Reed, L.A.; Hainly, R.A.
1989-01-01
The U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources, has collected hydrologic data from areas in Tioga, Clearfield, and Fayette Counties to determine the effects of surface coal mining on sediment yields. The data were collected from June 1978 through September 1983. Rainfall, streamflow and suspended-sediment data were collected with automatic recording and sampling equipment. Data were collected in Tioga County from an agricultural area that was unaffected by mining and from a forested area prior to surface mining. Data were collected from two areas affected by active surface mining in Tioga County and from an area in Clearfield County being mined by the contour-surface method. Data also were collected from three areas, Tioga, Clearfield, and Fayette Counties, during and after reclamation. The efficiencies of sediment-control pounds in Clearfield and Fayette Counties also were determined. The average annual sediment yield from the agricultural area in Tioga County, which was 35 percent forested, was 0.48 ton per acre per year, and the yield from the forested area prior to mining was 0.0036 ton per acre per year. The average annual sediment yields from the areas affected by active surface mining were 22 tons per acre from the improved haul road and 148 tons per acre from the unimproved haul road. The average annual sediment yield from the site in Clearfield County that had been prepared for mining was 6.3 tons per acre. The average annual sediment yield from the same site while it was being mined by the contour method was 5.5 tons per acre per year. The sediment-control pond reduced the average annual sediment yield to 0.50 ton per acre while the site was prepared for mining and to 0.14 ton per acre while the site was being mined. Because the active surface mining reduced the effective drainage area to the pond, the sediment yield decreased from 0.50 to 0.14 ton per acre. Average annual suspended-sediment yields from the reclaimed site in Tioga County were 1.0 ton per acre during the first year, when vegetation was becoming established, and 0.037 ton per acre during the second year, when vegetation was well established. The average annual sediment yield below a 21.2-acre, reclaimed, surface mine in Clearfield County that had been mined by the contour method was 15 tons per acre during the first year when vegetation was becoming established. However, the average annual sediment yield below a sediment-control pond at this reclaimed site in Clearfield County was 0.30 ton per acre. Data collected from a 4.2-acre reclaimed area that had been surface mined by the block-cut method in Fayette County showed that annual sediment yields from the area were 77 tons per acre in 1981 (no vegetation), 32 tons per acre in 1982 (sparse vegetation), and 1.0 ton per acre in 1983 (well-esatablished vegetation). The average annual yield below a sediment-control pond at the mine site in Fayette County was 0.19 ton per acre during the 27 months of data collection.
Harwell, Glenn R.; Stengel, Victoria G.; Bumgarner, Johnathan R.
2016-04-20
The calibrated watershed model was used to perform brush-management simulations. The National Land Cover Database 2006, which was the land-cover data used to develop the watershed model, was modified to simulate shrubland replacement with grassland in each of the 35 model subbasins. After replacement of shrubland with grassland in areas with land slope less than 20 percent and excluding riparian areas, the modeled 20-year (1994 through 2013) water yields to Lake Alan Henry increased by 114,000 acre-feet or about 5,700 acre-feet per year. In terms of the increase in water yield per acre of shrubland replaced with grassland, the average annual increase in water yield was 17,300 gallons per acre. Within the modeled subbasins, the increase in average annual water yield ranged from 5,850 to 34,400 gallons per acre of shrubland replaced with grassland. Subbasins downstream from the Justiceburg gage had a higher average annual increase in water yield (21,700 gallons per acre) than subbasins upstream from the streamflow-gaging station (16,800 gallons per acre).
Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.
2011-01-01
The average annual TSS yields ranged from 111 tons/mi2 in Apple Creek to 45 tons/mi2 in Duck Creek. All five watersheds yielded more TSS than the median value (32.4 tons/mi2) from previous studies in the Southeastern Wisconsin Till Plains (SWTP) ecoregion. The average annual TP yields ranged from 663 lbs/mi2 in Baird Creek to 382 lbs/mi2 in Duck Creek. All five watersheds yielded more TP than the median value from previous studies in the SWTP ecoregion, and the Baird Creek watershed yielded more TP than the statewide median of 650 lbs/mi2 from previous studies.Overall, Duck Creek had the lowest median and volumetric weighted concentrations and mean yield of TSS and TP. The same pattern was true for dissolved phosphorus (DP), except the volumetrically weighted concentration was lowest in the East River. In contrast, Ashwaubenon, Baird, and Apple Creeks had greater median and volumetrically weighted concentrations and mean yields of TSS, TP, DP than Duck Creek and the East River. Water quality in Duck Creek and East River were distinctly different from Ashwaubenon, Baird, and Apple Creeks. Loads from individual runoff events for all of these streams were important to the total annual mass transport of the constituents. On average, about 20 percent of the annual TSS loads and about 17 percent of the TP loads were transported in 1-day events in each stream.
Trade-offs among ecosystem services in a typical Karst watershed, SW China.
Tian, Yichao; Wang, Shijie; Bai, Xiaoyong; Luo, Guangjie; Xu, Yan
2016-10-01
Nowadays, most research results on ecosystem services in Karst areas are limited to a single function of an ecosystem service. Few scholars conduct a comparative study on the mutual relationships among ecosystem services, let alone reveal the trade-off and synergic relationships in typical Karst watershed. This research aims to understand and quantitatively evaluate the relationships among ecosystem services in a typical Karst watershed, broaden the depth and width of trade-off and synergic relationships in ecosystem services and explore a set of technical processes involved in these relationships. With the Shibantang Karst watershed in China as the research site, we explore the trade-off and synergic relationships of net primary productivity (NPP), water yield, and sediment yield by coupling Soil and Water Assessment Tool (SWAT) and Carnegie-Ames-Stanford Approach (CASA), and simulating and evaluating these three ecosystem services between 2000 and 2010. Results of this study are as follows. (1) The annual average water yield decreased from 528mm in 2000 to 513mm in 2010, decreasing by 2.84%. (2) The annual average sediment yield decreased from 26.15t/ha in 2000 to 23.81t/ha in 2010, with an average annual reduction of 0.23t/ha. (3) The annual average NPP increased from 739.38gCm(-2)a(-1) in 2000 to 746.25gCm(-2)a(-1) in 2010, increasing by 6.87gCm(-2)a(-1) . (4) Water yield and sediment yield are in a synergic relationship. The increase of water yield can accumulate the soil erosion amount. NPP is in a trade-off relationship with water yield and sediment yield. The improvement of NPP is good for decreasing water yield and soil erosion amount and increasing soil conservation amount. This study provides policy makers and planners an approach to develop an integrated model, as well as design mapping and monitoring protocols for land use change and ecosystem service assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
Suspended sediment yield of New Jersey coastal plain streams draining into the Delaware estuary
Mansue, Lawrence J.
1972-01-01
The purpose of this report is to summarize sediment data collected at selected stream-sampling sites in southern New Jersey. Computations of excepted average annual yields at each sampling site were made and utilized to estimate the annual yield at ungaged sites. Similar data currently are being compiled for streams draining Pennsylvania and Delaware. It is planned to report on the combined information at a later date in the Geological Survey's Water-Supply Paper series.
Small Hardwoods Reduce Growth of Pine Overstory
Charles X. Grano
1970-01-01
Dense understory hardwoods materially decreased the growth of a 53-year-old and a 47-year-old stand of loblolly and shortleaf pines. Over a 14-year period, hardwood eradication with chemicals increased average annual yield from the 53-year-old stand by 14.3 cubic feet, or 123 board-feet per acre. In the 47-year-old stand the average annual treatment advantage was...
Li, Xiang; Peng, Li-yan; Zhang, Shu-dong; Zhao, Qin-shi; Yi, Ting-shuang
2013-01-01
Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of erigoster B and 3,5-dicaffeoylquinic acid, respectively. We inferred that the synthesis of these two pairs of compounds may share similar triggering mechanism as they synthesized in a common pathway.
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel
2016-09-15
Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate, soil water storage, and the average annual water balance
Milly, P.C.D.
1994-01-01
This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability of forcing over time. Contributions to model runoff attributable to small-scale spatial variability of storage capacity are insignificant throughout the study area. The consistency of the model with observational data is supportive of the supply-demand-storage hypothesis, which neglects infiltration excess runoff and other finite-permeability effects on the soil water balance.
Predicted yields from selected cutting prescriptions in northern Minnesota.
Pamela J. Jakes; W. Brad Smith
1980-01-01
Includes predicted yields based on two sets of cutting prescriptions in northern Minnesota. Indicates that given a specific set of assumptions, average annual growing-stock removals for the decade 1977-1986 would be from 69% to 124% higher than 1976 growing-stock removals.
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Pool, Donald R.; Anderson, Mark T.
2008-01-01
Gravity and land subsidence were measured annually at wells and benchmarks within two networks in Tucson Basin and Avra Valley from 1998 to 2002. Both networks are within the Tucson Active Management Area. Annual estimates of ground-water storage change, ground-water budgets, and land subsidence were made based on the data. Additionally, estimates of specific yield were made at wells within the monitored region. Increases in gravity and water-level rises followed above-average natural recharge during winter 1998 in Tucson Basin. Overall declining gravity and water-level trends from 1999 to 2002 in Tucson Basin reflected general declining ground-water storage conditions and redistribution of the recent recharge throughout a larger region of the aquifer. The volume of stored ground-water in the monitored portion of Tucson Basin increased 200,000 acre-feet from December 1997 to February 1999; however, thereafter an imbalance in ground-water pumpage in excess of recharge led to a net storage loss for the monitoring period by February 2002. Ground-water storage in Avra Valley increased 70,000 acre-feet during the monitoring period, largely as a result of artificial and incidental recharge in the monitored region. The water-budget for the combined monitored regions of Tucson Basin and Avra Valley was dominated by about 460,000 acre-feet of recharge during 1998 followed by an average-annual recharge rate of about 80,000 acre-feet per year from 1999 to 2002. Above-average recharge during winter 1998, followed by average-annual deficit conditions, resulted in an overall balanced water budget for the monitored period. Monitored variations in storage compared well with simulated average-annual conditions, except for above-average recharge from 1998 to 1999. The difference in observed and simulated conditions indicate that ground-water flow models can be improved by including climate-related variations in recharge rates rather than invariable rates of average-annual recharge. Observed land-subsidence during the monitoring period was less than 1 inch except in the central part of Tucson Basin where land subsidence was about 2-3 inches. Correlations of gravity-based storage and water-level change at 37 wells were variable and illustrate the complex nature of the aquifer system. Storage and water-level variations were insufficient to estimate specific yield at many wells. Correlations at several wells were poor, inverse, or resulted in unreasonably large values of specific yield. Causes of anomalously correlated gravity and water levels include significant storage change in thick unsaturated zones, especially near major ephemeral channels, and multiple aquifers that are poorly connected hydraulically. Good correlation of storage and water-level change at 10 wells that were not near major streams where significant changes in unsaturated zone storage occur resulted in an average specific-yield value of 0.27.
