actions are justified requires a multidisciplinary approach to understand the deforestation of the Cerrado and Amazon biomes, since the motivations for forest destruction in Brazil are complex and not entirely understood within the domains of a single disciplinary area. To search for an isolated cause to understand the recent deforestation can only be plausible if we ignore information on what actually happens. The methodology used in this work is based on a bibliographical revision, analysis of georeferrenced information, participative processes implementation and observation of stakeholder behavior, and field research. It departs from a general vision on deforestation that initially occurred at the littoral region, by the Atlantic Rainforest, right after the arrival of the Europeans, and throughout the centuries penetrates towards the interior, hitting the Cerrado and Amazon biomes. In this last case, we focused on the Vale do Alto Guaporé region, near Bolivia, where the intensity of the deforestation was verified from 1970 to 1990. Ultimately, the final result is a mosaic of reasons for deforestation - that has been done by both large and small land owners - that incorporates other views that have been absent in the explanations given by so-called specialized literature of Brazil's deforestation.
Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.
2009-01-01
This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558
Pfaff, Alexander; Robalino, Juan; Herrera, Diego; Sandoval, Catalina
2015-01-01
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas’ forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs’ forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs. PMID:26225922
Pfaff, Alexander; Robalino, Juan; Herrera, Diego; Sandoval, Catalina
2015-01-01
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.
50 CFR 217.172 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...
50 CFR 217.172 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...
Responses of Mean and Extreme Precipitation to Deforestation in the Maritime Continent
NASA Astrophysics Data System (ADS)
Chen, C. C.; Lo, M. H.; Yu, J. Y.
2017-12-01
Anthropogenic land use and land cover change, including tropical deforestation, could have substantial effects on local surface energy and water budgets, and thus on the atmospheric stability which may result in changes in precipitation. Maritime Continent has undergone severe deforestation in recent decades but has received less attention than Amazon or Congo rainforests. Therefore, this study is to decipher the precipitation response to deforestation in the Maritime Continent. We conduct deforestation experiments using Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The results show that deforestation in Maritime Continent leads to an increase in both mean temperature and mean precipitation. Moisture budget analysis indicates that the increase in precipitation is associated with the vertically integrated vertical moisture advection, especially the dynamic component (changes in convection). In addition, through moist static energy (MSE) budget analysis, we find the atmosphere among deforested areas become unstable owing to the combined effects of positive specific humidity anomalies at around 850 hPa and anomalous warming extended from the surface to 750 hPa. This instability will induce anomalous ascending motion, which could enhance the low-level moisture convergence, providing water vapor from the surrounding warm ocean. To further evaluate the precipitation response to deforestation, we examine the precipitation changes under La Niña events and global warming scenario using CESM Atmospheric Model Intercomparison Project (AMIP) simulations and Representative Concentration Pathway (RCP) 8.5 simulations. We find that the precipitation increase caused by deforestation in Maritime Continent is comparable in magnitude to that generated by either natural variability or global warming forcing. Besides the changes in mean precipitation, preliminary results show the extreme precipitation also increases. We will further explore how the extreme precipitation changes with the deforestation forcing.
Chicas, S D; Omine, K; Ford, J B; Sugimura, K; Yoshida, K
2017-02-01
Understanding the trans-boundary deforestation history and patterns in protected areas along the Belize-Guatemala border is of regional and global importance. To assess deforestation history and patterns in our study area along a section of the Belize-Guatemala border, we incorporated multi-temporal deforestation rate analysis and spatial metrics with survey results. This multi-faceted approach provides spatial analysis with relevant insights from local stakeholders to better understand historic deforestation dynamics, spatial characteristics and human perspectives regarding the underlying causes thereof. During the study period 1991-2014, forest cover declined in Belize's protected areas: Vaca Forest Reserve 97.88%-87.62%, Chiquibul National Park 99.36%-92.12%, Caracol Archeological Reserve 99.47%-78.10% and Colombia River Forest Reserve 89.22%-78.38% respectively. A comparison of deforestation rates and spatial metrics indices indicated that between time periods 1991-1995 and 2012-2014 deforestation and fragmentation increased in protected areas. The major underlying causes, drivers, impacts, and barriers to bi-national collaboration and solutions of deforestation along the Belize-Guatemala border were identified by community leaders and stakeholders. The Mann-Whitney U test identified significant differences between leaders and stakeholders regarding the ranking of challenges faced by management organizations in the Maya Mountain Massif, except for the lack of assessment and quantification of deforestation (LD, SH: 18.67, 23.25, U = 148, p > 0.05). The survey results indicated that failure to integrate buffer communities, coordinate among managing organizations and establish strong bi-national collaboration has resulted in continued ecological and environmental degradation. The information provided by this research should aid managing organizations in their continued aim to implement effective deforestation mitigation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of tropical deforestation. Part I: Process analysis of local climatic change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Henderson-Sellers, A.; McGuffie, K.
1996-07-01
The potential impacts of deforestation in the humid Tropics are examined using a version of the National Center for Atmospheric Research`s CCM1 coupled with the Biosphere-Atmosphere Transfer Scheme package. Tropical deforestation in South America, Africa, and Southeast Asia is studied using the results from an 11-yr deforestation experiment and a 25-yr control integration. It is found that the local-scale impact (here defined as within the area deforested) varies greatly between the three deforested regions due to the differing controls on the local atmospheric circulation: the Southeast Asian monsoon is much less sensitive to deforestation than the low-level flow over Southmore » America. The analysis of the changes in cloud radiative forcing suggests that reduction in cloud amount can significantly mitigate the imposed increases in surface albedo. The importance of water recycling by the forest canopy is stressed in the simulation of local precipitation changes. Correlation analysis of the changes resulting from the deforestation has been used to determine the nature of the processes that follow from the removal of the forest canopy and to suggest the important processes. The role of large-scale dynamics is explored in a companion paper. 44 refs., 9 figs., 5 tabs.« less
Canziani, Pablo O; Carbajal Benitez, Gerardo
2012-01-01
Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.
Deforestation trend in North Sumatra over 1990-2015
NASA Astrophysics Data System (ADS)
Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.
2018-02-01
Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.
Canziani, Pablo O.; Carbajal Benitez, Gerardo
2012-01-01
Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia. PMID:22645487
Impact of deforestation on local precipitation patterns over the Da River basin, Vietnam
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Spartà, Daniele; Castelletti, Andrea; Boschetti, Mirco
2014-05-01
Change in land cover, e.g. from forest to bare soil, might severely impact the hydrological cycle at the river basin scale by altering the balance between rainfall and evaporation, ultimately affecting streamflow dynamics. These changes generally occur over decades, but they might be much more rapid in developing countries, where economic growth and growing population may cause abrupt changes in landscape and ecosystem. Detecting, analysing and modelling these changes is an essential step to design mitigation strategies and adaptation plans, balancing economic development and ecosystem protection. In this work we investigate the impact of land cover changes on the water cycle in the Da River basin, Vietnam. More precisely, the objective is to evaluate the interlink between deforestation and precipitation. The case study is particularly interesting because Vietnam is one of the world fastest growing economies and natural resources have been considerably exploited to support after-war development. Vietnam has the second highest rate of deforestation of primary forests in the world, second to only Nigeria (FAO 2005), with associated problems like abrupt change in run-off, erosion, sediment transport and flash floods. We performed land cover evaluation by combining literature information and Remote Sensing techniques, using Landsat images. We then analysed time series of precipitation observed on the period 1960-2011 in several stations located in the catchment area. We used multiple trend detection techniques, both state-of-the-art (e.g., Linear regression and Mann-Kendall) and novel trend detection techniques (Moving Average on Shifting Horizon), to investigate trends in seasonal pattern of precipitation. Results suggest that deforestation may induce a negative trend in the precipitation volume. The effect is mainly recognizable at the beginning and at the end of the monsoon season, when the local mechanisms of precipitation formation prevail over the large scale ones.
Deforestation, Rondonia, Brazil
NASA Technical Reports Server (NTRS)
1992-01-01
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
Deforestation, Rondonia, Brazil
1992-08-08
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains.
Nepstad, Daniel; McGrath, David; Stickler, Claudia; Alencar, Ane; Azevedo, Andrea; Swette, Briana; Bezerra, Tathiana; DiGiano, Maria; Shimada, João; Seroa da Motta, Ronaldo; Armijo, Eric; Castello, Leandro; Brando, Paulo; Hansen, Matt C; McGrath-Horn, Max; Carvalho, Oswaldo; Hess, Laura
2014-06-06
The recent 70% decline in deforestation in the Brazilian Amazon suggests that it is possible to manage the advance of a vast agricultural frontier. Enforcement of laws, interventions in soy and beef supply chains, restrictions on access to credit, and expansion of protected areas appear to have contributed to this decline, as did a decline in the demand for new deforestation. The supply chain interventions that fed into this deceleration are precariously dependent on corporate risk management, and public policies have relied excessively on punitive measures. Systems for delivering positive incentives for farmers to forgo deforestation have been designed but not fully implemented. Territorial approaches to deforestation have been effective and could consolidate progress in slowing deforestation while providing a framework for addressing other important dimensions of sustainable development. Copyright © 2014, American Association for the Advancement of Science.
The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment.
Wasson, R J; Juyal, N; Jaiswal, M; McCulloch, M; Sarin, M M; Jain, V; Srivastava, P; Singhvi, A K
2008-07-01
The Himalaya-Gangetic Plain region is the iconic example of the debate about the impact on lowlands of upland land-use change. Some of the scientific aspects of this debate are revisited by using new techniques to examine the role of deforestation in erosion and river sediment transport. The approach is whole-of-catchment, combining a history of deforestation with a history of sediment sources from well before deforestation. It is shown that deforestation had some effect on one very large erosional event in 1970, in the Alaknanda subcatchment of the Upper Ganga catchment, but that both deforestation and its effects on erosion and sediment transport are far from uniform in the Himalaya. Large magnitude erosional events occur for purely natural reasons. The impact on the Gangetic Plain of erosion caused by natural events and land cover change remains uncertain.
Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.
Ocampo-Peñuela, Natalia; Pimm, Stuart L
2015-01-01
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia
2015-01-01
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations. PMID:26641477
A millennium of Mediterranean climate change and forest history in central Italy
NASA Astrophysics Data System (ADS)
Mensing, S. A.; Tunno, I.; Piovesan, G.
2010-12-01
A 1100 year sedimentary sequence from a lake in central Italy near Rome (Lago Lungo, Lazio, 379 m a.s.l.) was sampled for pollen and charcoal at an average interval of 26 years providing a high-resolution reconstruction of vegetation from 885 AD to the present. Pollen percentages support historical documents that describe periodic deforestation and agricultural expansion during the Medieval Climate Anomaly (MCA). Forests recovered about 1400 AD following depopulation associated with the black plague and socio-economic instability and a shift to cool wet climate during the Little Ice Age (LIA). Mixed deciduous forest reached a maximum in 1550 AD, approximately one century later than many sites across Western Europe. A less diverse less dense forest emerged after 1650 AD following the plague of 1656 AD. There is no evidence that excessive cutting, burning and erosion during the medieval period caused permanent degradation of the landscape. Forests appear to have recovered rapidly when land use declined and climate became favorable. Comparison of the pollen data with reconstructed Palmer Drought Severity Index (PDSI) of Morocco and North Atlantic Oscillation (NAO) indicate periods of deforestation and woodland regeneration coincide with climate change. During warm dry climate, deforestation accelerated and agriculture expanded, and during extended cool wet climate, conditions for cereal cultivation deteriorated, forests and wetland expanded, and the local agricultural system collapsed. These results show that in the Mediterranean, collapse of local agricultural systems may also occur during extended periods of cool/wet climate.
NASA Technical Reports Server (NTRS)
Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan
2009-01-01
The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.
Teleconnections Between Tropical Deforestation and Midlatitude Precipitation
NASA Astrophysics Data System (ADS)
Avissar, R.; Werth, D.
2003-12-01
Past studies have indicated that total deforestation of Amazonia would result in an important reduction of the rainfall in that region, but that this process had no significant impact on the global temperature or precipitation and had only local implications. Here, we show that deforestation of tropical regions activates Rossby waves, which affect significantly precipitation at mid-latitudes by 'teleconnections'. In particular, we find that the deforestation of Amazonia and Central Africa severely reduces rainfall in the US Midwest during spring and summer, when water is crucial for agriculture in that region. Deforestation of South-East Asia reduces winter precipitation in the Western US and, consequently, the water storage that is released from snow melting later in the spring.
50 CFR 218.171 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...); (2) Northern fur seal (Callorhinus ursinus)—220 (an average of 44 annually); (3) California sea lion (Zalophus californianus)—570 (an average of 114 annually); (4) Northern elephant seal (Mirounga angustirostris)—70 (an average of 14 annually); (5) Harbor seal (Phoca vitulina richardsi) (Washington Inland...
Measuring Environmental and Socio-economic Impact of Deforestation at Kalimantan Island
NASA Astrophysics Data System (ADS)
Nahib, Irmadi; Trenggana, Soma; Turmudi; Suryanta, Jaka; Lestari Munajati, Sri; Windiastuti, Rizka
2018-05-01
Indonesia’s forests in the period of 2000-2009 has been deforested by about 15.158 million ha out of 103.309 milion ha. Deforestation caused carbon emissions. One method for measuring emissions from deforestation and forest degradation is GeOSIRIS model. A modeled GeOSIRIS policy used a carbon payment system to incentivize emission reductions. Data used in this study were maps of forest cover in 2005 and 2010, map of deforestation 2005-2010, carbon and agricultural price and driver variables for deforestation such as slope, elevation, logarithmic distance to the nearest road or provincial capital, or the amount of area per pixel included in a national park, or a timber plantation. The result of this study showed rate of deforestation was 1.417 million ha/5 years (observed). The REDD policy could decrease deforestation in Kalimantan Island by 0.170 million ha (16.70%), with assumption that international carbon price of US 10/tCO2e. The change of emissions due to REDD was 22.29%, or reduced emissions by 245.03 million tCO2e/5 years. Finally, Gross National Revenue from carbon payments (NPV 5 years) was US 2,450.34 billion, where incentivize emission reductions to sub-national entities (NPV, 5 years) was US 2,150.07 million and net central government surplus from carbon payments was US 300.26 million (NPV, 5 years).
Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?
DeFries, Ruth; Herold, Martin; Verchot, Louis; Macedo, Marcia N; Shimabukuro, Yosio
2013-06-05
The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000-2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000-2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover.
Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?
DeFries, Ruth; Herold, Martin; Verchot, Louis; Macedo, Marcia N.; Shimabukuro, Yosio
2013-01-01
The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000–2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000–2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover. PMID:23610176
Sensitivity of Regional Climate to Deforestation in the Amazon Basin
NASA Technical Reports Server (NTRS)
Eltahir, Elfatih A. B.; Bras, Rafael L.
1994-01-01
The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.
NASA Astrophysics Data System (ADS)
Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.
2017-12-01
In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.
Deforestation intensifies hot days
NASA Astrophysics Data System (ADS)
Stoy, Paul C.
2018-05-01
Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.
Lee, Kelley; Carrillo Botero, Natalia; Novotny, Thomas
2016-09-20
Deforestation due to tobacco farming began to raise concerns in the mid 1970s. Over the next 40 years, tobacco growing increased significantly and shifted markedly to low- and middle-income countries. The percentage of deforestation caused by tobacco farming reached 4 % globally by the early 2000s, although substantially higher in countries such as China (18 %), Zimbabwe (20 %), Malawi (26 %) and Bangladesh (>30 %). Transnational tobacco companies (TTCs) have argued that tobacco-attributable deforestation is not a serious problem, and that the industry has addressed the issue through corporate social responsibility (CSR) initiatives. After reviewing the existing scholarly literature on tobacco and deforestation, we analysed industry sources of public information to understand how the industry framed deforestation, its key causes, and policy responses. To analyse industry strategies between the 1970s and early 2000s to shape understanding of deforestation caused by tobacco farming and curing, the Truth Tobacco Documents Library was systematically searched. The above sources were compiled and triangulated, thematically and chronologically, to derive a narrative of how the industry has framed the problem of, and solutions to, tobacco-attributable deforestation. The industry sought to undermine responses to tobacco-attributable deforestation by emphasising the economic benefits of production in LMICs, blaming alternative causes, and claiming successful forestation efforts. To support these tactics, the industry lobbied at the national and international levels, commissioned research, and colluded through front groups. There was a lack of effective action to address tobacco-attributable deforestation, and indeed an escalation of the problem, during this period. The findings suggest the need for independent data on the varied environmental impacts of the tobacco industry, awareness of how the industry seeks to work with environmental researchers and groups to further its interests, and increased scrutiny of tobacco industry efforts to influence environmental policy.
50 CFR 216.272 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... electra)—100 (an average of 20 annually) (S) Pygmy killer whale (Feresa attenuata)—100 (an average of 20 annually) (T) False killer whale (Pseudorca crassidens)—100 (an average of 20 annually) (U) Killer whale... percent of the number of takes indicated below): (i) Mysticetes: (A) Humpback whale (Megaptera...
50 CFR 217.142 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... method and amount of take: (1) Level B Harassment: (i) Cetaceans: (A) Bowhead whale (Balaena mysticetus)—75 (an average of 15 annually) (B) Gray whale (Eschrichtius robustus)—10 (an average of 2 annually) (C) Beluga whale (Delphinapterus leucas)—100 (an average of 20 annually) (ii) Pinnipeds: (A) Ringed...
The national determinants of deforestation in sub-Saharan Africa.
Rudel, Thomas K
2013-01-01
For decades, the dynamics of tropical deforestation in sub-Saharan Africa (SSA) have defied easy explanation. The rates of deforestation have been lower than elsewhere in the tropics, and the driving forces evident in other places, government new land settlement schemes and industrialized agriculture, have largely been absent in SSA. The context and causes for African deforestation become clearer through an analysis of new, national-level data on forest cover change for SSA countries for the 2000-2005 period. The recent dynamic in SSA varies from dry to wet biomes. Deforestation occurred at faster rates in nations with predominantly dry forests. The wetter Congo basin countries had lower rates of deforestation, in part because tax receipts from oil and mineral industries in this region spurred rural to urban migration, declines in agriculture and increased imports of cereals from abroad. In this respect, the Congo basin countries may be experiencing an oil and mineral fuelled forest transition. Small farmers play a more important role in African deforestation than they do in southeast Asia and Latin America, in part because small-scale agriculture remains one of the few livelihoods open to rural peoples.
NASA Astrophysics Data System (ADS)
de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.
2016-05-01
Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.
Sills, Erin O.; Herrera, Diego; Kirkpatrick, A. Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander
2015-01-01
Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts’ selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal “blacklist” that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies that are implemented in just a few locations. PMID:26173108
Sills, Erin O; Herrera, Diego; Kirkpatrick, A Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander
2015-01-01
Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts' selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal "blacklist" that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies that are implemented in just a few locations.
Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation
NASA Astrophysics Data System (ADS)
Dezécache, Camille; Faure, Emmanuel; Gond, Valéry; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno
2017-03-01
Tropical forests of the Guiana Shield are the most affected by gold-mining in South America, experiencing an exponential increase in deforestation since the early 2000’s. Using yearly deforestation data encompassing Guyana, Suriname, French Guiana and the Brazilian State of Amapá, we demonstrated a strong relationship between deforestation due to gold-mining and gold-prices at the regional scale. In order to assess additional drivers of deforestation due to gold-mining, we focused on the national scale and highlighted the heterogeneity of the response to gold-prices under different political contexts. Deforestation due to gold-mining over the Guiana Shield occurs mainly in Guyana and Suriname. On the contrary, past and current repressive policies in Amapá and French Guiana likely contribute to the decorrelation of deforestation and gold prices. In this work, we finally present a case study focusing on French Guiana and Suriname, two neighbouring countries with very different levels of law enforcement against illegal gold-mining. We developed a modelling framework to estimate potential deforestation leakages from French Guiana to Suriname in the border areas. Based on our assumptions, we estimated a decrease in deforestation due to gold-mining of approx. 4300 hectares in French Guiana and an increase of approx. 12 100 hectares in Suriname in response to the active military repression of illegal gold-mining launched in French Guiana. Gold-mining in the Guiana Shield provides challenging questions regarding REDD+ implementation. These questions are discussed at the end of this study and are important to policy makers who need to provide sustainable alternative employment to local populations in order to ensure the effectiveness of environmental policies.
Physical and human dimensions of deforestation in Amazonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skole, D.L.; Chomentowski, W.H.; Salas W.A.
1994-05-01
In the Brazilian Amazon, regional trends are influenced by large scale external forces but mediated by local conditions. Tropical deforestation has a large influence on global hydrology, climate and biogeochemical cycles, but understanding is inadequate because of a lack of accurate measurements of rate, geographic extent and spatial patterns and lack of insight into its causes including interrelated social, economic and environmental factors. This article proposes an interdisciplinary approach for analyzing tropical deforestation in the Brazilian Amazon. The first part shows how deforestation can be measured from satellite remote sensing and sociodemographic and economic data. The second part proposes anmore » explanatory model, considering the relationship among deforestation and large scale social, economic, and institutional factors. 43 refs., 8 figs.« less
Simulated Changes in Northwest U.S. Climate in Response to Amazon Deforestation
Numerical models have long predicted that the deforestation of the Amazon would lead to large regional changes in precipitation and temperature, but the extratropical effects of deforestation have been a matter of controversy. This paper investigates the simulated impacts of defo...
Ecology: The Tropical Deforestation Debt.
Norris, Ken
2016-08-22
Tropical deforestation is a significant cause of global carbon emissions and biodiversity loss. A new study shows that deforestation today leaves a carbon and biodiversity debt to be paid over subsequent years. This has potentially profound implications for forest conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Östlund, Lars; Hörnberg, Greger; DeLuca, Thomas H; Liedgren, Lars; Wikström, Peder; Zackrisson, Olle; Josefsson, Torbjörn
2015-10-01
Anthropogenic deforestation has shaped ecosystems worldwide. In subarctic ecosystems, primarily inhabited by native peoples, deforestation is generally considered to be mainly associated with the industrial period. Here we examined mechanisms underlying deforestation a thousand years ago in a high-mountain valley with settlement artifacts located in subarctic Scandinavia. Using the Heureka Forestry Decision Support System, we modeled pre-settlement conditions and effects of tree cutting on forest cover. To examine lack of regeneration and present nutrient status, we analyzed soil nitrogen. We found that tree cutting could have deforested the valley within some hundred years. Overexploitation left the soil depleted beyond the capacity of re-establishment of trees. We suggest that pre-historical deforestation has occurred also in subarctic ecosystems and that ecosystem boundaries were especially vulnerable to this process. This study improves our understanding of mechanisms behind human-induced ecosystem transformations and tree-line changes, and of the concept of wilderness in the Scandinavian mountain range.
Impacts of tropical deforestation. Part II: The role of large-scale dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Henderson-Sellers, A.; McGuffie, K.
1996-10-01
This is the second in a pair of papers in which the possible impacts of tropical deforestation are examined using a version of the NCAR CCM1. The emphasis in this paper is on the influence of tropical deforestation on the large-scale climate system. This influence is explored through the examination of the regional moisture budget and through an analysis of the Hadley and Walker circulations. Modification of the model surface parameters to simulate tropical deforestation produces significant modifications of both Hadley and Walker circulations, which result in changes distant from the region of deforestation. A mechanism for propagation to middlemore » and high latitudes of disturbances arising form tropical deforestation is proposed based on Rossby wave propagation mechanisms. These mechanisms, which have also been associated with the extratropical influences of ENSO events, provide a pathway for the dispersion of the tropical disturbances to high latitudes. 27 refs., 20 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Gobron, N.; Dolman, H. J.
2006-12-01
El Nino-Southern Oscillation-linked variations in biomass burning emissions substantially contribute to interannual variability in the growth rate of many trace gases, yet ecological and climatic controls on fire activity are not well known. We used satellite-derived datasets of biomass burning, precipitation rates, and net primary production (NPP) in the tropics and subtropics during 1998 through 2005 to investigate the factors that regulate interannual variability in fire emissions. In many xeric regions that have low levels of NPP, we found a positive relationship between precipitation, NPP, and fire activity, implying that fire in these regions is limited to years when precipitation allows for the build-up of sufficient biomass or fuel loads to allow fire spread. This was most evident in regions where mean annual precipitation was below approximately 600 mm / year, including xeric regions of Africa and Northern Australia. In contrast, in areas of the tropics undergoing active deforestation, including, Indonesia, Central America, and parts of South America we found a significant negative correlation between precipitation and fire activity during the dry season. This implies that human use of fire in these regions in the deforestation process is at least partly limited by periods when high moisture levels limit ignition and fire activity.
NASA Astrophysics Data System (ADS)
Grieco, E.; Chiti, T.; Valentini, R.
2012-04-01
Among different regions of the world, Africa and particularly sub-Saharan Africa (SSA) has contributed less than any other to the greenhouse gas emissions, but it is also the region most vulnerable and the least well equipped to the consequences. In SSA the role of land use change in controlling CO2 emissions may be more critical than in any other regions and perhaps the most uncertain component of the global carbon cycle. The most typical example of incomplete estimates will arise from the lack of reliable data for carbon pools. Three factors account for much of the rest of the uncertainty: (1) initial stocks of carbon in ecosystems affected by land-use change, (2) per hectare changes in carbon stocks in response to different types of land-use change, and (3) legacy effects; that is, the time it takes for carbon stocks to equilibrate following a change in land use. Considering the source of uncertainty and the lack of field data for SSA, the study has been located in Ghana (Jomoro district, Western Region) where forest is the only source of wood for domestic uses and deforestation annual rate was 2.2% for the period 2005-2010. This study analyze the above mentioned gaps by assessing: 1) initial carbon stocks (tropical rain forest), 2) per hectare changes in carbon stocks as consequence of deforestation followed by six different main land uses [tree plantations (rubber, coconut, cocoa, oil palm, mixed plantations) and a secondary forest], 3) dynamics of soil carbon stocks through the time considering chronosequences. When accounting changes in carbon stocks in the UNFCCC framework, it is required to consider 5 carbon pools that are: aboveground biomass, belowground biomass, litter, dead wood and soil. Within REDD+ mechanism it is clear that only aboveground pool has to be always considered, belowground biomass is recommended and the others are facultative. Evidence from official UNFCCC reports suggests that only a very small fraction of developing countries currently reports data on soil carbon, although emissions from soils following deforestation are likely to be significant in many cases. Despite the common understanding about the effects of deforestation on different compartments in terms of carbon stocks (e.g. disappearance of biomass ) variations in soil carbon are much less perceptible, even after a radical change in land use . This study brings in the spotlight the soil reaction to radical land use change in the long run demonstrating that it is not so trifle as commonly believed. Importance of considering soil carbon stock for accounting land use change dynamics is not properly recognized in the international deforestation policies and its influence in mitigating climate change is nowadays neglected but it is really not negligible.
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
The drivers of tropical deforestation: a comprehensive review
NASA Astrophysics Data System (ADS)
Sanford, T. J.; Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E.; Martin, J.; Mulik, K.
2011-12-01
Tropical forests are disappearing around the world. This clearing causes around 15% of global carbon emissions, leads to the rapid loss of biodiversity, and destroys the livelihoods of many indigenous peoples. We comprehensively reviewed the literature on drivers of tropical deforestation and found a number of trends. While deforestation was predominately driven by small farmers and government action in the 1970s and 1980s, since the 1990s most deforestation has been driven by large scale commercial agriculture. In Latin America, and Brazil in particular, forest clearing has mostly been due to expansion of cattle pastures and for a period in the late 1990s and early 2000s soy bean expansion. In Southeast Asia, deforestation has mainly been due to expansion of oil palm plantations and timber harvesting. In Africa small farmers and wood fuel collection still play a role, although deforestation rates are considerably lower there than in other regions. Additionally, increased urbanization and trends toward a diet based on meat, particularly beef, have help drive deforestation. Biofuels policies around the world are also adding demand, both directly for vegetable oil, and by expanding demand for competing crops such as corn. We examine the extent to which biofuels demand directly and indirectly acts as a driver of deforestation, and the policies that can mitigate this problem by analyzing alternative scenarios of biofuel expansion and their impact on land use change, commodity prices and green house gas emissions.
NASA Astrophysics Data System (ADS)
Hansen, Matthew C.; Stehman, Stephen V.; Potapov, Peter V.; Arunarwati, Belinda; Stolle, Fred; Pittman, Kyle
2009-07-01
Timely and accurate data on forest change within Indonesia is required to provide government, private and civil society interests with the information needed to improve forest management. The forest clearing rate in Indonesia is among the highest reported by the United Nations Food and Agriculture Organization (FAO), behind only Brazil in terms of forest area lost. While the rate of forest loss reported by FAO was constant from 1990 through 2005 (1.87 Mha yr-1), the political, economic, social and environmental drivers of forest clearing changed at the close of the last century. We employed a consistent methodology and data source to quantify forest clearing from 1990 to 2000 and from 2000 to 2005. Results show a dramatic reduction in clearing from a 1990s average of 1.78 Mha yr-1 to an average of 0.71 Mha yr-1 from 2000 to 2005. However, annual forest cover loss indicator maps reveal a near-monotonic increase in clearing from a low in 2000 to a high in 2005. Results illustrate a dramatic downturn in forest clearing at the turn of the century followed by a steady resurgence thereafter to levels estimated to exceed 1 Mha yr-1 by 2005. The lowlands of Sumatra and Kalimantan were the site of more than 70% of total forest clearing within Indonesia for both epochs; over 40% of the lowland forests of these island groups were cleared from 1990 to 2005. The method employed enables the derivation of internally consistent, national-scale changes in the rates of forest clearing, results that can inform carbon accounting programs such as the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD) initiative.
The contribution of sediment from forested areas of the Chesapeake Bay Watershed
NASA Astrophysics Data System (ADS)
Gellis, A.; Brakebill, J.