Sediment characteristics of small streams in southern Wisconsin, 1954-59
Collier, Charles R.
1963-01-01
The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.
Koltun, G.F.; Kula, Stephanie P.
2013-01-01
This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the annual risk of exceedance or nonexceedance of annual and annual-seasonal-period flow-duration values. The quantiles are based on streamflow data collected through climatic year 2008.
Probabilistic estimates of drought impacts on agricultural production
NASA Astrophysics Data System (ADS)
Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.
2017-08-01
Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.
NASA Astrophysics Data System (ADS)
Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2017-12-01
Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.
Ward W. McCaughey; Phillip E. Farnes; Katherine J. Hansen
1997-01-01
Water production from mountain watersheds depends on total precipitation input, the type and distribution of precipitation, the amount intercepted in tree canopies, and losses to evaporation, transpiration and groundwater. A systematic process was developed to estimate historic average annual runoff based on fire patterns, habitat cover types and precipitation patterns...
Peng, Xingxing; Guo, Zheng; Zhang, Yujiao; Li, Jun
2017-07-14
The Loess Plateau, China, is the world's largest apple-producing region, and over 80% of the orchards are in rainfed (dryland) areas. Desiccation of the deep soil layer under dryland apple orchards is the main stressor of apple production in this region. Fertilization is a factor that causes soil desiccation in dryland apple orchards. Given its applicability and precision validations, the Environmental Policy Integrated Climate (EPIC) model was used to simulate the dynamics of fruit yield and deep soil desiccation in apple orchards under six fertilization treatments. During the 45 years of study, the annual fruit yield under the fertilization treatments initially increased and then decreased in a fluctuating manner, and the average fruit yields were 24.42, 27.27, 28.69, 29.63, 30.49 and 29.43 t/ha in these respective fertilization treatments. As fertilization increased, yield of the apple orchards increased first and then declined,desiccation of the soil layers occurred earlier and extended deeper, and the average annual water consumption, over-consumption and water use efficiency increased as fertilization increased. In terms of apple yields, sustainable soil water use, and economic benefits, the most appropriate fertilization rate for drylands in Luochuan is 360-480 kg/ha N and 180-240 kg/ha P.
Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D
2009-01-01
Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.
Hydrologic and climatic changes in three small watersheds after timber harvest.
W.B. Fowler; J.D. Helvey; E.N. Felix
1987-01-01
No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...
Increased dry season water yield in burned watersheds in Southern California
NASA Astrophysics Data System (ADS)
Kinoshita, Alicia M.; Hogue, Terri S.
2015-01-01
The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.
Bumgarner, Johnathan R.; Thompson, Florence E.
2012-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995-2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts. Model hydrology was calibrated with streamflow data collected at the U.S. Geological Survey streamflow-gaging station 08167500 Guadalupe River near Spring Branch, Tex., for 1995-2010. Simulated monthly streamflow showed very good agreement with measured monthly streamflow: a percent bias of -5, a coefficient of determination of 0.91, and a Nash-Sutcliffe coefficient of model efficiency of 0.85. Modified land-cover input datasets were generated for the model in order to simulate the replacement of ashe juniper with grasslands in 23 brush-management subbasins in the watershed. Each of the 23 simulations showed an increase in simulated water yields in the targeted subbasins and to Canyon Lake. The simulated increases in average annual water yields in the subbasins ranged from 6,370 to 119,000 gallons per acre of ashe juniper replaced with grasslands with an average of 38,900 gallons. The simulated increases in average annual water yields to Canyon Lake from upstream subbasins ranged from 6,640 to 72,700 gallons per acre of ashe juniper replaced with grasslands with an average of 34,700 gallons.
Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965
Boucher, P.R.
1970-01-01
The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.
Water yield issues in the jarrah forest of south-western Australia
NASA Astrophysics Data System (ADS)
Ruprecht, J. K.; Stoneman, G. L.
1993-10-01
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.
Yimam, Yohannes Tadesse; Ochsner, Tyson E.; Fox, Garey A.
2017-01-01
Switchgrass (Panicum virgatum L.) has attracted attention as a promising second generation biofuel feedstock. Both existing grasslands and marginal croplands have been suggested as targets for conversion to switchgrass, but the resulting production potentials and hydrologic impacts are not clear. The objectives of this study were to model switchgrass production on existing grasslands (scenario-I) and on marginal croplands that have severe to very severe limitations for crop production (scenario-II) and to evaluate the effects on evapotranspiration (ET) and streamflow. The Soil and Water Assessment Tool (SWAT) was applied to the 1063 km2 Skeleton Creek watershed in north-central Oklahoma, a watershed dominated by grasslands (35%) and winter wheat cropland (47%). The simulated average annual yield (2002–2011) for rainfed Alamo switchgrass for both scenarios was 12 Mg ha-1. Yield varied spatially under scenario-I from 6.1 to 15.3 Mg ha-1, while under scenario-II the range was from 8.2 to 13.8 Mg ha-1. Comparison of average annual ET and streamflow between the baseline simulation (existing land use) and scenario-I showed that scenario-I had 5.6% (37 mm) higher average annual ET and 27.7% lower streamflow, representing a 40.7 million m3 yr-1 streamflow reduction. Compared to the baseline, scenario-II had only 0.5% higher ET and 3.2% lower streamflow, but some monthly impacts were larger. In this watershed, the water yield reduction per ton of biomass production (i.e. hydrologic cost-effectiveness ratio) was more than 5X greater under scenario-I than under scenario-II. These results suggest that, from a hydrologic perspective, it may be preferable to convert marginal cropland to switchgrass production rather than converting existing grasslands. PMID:28792541
Yimam, Yohannes Tadesse; Ochsner, Tyson E; Fox, Garey A
2017-01-01
Switchgrass (Panicum virgatum L.) has attracted attention as a promising second generation biofuel feedstock. Both existing grasslands and marginal croplands have been suggested as targets for conversion to switchgrass, but the resulting production potentials and hydrologic impacts are not clear. The objectives of this study were to model switchgrass production on existing grasslands (scenario-I) and on marginal croplands that have severe to very severe limitations for crop production (scenario-II) and to evaluate the effects on evapotranspiration (ET) and streamflow. The Soil and Water Assessment Tool (SWAT) was applied to the 1063 km2 Skeleton Creek watershed in north-central Oklahoma, a watershed dominated by grasslands (35%) and winter wheat cropland (47%). The simulated average annual yield (2002-2011) for rainfed Alamo switchgrass for both scenarios was 12 Mg ha-1. Yield varied spatially under scenario-I from 6.1 to 15.3 Mg ha-1, while under scenario-II the range was from 8.2 to 13.8 Mg ha-1. Comparison of average annual ET and streamflow between the baseline simulation (existing land use) and scenario-I showed that scenario-I had 5.6% (37 mm) higher average annual ET and 27.7% lower streamflow, representing a 40.7 million m3 yr-1 streamflow reduction. Compared to the baseline, scenario-II had only 0.5% higher ET and 3.2% lower streamflow, but some monthly impacts were larger. In this watershed, the water yield reduction per ton of biomass production (i.e. hydrologic cost-effectiveness ratio) was more than 5X greater under scenario-I than under scenario-II. These results suggest that, from a hydrologic perspective, it may be preferable to convert marginal cropland to switchgrass production rather than converting existing grasslands.
The Safe Yield and Climatic Variability: Implications for Groundwater Management.
Loáiciga, Hugo A
2017-05-01
Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.
Mercury export from the Yukon River Basin and potential response to a changing climate
Schuster, P. F.; Striegl, Robert G.; Aiken, G. R.; Krabbenhoft, D. P.; Dewild, J. F.; Butler, K.; Kamark, B.; Dornblaser, M.
2011-01-01
We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr–1. The average annual yield for the YRB during the study period was 5.17 μg m–2 yr–1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.
Mercury export from the Yukon River Basin and potential response to a changing climate
Schuster, Paul F.; Striegl, Robert G.; Aiken, George R.; Krabbenhoft, David P.; DeWild, John F.; Butler, Kenna D.; Kamark, Ben; Dornblaser, Mark
2011-01-01
We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr-1. The average annual yield for the YRB during the study period was 5.17 μg m-2 yr-1, which is 3–32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.
Cultivation of macroscopic marine algae and fresh water aquatic weeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryther, J.H.
1982-02-01
The ORCA clone of the red seaweed Gracilaria tikvahiae has been in culture continuously for over two years. Yield for the past year has averaged 12 g ash-free dry wt/m/sup 2/ .day (17.5 t/a.y) in suspended 2600-1 aluminum tank cultures with four exchanges of enriched seawater per day and continuous aeration. Yields from nonintensive pond-bottom culture, similar to commercial Gracilaria culture methods in Taiwan, averaged 3 g afdw/m/sup 2/.day in preliminary experiments. Rope and spray cultures were not successful. Yields of water hyacinths from March 1978 to March 1979 averaged 25 g afdw/m/sup 2/.day (37 t/a.y). Season, nutrient availability (formmore » and quantity) and stand density were found to affect the relative proportions of structural and nonstructural tissue in water hyacinths and thereby significantly affect digestibility of and methane production by the plants. Pennywort (Hydrocotyle) grew poorly in winter and its annual yield averaged only one-third that of water hyacinth. Water lettuce (Pistia) appears more comparable to hyacinths in preliminary studies and its yields will be monitored throughout a complete year. Stable, continuous anaerobic digestion of both water hyacinths and Gracilaria has been maintained with an average gas production from both species of 0.4 1/g volatile solids at 60% methane.« less
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.
Annual estimates of water and solute export from 42 tributaries to the Yukon River
Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.
2012-01-01
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.
Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.
Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang
2016-01-01
Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by alleviating SWD in critical growth period and increasing SWS in 20-80 cm soil depth. The results allow us to conclude that AS-50 can be adopted as an effective approach to increase crop productivity, alleviate water stress, and improve soil water availability for spring maize in northern China.
Climate Variability and Yields of Major Staple Food Crops in Northern Ghana
NASA Astrophysics Data System (ADS)
Amikuzuno, J.
2012-12-01
Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.
Impact of increasing milk production on whole farm environmental management
USDA-ARS?s Scientific Manuscript database
Increasing herd milk production can provide both economic benefit to the producer and environmental benefit to society. Simulated dairy farms with average annual herd productions from 16,000 to 30,000 lb/cow illustrate that increasing milk yield per cow improves feed efficiency, reduces feed costs a...
Hydrologic changes after logging in two small Oregon coastal watersheds
Harris, David Dell
1977-01-01
Effects of clearcut, cable logging on the hydrologic characteristics of a small coastal stream in Oregon indicate an average 181-percent increase in sediment yield over a 7-year postlogging period. Annual runoff and high-flow volumes increased 19 and 1.1 inches (480 and 28 mm), respectively, after logging in the watershed. Clearcutting in small, spaced patches in another watershed resulted in some increase in water and sediment yields, but the increase was not statistically significant. Average monthly April-October maximum water temperatures increased significantly in the principal stream of both the clearcut and 'patch-cut' watersheds. Hydrologic characteristics of both streams generally appear to be returning to prelogging conditions (19731.
Dornblaser, Mark M.; Striegl, Robert G.
2009-01-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
NASA Astrophysics Data System (ADS)
Dornblaser, Mark M.; Striegl, Robert G.
2009-06-01
Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.
Annual Corn Yield Estimation through Multi-temporal MODIS Data
NASA Astrophysics Data System (ADS)
Shao, Y.; Zheng, B.; Campbell, J. B.
2013-12-01
This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.
Sediment Transport in Streams in the Umpqua River Basin, Oregon
Onions, C. A.
1969-01-01
This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.
Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications
NASA Technical Reports Server (NTRS)
Eagleson, P. S.; Tellers, T. E.
1982-01-01
The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2010-06-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The r-largest annual maxima method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
Lumber value loss associated with tapping sugar maples for sap production
Paul E. Sendak; Neil K. Huyler; Lawrence D. Garrett
1982-01-01
Tapping sugar maples for sap production yields an annual income, but there is a loss in timber quality if the tree is cut for factory lumber products. We estimate an average loss per tree of $2.87 based on a sample of 90 trees in Vermont that were formerly tapped.
Riparian vegetation and water yield: A synthesis
NASA Astrophysics Data System (ADS)
Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio
2012-08-01
SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2009-09-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 70's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The study shows the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
Benefits of increasing transpiration efficiency in wheat under elevated CO2 for rainfed regions.
Christy, Brendan; Tausz-Posch, Sabine; Tausz, Michael; Richards, Richard; Rebetzke, Greg; Condon, Anthony; McLean, Terry; Fitzgerald, Glenn; Bourgault, Maryse; O'Leary, Garry
2018-05-01
Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high-TE cultivar (cv. Drysdale) over its almost identical low-TE parent line (Hartog), from about -7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221-1,351 mm annual rainfall), under the present-day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO 2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO 2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost-benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5-year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO 2 raises this nation-wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Kelly, Valerie J.; Hooper, Richard P.; Aulenbach, Brent T.; Janet, Mary
2001-01-01
This report contains concentrations and annual mass fluxes (loadings) for a broad range of water-quality constituents measured during 1996-2000 as part of the U.S. Geological Survey National Stream Quality Accounting Network (NASQAN). During this period, NASQAN operated a network of 40-42 stations in four of the largest river basins of the USA: the Colorado, the Columbia, the Mississippi (including the Missouri and Ohio), and the Rio Grande. The report contains surface-water quality data, streamflow data, field measurements (e.g. water temperature and pH), sediment-chemistry data, and quality-assurance data; interpretive products include annual and average loads, regression parameters for models used to estimate loads, sub-basin yield maps, maps depicting percent detections for censored constituents, and diagrams depicting flow-weighted average concentrations. Where possible, a regression model relating concentration to discharge and season was used for flux estimation. The interpretive context provided by annual loads includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean.
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
Community wind electrical power case study: Muir Beach. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, R.; Freebairn-Smith, R.
1979-10-01
Muir Beach experiences relatively steady northwest coastal winds. Recordings at anemometer stations have indicated wind speeds averaging 10 to 12 mph over the year. This compares favorably with the minimum of 8 to 9 mph generally considered necessary for feasible wind-electric generation. Given the town's wind environment, a 100 kW wind turbine of the kind planned could provide an annual output of about 150,000 kWh, or about one-eighth of Muir Beach's projected need. Especially promising for Muir Beach are other potential sites at higher elevations on neighboring Mt. Tamalpais, where federal records indicate annual average speeds of 18 mph. Eachmore » 100 kW wind turbine sited there could conservatively yield at least double and perhaps triple the output of the first system.« less
Macek-Rowland, Kathleen M.
2000-01-01
Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak. The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek. Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin. Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998. Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98. Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River. Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River. Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River. The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries. The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile. The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area.
NASA Astrophysics Data System (ADS)
Shao, Yang; Campbell, James B.; Taff, Gregory N.; Zheng, Baojuan
2015-06-01
The Midwestern United States is one of the world's most important corn-producing regions. Monitoring and forecasting of corn yields in this intensive agricultural region are important activities to support food security, commodity markets, bioenergy industries, and formation of national policies. This study aims to develop forecasting models that have the capability to provide mid-season prediction of county-level corn yields for the entire Midwestern United States. We used multi-temporal MODIS NDVI (normalized difference vegetation index) 16-day composite data as the primary input, with digital elevation model (DEM) and parameter-elevation relationships on independent slopes model (PRISM) climate data as additional inputs. The DEM and PRISM data, along with three types of cropland masks were tested and compared to evaluate their impacts on model predictive accuracy. Our results suggested that the use of general cropland masks (e.g., summer crop or cultivated crops) generated similar results compared with use of an annual corn-specific mask. Leave-one-year-out cross-validation resulted in an average R2 of 0.75 and RMSE value of 1.10 t/ha. Using a DEM as an additional model input slightly improved performance, while inclusion of PRISM climate data appeared not to be important for our regional corn-yield model. Furthermore, our model has potential for real-time/early prediction. Our corn yield esitmates are available as early as late July, which is an improvement upon previous corn-yield prediction models. In addition to annual corn yield forecasting, we examined model uncertainties through spatial and temporal analysis of the model's predictive error distribution. The magnitude of predictive error (by county) appears to be associated with the spatial patterns of corn fields in the study area.
Economic Cost and Burden of Dengue in the Philippines
Edillo, Frances E.; Halasa, Yara A.; Largo, Francisco M.; Erasmo, Jonathan Neil V.; Amoin, Naomi B.; Alera, Maria Theresa P.; Yoon, In-Kyu; Alcantara, Arturo C.; Shepard, Donald S.
2015-01-01
Dengue, the world's most important mosquito-borne viral disease, is endemic in the Philippines. During 2008–2012, the country's Department of Health reported an annual average of 117,065 dengue cases, placing the country fourth in dengue burden in southeast Asia. This study estimates the country's annual number of dengue episodes and their economic cost. Our comparison of cases between active and passive surveillance in Punta Princesa, Cebu City yielded an expansion factor of 7.2, close to the predicted value (7.0) based on the country's health system. We estimated an annual average of 842,867 clinically diagnosed dengue cases, with direct medical costs (in 2012 US dollars) of $345 million ($3.26 per capita). This is 54% higher than an earlier estimate without Philippines-specific costs. Ambulatory settings treated 35% of cases (representing 10% of direct costs), whereas inpatient hospitals served 65% of cases (representing 90% of direct costs). The economic burden of dengue in the Philippines is substantial. PMID:25510723
Economic and Disease Burden of Dengue Illness in India
Shepard, Donald S.; Halasa, Yara A.; Tyagi, Brij Kishore; Adhish, S. Vivek; Nandan, Deoki; Karthiga, K. S.; Chellaswamy, Vidya; Gaba, Mukul; Arora, Narendra K.
2014-01-01
Between 2006 and 2012 India reported an annual average of 20,474 dengue cases. Although dengue has been notifiable since 1996, regional comparisons suggest that reported numbers substantially underrepresent the full impact of the disease. Adjustment for underreporting from a case study in Madurai district and an expert Delphi panel yielded an annual average of 5,778,406 clinically diagnosed dengue cases between 2006 and 2012, or 282 times the reported number per year. The total direct annual medical cost was US$548 million. Ambulatory settings treated 67% of cases representing 18% of costs, whereas 33% of cases were hospitalized, comprising 82% of costs. Eighty percent of expenditures went to private facilities. Including non-medical and indirect costs based on other dengue-endemic countries raises the economic cost to $1.11 billion, or $0.88 per capita. The economic and disease burden of dengue in India is substantially more than captured by officially reported cases, and increased control measures merit serious consideration. PMID:25294616
Economic cost and burden of dengue in the Philippines.