2012-12-01
Fine-grained sediment is a major pollutant in the Chesapeake Bay and its receiving waters. Sediment budget studies have been conducted in small basins draining to the Bay over the last decade to understand the important sources of fine-grained sediment, quantify erosion rates, and determine sediment yields. Sediment budget approaches include modeling (SPARROW), sediment fingerprinting, and quantifying upland rates of erosion (Cesium-137). SPARROW model results indicate that forests deliver between 2 to 8% of the total sediment to the Bay. Sediment-fingerprinting results from small watershed studies indicate that forests contribute between 13 to 29 % of the sediment. The Cesium-137 technique was used to quantify soil redistribution (erosion and deposition) rates for forested areas in the Linganore Creek (146 km2) watershed which drains the Piedmont Physiographic Province. Average forest erosion rates measured in 2009 for Linganore Creek using Cesium-137 were 2.6 t/ha/yr. With 27% of the Linganore Creek watershed in forest, over 10,300 may be eroded off of forested lands which is more than the average annual suspended-sediment load (8,050 Mg/yr) in Linganore Creek, indicating that much of the eroded forest sediment goes in storage. Most of the forested areas in the Chesapeake Bay watershed were cut down for agriculture between the time of European colonization and the early 20th Century. In the late 20th century forested lands show an increase in areal extent. Although studies have not been conducted to understand why these secondary growth forests are eroding, it may involve that these forests have not fully recovered from deforestation. Soil profiles are thin, and runoff and sediment relations may have been altered, leading to high rates of erosion.
Starting from grape cultivation.
Yoshida, A
1992-06-01
Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Estimation of average annual streamflows and power potentials for Alaska and Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdin, Kristine L.
2004-05-01
This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less
Deforestation in the Brazilian Amazon: A Classroom Project.
ERIC Educational Resources Information Center
Nijman, Jan; Hill, A. David
1991-01-01
Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
NASA Astrophysics Data System (ADS)
Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.
1993-04-01
Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in upstream areas currently provides a source of gravel load to the channels. The distribution of coarse bedload material along tributary streams combined with downstream decreases in width:depth ratios and tractive force estimates suggest that channels in the Drury Creek watershed are slowly adjusting their configuration to transport coarse bedload material. The fluvial response to the increased influx of coarse sediment began more than 45 years ago and continues today.
The role of supply-chain initiatives in reducing deforestation
NASA Astrophysics Data System (ADS)
Lambin, Eric F.; Gibbs, Holly K.; Heilmayr, Robert; Carlson, Kimberly M.; Fleck, Leonardo C.; Garrett, Rachael D.; le Polain de Waroux, Yann; McDermott, Constance L.; McLaughlin, David; Newton, Peter; Nolte, Christoph; Pacheco, Pablo; Rausch, Lisa L.; Streck, Charlotte; Thorlakson, Tannis; Walker, Nathalie F.
2018-01-01
A major reduction in global deforestation is needed to mitigate climate change and biodiversity loss. Recent private sector commitments aim to eliminate deforestation from a company's operations or supply chain, but they fall short on several fronts. Company pledges vary in the degree to which they include time-bound interventions with clear definitions and criteria to achieve verifiable outcomes. Zero-deforestation policies by companies may be insufficient to achieve broader impact on their own due to leakage, lack of transparency and traceability, selective adoption and smallholder marginalization. Public-private policy mixes are needed to increase the effectiveness of supply-chain initiatives that aim to reduce deforestation. We review current supply-chain initiatives, their effectiveness, and the challenges they face, and go on to identify knowledge gaps for complementary public-private policies.
Are Brazil’s Deforesters Avoiding Detection?
Richards, Peter; Arima, Eugenio; VanWey, Leah; Cohn, Avery; Bhattarai, Nishan
2017-01-01
Rates of deforestation reported by Brazil’s official deforestation monitoring system have declined dramatically in the Brazilian Amazon. Much of Brazil’s success in its fight against deforestation has been credited to a series of policy changes put into place between 2004 and 2008. In this research, we posit that one of these policies, the decision to use the country’s official system for monitoring forest loss in the Amazon as a policing tool, has incentivized landowners to deforest in ways and places that evade Brazil’s official monitoring and enforcement system. As a consequence, we a) show or b) provide several pieces of suggestive evidence that recent successes in protecting monitored forests in the Brazilian Amazon may be doing less to protect the region’s forests than previously assumed. PMID:29270225
Forest extent and deforestation in tropical Africa since 1900.
Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla
2018-01-01
Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.
Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano
le Polain de Waroux, Yann; Garrett, Rachael D.; Heilmayr, Robert; Lambin, Eric F.
2016-01-01
Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in “deforestation havens.” We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation “hot spot” in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995
Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano.
le Polain de Waroux, Yann; Garrett, Rachael D; Heilmayr, Robert; Lambin, Eric F
2016-04-12
Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in "deforestation havens." We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation "hot spot" in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching.
Deforestation Along the Maya Mountain Massif Belize-Guatemala Border
NASA Astrophysics Data System (ADS)
Chicas, S. D.; Omine, K.; Arevalo, B.; Ford, J. B.; Sugimura, K.
2016-06-01
In recent years trans-boundary incursions from Petén, Guatemala into Belize's Maya Mountain Massif (MMM) have increased. The incursions are rapidly degrading cultural and natural resources in Belize's protected areas. Given the local, regional and global importance of the MMM and the scarcity of deforestation data, our research team conducted a time series analysis 81 km by 12 km along the Belize-Guatemalan border adjacent to the protected areas of the MMM. Analysis drew on Landsat imagery from 1991 to 2014 to determine historic deforestation rates. The results indicate that the highest deforestation rates in the study area were -1.04% and -6.78% loss of forested area per year in 2012-2014 and 1995-1999 respectively. From 1991 to 2014, forested area decreased from 96.9 % to 85.72 % in Belize and 83.15 % to 31.52 % in Guatemala. During the study period, it was clear that deforestation rates fluctuated in Belize's MMM from one time-period to the next. This seems linked to either a decline in deforestation rates in Guatemala, the vertical expansion of deforestation in Guatemalan forested areas and monitoring. The results of this study urge action to reduce incursions and secure protected areas and remaining forest along the Belize-Guatemalan border.
NASA Technical Reports Server (NTRS)
Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.;
2016-01-01
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3+/-0.5 GtC/yr, ELUC 1.0+/-0.5 GtC/yr,GATM 4.5+/-0.1 GtC/yr, SOCEAN 2.6+/-0.5 GtC/yr, and SLAND 3.1+/-0.9 GtC/yr. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9+/-0.5 GtC/yr, showing a slowdown in growth of these emissions compared to the average growth of 1.8/yr that took place during 2006-2015.Also, for 2015, ELUC was 1.3+/-0.5 GtC/yr, GATM was 6.3+/-0.2 GtC/yr, SOCEAN was 3.0+/-0.5 GtC/yr, and SLAND was 1.9+/-0.9 GtC/yr. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4+/-0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2% (range of -1.0 to +1.8% ) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565+/-55 GtC (2075+/-205 GtCO2) for 1870-2016, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set.
A benefit-cost analysis of ten tree species in Modesto, California, U.S.A
E.G. McPherson
2003-01-01
Tree work records for ten species were analyzed to estimate average annual management costs by dbh class for six activity areas. Average annual benefits were calculated by dbh class for each species with computer modeling. Average annual net benefits per tree were greatest for London plane (Platanus acerifolia) ($178.57), hackberry (...
Proof of the Post-drought Effect of Amazonian Forests from Space
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.; Yu, Y.; Myneni, R. B.; Knyazikhin, Y.; CHOI, S.
2015-12-01
In 2005, the tropical forests in Amazonia went through a severe drought event across the entire basin. There have been conflict reports on the drought impact on vegetation and the issue was never settled due to limited ground truth. Remote sensing data have been used but often questioned for signal saturation, data quality, or atmosphere contamination. The quantification of carbon changes in this vast terrestrial carbon pool, especially the post-drought effect, is difficult but essential. Lidar measurements, which are regarded as the accurate retrieval of canopy vertical structure, give us the opportunity to quantify the carbon changes for this severe event. Here, we use the lidar waveforms measured from the GLAS sensor from 2004 to 2007 to calculate the vertical profiles of Amazonian forests and their associated carbon stock. After careful quality-filtering, removal of seasonal effect, as well as uncertainty reduction through spatial averaging and random sampling, we find that the mean canopy height in Amazon has much higher reduction from 2006 to 2007 compared to either the drought year from 2004 to 2005, or the immediate post-drought change from 2005 to 2006, demonstrating a lagged effect of drought. Our estimation of carbon loss from model calculation also show that 2005 drought had an significant impact on the carbon exchange, and emissions from post drought disturbance may match the emissions of annual deforestation from Amazonia.
Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas
2015-10-01
Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.
The paper trail of the 13C of atmospheric CO2 since the industrial revolution period
NASA Astrophysics Data System (ADS)
Yakir, Dan
2011-07-01
The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.
Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam
NASA Astrophysics Data System (ADS)
Thu, Phan Minh; Populus, Jacques
2007-01-01
Because shrimp culture in the Mekong Delta develops rapidly, it has negatively impacted the environment, socio-economics and natural resources. In particular, mangrove forests have been altered by the shrimp culture. The area of mangrove forests in the region has been reduced and this is seen especially in Tra Vinh province. The results obtained from GIS (Geography Information System) and RS (Remote Sensing) show the status of mangrove forests in Tra Vinh province in 1965, 1995 (Northeastern part of Tra Vinh Province) and 2001. In 1965, the area of mangrove forests was 21,221 ha making up 56% of total land-use, while in 2001 it was 12,797 ha making up 37% of total land-use. Also based on GIS analysis, over the 36 years (1965-2001), the total coverage of mangrove forests have decreased by 50% since 1965. However, the speed of mangrove forest destruction in the period from 1965 to 1995 was much less than that in the period from 1995 to 2001. The average annual reduction in mangrove forest coverage in the first period (1965-1995) was 0.2% whereas it was 13.1% in the later period (1995-2001). For the long time, mangrove deforestation has been caused by war, collection of firewood and clearing for agriculture, and recently, shrimp farming has significantly contributed rate of mangrove destruction.
NASA Astrophysics Data System (ADS)
Gray, J. M.; Sills, E. O.; Amanatides, M. M.
2017-12-01
Tropical forests offer valuable ecosystem services at multiple scales, from the local hydrological cycle to the global carbon cycle. This has motivated significant international attention and funding for efforts to reduce emissions from deforestation and forest degradation (REDD+), especially where they account for most greenhouse gas emissions, as in Indonesia. Indonesia holds 39% of Southeast Asian forest, experiences the second highest rate of deforestation after Brazil, and has the potential to earn high profits both from logging native forests and from clearing forests for oil palm and pulp plantations. In Indonesia, REDD+ initiatives have taken a wide variety of forms, with some interventions focused on encouraging sustainable forest management and others focused on reducing demand for cleared land. Evaluating the efficacy of these interventions is critical but challenging because exogenous factors may affect both placement of the interventions and deforestation trends. Overcoming this limitation requires an in-depth understanding of the drivers of deforestation and how they vary with context. One barrier to improved understanding has been that existing deforestation datasets are largely binary (e.g. forested/deforested). Recent developments in mapping land-use change from time series of remotely sensed images may offer a path towards obtaining longer times series with more detail on land use. Such data would enable use of the synthetic control method (SCM), which allows for heterogenous impacts across units and over time. Here, we use this approach to answer the question: How has the designation and active use of logging concessions affected deforestation rates in East Kalimantan province, Indonesia since 2000? That is, we ask whether, where, and how using forests for timber production affects the probability of deforestation. We used an image time-series approach (YATSM/CCDC) to classify Landsat imagery from 2000 to 2017 for East Kalimantan, and SCM to evaluate the effect of allocating forest to logging concessions, controlling for a large variety of covariates such as proximity to pulp and palm oil mills and topography to construct our synthetic controls. By mapping land use in previously forested areas, we are able to interrogate the primary drivers of deforestation in different contexts.
Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data
NASA Astrophysics Data System (ADS)
Peylin, Philippe; Baker, David; Sarmiento, Jorge; Ciais, Philippe; Bousquet, Philippe
2002-10-01
Inversion methods are often used to estimate surface CO2 fluxes from atmospheric CO2 concentration measurements, given an atmospheric transport model to relate the two. The published estimates disagree strongly on the location of the main sources and sinks, however. Are these differences due to the different time spans considered, or are they artifacts of the method and data used? Here we assess the uncertainty in such estimates due to the choice of time discretization of the measurements and fluxes, the spatial resolution of the fluxes, and the transport model. A suite of 27 Bayesian least squares inversions has been run, given by varying the number of flux regions solved for (7, 12, and 17), the time discretization (annual/annual, annual/monthly, and monthly/monthly for the fluxes/data), and the transport model (TM2, TM3, and GCTM), while holding all other inversion details constant. The estimated fluxes from this ensemble of inversions for the land + ocean sum are stable over large zonal bands, but the spread in the results increases when considering the longitudinal flux distribution inside these bands. On average for 1990-1994 the inversions place a large CO2 uptake north of 30°N (3.2 ± 0.3 GtC yr-1), mostly over the land regions, with more in Eurasia than North America. The ocean fluxes are generally smaller than given by [1999], especially south of 15°S and in the global total, where they are less than half as large. A small uptake is found for the tropical land regions, suggesting that growth more than compensates for deforestation there. The results for the different transport models are consistent with their known mixing properties; the longitudinal pattern of their land biosphere rectifier, in particular, strongly influences the regional partitioning of the flux in the north. While differences between the transport models contribute significantly to the spread of the results, an equivalent or even larger spread is due to the time discretization method used: Solving for annual mean fluxes with monthly mean measurements tended to give spurious land/ocean flux partition in the north. We suggest then that this time discretization method be avoided. Overall, the uncertainty quoted for the estimated fluxes should include not only the random error calculated by the inversion equations but also all the systematic errors in the problem, such as those addressed in this study.
Inbreeding avoidance in cunningham's skinks (Egernia cunninghami) in natural and fragmented habitat.
Stow, A J; Sunnucks, P
2004-02-01
Habitat fragmentation/alteration has been proposed as a distinct process threatening the viability of populations of many organisms. One expression of its impact may be the disruption of core population processes such as inbreeding avoidance. Using the experimental design outlined in our companion paper, we report on the impact of habitat alteration (deforestation) on inbreeding in the rock-dwelling Australian lizard Egernia cunninghami. Ten microsatellite loci were used to calculate relatedness coefficients of potential and actual breeding pairs, and to examine mate-choice and heterozygosity. Despite significantly less dispersal and higher within-group relatedness between potential mates in deforested than in natural habitats, this did not result in significantly more inbred matings. Average relatedness amongst breeding pairs was low, with no significant difference between natural and fragmented populations in relatedness between breeding pairs, or individual heterozygosity. Active avoidance of close kin as mates was indicated by the substantially and significantly lower relatedness in actual breeding pairs than potential ones. These facts, and heterozygote excesses in all groups of immature lizards from both habitats, show that E. cunninghami maintained outbreeding in the face of increased accumulation of relatives.