Edillo, Frances E; Halasa, Yara A; Largo, Francisco M; Erasmo, Jonathan Neil V; Amoin, Naomi B; Alera, Maria Theresa P; Yoon, In-Kyu; Alcantara, Arturo C; Shepard, Donald S
2015-02-01
Dengue, the world's most important mosquito-borne viral disease, is endemic in the Philippines. During 2008-2012, the country's Department of Health reported an annual average of 117,065 dengue cases, placing the country fourth in dengue burden in southeast Asia. This study estimates the country's annual number of dengue episodes and their economic cost. Our comparison of cases between active and passive surveillance in Punta Princesa, Cebu City yielded an expansion factor of 7.2, close to the predicted value (7.0) based on the country's health system. We estimated an annual average of 842,867 clinically diagnosed dengue cases, with direct medical costs (in 2012 US dollars) of $345 million ($3.26 per capita). This is 54% higher than an earlier estimate without Philippines-specific costs. Ambulatory settings treated 35% of cases (representing 10% of direct costs), whereas inpatient hospitals served 65% of cases (representing 90% of direct costs). The economic burden of dengue in the Philippines is substantial. © The American Society of Tropical Medicine and Hygiene.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-11-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-06-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
Global evaluation of biofuel potential from microalgae
Moody, Jeffrey W.; McGinty, Christopher M.; Quinn, Jason C.
2014-01-01
In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of 13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176
Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.
2005-01-01
The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported
Mandelblatt, Jeanne S.; Stout, Natasha K.; Schechter, Clyde B.; van den Broek, Jeroen J.; Miglioretti, Diana; Krapcho, Martin; Trentham-Dietz, Amy; Munoz, Diego; Lee, Sandra J.; Berry, Donald A.; van Ravesteyn, Nicolien T.; Alagoz, Oguzhan; Kerlikowske, Karla; Tosteson, Anna N.A.; Near, Aimee M.; Hoeffken, Amanda; Chang, Yaojen; Heijnsdijk, Eveline A.; Chisholm, Gary; Huang, Xuelin; Huang, Hui; Ergun, Mehmet Ali; Gangnon, Ronald; Sprague, Brian L.; Plevritis, Sylvia; Feuer, Eric; de Koning, Harry J.; Cronin, Kathleen A.
2016-01-01
Background Controversy persists about optimal mammography screening strategies. Objective To evaluate mammography strategies considering screening and treatment advances. Design Collaboration of six simulation models. Data Sources National data on incidence, risk, breast density, digital mammography performance, treatment effects, and other-cause mortality. Target Population An average-risk cohort. Time Horizon Lifetime. Perspective Societal. Interventions Mammograms from age 40, 45 or 50 to 74 at annual or biennial intervals, or annually from 40 or 45 to 49 then biennially to 74, assuming 100% screening and treatment adherence. Outcome Measures Screening benefits (vs. no screening) include percent breast cancer mortality reduction, deaths averted, and life-years gained. Harms include number of mammograms, false-positives, benign biopsies, and overdiagnosis. Results for Average-Risk Women Biennial strategies maintain 79.8%-81.3% (range across strategies and models: 68.3–98.9%) of annual screening benefits with almost half the false-positives and fewer overdiagnoses. Screening biennially from ages 50–74 achieves a median 25.8% (range: 24.1%-31.8%) breast cancer mortality reduction; annual screening from ages 40–74 years reduces mortality an additional 12.0% (range: 5.7%-17.2%) vs. no screening, but yields 1988 more false-positives and 7 more overdiagnoses per 1000 women screened. Annual screening from ages 50–74 had similar benefits as other strategies but more harms, so would not be recommended. Sub-population Results Annual screening starting at age 40 for women who have a two- to four-fold increase in risk has a similar balance of harms and benefits as biennial screening of average-risk women from 50–74. Limitations We do not consider other imaging technologies, polygenic risk, or non-adherence. Conclusion These results suggest that biennial screening is efficient for average-risk groups, but decisions on strategies depend on the weight given to the balance of harms and benefits. Primary Funding Source National Institutes of Health PMID:26756606
Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.
1987-01-01
The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons/yr at the most downstream station. The average annual SS yield ranged from 59.6 to 85.9 tons/sq mi. (Author 's abstract)
Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009
Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.
2010-01-01
Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969-80 represents the pre-groundwater-pumping period, and 1988-2009 represents the groundwater-pumping period. The 5-year moving average for precipitation at the Ruidoso climate station shows years of below-average precipitation during both time periods, but no days of zero flow were recorded for the 11-year period 1970-80 and no-flow days were recorded in 11 of 20 years for the 1988-2009 period. View report for unabridged abstract.
James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey
2006-01-01
This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...
Belesova, Kristine; Gasparrini, Antonio; Sié, Ali; Sauerborn, Rainer; Wilkinson, Paul
2018-02-01
Whether year-to-year variation in crop yields affects the nutrition, health, and survival of subsistence-farming populations is relevant to the understanding of the potential impacts of climate change. However, the empirical evidence is limited. We examined the associations of child survival with interannual variation in food crop yield and middle-upper arm circumference (MUAC) in a subsistence-farming population of rural Burkina Faso. The study was of 44,616 children aged <5 years included in the Nouna Health and Demographic Surveillance System, 1992-2012, whose survival was analyzed in relation to the food crop yield in the year of birth (which ranged from 65% to 120% of the period average) and, for a subset of 16,698 children, to MUAC, using shared-frailty Cox proportional hazards models. Survival was appreciably worse in children born in years with low yield (full-adjustment hazard ratio = 1.11 (95% confidence interval: 1.02, 1.20) for a 90th- to 10th-centile decrease in annual crop yield) and in children with small MUAC (hazard ratio = 2.72 (95% confidence interval: 2.15, 3.44) for a 90th- to 10th-centile decrease in MUAC). These results suggest an adverse impact of variations in crop yields, which could increase under climate change. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Year Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68,200 +/- 10,500 sq km/yr (-2.62% 6 +/- 0.40%/decade), and the yearly average trend being -35,000 +/- 5900 sq km/yr (-1.47% +/- 0.25%/decade).
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68200 +/- 10500 km sq yr(exp -1) (-2.62% +/- 0.40%decade(exp -1)), and the yearly average trend being -35000 +/-5900 km sq yr(exp -1) (-1.47% +/- 0.25%decade(exp -1)).
Harris, David Dell; Williams, Robert Charles
1971-01-01
Data collected during the prelogging period 1959-65 indicate an average annual runoff for Needle Branch and Deer and Flynn Creeks of 74.2, 75.1, and 77.7 inches, respectively. The measured precipitation at Flynn Creek of 92.9 inches was 5 inches less than at either Needle Branch or Deer Creek. Unit flood runoff during the prelogging period was found to be lowest on Flynn Creek and highest on Needle Branch. On Needle Branch, there appear to be two distinct low-flow patterns, one for a saturated and one for an unsaturated soil condition. The average annual sediment yield was highest on Flynn Creek, 321 tons per square mile, and lowest on Needle Branch, 166 tons per square mile. Maximum water temperatures were 62?F on Flynn Creek and 61?F on Needle Branch and Deer Creek.
Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’ in China
Fazhu, Zhao; Jiao, Sun; Chengjie, Ren; Di, Kang; Jian, Deng; Xinhui, Han; Gaihe, Yang; Yongzhong, Feng; Guangxin, Ren
2015-01-01
Changes in land use might affect the combined C, N and P stoichiometry in soil. The Grain-to-Green Program (GTGP), which converts low-yield croplands or abandoned lands into forest, shrub, and/or grassland, was the largest land reforestation project in China. This study collected the reported C, N and P contents of soil in GTGP zones to achieve the factors driving the changes in the C:N, C:P, and N:P values. The results showed that the annual average precipitation exerted significant effects on the C:P value, and on the N:P value became significant 20 years after the change in land use. The annual average temperature was the main factor affecting the C:N value during the first 10 years, while the annual average precipitation strongly affected this value afterwards. In addition, “Redfield-like” interactions between C, N, and P in the soil may exist. A linear regression revealed significant positive correlations between the C:N, C:P, and N:P values and the restoration age, temperature, and precipitation after a change in land use. Therefore large-scale changes in land use under the ‘GTGP’ program might significantly affect the C:N, C:P and N:P ratios in soil. PMID:25988714
NASA Astrophysics Data System (ADS)
Liao, Z.; LONG, Y., Sr.; Wei, Y.; Guo, Z.
2017-12-01
Serious water deficits and deteriorating environmental quality are threatening the sustainable socio-economic development and the protection of the ecology and the environment in North China, especially in Baotou City. There is a common misconception that groundwater extraction can be sustainable if the pumping rate does not exceed the total natural recharge in a groundwater basin. The truth is that the natural recharge is mainly affected by the rainfall and that groundwater withdrawal determines the sustainable yield of the aquifer flow system. The concept of the sustainable yield is defined as the allowance pumping patterns and rates that avoid adverse impacts on the groundwater system. The sustainable yield introduced in this paper is a useful baseline for groundwater management under all rainfall conditions and given pumping scenarios. A dynamic alternative to the groundwater sustainable yield for a given pumping pattern and rate should consider the responses of the recharge, discharge, and evapotranspiration to the groundwater level fluctuation and to different natural rainfall conditions. In this study, methods for determining the sustainable yield through time series data of groundwater recharge, discharge, extraction, and precipitation in an aquifer are introduced. A numerical simulation tool was used to assess and quantify the dynamic changes in groundwater recharge and discharge under excessive pumping patterns and rates and to estimate the sustainable yield of groundwater flow based on natural rainfall conditions and specific groundwater development scenarios during the period of 2007 to 2014. The results of this study indicate that the multi-year sustainable yield only accounts for about one-half of the average annual recharge. The future sustainable yield for the current pumping scenarios affected by rainfall conditions are evaluated quantitatively to obtain long-term groundwater development strategies. The simulation results show that sufficient rainfall supports excessive pumping patterns, causing a slow and disproportionate groundwater storage recovery and water level rise. In addition, the decrease in the recharge and the increase in the discharge were found to have a notable effect on the dynamic annual sustainable yield, especially in a drought year.
Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA
NASA Astrophysics Data System (ADS)
Sobota, D. J.; Compton, J.; Goodwin, K. E.
2012-12-01
We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and often 75%, of annual N yield occurring in fall and winter months. Our results suggest that that spatially explicit data on specific crop types and crop practices are valuable for explaining spatial and temporal variation of nutrient concentrations in WRB rivers. This emphasizes the need for careful tracking of non-point N inputs to inform water quality monitoring and management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-06-15
The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-06-15
The 2012 International Energy Conservation Code (IECC) yields positive benefits for Texas homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Texas homeowners will save $3,456 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $259 for the 2012 IECC.
Matios, Edward; Burney, Jennifer
2017-03-07
Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km 3 (all ±17%; 1 MAF ≈ 1.233 km 3 ), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km 3 (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km 3 on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.
Soil erosion assessment of a Himalayan river basin using TRMM data
NASA Astrophysics Data System (ADS)
Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.
2015-04-01
In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.
NASA Astrophysics Data System (ADS)
Callahan, R. P.; Riebe, C. S.; Ferrier, K.
2017-12-01
For more than two decades, cosmogenic nuclides have been used to quantify catchment-wide erosion rates averaged over tens of thousands of years. These rates have been used as baselines for comparison with sediment yields averaged over decades, leading to insights on how human activities such as deforestation and agriculture have influenced the production and delivery of sediment to streams and oceans. Here we present new data from the southern Sierra Nevada, California, where sediment yields have been measured over the last ten years using sediment trapping and gauging methods. Cosmogenic nuclides measured in stream sediment reveal erosion rates that are between 13 and 400 (average = 94) times faster than erosion rates inferred from annual accumulations in sediment traps. We show that the discrepancy can be explained by extremely low sediment trapping efficiency, which leads to bias in the short-term rates due to incomplete capture of suspended sediment. Thus the short-term rates roughly agree with the long-term rates, despite intensive timber harvesting in the study catchments over the last century. This differs from results obtained in similar forested granitic catchments of Idaho, where long-term rates are more than ten times greater than short-term rates because large, rare events do not contribute to the short-term averages. Our analysis of a global database indicates that both the magnitude and sign of differences between short- and long-term average erosion rates are difficult to predict, even when the history of land use in known.
NASA Astrophysics Data System (ADS)
Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.
2015-04-01
Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we present within- and between-GCM uncertainty results in mean annual precipitation (MAP), mean annual temperature (MAT), mean annual runoff (MAR), the standard deviation of annual precipitation (SDP), standard deviation of runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 worldwide catchments. Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM uncertainty was assessed in relative form as the standard deviation expressed as a percentage of the mean of the 100 replicate values of each variable. The average relative within-GCM uncertainties from the 17 catchments and 5 GCMs for 2015-2044 (A1B) were MAP 4.2%, SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould-Dincer Gamma (G-DG) procedure was applied to each annual runoff time series for hypothetical reservoir capacities of 1 × MAR and 3 × MAR and the average uncertainties in reservoir yield due to within-GCM uncertainty from the 17 catchments and 5 GCMs were 25.1% (1 × MAR) and 11.9% (3 × MAR). Our approximation of within-GCM uncertainty is expected to be an underestimate due to not replicating the GCM trend. However, our results indicate that within-GCM uncertainty is important when interpreting climate change impact assessments. Approximately 95% of values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1 × MAR or 3 × MAR capacity reservoirs are expected to fall within twice their respective relative uncertainty (standard deviation/mean). Within-GCM uncertainty has significant implications for interpreting climate change impact assessments that report future changes within our range of uncertainty for a given variable - these projected changes may be due solely to within-GCM uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then to reservoir yield, climate change impact assessments that do not take into account within-GCM uncertainty risk providing water resources management decision makers with a sense of certainty that is unjustified.
Minimum size limits for yellow perch (Perca flavescens) in western Lake Erie
Hartman, Wilbur L.; Nepszy, Stephen J.; Scholl, Russell L.
1980-01-01
During the 1960's yellow perch (Perca flavescens) of Lake Erie supported a commercial fishery that produced an average annual catch of 23 million pounds, as well as a modest sport fishery. Since 1969, the resource has seriously deteriorated. Commercial landings amounted to only 6 million pounds in 1976, and included proportionally more immature perch than in the 1960's. Moreover, no strong year classes were produced between 1965 and 1975. An interagency technical committee was appointed in 1975 by the Lake Erie Committee of the Great Lakes Fishery Commission to develop an interim management strategy that would provide for greater protection of perch in western Lake Erie, where declines have been the most severe. The committee first determined the age structure, growth and mortality rates, maturation schedule, and length-fecundity relationship for the population, and then applied Ricker-type equilibrium yield models to determine the effects of various minimum length limits on yield, production, average stock weight, potential egg deposition, and the Abrosov spawning frequency indicator (average number of spawning opportunities per female). The committee recommended increasing the minimum length limit of 5.0 inches to at least 8.5 inches. Theoretically, this change would increase the average stock weight by 36% and potential egg deposition by 44%, without significantly decreasing yield. Abrosov's spawning frequency indicator would rise from the existing 0.6 to about 1.2.
Mandelblatt, Jeanne S; Stout, Natasha K; Schechter, Clyde B; van den Broek, Jeroen J; Miglioretti, Diana L; Krapcho, Martin; Trentham-Dietz, Amy; Munoz, Diego; Lee, Sandra J; Berry, Donald A; van Ravesteyn, Nicolien T; Alagoz, Oguzhan; Kerlikowske, Karla; Tosteson, Anna N A; Near, Aimee M; Hoeffken, Amanda; Chang, Yaojen; Heijnsdijk, Eveline A; Chisholm, Gary; Huang, Xuelin; Huang, Hui; Ergun, Mehmet Ali; Gangnon, Ronald; Sprague, Brian L; Plevritis, Sylvia; Feuer, Eric; de Koning, Harry J; Cronin, Kathleen A
2016-02-16
Controversy persists about optimal mammography screening strategies. To evaluate screening outcomes, taking into account advances in mammography and treatment of breast cancer. Collaboration of 6 simulation models using national data on incidence, digital mammography performance, treatment effects, and other-cause mortality. United States. Average-risk U.S. female population and subgroups with varying risk, breast density, or comorbidity. Eight strategies differing by age at which screening starts (40, 45, or 50 years) and screening interval (annual, biennial, and hybrid [annual for women in their 40s and biennial thereafter]). All strategies assumed 100% adherence and stopped at age 74 years. Benefits (breast cancer-specific mortality reduction, breast cancer deaths averted, life-years, and quality-adjusted life-years); number of mammograms used; harms (false-positive results, benign biopsies, and overdiagnosis); and ratios of harms (or use) and benefits (efficiency) per 1000 screens. Biennial strategies were consistently the most efficient for average-risk women. Biennial screening from age 50 to 74 years avoided a median of 7 breast cancer deaths versus no screening; annual screening from age 40 to 74 years avoided an additional 3 deaths, but yielded 1988 more false-positive results and 11 more overdiagnoses per 1000 women screened. Annual screening from age 50 to 74 years was inefficient (similar benefits, but more harms than other strategies). For groups with a 2- to 4-fold increased risk, annual screening from age 40 years had similar harms and benefits as screening average-risk women biennially from 50 to 74 years. For groups with moderate or severe comorbidity, screening could stop at age 66 to 68 years. Other imaging technologies, polygenic risk, and nonadherence were not considered. Biennial screening for breast cancer is efficient for average-risk populations. Decisions about starting ages and intervals will depend on population characteristics and the decision makers' weight given to the harms and benefits of screening. National Institutes of Health.
Kume, Jack; Dunlap, L.E.; Gutentag, E.D.; Thomas, J.G.
1979-01-01
Data are presented that result from an intensive geohydrologic study for water-supply planning in a 12-square-mile area in northeastern Wichita County, Kansas. These data include records of wells, test drilling, chemical analyses, ground-water levels, rainfall, soilmoisture, well yield, solar radiation, crop yield, and crop acreage. Data indicate that water levels in the unconsolidated aquifer are declining at an average annual rate of about 1 to 2 feet per year (1950-78). This decline is the aquifer's response to pumping by irrigation wells for watering corn, wheat, grain sorghum, and other crops.
NASA Astrophysics Data System (ADS)
Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez
2010-05-01
Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was modelled by simulated SSC from SWAT. The model predicted that the average annual catchment rainfall of the 11-year evaluation period (726 mm) with evapotranspiration (78.3%), percolation/groundwater recharge (14.1%), transmission loss (0.5%), and yielding surface runoff (7.1%). The simulated average total water yield of 11 years accounted for 138 mm (observed=133mm) and annual sediment yield varying from 4766 t to 123000 t (Mean= 48 t km-2). The annual yield of particulate organic carbon ranged from 120 t to 3100 t (Mean=1.2 t km-2).
Linking crop yield anomalies to large-scale atmospheric circulation in Europe.
Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J
2017-06-15
Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.
Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven
2007-01-01
This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.
Barker, J.L.
1989-01-01
The water quality of the West Branch Lackawaxen River and the limnology of Prompton Lake in northeastern Pennsylvania were studied from October 1986 through September 1987 to determine past and present water-quality conditions in the basin, and to determine the possible effects of raising the lake level on the water quality of the Lake, of the river downstream, and of ground water. Past and present water quality of the West Branch Lackawaxen River and Prompton Lake generally meets State standards for high-quality waters that sup- port the maintenance and propagation of cold-water fishes. However, suggested criteria by the U.S. Environmental Protection Agency intended to control excessive algal growth in the lake are exceeded most, if not all, of the time for nitrogen and most of the time for phosphorus. The average annual total nitrogen load entering the lake is 114 tons. Of this total, 41 tons is inorganic nitrate plus nitrate, 48 tons organic nitrogen, and 25 tons ammonia nitrogen. Estimated annual yields of total nitrogen, inorganic nitrite plus nitrate, organic nitrogen, and ammonia nitrogen are 1.9, 9.7, 0.8, and 0.4 tons/mi2 (tons per square mile), respectively. The average annual phosphorus load is estimated to be 4.7 tons, which is equivalent to a yield of 0.08 tons/mi2. About 62 percent, or 2.9 tons, is dissolved phosphorus that is readily available for plant assimilation. The waters of the West Branch Lackawaxen River and Prompton Lake are decidedly phosphorus limited. The long-term average annual suspended-sediment yield to the lake is about 70 tons/mi2. Life expectancy of the 774 acre-feet of space allocated for sediment loads in the raised pool is estimated to be about 287 years. During the 1987 water year, about 51 percent of the annual sediment load was transported during 7 days by storm-water runoff. The maximum sediment discharge during the study period was 400 tons per day. Lake-profile studies show that thermal and chemical stratification develops in early June and persists through September. Water below a depth of about 20 feet becomes anoxic, or nearly so, by mid-July. Summer concentrations of chlorophyll are indicative of eutropic conditions. Although raising of the lake level is expected to increase the efficiency of the lake in trapping nutrients, the increased depth and volume will reduce the concentrations of available nutrients and, thereby, reduce the eutrophication potential of the lake. The water level in about 30 wells near the lake probably will rise after the lake level is raised, and the well yields probably will increase slightly. Flow of water form the lake to the aquifer as the lake is being raised may temporarily increase mineral content of water in the aquifer. After a new equilibrium is reached, however, water will again flow from the aquifer to the lake, thereby restoring the aquifer's water quality.