NASA Astrophysics Data System (ADS)
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Rethinking the causes of deforestation: lessons from economic models.
Angelsen, A; Kaimowitz, D
1999-02-01
Concern is rising over the deleterious effects of tropical deforestation. For example, the loss of forest cover influences the climate and reduces biodiversity, while reduced timber supplies, siltation, flooding, and soil degradation affect economic activity and threaten the livelihoods and cultural integrity of forest-dependent people. Such concerns have led economists to expand their efforts to model why, where, and to what extent forests are being converted to other land uses. This synthesis of the results of more than 140 economic models analyzing the causes of tropical deforestation brings into question many conventional hypotheses upon deforestation. More roads, higher agricultural prices, lower wages, and a shortage of off-farm employment generally lead to more deforestation. However, it is not known how technical change, agricultural input prices, household income levels, and tenure security affect deforestation. The role of macroeconomic factors such as population growth, poverty reduction, national income, economic growth, and foreign debt is also unclear. The authors nonetheless determine through their review that policy reforms included in current economic liberalization and adjustment efforts may increase pressure upon forests.
Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania
NASA Astrophysics Data System (ADS)
Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea
2013-04-01
The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the multiannual average of the area. The year 2009 indicated an average of 503.84 mm in TP, considered in the lower limit of the area, followed by the year 2010 with an annual average of 607.84 mm, the year with the closest values to normal area precipitation values. The year 2011 is extremely dry, with an average of 376.56 mm. This situation is reflected in rainfall humidity values, recorded at a depth of 10 cm in the soil, where the area average is about 0.249%. The inner hydrological network contains rivers with low flow inside a semi-permanent or intermittent flow supply. River flow is not related to the surface water supply, being tributary to rainfalls which have an uneven character. Since the supply is pluviometrical, floods are recorded from March to April due to snow melting and in May to July after torrential rains. Quantity and quality of groundwater in Transylvanian Plain represent problems that have conditioned economic and social development of rural habitats and determined the anthropic development and maintenance of the natural lakes. Groundwaters have a particular importance within the region revealing the possibility of development of settlements and location of others settlements and supporting an efficient agriculture. Reduced volume of groundwater induces a temporary or intermittent character to the majority of surface waters during summer and early autumn. The amount of real evapotranspiration adds up to these, which from April to October, is 550 - 600 mm, half of these being registered in the summer months. Hydrographical local organization exclusively, lack of alternative water sources and unproductive correlation between S-SV exhibition of the flanks with increased slopes, all these are images of a region tributary to the critical term. Average air temperature during 2009-2011 is 10.750C, in the soil at 10 cm depth being 11.150C, respectively 11.280C at depth of 50 cm. Low amounts of precipitation, especially their poor distribution during crop vegetation, are aggravated by the deficit of hydrological resources for TP. The average air temperature is above multiannual average of the area, which significantly influenced the optimum time of sowing and amount of biologically active degrees of temperature during the vegetation period.
Deforestation risk due to commodity crop expansion in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Ordway, Elsa M.; Asner, Gregory P.; Lambin, Eric F.
2017-04-01
Rapid integration of global agricultural markets and subsequent cropland displacement in recent decades increased large-scale tropical deforestation in South America and Southeast Asia. Growing land scarcity and more stringent land use regulations in these regions could incentivize the offshoring of export-oriented commodity crops to sub-Saharan Africa (SSA). We assess the effects of domestic- and export-oriented agricultural expansion on deforestation in SSA in recent decades. Analyses were conducted at the global, regional and local scales. We found that commodity crops are expanding in SSA, increasing pressure on tropical forests. Four Congo Basin countries, Sierra Leone, Liberia, and Côte d’Ivoire were most at risk in terms of exposure, vulnerability and pressures from agricultural expansion. These countries averaged the highest percent forest cover (58% ± 17.93) and lowest proportions of potentially available cropland outside forest areas (1% ± 0.89). Foreign investment in these countries was concentrated in oil palm production (81%), with a median investment area of 41 582 thousand ha. Cocoa, the fastest expanding export-oriented crop across SSA, accounted for 57% of global expansion in 2000-2013 at a rate of 132 thousand ha yr-1. However, cocoa only amounted to 0.89% of foreign land investment. Commodity crop expansion in SSA appears largely driven by small- and medium-scale farmers rather than industrial plantations. Land-use changes associated with large-scale investments remain to be observed in many countries. Although domestic demand for commodity crops was associated with most agricultural expansion, we provide evidence of a growing influence of distant markets on land-use change in SSA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions Under Subpart JJ 1 2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions Under Subpart JJ 1,2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data
NASA Astrophysics Data System (ADS)
Fanin, T.; van der Werf, G.
2014-12-01
Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Khanna, J.
2016-12-01
The Amazon rainforest has been under deforestation for more than four decades. Recent investigation of the regional hydroclimatic impacts of the past three decades of deforestation has revealed a strong scale-dependence of the atmospheric response to land use change. Contemporary deforestation, affecting spatial scales of a few hundreds of kilometers, has resulted in a spatial redistribution of the local dry season rainfall, with downwind and upwind deforested regions receiving respectively 30% more and 30% less rainfall from the area mean. This phenomenon is attributable to a `dynamical' response of the boundary layer air to a reduction in surface roughness due to deforestation, apparent in both satellite and numerically simulated data. This response is starkly different from a spatially uniform increase in non-precipitating cloudiness triggered by small scale clearings, prevalent in the early phases of deforestation. This study investigates the `generalizability' of the dynamical mechanism to understand its impacts on a continually deforested Amazonia. In particular, we investigate the spatiotemporal variability of the dynamical mechanism. The nature of this investigation demands long time series and large spatial converge datasets of the hydroclimate. As such, satellite imagery of clouds (GridSat) and precipitation (PERSIANN and TRMM) has proven particularly useful in facilitating this analysis. The analysis is further complemented by a reanalysis product (ERA-interim) and numerical simulations (using a variable resolution GCM). Results indicate the presence of the dynamical mechanism during local dry and transition seasons effecting the mean precipitation during this period. Its effect on the transition season precipitation can be important for the local dry season length. The dynamical mechanism also occurs in atmospheric conditions which are otherwise less conducive to thermally triggered convection. Hence, this mechanism, which effects the seasons most important for regional ecology, emerges as a possibly impactful convective triggering mechanism. This study provides context for thinking about the climate of a future, more patchily deforested Amazonia that is more favorable to the dynamical mechanism.
Hossain, M Mohitul
2012-12-01
The destruction of natural forest is increasing due to urbanization, industrialization, settlement and for the agricultural expansion over last few decades, and studies for their recovery need to be undertaken. With this aim, this comparative study was designed to see the effects of deforested soil on germination and growth performance of five different tree species. In the experiment, five species namely Gmelina arborea, Swietenia mahagoni, Dipterocarpus turbinatus, Acacia auriculiformis and Syzygium grande were germinated for six weeks on seedbeds and raised in pots (25cm diameter, 30cm height), that were filled with two soil and type of land use: deforested and adjacent natural forest of Dulhazara Safari Park. Growth performance of seedling was observed up to 15 months based on height, collar diameter and biomass production at the end. Our results showed that the germination rate was almost similar in both type of land uses. Height growth of D. turbinatus, G. arborea and S. mahagoni seedlings was almost similar and A. auriculi formis and S. grande lower in deforested soil compared to natural forest soil, while collar diameter ofA. auriculi formis, G. arborea, S. grande and S. mahagoni lower and D. turbinatus similar in deforested soil compared to natural forest soil. After uprooting at 19 months, S. mahagoni seedlings were showed significantly (p< or =0.05) higher oven dry biomass, D. turbinatus and A. auriculiformis higher, while G. arborea showed significantly (p< or =0.05) lower and S. grande almost similar oven dry biomass in deforested soil compared to natural forest soil. Oven dry biomass of D. turbinatus seedlings at 19 month age in deforested soil was 21.96g (n=5) and in natural forest soil 18.86g (n=5). However, differences in germination rate and growth performance for different tree species indicated that soil are not too much deteriorated through deforestation at Dulhazara and without any failure such deforested lands would be possible to bring under forest through plantation.
Changing Water-Resources on Ile de la Gonave, Haiti
NASA Astrophysics Data System (ADS)
Troester, J. W.
2002-12-01
Ile de la Gonave is a 750-square-kilometer island off the western coast of Haiti. The island is composed of Eocene and Miocene limestones unconformably overlain by Pleistocene limestone. The highest elevation is 778 meters. Annual precipitation varies across the island because of the orographic effect and ranges from 800 to 1,400 millimeters. There is no surface water except immediately after large storms. Droughts, some extending for more than one year, and frequent crop failures due to droughts have been reported. Potential evaporation is estimated to be about 2,000 millimeters at the coast, but less at higher elevations. Consequently most rain is lost through evapotranspiration; recharge to the limestone aquifers apparently occurs only after large storms and is estimated to be about 4 percent of the mean annul precipitation based on a chloride mass balance. Depth to the water table ranges from less than 30 meters in the Eocene and Miocene limestones to over 60 meters in the 300-meter thick Quaternary limestone. Average annual precipitation at Port au-Prince (50 kilometers to the east and on the main island of Hispaniola) has decreased from about 1600 millimeters in 1860's to about 1300 mm in the 1950's. Precipitation data from Port-au-Prince after the 1950's are sporadic, making further comments about climate change difficult. Even without decreasing precipitation, which may be due in part to climate change or the deforestation of Haiti, the increasing population on Ile de la Gonave has and will continue to exacerbate the scarce water supply, particularly because of the small number of sources (springs, cave pools, and wells) where people can obtain water. Women take an average of almost three hours per day to travel an average of 2.5 kilometers (one-way) to obtain water for their families. Because of the difficulties in obtaining freshwater, the 100,000 inhabitants use an average of only 7 to 13 liters per person per day. Reconnaissance field analyses indicate that ground water in the interior of the island is of a calcium-bicarbonate type, while water at the coast is of a sodium-chloride type and has mixed with as much as 20 percent seawater. Tests for the presence of hydrogen sulfide-producing bacteria were negative in most drilled wells, but positive in most capped springs and positive in all springs, cave pools, and hand-dug wells, indicating contamination of most drinking-water sources. Widespread bacterial contamination of the water is not surprising, in that there are few latrines on the island and livestock grazes everywhere, enabling waste to be washed into the drinking water sources. The contaminated drinking water likely causes typhoid fever, which is frequently seen in the one hospital on the island.
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.
1980-01-01
The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.
Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William;
2007-01-01
Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.
Estimated carbon emission from recent rapid forest loss in Southeast Asia
NASA Astrophysics Data System (ADS)
Chen, A.; Zeng, Z.; Peng, L.; Fei, S.
2017-12-01
Driven by agricultural expansion, industrial logging, oil palm and rubber plantations, and urbanization, Southeast Asia (SEA) is one of the hotspots for tropical deforestation over recent decades. The extent of the tropical SEA deforestation rate, as well as its impacts on carbon cycle and biodiversity, however, is still highly uncertain. In relevant work using high resolution global maps of the 21st-century forest cover, we find tropical SEA lost 22 million hectares, or 9%, of forest area during 2000-2014, a much higher deforestation rate than previously reported. Here we further conduct research investigating carbon emissions from tropical deforestation in SEA with satellite data of forest cover, a global tropical forest biomass map, and Earth system models. Preliminary results suggest that deforestation in SEA causes about 2.8 Tg C emissions to the atmosphere during the same period, also higher than that of previous studies. Meanwhile, carbon emission from deforestation shows high variations across different countries, topography and between the insular and maritime SEA. Indonesia and Malaysia tops in both total carbon loss and loss from per unit land area. Our results indicates that previous studies have underestimated the carbon loss due to deforestation in SEA. And until further effective forest conservation measures can be adopted, tropical SEA will continue playing a role of atmospheric carbon source in the coming decades.
Arima, E. Y.
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739
Arima, E Y
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200-300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads.
NASA Astrophysics Data System (ADS)
Vang Rasmussen, Laura; Jung, Suhyun; Dantas Brites, Alice; Watkins, Cristy; Agrawal, Arun
2016-09-01
Brazil’s Rural Environmental Registry (CAR) is a potentially promising avenue to slow deforestation on private properties as it facilitates the monitoring of land use. Yet limited empirical evidence exists on how the CAR affects smallholders’ behavior and recent scholarly efforts have in fact indicated that it may be doing less to protect forests than previously assumed. Based on 1177 smallholder surveys conducted in the Cerrado, we assess 1) whether the CAR might incentivize smallholders to pursue deforestation and 2) which factors are associated with smallholders’ intended deforestation behavior. We find that upon CAR registration, factors significantly associated with smallholders’ intention to deforest are: the existing percentage of native vegetation on the property, the use of agricultural loans, property owner’s age, and livestock production experience. To curb deforestation that may follow expressed intentions of smallholders, the CAR, and environmental registration programs alike, should account for existing land use by, for example, improving the system already in place for trading areas of native vegetation as this system is not widely adopted by those smallholders with more native vegetation than the legal cut-off. Also, such programs should assess the role of whether conditions related to land cover maintenance may protect against deforestation if credit access is supported especially to younger smallholders and/or livestock producers with a high percentage of native vegetation in their properties.
Loss in species caused by tropical deforestation and their recovery through management
Ariel E. Lugo; John A. Parrotta; Sandra Brown
1993-01-01
The loss of species as a result of deforestation and degradation of tropical forest lands is widely discussed. Models based on island biogeography theory are used to evaluate the relationship between extinctions of species and deforestation. The analysis shows that natural resiliency causes the models to overestimate the rates of species extinctions for given...
Douglas Muchoney; Sharon Hamann
2013-01-01
Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...
Mapping deforestation and forest degradation using Landsat time series: a case of Sumatra—Indonesia
Belinda Arunarwati Margono
2013-01-01
Indonesia experiences the second highest rate of deforestation among tropical countries (FAO 2005, 2010). Consequently, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Remote sensing is considered as a significant data source for forest...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil
NASA Astrophysics Data System (ADS)
Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.
2015-12-01
The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a forested and non-forested site which will have implications for land use and management strategies that promote water resource conservation and availability.
Schneibel, Anne; Stellmes, Marion; Röder, Achim; Finckh, Manfred; Revermann, Rasmus; Frantz, David; Hill, Joachim
2016-04-01
The repopulation of abandoned areas in Angola after 27years of civil war led to a fast and extensive expansion of agricultural fields to meet the rising food demand. Yet, the increase in crop production at the expense of natural resources carries an inherent potential for conflicts since the demand for timber and wood extraction are also supposed to rise. We use the concept of ecosystem services to evaluate the trade-off between food and woody biomass. Our study area is located in central Angola, in the highlands of the upper Okavango catchment. We used Landsat data (spatial resolution: 30×30m) with a bi-temporal and multi-seasonal change detection approach for five time steps between 1989 and 2013 to estimate the conversion area from woodland to agriculture. Overall accuracy is 95%, user's accuracy varies from 89-95% and producer's accuracy ranges between 92-99%. To quantify the trade-off between woody biomass and the amount of food, this information was combined with indicator values and we furthermore assessed biomass regrowth on fallows. Our results reveal a constant rise in agricultural expansion from 1989-2013 with the mean annual deforestation rate increasing from roughly 5300ha up to about 12,000ha. Overall, 5.6% of the forested areas were converted to agriculture, whereas the FAO states a national deforestation rate for Angola of 5% from 1990-2010 (FAO, 2010). In the last time step 961,000t per year of woodland were cleared to potentially produce 1240t per year of maize. Current global agro-economical projections forecast increasing pressure on tropical dry forests from large-scale agriculture schemes (Gasparri et al., 2015; Searchinger and Heimlich, 2015). Our study underlines the importance of considering subsistence-related change processes, which may contribute significantly to negative effects associated with deforestation and degradation of these forest ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Human impacts on soil carbon dynamics of deep-rooted Amazonian forests
NASA Technical Reports Server (NTRS)
Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.
1994-01-01
Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Soil microbiome responses to the short-term effects of Amazonian deforestation.
Navarrete, Acacio A; Tsai, Siu M; Mendes, Lucas W; Faust, Karoline; de Hollander, Mattias; Cassman, Noriko A; Raes, Jeroen; van Veen, Johannes A; Kuramae, Eiko E
2015-05-01
Slash-and-burn clearing of forest typically results in increase in soil nutrient availability. However, the impact of these nutrients on the soil microbiome is not known. Using next generation sequencing of 16S rRNA gene and shotgun metagenomic DNA, we compared the structure and the potential functions of bacterial community in forest soils to deforested soils in the Amazon region and related the differences to soil chemical factors. Deforestation decreased soil organic matter content and factors linked to soil acidity and raised soil pH, base saturation and exchangeable bases. Concomitant to expected changes in soil chemical factors, we observed an increase in the alpha diversity of the bacterial microbiota and relative abundances of putative copiotrophic bacteria such as Actinomycetales and a decrease in the relative abundances of bacterial taxa such as Chlamydiae, Planctomycetes and Verrucomicrobia in the deforested soils. We did not observe an increase in genes related to microbial nutrient metabolism in deforested soils. However, we did observe changes in community functions such as increases in DNA repair, protein processing, modification, degradation and folding functions, and these functions might reflect adaptation to changes in soil characteristics due to forest clear-cutting and burning. In addition, there were changes in the composition of the bacterial groups associated with metabolism-related functions. Co-occurrence microbial network analysis identified distinct phylogenetic patterns for forest and deforested soils and suggested relationships between Planctomycetes and aluminium content, and Actinobacteria and nitrogen sources in Amazon soils. The results support taxonomic and functional adaptations in the soil bacterial community following deforestation. We hypothesize that these microbial adaptations may serve as a buffer to drastic changes in soil fertility after slash-and-burning deforestation in the Amazon region. © 2015 John Wiley & Sons Ltd.
Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia
Coe, Michael T.; Marthews, Toby R.; Costa, Marcos Heil; Galbraith, David R.; Greenglass, Nora L.; Imbuzeiro, Hewlley M. A.; Levine, Naomi M.; Malhi, Yadvinder; Moorcroft, Paul R.; Muza, Michel Nobre; Powell, Thomas L.; Saleska, Scott R.; Solorzano, Luis A.; Wang, Jingfeng
2013-01-01
A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south–southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms. PMID:23610166
The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions
NASA Astrophysics Data System (ADS)
Werth, D.; Avissar, R.
2006-12-01
Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.
The Impact of Amazonian Deforestation on Dry-Season Rainfall
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)
2002-01-01
Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.
Coe, Michael T; Marthews, Toby R; Costa, Marcos Heil; Galbraith, David R; Greenglass, Nora L; Imbuzeiro, Hewlley M A; Levine, Naomi M; Malhi, Yadvinder; Moorcroft, Paul R; Muza, Michel Nobre; Powell, Thomas L; Saleska, Scott R; Solorzano, Luis A; Wang, Jingfeng
2013-06-05
A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.
Labeling wood: How timber certification may reduce deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugal, C.
1996-09-01
A series of landmark developments, including satellite photography revealing massive burning of the Amazon and scientific findings confirming a link between deforestation and climate change, has greatly heightened public awareness about the loss of tropical forests in the past decade. As a result, the international tropical timber trade has become a target of public campaigns to curb deforestation, the argument being that consumers can {open_quotes}save{close_quotes} the rainforest if they refuse to buy tropical timber products. However, there are other sides to this, and certification is not the complete answer. For example, logging constitutes only a small portion of deforestation inmore » the tropics, most of which is done for agricultural purposes. Fuel wood resources are not included, and other areas of the world are being deforested, so emphasis only on tropical areas creates concerns. This article considers the concerns of certification in depth.« less
Biophysical effects on temperature and precipitation due to land cover change
NASA Astrophysics Data System (ADS)
Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut
2017-05-01
Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for local climate, water cycle, ecosystems, their productivity and biodiversity, and thus important to consider in the formulation of adaptation policy. However before considering the inclusion of biophysical climate effects of LCC under the UNFCCC, science has to provide robust tools and methods for estimation of both country and global level effects.
Will Passive Protection Save Congo Forests?
Galford, Gillian L; Soares-Filho, Britaldo S; Sonter, Laura J; Laporte, Nadine
2015-01-01
Central Africa's tropical forests are among the world's largest carbon reserves. Historically, they have experienced low rates of deforestation. Pressures to clear land are increasing due to development of infrastructure and livelihoods, foreign investment in agriculture, and shifting land use management, particularly in the Democratic Republic of Congo (DRC). The DRC contains the greatest area of intact African forests. These store approximately 22 billion tons of carbon in aboveground live biomass, yet only 10% are protected. Can the status quo of passive protection - forest management that is low or nonexistent - ensure the preservation of this forest and its carbon? We have developed the SimCongo model to simulate changes in land cover and land use based on theorized policy scenarios from 2010 to 2050. Three scenarios were examined: the first (Historical Trends) assumes passive forest protection; the next (Conservation) posits active protection of forests and activation of the national REDD+ action plan, and the last (Agricultural Development) assumes increased agricultural activities in forested land with concomitant increased deforestation. SimCongo is a cellular automata model based on Bayesian statistical methods tailored for the DRC, built with the Dinamica-EGO platform. The model is parameterized and validated with deforestation observations from the past and runs the scenarios from 2010 through 2050 with a yearly time step. We estimate the Historical Trends trajectory will result in average emissions of 139 million t CO2 year-1 by the 2040s, a 15% increase over current emissions. The Conservation scenario would result in 58% less clearing than Historical Trends and would conserve carbon-dense forest and woodland savanna areas. The Agricultural Development scenario leads to emissions of 212 million t CO2 year-1 by the 2040s. These scenarios are heuristic examples of policy's influence on forest conservation and carbon storage. Our results suggest that 1) passive protection of the DRC's forest and woodland savanna is insufficient to reduce deforestation; and 2): enactment of a REDD+ plan or similar conservation measure is needed to actively protect Congo forests, their unique ecology, and their important role in the global carbon cycle.
Will Passive Protection Save Congo Forests?
Galford, Gillian L.; Soares-Filho, Britaldo S.; Sonter, Laura J.; Laporte, Nadine
2015-01-01
Central Africa’s tropical forests are among the world’s largest carbon reserves. Historically, they have experienced low rates of deforestation. Pressures to clear land are increasing due to development of infrastructure and livelihoods, foreign investment in agriculture, and shifting land use management, particularly in the Democratic Republic of Congo (DRC). The DRC contains the greatest area of intact African forests. These store approximately 22 billion tons of carbon in aboveground live biomass, yet only 10% are protected. Can the status quo of passive protection — forest management that is low or nonexistent — ensure the preservation of this forest and its carbon? We have developed the SimCongo model to simulate changes in land cover and land use based on theorized policy scenarios from 2010 to 2050. Three scenarios were examined: the first (Historical Trends) assumes passive forest protection; the next (Conservation) posits active protection of forests and activation of the national REDD+ action plan, and the last (Agricultural Development) assumes increased agricultural activities in forested land with concomitant increased deforestation. SimCongo is a cellular automata model based on Bayesian statistical methods tailored for the DRC, built with the Dinamica-EGO platform. The model is parameterized and validated with deforestation observations from the past and runs the scenarios from 2010 through 2050 with a yearly time step. We estimate the Historical Trends trajectory will result in average emissions of 139 million t CO2 year-1 by the 2040s, a 15% increase over current emissions. The Conservation scenario would result in 58% less clearing than Historical Trends and would conserve carbon-dense forest and woodland savanna areas. The Agricultural Development scenario leads to emissions of 212 million t CO2 year-1 by the 2040s. These scenarios are heuristic examples of policy’s influence on forest conservation and carbon storage. Our results suggest that 1) passive protection of the DRC’s forest and woodland savanna is insufficient to reduce deforestation; and 2): enactment of a REDD+ plan or similar conservation measure is needed to actively protect Congo forests, their unique ecology, and their important role in the global carbon cycle. PMID:26106897
Year-to-year variations in annual average indoor 222Rn concentrations.
Martz, D E; Rood, A S; George, J L; Pearson, M D; Langner, G H
1991-09-01
Annual average indoor 222Rn concentrations in 40 residences in and around Grand Junction, CO, have been measured repeatedly since 1984 using commercial alpha-track monitors (ATM) deployed for successive 12-mo time periods. Data obtained provide a quantitative measure of the year-to-year variations in the annual average Rn concentrations in these structures over this 6-y period. A mean coefficient of variation of 25% was observed for the year-to-year variability of the measurements at 25 sampling stations for which complete data were available. Individual coefficients of variation at the various stations ranged from a low of 7.7% to a high of 51%. The observed mean coefficient of variation includes contributions due to the variability in detector response as well as the true year-to-year variation in the annual average Rn concentrations. Factoring out the contributions from the measured variability in the response of the detectors used, the actual year-to-year variability of the annual average Rn concentrations was approximately 22%.
Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?
R. L. Czaplewski
2003-01-01
Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...
Proximate Population Factors and Deforestation in Tropical Agricultural Frontiers
Carr, David L.
2009-01-01
Forest conversion for agriculture expansion is the most salient signature of human occupation of the earth’s land surface. Although population growth and deforestation are significantly associated at the global and regional scales, evidence for population links to deforestation at micro-scales—where people are actually clearing0020forests—is scant. Much of the planet’s forest elimination is proceeding along tropical agricultural frontiers. This article examines the evolution of thought on population–environment theories relevant to deforestation in tropical agricultural frontiers. Four primary ways by which population dynamics interact with frontier forest conversion are examined: population density, fertility, and household demographic composition, and in-migration. PMID:19672475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, E.B.
1991-03-01
The people in the Peruvian Amazon directly engaged in agriculture are the leading cause of deforestation; and can be divided into two groups, colonists and indigenous groups. The factors affecting the rate at which each group causes deforestation differ. The paper explores these differences in Peru's Upper Huallaga Valley (the principal coca producing region in the world), focusing on the interrelationships between land availability, land tenure laws, and market forces on one hand, and agricultural intensification and deforestation on the other. The study concludes that the technological decisions of the two groups are guided by diverse sets of socioeconomic factors.
The process of deforestation in weak democracies and the role of Intelligence.
Obydenkova, Anastassia; Nazarov, Zafar; Salahodjaev, Raufhon
2016-07-01
This article examines the interconnection between national intelligence, political institutions, and the mismanagement of public resources (deforestations). The paper examines the reasons for deforestation and investigates the factors accountable for it. The analysis builds on authors-compiled cross-national dataset on 185 countries over the time period of twenty years, from 1990 to 2010. We find that, first, nation's intelligence reduces significantly the level of deforestation in a state. Moreover, the nations' IQ seems to play an offsetting role in the natural resource conservation (forest management) in the countries with weak democratic institutions. The analysis also discovered the presence of the U-shaped relationship between democracy and deforestation. Intelligence sheds more light on this interconnection and explains the results. Our results are robust to various sample selection strategies and model specifications. The main implication from our study is that intelligence not only shapes formal rules and informal regulations such as social trust, norms and traditions but also it has the ability to reverse the paradoxical process known as "resource curse." The study contributes to better understanding of reasons of deforestation and shed light on the debated impact of political regime on forest management. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental predictors of pre-European deforestation on Pacific islands.
Rolett, Barry; Diamond, Jared
2004-09-23
Some Pacific island societies, such as those of Easter Island and Mangareva, inadvertently contributed to their own collapse by causing massive deforestation. Others retained forest cover and survived. How can those fateful differences be explained? Although the answers undoubtedly involve both different cultural responses of peoples and different susceptibilities of environments, how can one determine which environmental factors predispose towards deforestation and which towards replacement of native trees with useful introduced tree species? Here we code European-contact conditions and nine environmental variables for 81 sites on 69 Pacific islands from Yap in the west to Easter in the east, and from Hawaii in the north to New Zealand in the south. We thereby detect statistical decreases in deforestation and/or forest replacement with island rainfall, elevation, area, volcanic ash fallout, Asian dust transport and makatea terrain (uplifted reef), and increases with latitude, age and isolation. Comparative analyses of deforestation therefore lend themselves to much more detailed interpretations than previously possible. These results might be relevant to similar deforestation-associated collapses (for example, Fertile Crescent, Maya and Anasazi) or the lack thereof (Japan and highland New Guinea) elsewhere in the world.
Evaluating Regional Scale Deforestation in the University of Victoria Earth System Climate Model
NASA Astrophysics Data System (ADS)
Longobardi, P.; Montenegro, A.; Beltrami, H.; Eby, M.
2011-12-01
Forests play a key role in influencing the Earths climate and at the same time are affected by changing climates. At this point it is estimated that 15-30% of Earths natural forests have already been converted to pasture or cropland. With such large amounts of forest being converted to cropland and grassland, it is important to determine the climatic effects of these actions. To date, most modelling efforts towards understanding the climatic effects of deforestation have simulated global deforestation or have been based on experiments where trees were removed from large areas, i.e. the entire Amazon or all forests above 50 N. Here we use the University of Victoria Earth System Climate model which contains a fully coupled carbon cycle, to evaluate the response to deforestation of 10%, 25%, 50% and 100% of the forested areas in three latitude bands: high (above 50°N), mid (above ± 30°) and low (between ± 30°). All simulations were transient simulations, allowing for changes to atmospheric forcings following the A2 emissions scenario. High latitude deforestation lead to cooling (-.05 °C to -0.45 °C) and increase in soil carbon (0.5 to 3 x 1014 kg) for all fractions of deforestation. Due in part to the increase in soil carbon, there was a decrease in atmospheric CO2 in the 50% (-20 ppm) and 100% (-60 ppm) high-latitude deforestation simulations. Low-latitude deforestation initially produced warming in all scenarios (0.1 to 0.25 °C), although all were colder (-0.05 to -0.1 °C) than the control by the end of the simulation. Atmospheric CO2 increased in all simulations (40 to 80 ppm), as well as soil carbon (2 to 16 x 1013 kg). Mid-latitude deforestation also lead to initial warming (0.01 to 0.1 °C) followed by cooling (-0.01 to -0.1 °C). Mid latitude deforestation also produced an increase in soil carbon (2 to 10 x 1013 kg), and atmospheric CO2 (0 to 25ppm). In all three latitude bands forest dieback was observed. Results range from 7% to 37% for high latitudes, 21% to 40% for mid latitudes and 36% to 70% in low latitudes.