Detection of meteorological extreme effect on historical crop yield anomaly
NASA Astrophysics Data System (ADS)
Kim, W.; Iizumi, T.; Nishimori, M.
2017-12-01
Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric K.; Aberle, Ezra; Chen, Chengci
Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial grasslands.« less
Anderson, Eric K.; Aberle, Ezra; Chen, Chengci; ...
2015-12-21
Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production wasmore » severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha -1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37 dollars to 311 dollars Mg -1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69 dollars to 526 dollars Mg -1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. Lastly, this field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial grasslands.« less
A long-term simulation of forest carbon fluxes over the Qilian Mountains
NASA Astrophysics Data System (ADS)
Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei; Fan, Wenwu
2016-10-01
In this work, we integrated a remote-sensing-based (the MODIS MOD_17 Gross Primary Productivity (GPP) model (MOD_17)) and a process-based (the Biome-BioGeochemical Cycles (Biome-BGC) model) ecological model in order to estimate long-term (from 2000 to 2012) forest carbon fluxes over the Qilian Mountains in northwest China, a cold and arid forest ecosystem. Our goal was to obtain an accurate and quantitative simulation of spatial GPP patterns using the MOD_17 model and a temporal description of forest processes using the Biome-BGC model. The original MOD_17 model was first optimized using a biome-specific parameter, observed meteorological data, and reproduced fPAR at the eddy covariance site. The optimized MOD_17 model performed much better (R2 = 0.91, RMSE = 5.19 gC/m2/8d) than the original model (R2 = 0.47, RMSE = 20.27 gC/m2/8d). The Biome-BGC model was then calibrated using GPP for 30 representative forest plots selected from the optimized MOD_17 model. The calibrated Biome-BGC model was then driven in order to estimate forest GPP, net primary productivity (NPP), and net ecosystem exchange (NEE). GPP and NEE were validated against two-year (2010 and 2011) EC measurements (R2 = 0.79, RMSE = 1.15 gC/m2/d for GPP; and R2 = 0.69, RMSE = 1.087 gC/m2/d for NEE). NPP estimates from 2000 to 2012 were then compared to dendrochronological measurements (R2 = 0.73, RMSE = 24.46 gC/m2/yr). Our results indicated that integration of the two models can be used for estimating carbon fluxes with good accuracy and a high temporal and spatial resolution. Overall, NPP displayed a downward trend, with an average rate of 0.39 gC/m2/yr, from 2000 and 2012 over the Qilian Mountains. Simulated average annual NPP yielded higher values for the southeast as compared to the northwest. The most positive correlative climatic factor to average annual NPP was downward shortwave radiation. The vapor pressure deficit, and mean temperature and precipitation yielded negative correlations to average annual NPP.
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.21 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... annually); (xv) Pygmy killer whale (Feresa attenuate)—15 (an average of 3 annually); (xvi) Killer whale... dolphin (Lagenorhynchus acutus)—100 (an average of 20 annually); (x) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (xi) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
50 CFR 218.11 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... annually); (viii) Pilot whales (Globicephala sp.)—100 (an average of 20 annually); (ix) Dwarf or pygmy sperm whales (Kogia sp.)—15 (an average of 3 annually); (x) Beaked whales—100 (an average of 20 annually); (xi) Minke whales (Balaenoptera acutorostrata)—15 (an average of 3 annually). (2) Level A Harassment...
Ockerman, Darwin J.
2008-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds per acre per year from the West Oso Creek subwatershed and 0.966 pound per acre per year from the Oso Creek tributary subwatershed. Total phosphorus yields from the West Oso Creek and the Oso Creek tributary subwatersheds for the 2-year period were 0.776 and 0.498 pound per acre per year. Runoff yields of nitrogen and phosphorus were relatively small compared to inputs of nitrogen in fertilizer and rainfall deposition. Average annual runoff yield of total nitrogen (subwatersheds combined) represents about 2.4 percent of nitrogen applied as fertilizer and nitrogen entering the subwatersheds through rainfall deposition. Average annual runoff yield of total phosphorus (subwatersheds combined) represents about 4.4 percent of the phosphorus in applied fertilizer and rainfall deposition. Suspended-sediment yields from the West Oso Creek subwatershed were more than twice those from the Oso Creek tributary subwatershed. The average suspended-sediment yield from the West Oso Creek subwatershed was 582 pounds per acre per year. The average suspended-sediment yield from the Oso Creek tributary subwatershed was 257 pounds per acre per year. Twenty-two herbicides and eight insecticides were detected in runoff samples collected from the two subwatershed outlet sites. At the West Oso Creek site, 18 herbicides and four insecticides were detected, and at the Oso Creek tributary site, 17 herbicides and six insecticides. Seventeen pesticides were detected in only one sample at low concentrations (near the laboratory reporting level). Atrazine, atrazine degradation byproducts 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) and 2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine (OIET), glyphosate, and glyphosate byproduct aminomethylphosphonic acid (AMPA) were detected in all samples. Of all pesticides detected in runoff, the highest runoff yields were for glyphosate, 0.013 pound per acre per year for the West Oso Creek subwatershed and 0.001 pound per acre per year for the Oso Creek t
Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F
2016-11-01
At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Lei; Long, Tian-Yu; Liu, Xia; Mmereki, Daniel
2012-06-01
Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.
NASA Astrophysics Data System (ADS)
Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.
2018-04-01
The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.
Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.
1997-01-01
Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.
Tradeoffs between water requirements and yield stability in annual vs. perennial crops
NASA Astrophysics Data System (ADS)
Vico, Giulia; Brunsell, Nathaniel A.
2018-02-01
Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.
NASA Astrophysics Data System (ADS)
Smith, D. P.; Kvitek, R.; Quan, S.; Iampietro, P.; Paddock, E.; Richmond, S. F.; Gomez, K.; Aiello, I. W.; Consulo, P.
2009-12-01
Models of watershed sediment yield are complicated by spatial and temporal variability of geologic substrate, land cover, and precipitation parameters. Episodic events such as ENSO cycles and severe wildfire are frequent enough to matter in the long-term average yield, and they can produce short-lived, extreme geomorphic responses. The sediment yield from extreme events is difficult to accurately capture because of the obvious dangers associated with field measurements during flood conditions, but it is critical to include extreme values for developing realistic models of rainfall-sediment yield relations, and for calculating long term average denudation rates. Dammed rivers provide a time-honored natural laboratory for quantifying average annual sediment yield and extreme-event sediment yield. While lead-line surveys of the past provided crude estimates of reservoir sediment trapping, recent advances in geospatial technology now provide unprecedented opportunities to improve volume change measurements. High-precision digital elevation models surveyed on an annual basis, or before-and-after specific rainfall-runoff events can be used to quantify relations between rainfall and sediment yield as a function of landscape parameters, including spatially explicit fire intensity. The Basin-Complex Fire of June and July 2008 resulted in moderate to severe burns in the 114 km^2 portion of the Carmel River watershed above Los Padres Dam. The US Geological Survey produced a debris flow probability/volume model for the region indicating that the reservoir could lose considerable capacity if intense enough precipitation occurred in the 2009-10 winter. Loss of Los Padres reservoir capacity has implications for endangered steelhead and red-legged frogs, and groundwater on municipal water supply. In anticipation of potentially catastrophic erosion, we produced an accurate volume calculation of the Los Padres reservoir in fall 2009, and locally monitored hillslope and fluvial processes during winter months. The pre-runoff reservoir volume was developed by collecting and merging sonar and LiDAR data from a small research skiff equipped with a high-precision positioning and attitude-correcting system. The terrestrial LiDAR data were augmented with shore-based total station positioning. Watershed monitoring included benchmarked serial stream surveys and semi-quantitative assessment of a variety of near-channel colluvial processes. Rainfall in the 2009-10 water year was not intense enough to trigger widespread debris flows of slope failure in the burned watershed, but dry ravel was apparently accelerated. The geomorphic analysis showed that sediment yield was not significantly higher during this low-rainfall year, despite the wide-spread presence of very steep, fire-impacted slopes. Because there was little to no increase in sediment yield this year, we have postponed our second reservoir survey. A predicted ENSO event that might bring very intense rains to the watershed is currently predicted for winter 2009-10.
The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Rind, David; Healy, Richard J.; Martinson, Douglas G.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The Goddard Institute for Space Studies global climate model (GISS GCM) is used to examine the sensitivity of the simulated climate to sea ice concentration specifications in the type of simulation done in the Atmospheric Modeling Intercomparison Project (AMIP), with specified oceanic boundary conditions. Results show that sea ice concentration uncertainties of +/- 7% can affect simulated regional temperatures by more than 6 C, and biases in sea ice concentrations of +7% and -7% alter simulated annually averaged global surface air temperatures by -0.10 C and +0.17 C, respectively, over those in the control simulation. The resulting 0.27 C difference in simulated annual global surface air temperatures is reduced by a third, to 0.18 C, when considering instead biases of +4% and -4%. More broadly, least-squares fits through the temperature results of 17 simulations with ice concentration input changes ranging from increases of 50% versus the control simulation to decreases of 50% yield a yearly average global impact of 0.0107 C warming for every 1% ice concentration decrease, i.e., 1.07 C warming for the full +50% to -50% range. Regionally and on a monthly average basis, the differences can be far greater, especially in the polar regions, where wintertime contrasts between the +50% and -50% cases can exceed 30 C. However, few statistically significant effects are found outside the polar latitudes, and temperature effects over the non-polar oceans tend to be under 1 C, due in part to the specification of an unvarying annual cycle of sea surface temperatures. The +/- 7% and 14% results provide bounds on the impact (on GISS GCM simulations making use of satellite data) of satellite-derived ice concentration inaccuracies, +/- 7% being the current estimated average accuracy of satellite retrievals and +/- 4% being the anticipated improved average accuracy for upcoming satellite instruments. Results show that the impact on simulated temperatures of imposed ice concentration changes is least in summer, encouragingly the same season in which the satellite accuracies are thought to be worst. Hence the impact of satellite inaccuracies is probably less than the use of an annually averaged satellite inaccuracy would suggest.