Deforestation scenarios for the Bolivian lowlands.
Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula
2016-01-01
Tropical forests in South America play a key role in the provision of ecosystem services such as carbon sinks, biodiversity conservation, and global climate regulation. In previous decades, Bolivian forests have mainly been deforested by the expansion of agricultural frontier development, driven by the growing demands for beef and other productions. In the mid-2000s the Movimiento al Socialismo (MAS) party rose to power in Bolivia with the promise of promoting an alternative development model that would respect the environment. The party passed the world's first laws granting rights to the environment, which they termed Mother Earth (Law No. 300 of 2012), and proposed an innovative framework that was expected to develop radical new conservation policies. The MAS conservationist discourse, policies, and productive practices, however, have since been in permanent tension. The government continues to guarantee food production through neo-extractivist methods by promoting the notion to expand agriculture from 3 to 13 million ha, risking the tropical forests and their ecosystem services. These actions raise major environmental and social concerns, as the potential impacts of such interventions are still unknown. The objective of this study is to explore an innovative land use modeling approach to simulate how the growing demand for land could affect future deforestation trends in Bolivia. We use the LuccME framework to create a spatially-explicit land cover change model and run it under three different deforestation scenarios, spanning from the present-2050. In the Sustainability scenario, deforestation reaches 17,703,786 ha, notably in previously deforested or degraded areas, while leaving forest extensions intact. In the Middle of the road scenario, deforestation and degradation move toward new or paved roads spreading across 25,698,327 ha in 2050, while intact forests are located in Protected Areas (PAs). In the Fragmentation scenario, deforestation expands to almost all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...
NASA Astrophysics Data System (ADS)
Barni, Paulo Eduardo; Fearnside, Philip Martin; Graça, Paulo Maurício Lima de Alencastro
2015-02-01
Reconstruction of Highway BR-319 (Manaus-Porto Velho) would allow for access from the "arc of deforestation" in the southern part of Brazil's Amazon region to vast blocks of forests in central and northern Amazonia. Building roads is known to be a major driver of deforestation, allowing entry of squatters, and other actors. Rather than deforestation along the highway route, here we consider the road's potential for stimulating deforestation in a separate location, approximately 550 km north of BR-319's endpoint in Manaus. Reconstructing BR-319 has great potential impact to start a new wave of migration to this remote region. The southern portion of the state of Roraima, the focus of our study, is already connected to Manaus by Highway BR-174. We modeled deforestation in southern Roraima and simulated carbon emissions between 2007 and 2030 under four scenarios. Simulations used the AGROECO model in DINAMICA-EGO software. Two scenarios were considered with reconstruction of BR-319 and two without this road connection. For each of the two possibilities regarding BR-319, simulations were developed for (1) a "conservation" (CONSERV) scenario that assumes the creation of a series of protected areas, and (2) a "business-as-usual" (BAU) scenario that assumes no additional protected areas. Results show that by 2030, with BR-319 rebuilt, deforestation carbon emissions would increase between 19 % (CONSERV) and 42 % (BAU) over and above those corresponding to no-road scenarios.
Barni, Paulo Eduardo; Fearnside, Philip Martin; Graça, Paulo Maurício Lima de Alencastro
2015-02-01
Reconstruction of Highway BR-319 (Manaus-Porto Velho) would allow for access from the "arc of deforestation" in the southern part of Brazil's Amazon region to vast blocks of forests in central and northern Amazonia. Building roads is known to be a major driver of deforestation, allowing entry of squatters, and other actors. Rather than deforestation along the highway route, here we consider the road's potential for stimulating deforestation in a separate location, approximately 550 km north of BR-319's endpoint in Manaus. Reconstructing BR-319 has great potential impact to start a new wave of migration to this remote region. The southern portion of the state of Roraima, the focus of our study, is already connected to Manaus by Highway BR-174. We modeled deforestation in southern Roraima and simulated carbon emissions between 2007 and 2030 under four scenarios. Simulations used the AGROECO model in DINAMICA-EGO © software. Two scenarios were considered with reconstruction of BR-319 and two without this road connection. For each of the two possibilities regarding BR-319, simulations were developed for (1) a "conservation" (CONSERV) scenario that assumes the creation of a series of protected areas, and (2) a "business-as-usual" (BAU) scenario that assumes no additional protected areas. Results show that by 2030, with BR-319 rebuilt, deforestation carbon emissions would increase between 19% (CONSERV) and 42% (BAU) over and above those corresponding to no-road scenarios.
Local and remote climatic impacts due to land use degradation in the Amazon "Arc of Deforestation"
NASA Astrophysics Data System (ADS)
Silva, Maria Elisa Siqueira; Pereira, Gabriel; da Rocha, Rosmeri Porfírio
2016-08-01
Many numerical studies, among them, global and regional models, have been used to simulate climatic impact due to Amazon deforestation. Most of them did not consider deforestation as usually observed and the induced dynamic changes. The present study explores the physical impacts due to Amazon deforestation by considering local and remote changes in the circulation and thermodynamics. For this, numerical experiments were conducted with RegCM3 using a relatively fine horizontal grid spacing (50 km), more realistic deforested areas (similar to the highway-network-shaped), and an updated land use map. The studied period was 2001-2006 October-March. As in most previous studies focusing on Amazon deforestation, the RegCM3-simulated air temperature increases over degraded areas, ranging from 1.0 to 2.5 °C, and precipitation decreases of around 10 %. This result is mainly related to depletion in evapotranspiration rates provided by lesser soil water extraction by the degraded vegetation. The weakening of upward motion in the mid-upper troposphere is an associated mechanism that explains the precipitation decrease after Amazon deforestation. A new result is the simulated precipitation increase, about 10 %, over the eastern South America and the adjacent South Atlantic Ocean. In these areas, the precipitation increase during October-March is associated with intensification of upper-level high pressure (the Bolivian high) coupled with negative geopotential height anomalies southeastward of the center of the high.
Quantifying the risk of deforestation in Latin America and the Caribbean.
NASA Astrophysics Data System (ADS)
Manners, Rhys; Varela-Ortega, Consuelo
2015-04-01
Latin American and Caribbean countries have seen considerable deforestation due to a complex web of interconnected and interdependent causes, which include agricultural expansion, infrastructure development, social demographics and governmental policies and activity. It is necessary for successful and efficient policy development to understand how variability in these causes can potentially result in increased or decreased deforestation. The purpose of this study is to develop a tool that can quantify the risk, as in the threat or pressure, of potential deforestation, whilst identifying the key indicators that contribute to this risk. This tool will take the form of a composite index that will provide spatial and temporal trends of deforestation risk across Latin America and the Caribbean. The development of the Deforestation Risk Index (DRI) was based upon work performed in the EU project ROBIN1. Indicators of deforestation included in the index were identified based upon the multi-scalar approach adopted in ROBIN- nationally from principal component analysis and econometric modelling, provincially from extensive interviews with experts and farmers (subsistence and commercial) in Amazonian regions of Bolivia and Brazil, and locally from stakeholder workshops in Bolivia, Brazil and Mexico. The identification process was supported by an extensive literature review. In total, 11 indicators were identified and grouped into four components (biophysical, economic, governance and social) capable of explaining the risk of deforestation in Latin America and Caribbean countries. The DRI was calculated for 24 Latin American and Caribbean countries in the years 2000, 2005 and 2010 using national-level data collected from open access databases (FAOStat, WorldBank and UNDP). The DRI was subjected to two weighting schemes; the first based upon the opinions of experts from ROBIN (weighted biophysical and governance components heavily), and the second developed from the results of the ROBIN stakeholder workshops (heavily weighted the governance component). The results from the DRI were categorised as; low risk, moderate risk, at risk, elevated risk, high risk and extreme risk. The DRI demonstrated that in over 60% of countries, the risk of deforestation reduced between 2000-2010 with Belize, Costa Rica, Guyana and Venezuela being notable exceptions. Countries that saw reductions in their risk did so through economic growth (per capita GDP), institutional development (governmental effectiveness and regulatory quality), as well reductions in the scale of agricultural expansion. Despite the general trend towards lower risk, Amazonian countries were still found to be subject to potential deforestation. Bolivia, Ecuador, Guyana and Suriname were estimated to have an elevated risk of deforestation, with Brazil, Colombia and Peru considered to be at risk in 2010. The DRI provides an innovative, potentially multi-scalar tool, that can be used by national policy makers to identify where policies should be developed and directed, where specific measures in international programs such as REDD/+ could be most effectively pursued, and for international policy makers to identify and to tailor development or aid packages that reduce rather than contribute to deforestation.
Alternatives to the Moving Average
Paul C. van Deusen
2001-01-01
There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...
Conceptual Analysis of System Average Water Stability
NASA Astrophysics Data System (ADS)
Zhang, H.
2016-12-01
Averaging over time and area, the precipitation in an ecosystem (SAP - system average precipitation) depends on the average surface temperature and relative humidity (RH) in the system if uniform convection is assumed. RH depends on the evapotranspiration of the system (SAE - system average evapotranspiration). There is a non-linear relationship between SAP and SAE. Studying this relationship can lead mechanistic understanding of the ecosystem health status and trend under different setups. If SAP is higher than SAE, the system will have a water runoff which flows out through rivers. If SAP is lower than SAE, irrigation is needed to maintain the vegetation status. This presentation will give a conceptual analysis of the stability in this relationship under different assumed areas, water or forest coverages, elevations and latitudes. This analysis shows that desert is a stable system. Water circulation in basins is also stabilized at a specific SAP based on the basin profile. It further shows that deforestation will reduce SAP, and can flip the system to an irrigation required status. If no irrigation is provided, the system will automatically reduce to its stable point - desert, which is extremely difficult to turn around.
Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry
NASA Astrophysics Data System (ADS)
Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.
2015-04-01
Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.
75 FR 41556 - Proposed Collection Renewal; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... global education in the classroom. Estimated annual number of respondents: 300. Estimated average time to... the annual World Wise Schools Conference. The information is used as a record of attendance. 2. Title... global education in the classroom. Estimated annual number of responses: 300. Estimated average time to...
Quantifying rate of deforestation and CO2 emission in Peninsular Malaysia using Palsar imageries
NASA Astrophysics Data System (ADS)
Hamdan, O.; Abd Rahman, K.; Samsudin, M.
2016-06-01
Increasing human population and the rapid growth of Malaysia's economy are often associated with various environmental disturbances which have been contributing to depletion of natural resources and climate change. The need for more spaces for numerous land development activities has made the existing forests suffer deforestation. The study was carried out in Peninsular Malaysia, which currently has about 5.9 million ha of forests. Phased array type L-band SAR (Palsar) and Palsar-2 images over the years 2010 and 2015, respectively were used to identify forest cover and deforestation occurrences resulted from various conversion of forests to other land uses. Forests have been identified from horizontal-vertical (HV) polarization and then classified into three major categories, which are inland, peat swamp and mangrove. Pixel subtraction technique was used to determine areas that have been changing from forests to other land uses. Forest areas have been found declined from about 6.1 million ha in year 2010 to some 5.9 million ha in 2015 due to conversion of forests to other land uses. Causes of deforestation have been identified and the amount of carbon dioxide (CO2) that has been emitted due to the deforestation activity has been determined in this study. Oil palm and rubber plantations expansion has been found the most prominent factor that caused deforestation in Peninsular Malaysia, especially in the states of Pahang, Terengganu, Johor and Kelantan. The rate of deforestation in the period was at 0.66% yr-1, which amounted a total of about 200,225 ha over the five years. Carbon loss was estimated at about 30.2 million Mg C, which has resulted in CO2 emission accounted at about 110.6 million Mg CO2. The rate of CO2 emission that has been resulted from deforestation was estimated at 22.1 million Mg CO2 yr-1. The study found that the use of a series of Palsar and Palsar-2 images, with a consistent, cloud-free images, are the most appropriate sensors to be used for monitoring of deforestation over the Peninsular Malaysia region.
Kenneth Skog; Susan J. Alexander; John Bergstrom; Ken Cordell; Elizabeth Hill; James Howard; Rebecca Westby
2011-01-01
Average annual incomes for forest management and protection includes salaries for full-time permanent employees of the U.S. Department of Agriculture, Forest Service, which have increased from a median of $41,300 in 1992 to $48,200 in 2000, to $50,500 in 2006 (all in 2005$). Salary of full-time permanent employees in state forestry agencies in 1998, for entry level...
Deforestation contributed to droughts that influenced Maya decline
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2011-12-01
New studies show that deforestation throughout much of southern Mexico in pre-Columbian times contributed to droughts that led to the decline of the Maya and Aztec civilizations. Significant droughts are known to have affected these civilizations between about 800 and 950 C.E.; it has been debated whether solar forcing, random natural variability, or clearing of rain forests to create pasture or farmlands primarily caused these droughts. Reconstructions of past land cover can be made based on population estimates. Central America was significantly deforested by Maya and Aztec societies before Europeans arrived about 1500 C.E. Forest then recovered as native populations declined, although more deforestation has been taking place in recent years.
NASA Astrophysics Data System (ADS)
Ervinia, A.; Huang, J.; Zhang, Z.
2015-06-01
Study on runoff dynamics across different physiographic regions is fundamentally important to formulate the sound strategies for water resource management especially in the coastal watershed where peoples heavily concentrated and relied on water resources. The L-R diagram, a conceptual model by which the land-changes evapotranspiration (ΔL) was estimated as the difference between actual and climate evapotranspiration to identify the specific impact of land-use changes on annual runoff changes (ΔR), was developed using the 53-year hydro-climatic data of Jiulong River Watershed, a typical medium-sized subtropical coastal watershed in China. This study found that land-use changes have reinforced the impact of climatic changes on runoff changes where nearly all points were scattered in II and IV quadrant. Deforestation and expansion of built up area has diminished the water retention capacity in a catchment as well as evapotranspiration thus produce extra runoff accounting for 12-183 % of total runoff increase. In contrast, reforestation makes the significant contribution to decreasing annual runoff for about 21-82 % of total runoff loss. This study revealed the river runoff has become more vulnerable to intensive anthropogenic disturbances under the context of climate changes in a coastal watershed.
50 CFR 218.31 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...
50 CFR 218.31 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...
Reconciling forest conservation and logging in Indonesian Borneo.
Gaveau, David L A; Kshatriya, Mrigesh; Sheil, Douglas; Sloan, Sean; Molidena, Elis; Wijaya, Arief; Wich, Serge; Ancrenaz, Marc; Hansen, Matthew; Broich, Mark; Guariguata, Manuel R; Pacheco, Pablo; Potapov, Peter; Turubanova, Svetlana; Meijaard, Erik
2013-01-01
Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km²) of Kalimantan's land area (532,100 km²) was covered by natural forest in 2000. About 14,212 km² (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km² (14.1%), while the figures for timber concessions are 1,336 km² (1.5%), and for protected forests are 1,122 km² (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000-2010 deforestation was on average 17.6 ha lower (95% C.I.: -22.3 ha- -12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: -0.002 ha-0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000-2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.
Reconciling Forest Conservation and Logging in Indonesian Borneo
Gaveau, David L. A.; Kshatriya, Mrigesh; Sheil, Douglas; Sloan, Sean; Molidena, Elis; Wijaya, Arief; Wich, Serge; Ancrenaz, Marc; Hansen, Matthew; Broich, Mark; Guariguata, Manuel R.; Pacheco, Pablo; Potapov, Peter; Turubanova, Svetlana; Meijaard, Erik
2013-01-01
Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km2) of Kalimantan's land area (532,100 km2) was covered by natural forest in 2000. About 14,212 km2 (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km2 (14.1%), while the figures for timber concessions are 1,336 km2 (1.5%), and for protected forests are 1,122 km2 (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000–2010 deforestation was on average 17.6 ha lower (95% C.I.: −22.3 ha–−12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: −0.002 ha–0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000–2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification. PMID:23967062
NASA Astrophysics Data System (ADS)
Broich, M.; Tulbure, M. G.; Wijaya, A.; Weisse, M.; Stolle, F.
2017-12-01
Deforestation and forest degradation form the 2nd largest source of anthropogenic CO2 emissions. While deforestation is being globally mapped with satellite image time series, degradation remains insufficiently quantified. Previous studies quantified degradation for small scale, local sites. A method suitable for accurate mapping across large areas has not yet been developed due to the variability of the low magnitude and short-lived degradation signal and the absence of data with suitable resolution properties. Here we use a combination of newly available streams of free optical and radar image time series acquired by NASA and ESA, and HPC-based data science algorithms to innovatively quantify degradation consistently across Southeast Asia (SEA). We used Sentinel1 c-band radar data and NASA's new Harmonized Landsat8 (L8) Sentinel2 (S2) product (HLS) for cloud free optical images. Our results show that dense time series of cloud penetrating Sentinel 1 c-band radar can provide degradation alarm flags, while the HLS product of cloud-free optical images can unambiguously confirm degradation alarms. The detectability of degradation differed across SEA. In the seasonal forest of continental SEA the reliability of our radar-based alarm flags increased as the variability in landscape moisture decreases in the dry season. We reliably confirmed alarms with optical image time series during the late dry season, where degradation in open canopy forests becomes detectable once the undergrowth vegetation has died down. Conversely, in insular SEA landscape moisture is low, the radar time series generated degradation alarms flags with moderate to high reliability throughout the year, further confirmed with the HLS product. Based on the HLS product we can now confirm degradation within < 6 months on average as opposed to 1 year when using either L8 or S2 alone. In contrast to continental SEA, across insular SEA our degradation maps are not suitable to provide annual maps of total degradation area, but can pinpoint degradation areas on a rolling basin throughout the year. In both continental SEA and insular SEA there the combination of optical and radar time series provides better results than either one on its own. Our results provide significant information with application for carbon trading policy and land management.
21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.
Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan
2018-02-13
Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.
Impact on short-lived climate forcers increases projected warming due to deforestation.
Scott, C E; Monks, S A; Spracklen, D V; Arnold, S R; Forster, P M; Rap, A; Äijälä, M; Artaxo, P; Carslaw, K S; Chipperfield, M P; Ehn, M; Gilardoni, S; Heikkinen, L; Kulmala, M; Petäjä, T; Reddington, C L S; Rizzo, L V; Swietlicki, E; Vignati, E; Wilson, C
2018-01-11
The climate impact of deforestation depends on the relative strength of several biogeochemical and biogeophysical effects. In addition to affecting the exchange of carbon dioxide (CO 2 ) and moisture with the atmosphere and surface albedo, vegetation emits biogenic volatile organic compounds (BVOCs) that alter the formation of short-lived climate forcers (SLCFs), which include aerosol, ozone and methane. Here we show that a scenario of complete global deforestation results in a net positive radiative forcing (RF; 0.12 W m -2 ) from SLCFs, with the negative RF from decreases in ozone and methane concentrations partially offsetting the positive aerosol RF. Combining RFs due to CO 2 , surface albedo and SLCFs suggests that global deforestation could cause 0.8 K warming after 100 years, with SLCFs contributing 8% of the effect. However, deforestation as projected by the RCP8.5 scenario leads to zero net RF from SLCF, primarily due to nonlinearities in the aerosol indirect effect.
Deforestation and Malaria in Mâncio Lima County, Brazil
Gangnon, Ronald; Silveira, Guilherme Abbad; Patz, Jonathan A.
2010-01-01
Malaria is the most prevalent vector-borne disease in the Amazon. We used malaria reports for health districts collected in 2006 by the Programa Nacional de Controle da Malária to determine whether deforestation is associated with malaria incidence in the county (município) of Mâncio Lima, Acre State, Brazil. Cumulative percent deforestation was calculated for the spatial catchment area of each health district by using 60 × 60–meter, resolution-classified imagery. Statistical associations were identified with univariate and multivariate general additive negative binomial models adjusted for spatial effects. Our cross-sectional study shows malaria incidence across health districts in 2006 is positively associated with greater changes in percentage of cumulative deforestation within respective health districts. After adjusting for access to care, health district size, and spatial trends, we show that a 4.3%, or 1 SD, change in deforestation from August 1997 through August 2000 is associated with a 48% increase of malaria incidence. PMID:20587182
Alvarez, Nora L; Naughton-Treves, Lisa
2003-06-01
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest.
Siikamäki, Juha; Newbold, Stephen C
2012-01-01
Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...
Code of Federal Regulations, 2010 CFR
2010-01-01
... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...
The Carbon Cycle: Implications for Climate Change and Congress
2008-03-13
burning of fossil fuels, deforestation , and other land use activities, have significantly altered the carbon cycle. As a result, atmospheric...80% of human-related CO2 emissions results from fossil fuel combustion, and 20% from land use change (primarily deforestation ). Fossil fuel burning...warming the planet. At present, the oceans and land surface are acting as sinks for CO2 emitted from fossil fuel combustion and deforestation , but
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia.
Schneider, Maurício; Peres, Carlos A
2015-01-01
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration.
Unsustainable development pathways caused by tropical deforestation.
Carrasco, Luis Roman; Nghiem, Thi Phuong Le; Chen, Zhirong; Barbier, Edward B
2017-07-01
Global sustainability strategies require assessing whether countries' development trajectories are sustainable over time. However, sustainability assessments are limited because losses of natural capital and its ecosystem services through deforestation have not been comprehensively incorporated into national accounts. We update the national accounts of 80 nations that underwent tropical deforestation from 2000 to 2012 and evaluate their development trajectories using weak and strong sustainability criteria. Weak sustainability requires that countries do not decrease their aggregate capital over time. We adopt a strong sustainability criterion that countries do not decrease the value of their forest ecosystem services with respect to the year 2000. We identify several groups of countries: countries, such as Sri Lanka, Bangladesh, and India, that present sustainable development trajectories under both weak and strong sustainability criteria; countries, such as Brazil, Peru, and Indonesia, that present weak sustainable development but fail the strong sustainability criterion as a result of rapid losses of ecosystem services; countries, such as Madagascar, Laos, and Papua New Guinea, that present unsustainable development pathways as a result of deforestation; and countries, such as Democratic Republic of Congo and Sierra Leone, in which deforestation aggravates already unsustainable pathways. Our results reveal a large number of countries where tropical deforestation is both damaging to nature and not compensated by development in other sectors, thus compromising the well-being of their future generations.
Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots.
Dávalos, Liliana M; Bejarano, Adriana C; Hall, Mark A; Correa, H Leonardo; Corthals, Angelique; Espejo, Oscar J
2011-02-15
Identifying drivers of deforestation in tropical biodiversity hotspots is critical to assess threats to particular ecosystems and species and proactively plan for conservation. We analyzed land cover change between 2002 and 2007 in the northern Andes, Chocó, and Amazon forests of Colombia, the largest producer of coca leaf for the global cocaine market, to quantify the impact of this illicit crop on forest dynamics, evaluate the effectiveness of protected areas in this context, and determine the effects of eradication on deforestation. Landscape-level analyses of forest conversion revealed that proximity to new coca plots and a greater proportion of an area planted with coca increased the probability of forest loss in southern Colombia, even after accounting for other covariates and spatial autocorrelation. We also showed that protected areas successfully reduced forest conversion in coca-growing regions. Neither eradication nor coca cultivation predicted deforestation rates across municipalities. Instead, the presence of new coca cultivation was an indicator of municipalities, where increasing population led to higher deforestation rates. We hypothesize that poor rural development underlies the relationship between population density and deforestation in coca-growing areas. Conservation in Colombia's vast forest frontier, which overlaps with its coca frontier, requires a mix of protected areas and strategic rural development to succeed.
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
2015-01-01
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970’s, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration. PMID:26247467
Freedman, Adam H; Buermann, Wolfgang; Mitchard, Edward T A; Defries, Ruth S; Smith, Thomas B
2010-09-30
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.
Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird
Freedman, Adam H.; Buermann, Wolfgang; Mitchard, Edward T. A.; DeFries, Ruth S.; Smith, Thomas B.
2010-01-01
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions. PMID:20941360
The Effectiveness of Contrasting Protected Areas in Preventing Deforestation in Madre de Dios, Peru
NASA Astrophysics Data System (ADS)
Vuohelainen, Anni Johanna; Coad, Lauren; Marthews, Toby R.; Malhi, Yadvinder; Killeen, Timothy J.
2012-10-01
Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.
Pfaff, Alexander; Robalino, Juan; Sandoval, Catalina; Herrera, Diego
2015-01-01
The leading policy to conserve forest is protected areas (PAs). Yet, PAs are not a single tool: land users and uses vary by PA type; and public PA strategies vary in the extent of each type and in the determinants of impact for each type, i.e. siting and internal deforestation. Further, across regions and time, strategies respond to pressures (deforestation and political). We estimate deforestation impacts of PA types for a critical frontier, the Brazilian Amazon. We separate regions and time periods that differ in their deforestation and political pressures and document considerable variation in PA strategies across regions, time periods and types. The siting of PAs varies across regions. For example, all else being equal, PAs in the arc of deforestation are relatively far from non-forest, while in other states they are relatively near. Internal deforestation varies across time periods, e.g. it is more similar across the PA types for PAs after 2000. By contrast, after 2000, PA extent is less similar across PA types with little non-indigenous area created inside the arc. PA strategies generate a range of impacts for PA types—always far higher within the arc—but not a consistent ranking of PA types by impact. PMID:26460126
The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios, Peru.
Vuohelainen, Anni Johanna; Coad, Lauren; Marthews, Toby R; Malhi, Yadvinder; Killeen, Timothy J
2012-10-01
Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.
Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America
NASA Astrophysics Data System (ADS)
Portillo, C. A.; Cao, G.; Smith, V.
2015-12-01
Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.
Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America
NASA Astrophysics Data System (ADS)
Perez-Rodriguez, I. M.; Sievert, S. M.; Fogel, M. L.; Foustoukos, D.
2014-12-01
Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.
Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation
NASA Astrophysics Data System (ADS)
Kim, D. H.
2015-12-01
Protected areas are crucial for tropical forest conservation efforts. Estimation of the effectiveness of protected areas is thus important for evaluating the efficacy of forest conservation policies and priorities. However, comprehensive evaluation of the long-term effects of Protected Areas and international aid is lacking. However, with the recent availability of long-term, large-scale forest cover change data at 30-m resolution, it has become possible to address some of the issues surrounding the effectiveness of protected areas. To evaluate the effectiveness of Protected Areas in the pan-tropics and international aid for conservation, we use the 30m resolution data along with econometrics 1) to estimate avoided deforestation by PAs in the tropics during the 2000s, 2) estimate effects of international aid on avoided deforestation by PAs and 3) analyze the relationships between the socio-economic variables and increases in deforestation, avoided deforestation by PAs and effects of international aid. Our results show that protected areas avoided 83,500 ± 21,200 km2 of deforestation during the 2000s. Brazil showed the highest estimates of effects of international aid on the avoided deforestation of 22 m2/USD, which is about 50 times higher compared to Indonesia (0.5 m2/USD). The regression analysis between avoided deforestation, effects of international aid and socio-economic factors demonstrates that PAs have been relatively more effective in the countries where the deforestation pressures were increasing and that governance and forest change monitoring capacity may be important factors enhancing the efficacy of international aid. Our study presents the first pan-tropical analysis of the long-term evaluation of the effectiveness of protected areas, international aid and their regulating factors using spatially explicit fine resolution data. Our findings allow us to pinpoint where conservation initiatives and resource management are effectively practiced and to discover the link with socio-economic factors and their significance and underlying implications for the effectiveness of PAs.
Effects of national forest-management regimes on unprotected forests of the Himalaya.
Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy
2017-12-01
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands
Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.
2012-01-01
Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.
DOT National Transportation Integrated Search
2005-02-01
Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...
ERROR IN ANNUAL AVERAGE DUE TO USE OF LESS THAN EVERYDAY MEASUREMENTS
Long term averages of the concentration of PM mass and components are of interest for determining compliance with annual averages, for developing exposure surrogated for cross-sectional epidemiologic studies of the long-term of PM, and for determination of aerosol sources by chem...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
Tropical deforestation alters hummingbird movement patterns
Hadley, Adam S.; Betts, Matthew G.
2009-01-01
Reduced pollination success, as a function of habitat loss and fragmentation, appears to be a global phenomenon. Disruption of pollinator movement is one hypothesis put forward to explain this pattern in pollen limitation. However, the small size of pollinators makes them very difficult to track; thus, knowledge of their movements is largely speculative. Using tiny radio transmitters (0.25 g), we translocated a generalist tropical ‘trap-lining’ hummingbird, the green hermit (Phaethornis guy), across agricultural and forested landscapes to test the hypothesis that movement is influenced by patterns of deforestation. Although, we found no difference in homing times between landscape types, return paths were on average 459±144 m (±s.e.) more direct in forested than agricultural landscapes. In addition, movement paths in agricultural landscapes contained 36±4 per cent more forest than the most direct route. Our findings suggest that this species can circumvent agricultural matrix to move among forest patches. Nevertheless, it is clear that movement of even a highly mobile species is strongly influenced by landscape disturbance. Maintaining landscape connectivity with forest corridors may be important for enhancing movement, and thus in facilitating pollen transfer. PMID:19158031
Conditions associated with protected area success in conservation and poverty reduction
Ferraro, Paul J.; Hanauer, Merlin M.; Sims, Katharine R. E.