This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Nitrogen (N) inputs from the cultivation of legumes, which possess a symbiotic relationship with N-fixing bacteria, were calculated with a recently developed model relating county-level yields of various leguminous crops with BNF rates. We accessed county-level data on annual crop yields for soybeans (Glycine max L.), alfalfa (Medicago sativa L.), peanuts (Arachis hypogaea L.), various dry beans (Phaseolus, Cicer, and Lens spp.), and dry peas (Pisum spp.) for 2006 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We estimated the yield of the non-alfalfa leguminous component of hay as 32% of the yield of total non-alfalfa hay (http://www.agcensus.usda.gov/index.php). Annual rates of C-BNF by crop type were calculated using a model that relates yield to C-BNF. We assume yield data reflect differences in soil properties, water availability, temperature, and other local and regional factors that can influence root nodulation and rate of N fixation. We distributed county-specific, C-BNF rates to cultivated crop and hay/pasture lands delineated in the 2006 National Land Cover Database (30 x 30 m pixels) within the corresponding county. C-BNF data described here represent an average input to a typical agricultural land type within a county, i.e., they are not
Control Over the Nile: Implications across Nations
2010-06-01
states is evident in the 1959 Full Utilization of the Nile Waters Agreement between Egypt and the Sudan. Of the Nile’s annual average water yield of...grain, maize —has been falling. Kenya saw a 22 per cent decrease in 2000 from the 1998 harvest and a 36 per cent decrease from the 1999 harvest—leading...incorporated in a Nile water resource-sharing regime. The potential for Nile basin conflict or cooperation revolves around, first, the gap between water
Modeling sustainable reuse of nitrogen-laden wastewater by poplar.
Wang, Yusong; Licht, Louis; Just, Craig
2016-01-01
Numerical modeling was used to simulate the leaching of nitrogen (N) to groundwater as a consequence of irrigating food processing wastewater onto grass and poplar under various management scenarios. Under current management practices for a large food processor, a simulated annual N loading of 540 kg ha(-1) yielded 93 kg ha(-1) of N leaching for grass and no N leaching for poplar during the growing season. Increasing the annual growing season N loading to approximately 1,550 kg ha(-1) for poplar only, using "weekly", "daily" and "calculated" irrigation scenarios, yielded N leaching of 17 kg ha(-1), 6 kg ha(-1), and 4 kg ha(-1), respectively. Constraining the simulated irrigation schedule by the current onsite wastewater storage capacity of approximately 757 megaliters (Ml) yielded N leaching of 146 kg ha(-1) yr(-1) while storage capacity scenarios of 3,024 and 4,536 Ml yielded N leaching of 65 and 13 kg ha(-1) yr(-1), respectively, for a loading of 1,550 kg ha(-1) yr(-1). Further constraining the model by the current wastewater storage volume and the available land area (approximately 1,000 hectares) required a "diverse" irrigation schedule that was predicted to leach a weighted average of 13 kg-N ha(-1) yr(-1) when dosed with 1,063 kg-N ha(-1) yr(-1).
Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus
2017-12-01
High nitrogen (N) inputs in Chinese vegetable and cereal productions played key roles in increasing crop yields. However, emissions of the potent greenhouse gas nitrous oxide (N 2 O) and atmospheric pollutant nitric oxide (NO) increased too. For lowering the environmental costs of crop production, it is essential to optimize N strategies to maintain high crop productivity, while reducing the associated N losses. We performed a 2 year-round field study regarding the effect of different combinations of poultry manure and chemical N fertilizers on crop yields, N use efficiency (NUE) and N 2 O and NO fluxes from a Welsh onion-winter wheat system in the North China Plain. Annual N 2 O and NO emissions averaged 1.14-3.82 kg N ha -1 yr -1 (or 5.54-13.06 g N kg -1 N uptake) and 0.57-1.87 kg N ha -1 yr -1 (or 2.78-6.38 g N kg -1 N uptake) over all treatments, respectively. Both N 2 O and NO emissions increased linearly with increasing total N inputs, and the mean annual direct emission factors (EF d ) were 0.39% for N 2 O and 0.19% for NO. Interestingly, the EF d for chemical N fertilizers (N 2 O: 0.42-0.48%; NO: 0.07-0.11%) was significantly lower than for manure N (N 2 O: 1.35%; NO: 0.76%). Besides, a negative power relationship between yield-scaled N 2 O, NO or N 2 O + NO emissions and NUE was observed, suggesting that improving NUE in crop production is crucial for increasing crop yields while decreasing nitrogenous gas release. Compared to the current farmers' fertilization rate, alternative practices with reduced chemical N fertilizers increased NUE and decreased annual N 2 O + NO emissions substantially, while crop yields remained unaffected. As a result, annual yield-scaled N 2 O + NO emissions were reduced by > 20%. Our study shows that a reduction of current application rates of chemical N fertilizers by 30-50% does not affect crop productivity, while at the same time N 2 O and NO emissions would be reduced significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pearson, Kristen Nicole; Kendall, William L.; Winkelman, Dana L.; Persons, William R.
2015-01-01
Our findings reveal evidence for skipped spawning in a potamodromous cyprinid, humpback chub (HBC; Gila cypha ). Using closed robust design mark-recapture models, we found, on average, spawning HBC transition to the skipped spawning state () with a probability of 0.45 (95% CRI (i.e. credible interval): 0.10, 0.80) and skipped spawners remain in the skipped spawning state () with a probability of 0.60 (95% CRI: 0.26, 0.83), yielding an average spawning cycle of every 2.12 years, conditional on survival. As a result, migratory skipped spawners are unavailable for detection during annual sampling events. If availability is unaccounted for, survival and detection probability estimates will be biased. Therefore, we estimated annual adult survival probability (S), while accounting for skipped spawning, and found S remained reasonably stable throughout the study period, with an average of 0.75 ((95% CRI: 0.66, 0.82), process varianceσ2 = 0.005), while skipped spawning probability was highly dynamic (σ2 = 0.306). By improving understanding of HBC spawning strategies, conservation decisions can be based on less biased estimates of survival and a more informed population model structure.
28 CFR 505.2 - Annual determination of average cost of incarceration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MANAGEMENT AND ADMINISTRATION COST OF INCARCERATION FEE § 505.2 Annual determination of average cost of... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Annual determination of average cost of... average cost of incarceration. This calculation is reviewed annually and the revised figure is published...
Microclimate of a desert playa: evaluation of annual radiation, energy, and water budgets components
NASA Astrophysics Data System (ADS)
Malek, Esmaiel
2003-03-01
We set up two automatic weather stations over a playa (the flat floor of an undrained desert basin that, at times, becomes a shallow lake), approximately 65 km east-west by 130 km north-south, located in Dugway (40° 08N, 113° 27W, 1124 m above mean sea level) in northwestern Utah, USA, in 1999. These stations measured the radiation budget components, namely: incoming Rsi and outgoing Rso solar or shortwave radiation, using two Kipp and Zonen pyranometers (one inverted), the incoming Rli (or atmospheric) and outgoing Rlo (or terrestrial) longwave radiation, using two Kipp and Zonen pyrgeometers (one inverted) during the year 2000. These sensors were ventilated throughout the year to prevent dew and frost formation. Summation of these components yields the net radiation Rn. We also measured the air temperatures and humidity at 1 and 2 m and the soil moisture and temperature (Campbell Sci., Inc., CSI) to evaluate the energy budget components (latent (LE), sensible (H), and the soil (Gsur) heat fluxes). The 10 m wind speed U10 and direction (R.M. Young wind monitor), precipitation (CSI), and the surface temperature (Radiation and Energy Balance Systems, REBS) were also measured during 2000. The measurements were taken every 2 s, averaged into 20 min, continuously, throughout the year 2000. The annual comparison of radiation budget components indicates that about 34% of the annual Rsi (6937.7 MJ m-2 year-1) was reflected back to the sky as Rso, with Rli and Rlo amounting to 9943.4 MJ m-2 year-1 and 12 789.7 MJ m-2 year-1 respectively. This yields about 1634.3 MJ m-2 year-1 as Rn, which is about 24% of the annual Rsi. Of the total 1634.3 MJ m-2 year-1 available energy, about 25% was used for the process of evaporation (LE) and 77% for heating the air (H). The annual heat contribution from the soil to the energy budget amounted to 2% during the experimental period. Our studies showed that the total annual measured precipitation amounted to 108.0 mm year-1 during the year 2000, but the total evaporation was 167.6 mm year-1, which means some water was extracted from the shallow water table (about 60 cm on the average depth during the year 2000).
Enzymatic production of DFA III from fresh dahlia tubers as raw material
NASA Astrophysics Data System (ADS)
Budiwati, Thelma A.; Ratnaningrum, D.; Pudjiraharti, S.