2011-01-01
Protected areas are the dominant approach to protecting biodiversity and the supply of ecosystem services. Because these protected areas are often placed in regions with widespread poverty and because they can limit agricultural development and exploitation of natural resources, concerns have been raised about their potential to create or reinforce poverty traps. Previous studies suggest that the protected area systems in Costa Rica and Thailand, on average, reduced deforestation and alleviated poverty. We examine these results in more detail by characterizing the heterogeneity of responses to protection conditional on observable characteristics. We find no evidence that protected areas trap historically poorer areas in poverty. In fact, we find that poorer areas at baseline seem to have the greatest levels of poverty reduction as a result of protection. However, we do find that the spatial characteristics associated with the most poverty alleviation are not necessarily the characteristics associated with the most avoided deforestation. We show how an understanding of these spatially heterogeneous responses to protection can be used to generate suitability maps that identify locations in which both environmental and poverty alleviation goals are most likely to be achieved. PMID:21873177
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
Onwujekwe, O; Shu, E; Onwuameze, O; Ndum, C; Okonkwo, P
2001-12-21
To determine the level of affordability of community-directed treatment with ivermectin (CDTI) to households living in two onchocerciasis endemic Nigerian communities namely Toro in the north and Nike in the south. The proportion of the cost of treating people with ivermectin will deplete in average monthly/projected annual household expenditure on food and health care, and on average monthly and projected annual household income were respectively calculated and used to determine the level of affordability of CDTI. Questionnaires administered to heads of households or their representatives were used to collect information on the household expenditures and income. The suggested unit CDTI cost of $0.20 was used. However, as a test of sensitivity, we also used the unit cost of $0.056 which some community based distributors are charging per treatment. Using $0.20 as the unit treatment cost, this will consume less than 0.05% of average annual household income in both communities. It will equally deplete 0.05% of combined annual household expenditures on food and health care in both communities. However, using $0.056 as the unit treatment cost, then 0.02% of average annual household expenditure on health care, 0.01% average annual expenditure on combined health care and food, and 0.01% of average annual household income will be depleted. The households living in both communities may be able to afford CDTI schemes. However, the final decision on levels of affordability lies with the households. They will decide whether they can afford to trade-off some household income for ivermectin distribution.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... FEDERAL HOUSING FINANCE AGENCY [No. 2013-N-04] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Federal Deposit Insurance Corporation and that has average total assets below a statutory cap.\\2\\ The Bank...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... FEDERAL HOUSING FINANCE AGENCY [No. 2010-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Deposit Insurance Corporation and that has average total assets below a statutory cap. See 12 U.S.C. 1422...
26 CFR 1.411(d)-3 - Section 411(d)(6) protected benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... an annual benefit of 2% of career average pay times years of service commencing at normal retirement... an annual benefit of 1.3% of final pay times years of service, with final pay computed as the average... has 16 years of service, M's career average pay is $37,500, and the average of M's highest 3...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology
NASA Astrophysics Data System (ADS)
Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix
2018-03-01
During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.
Deng, Cai; Zhang, Wanchang
2018-05-30
As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2 = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.
Cost of illness among patients with diabetic foot ulcer in Turkey
Oksuz, Ergun; Malhan, Simten; Sonmez, Bilge; Numanoglu Tekin, Rukiye
2016-01-01
AIM To evaluate the annual cost of patients with Wagner grade 3-4-5 diabetic foot ulcer (DFU) from the public payer’s perspective in Turkey. METHODS This study was conducted focused on a time frame of one year from the public payer’s perspective. Cost-of-illness (COI) methodology, which was developed by the World Health Organization, was used in the generation of cost data. By following a clinical path with the COI method, the main total expenses were reached by multiplying the number of uses of each expense item, the percentage of cases that used them and unit costs. Clinical guidelines and real data specific to Turkey were used in the calculation of the direct costs. Monte Carlo Simulation was used in the study as a sensitivity analysis. RESULTS The following were calculated in DFU treatment from the public payer’s perspective: The annual average per patient outpatient costs $579.5 (4.1%), imaging test costs $283.2 (2.0%), laboratory test costs $284.8 (2.0%), annual average per patient cost of intervention, rehabilitation and trainings $2291.7 (16.0%), annual average per patient cost of drugs used $2545.8 (17.8%) and annual average per patient cost of medical materials used in DFU treatment $735.0 (5.1%). The average annual per patient cost for hospital admission is $7357.4 (51.5%). The average per patient complication cost for DFU is $210.3 (1.5%). The average annual per patient cost of DFU treatment in Turkey is $14287.70. As a result of the sensitivity analysis, the standard deviation of the analysis was $5706.60 (n = 5000, mean = $14146.8, 95%CI: $13988.6-$14304.9). CONCLUSION The health expenses per person are $-PPP 1045 in 2014 in Turkey and the average annual per patient cost for DFU is 14-fold of said amount. The total health expense in 2014 in Turkey is $-PPP 80.3 billion and the total DFU cost has a 3% share in the total annual health expenses for Turkey. Hospital costs are the highest component in DFU disease costs. In order to prevent DFU, training of the patients at risk and raising consciousness in patients with diabetes mellitus (DM) will provide benefits in terms of economy. Appropriate and efficient treatment of DM is a health intervention that can prevent complications. PMID:27795820
NASA Astrophysics Data System (ADS)
Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.
2015-04-01
This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.
NASA Astrophysics Data System (ADS)
Mollicone, D.; Freibauer, A.; Schulze, E. D.; Braatz, S.; Grassi, G.; Federici, S.
2007-10-01
Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need—and can be—overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles.
Integrating remotely sensed fires for predicting deforestation for REDD.
Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M
2017-06-01
Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Rull, Valentí; Cañellas-Boltà, Núria; Margalef, Olga; Sáez, Alberto; Pla-Rabes, Sergi; Giralt, Santiago
2015-10-01
Easter Island (Rapa Nui) has been considered an example of how societies can cause their own destruction through the overexploitation of natural resources. The flagship of this ecocidal paradigm is the supposed abrupt, island-wide deforestation that occurred about one millennium ago, a few centuries after the arrival of Polynesian settlers to the island. Other hypotheses attribute the forest demise to different causes such as fruit consumption by rats or aridity but the occurrence of an abrupt, island-wide deforestation during the last millennium has become paradigmatic in Rapa Nui. We argue that such a view can be questioned, as it is based on the palynological study of incomplete records, owing to the existence of major sedimentary gaps. Here, we present a multiproxy (pollen, charcoal and geochemistry) study of the Aroi core, the first gap-free sedimentary sequence of the last millennia obtained to date in the island. Our results show changing vegetation patterns under the action of either climatic or anthropogenic drivers, or both, depending on the time interval considered. Palm forests were present in Aroi until the 16th century, when deforestation started, coinciding with fire exacerbation -likely of human origin- and a dry climate. This is the latest deforestation event recorded so far in the island and took place roughly a century before European contact. In comparison to other Easter Island records, this record shows that deforestation was neither simultaneous nor proceeded at the same pace over the whole island. These findings suggest that Easter Island's deforestation was a heterogeneous process in space and time, and highlights the relevance of local catchment traits in the island's environmental and land management history.
NASA Astrophysics Data System (ADS)
Silva, M. E. S.; Da Rocha, R.; Pereira, G.
2015-12-01
In this study we investigated the climatic impact over South America region due to the increasing of deforestation at the eastern and southern regions of Amazon through the use of the climate model RegCM3 with 50 km of spatial resolution. Many studies, among global and regional models have been used to simulate climatic impact due to deforestation. Most of them used relatively coarse resolution, small domains over South America, besides do not consider deforestation as usually observed. In order to verify the RegCM3 ability to simulate climate impacts due to Amazon deforestation including relatively higher horizontal resolutions, 50 km, a larger domain, the whole South America, deforested areas more similar to the route-shaped commonly seen, and a landuse updating, the model was run for the 2001-2006 period. As the major part of the previous studies focusing Amazon deforestation, RegCM3-50km simulated over degraded areas air temperature increase, ranging from 1.0 to 2.5oC, and precipitation decreasing, ~10%. These aspects are mainly resulting from soil water depletion and roughness vegetation decreasing, both inhibiting evapotranspiration processes. Apart from these results, the model with 50 km simulated precipitation increasing, ~10%, over the eastern South America and adjacent South Atlantic ocean, after Amazon deforestation. Seeking for physical related reasons able to provide the precipitation increasing during rainy seasons, over eastern South America, we found out that upper levels high pressure system (the Bolivian High) intensification, coupled to the southeastward trough, what follows the low troposphere warming, seems to contribute to the precipitation increasing. The climatic impact simulated for winter seasons presents strongest values for areas with altered landuse, over the north region of South America.
Development of Early Warning System Using ALOS-2/PALSAR-2 Data to Detect and Prevent Deforestation
NASA Astrophysics Data System (ADS)
Hayashi, M.; Nagatani, I.; Watanabe, T.; Tadono, T.; Miyoshi, H.; Watanabe, M.; Koyama, C.; Shimada, M.; Ogawa, T.; Ishii, K.; Higashiuwatoko, T.; Miura, M.; Okonogi, H.; Adachi, K.; Morita, T.
2017-12-01
Satellite observation is an efficient method for monitoring deforestation, and a synthetic aperture radar (SAR) is useful especially in cloudy tropical forest regions. In this context, JICA and JAXA cooperate to operate the deforestation monitoring system acquired data by the Phased Array type L-band SAR-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which is named as "JICA-JAXA Forest Early Warning System in the Tropics" (JJ-FAST), and it have been released on November 2016. JJ-FAST detects deforestation areas, and provides their positional information for 77 countries, which is covering almost all tropical forests. It uses PALSAR-2 ScanSAR observation mode (wide-observation swath width) image, which is 50 m spatial resolution acquired at 1.5 months interval. The dark change areas compared with in two acquisitions by PALSAR-2 HV-polarization images are identified as deforestations in the system. We conducted field surveys to validate detection accuracy of the JJ-FAST in Peru (November and December, 2016), Botswana (April, 2017), and Gabon (July, 2017). As the results, 15 of 18 detected areas were correct deforestation areas, therefore user's accuracy could be confirmed as 83.3 % from limited number of the validation data. Erroneous detection areas were caused by seasonal change in agricultural land and open burning in grass land. For improvement of the accuracy, such areas must be excluded from the analysis by additional algorithms e.g. estimation of accurate masking for non-forested areas. Therefore, we are revising the forest map used for pre-processing step in the system. The JJ-FAST can be expected to contribute to monitor and reduce illegal deforestation activities in tropical forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... FEDERAL HOUSING FINANCE AGENCY [No. 2011-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... average total assets below a statutory cap. See 12 U.S.C. 1422(10)(A); 12 CFR 1263.1. The Bank Act was...
Carbon emissions risk map from deforestation in the tropical Amazon
NASA Astrophysics Data System (ADS)
Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.
2011-12-01
Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.
Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation
NASA Astrophysics Data System (ADS)
Pires, G. F.; Fontes, V. C.
2017-12-01
The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.
Unsustainable development pathways caused by tropical deforestation
Carrasco, Luis Roman; Nghiem, Thi Phuong Le; Chen, Zhirong; Barbier, Edward B.
2017-01-01
Global sustainability strategies require assessing whether countries’ development trajectories are sustainable over time. However, sustainability assessments are limited because losses of natural capital and its ecosystem services through deforestation have not been comprehensively incorporated into national accounts. We update the national accounts of 80 nations that underwent tropical deforestation from 2000 to 2012 and evaluate their development trajectories using weak and strong sustainability criteria. Weak sustainability requires that countries do not decrease their aggregate capital over time. We adopt a strong sustainability criterion that countries do not decrease the value of their forest ecosystem services with respect to the year 2000. We identify several groups of countries: countries, such as Sri Lanka, Bangladesh, and India, that present sustainable development trajectories under both weak and strong sustainability criteria; countries, such as Brazil, Peru, and Indonesia, that present weak sustainable development but fail the strong sustainability criterion as a result of rapid losses of ecosystem services; countries, such as Madagascar, Laos, and Papua New Guinea, that present unsustainable development pathways as a result of deforestation; and countries, such as Democratic Republic of Congo and Sierra Leone, in which deforestation aggravates already unsustainable pathways. Our results reveal a large number of countries where tropical deforestation is both damaging to nature and not compensated by development in other sectors, thus compromising the well-being of their future generations. PMID:28706988
Global cost estimates of reducing carbon emissions through avoided deforestation
Kindermann, Georg; Obersteiner, Michael; Sohngen, Brent; Sathaye, Jayant; Andrasko, Kenneth; Rametsteiner, Ewald; Schlamadinger, Bernhard; Wunder, Sven; Beach, Robert
2008-01-01
Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3–0.6 Gt (1 Gt = 1 × 105 g) CO2·yr−1 in emission reductions and would require $0.4 billion to $1.7 billion·yr−1 for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5–2.7 Gt CO2·yr−1 in emission reductions and would require $17.2 billion to $28.0 billion·yr−1. Finally, some caveats to the analysis that could increase costs of AD programs are described. PMID:18650377
Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries.
Galway, Lindsay P; Acharya, Yubraj; Jones, Andrew D
2018-05-01
Deforestation worldwide could have important consequences for diet quality and human nutrition given the numerous ecosystem services that are provided by forests and biodiverse landscapes. Yet, empirical research assessing the links between deforestation and diets is lacking. In this study, we examined the association between deforestation and diet diversity among children using geolocated Demographic and Health Survey data for 33,777 children across 15 countries of sub-Saharan Africa coupled with remotely-sensed data on forest cover loss. Deforestation was negatively associated with diet diversity (regression coefficient (95% CI): - 0.47 (- 0.76, - 0.18)), as well as recent consumption of legumes and nuts, flesh foods, and fruits and vegetables among children aged 6 months to 24 months. Regionally, these trends were statistically significant only in the West Africa region. This hypothesis-generating research adds to the growing body of evidence that forests and forest-based ecosystems are associated with diet quality and nutrition and provides support for future studies that examine mechanisms linking forest loss and human nutrition. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn
2017-04-01
Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.
Predicting Deforestation Patterns in Loreto, Peru from 2000-2010 Using a Nested GLM Approach
NASA Astrophysics Data System (ADS)
Vijay, V.; Jenkins, C.; Finer, M.; Pimm, S.
2013-12-01
Loreto is the largest province in Peru, covering about 370,000 km2. Because of its remote location in the Amazonian rainforest, it is also one of the most sparsely populated. Though a majority of the region remains covered by forest, deforestation is being driven by human encroachment through industrial activities and the spread of colonization and agriculture. The importance of accurate predictive modeling of deforestation has spawned an extensive body of literature on the topic. We present a nested GLM approach based on predictions of deforestation from 2000-2010 and using variables representing the expected drivers of deforestation. Models were constructed using 2000 to 2005 changes and tested against data for 2005 to 2010. The most complex model, which included transportation variables (roads and navigable rivers), spatial contagion processes, population centers and industrial activities, performed better in predicting the 2005 to 2010 changes (75.8% accurate) than did a simpler model using only transportation variables (69.2% accurate). Finally we contrast the GLM approach with a more complex spatially articulated model.
Khalil, M. A.K. [Oregon Graduate Institute of Science and Technology Portland, Oregon (USA); Rasmussen, R. A. [Oregon Graduate Institute of Science and Technology Portland, Oregon
1996-01-01
This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the South Pole (Antarctica). At each collection site, monthly averages were obtained from three flask samples collected every week. In addition to the monthly global averages available for 1980-992, this data set also contains annual global average data for 1975-1985. These annual global averages were derived from January measurements at the South Pole and in the Pacific Northwest of the United States (specifically, Washington state and the Oregon coast).