2017-01-01
Dahlia is an annual ornamental plants and tubers that have not been widely used in Indonesia. Dahlia tubers contain nearly 70 per cent of the starch in the form of inulin. Inulin addition can be used as a food ingredient can also be used as a raw material for making DFA III (ie functional oligosaccharides), using inulin fructotransferase (IFTase) Nonomuraea sp. In this study conducted production of DFA III through enzymatic reactions and yeast fermentation, using inulin from fresh dahlia tubers and fresh dahlia tuber extract. Dahlia tubers which is one source of inulin, do blanching before extracted. Most dahlia tuber extract used directly for enzymatic reactions in the production of DFA III and some extracts are processed to produce inulin by precipitation using ethanol and then inulin is used for the enzymatic reaction. Syrup DFA III was measured volume and viscosity, and then do decolorization and then crystallization. The analysis was done of Thin Layer Chromatography (to see DFA III formed) and HPLC to see the purity of the product. The results showed that the average of inulin from precipitation with ethanol in the two batch of 113,5 g with an average water content of 7.41%, average whiteness degree 62.29% and an average yield 7.345% (w/w, wb dahlia tuber). From the average of DFA III liquid of 480 mL with density of 14.15%, the result of the average of DFA III crystal from enzyme reaction in the two reactor using inulin dahlia tubers as a substrate, was obtained of 55.4 g with an average whiteness degree of 93.8%, and the average of yield 3.56% w/w (wb dahlia tuber) or 48.89% w/w (db inulin). And then from the average of 475 mL with density of 16.85% was obtained an average DFA III crystals of 29 g from the enzyme reaction in the two reactor using fresh dahlia tuber extract as a substrate, with an average whiteness degree o 80.75% and the average of the yield of 1.86% w/w (wb dahlia tuber).
Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.
2013-01-01
Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-07-03
The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-07-03
The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.
50 CFR 216.242 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...
50 CFR 216.242 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...
Code of Federal Regulations, 2010 CFR
2010-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average and...
Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park
Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.
1993-01-01
The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert A.; Russell, Philip B.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single- scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Bergstrom, Robert W.; Schmid, Beat; Livingston, John M.
2000-01-01
We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.
Climate change and maize yield in southern Africa: what can farm management do?
Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E
2015-12-01
There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.
Jing, Jingying; Søegaard, Karen; Cong, Wen-Feng; Eriksen, Jørgen
2017-01-01
Plant species diversity may benefit natural grassland productivity, but its effect in managed grassland systems is not well understood. A four-year multispecies grassland experiment was conducted to investigate the effect of species diversity-legumes and non-leguminous forbs-on productivity, persistence and sward quality under cutting or grazing regimes and with or without slurry application. Three mixtures were established- 3-mix: grass, red and white clover, 10-mix: 3-mix plus birdsfoot trefoil and six non-leguminous forbs, and 12-mix: 10-mix plus lucerne and festulolium. Species diversity increased sward production and yield persistence under cutting regime. The 12-mix had the highest yield from the second year onwards and no statistically significant yield reduction over four years, while annual yields in the 3-mix and 10-mix decreased significantly with increasing grassland age. The higher yield in the 12-mix was mainly due to the inclusion of high-yielding lucerne. The 10-mix and 12-mix had lower proportions of unsown species than the 3-mix, the difference being dependent on grassland age. Generally, the 3-mix had higher concentrations of in-vitro organic matter digestibility (IVOMD), neutral detergent fiber (NDF) and crude protein (CP), and a lower concentration of ash than the 10-mix and 12-mix. Slurry application increased annual yield production by 10% and changed the botanical composition, increasing the proportion of grass and decreasing the proportion of legumes. Compared to cutting, grazing increased forage production by 9% per cut on average and lowered legume and forb proportions in the mixtures, but yields did not differ among the three mixtures. Overall, our results suggest that species diversity increases sward productivity and persistence only under an ungrazed cutting regime. We conclude that increasing species diversity by selecting appropriate species with compatible management is key to achieving both high yields and high persistence in managed grasslands.
Anderson, Bruce; Ke, Xuehua; Klein-Schwartz, Wendy
2010-08-01
In 2006, the annual report of poison centers in the United States changed the method of reporting profiles for generic substance categories from all exposures to single-substance exposures only. The objective of this study is to describe the potential impact of this reporting change on longitudinal analysis of outcomes. Generic substance categories with data available for all years of the study were manually extracted from Table 22 of the National Poison Data System (NPDS) annual reports for 2002-2007. For each generic substance category, the following data were extracted for each of the 6 years: total number of substance mentions (2002-2005) or single-substance exposures (2006-2007), reason (unintentional or intentional), pediatric exposures (children age <6 years), and outcomes of major effect and death. Data were compared using descriptive analysis (Wilcoxon signed-rank test) and negative binomial regression. There were 65 generic substance categories (30 drug categories and 35 nondrug categories) that had data in all study years. For drug categories the average annual number of reported deaths by substance category decreased by 80.8%, from 2,229 in year 2002-2005 to 428 after the 2006 reporting change (p < 0.0001). The average annual number of reported major outcomes by substance category dropped by 76.0% (p < 0.0001). The impact on nondrug categories was similar: the annual average number of deaths and major effects by substance category decreased by about 50% from 394 and 4,639 per year during 2002-2005 to 198 deaths (p < 0.0001) and 2,357 major effects (p ≤ 0.0001) during 2006-2007. After controlling for potential covariates, multivariate regression showed that there were significant decreases in average rates of reported deaths (61.7 and 35.9%) and major effects (36.3 and 11.2%) for drug categories and nondrug categories, respectively (p < 0.01 for all). Overall rates of major outcomes and deaths reported to poison control centers from 2002 to 2007 have remained constant. The new method of describing demographic data in Table 22 results in outcomes that are different from those reported in previous NPDS annual reports. Comparing NPDS generic substance outcome data before and after the reporting change in 2006 will yield inaccurate results if the change in reporting methodology is not taken into account.
Bales, Jerad D.; Weaver, J. Curtis; Robinson, Jerald B.
1999-01-01
Streamflow and water-quality data were collected at nine sites in the city of Charlotte and Mecklenburg County, North Carolina, during 1993–97. Six of the basins drained areas having relatively homogeneous land use and were less than 0.3 square mile in size; the other three basins had mixed land use. Atmospheric wet-deposition data were collected in three of the basins during 1997–98.Streamflow yield varied by a factor of six among the sites, despite the fact that sites were in close proximity to one another. The lowest yield occurred in a residential basin having no curbs and gutters. The variability in mean flow from these small, relatively homogeneous basins is much greater than is found in streams draining basins that are 10 square miles in size or larger. The ratio of runoff to rainfall in the developing basin appears to have increased during the study period.Low-flow suspended-sediment concentrations in the study basins were about the same magnitude as median stormflow concentrations in Piedmont agricultural basins. Sediment concentrations were higher in the mixed land-use basins and in the developing basin. Median suspended-sediment concentrations in these basins generally were an order of magnitude greater than median concentrations in the other five basins, which had stable land use.Some of the highest total nitrogen concentrations occurred in residential basins. Total nitrogen concentrations detected in this study were about twice as high as concentrations in small Piedmont streams affected by agriculture and urbanization. Most of the total nitrogen consisted of organic nitrogen at all of the sites except in two residential land- use basins. The high ammonia content of lawn fertilizer may explain the higher ammonia concentration in stormflow from residential basins.The two basins with the highest median suspended-sediment concentrations also had the highest total phosphorus concentrations. Median total phosphorus concentrations measured in this study were several times greater than median concentrations in small Piedmont streams but almost an order of magnitude less than total phosphorus concentrations in Charlotte streams during the late 1970's.Bacteria concentrations are not correlated to streamflow. The highest bacteria levels were found in 'first-flush' samples. Higher fecal coliform concentrations were associated with residential land use.Chromium, copper, lead, and zinc occurred at all sites in concentrations that exceeded the North Carolina ambient water-quality standards. The median chromium concentration in the developing basin was more than double the median concentration at any other site. As with chromium, the maximum copper concentration in the developing basin was almost an order of magnitude greater than maximum concentrations at other sites. The highest zinc concentration also occurred in the developing basin. Samples were analyzed for 121 organic compounds and 57 volatile organic compounds. Forty-five organic compounds and seven volatile organic compounds were detected. At least five compounds were detected at all sites, and 15 or more compounds were detected at all sites except two mixed land-use basins. Atrazine, carbaryl, and metolachlor were detected at eight sites, and 90 percent of all samples had measurable amounts of atrazine. About 60 percent of the samples had detectable levels of carbaryl and metolachlor. Diazinon and malathion were measured in samples from seven sites, and methyl parathion, chlorpyrifos, alachlor, and 2,4-D were detected at four or more sites. The fewest compounds were detected in the larger, mixed land-use basins. Residential basins and the developing basin had the greatest number of detections of organic compounds.The pH of wet atmospheric deposition in three Charlotte basins was more variable than the pH measured at a National Atmospheric Deposition Program (NADP)site in Rowan County. Summer pH values were significantly lower than pH measured during the remainder of the year, probably as a result of poorer air quality and different weather patterns during the summer.Concentrations of ammonia and nitrate at the Charlotte sites generally were lower than those measured at the NADP site. Summer concentrations of ammonia and nitrate at both the Charlotte and the NADP sites were significantly greater than concentrations measured during the remainder of the year, again probably reflecting poorer summertime air-quality conditions.Sediment yields at the nine sites ranged from 77 tons per square mile per year in a residential basin to 4,700 tons per square mile per year at the developing basin. Residential areas that have been built-out for several years and industrial areas appear, in general, to have the lowest sediment yields for the Charlotte study sites.Average annual yields of total nitrogen loads ranged from about 1.7 tons per square mile to 6.6 tons per square mile. Average annual total phosphorus yields for all sites except the developing basin were less than 1.4 tons per square mile. Phosphorus yield at the developing basin was 13 .4 tons per square mile per year.Biochemical oxygen demand loading in 1993 from all of the permitted wastewater-treatment facilities in Charlotte and Mecklenburg County was about 1.5 tons per day or 548 tons per year. Converting this point-source loading to an annual yield for the 528 square-mile area of Mecklenburg County is equivalent to 1.03 tons per square mile per year, or a yield much lower than any of the yields measured at the nine study sites. In other words, biochemical oxygen demand loading from nonpoint sources in Mecklenburg County probably exceeds loading from all point sources by a large amount.Loads and average annual yields were computed for five metals-chromium, copper, lead, nickel, and zinc. The highest annual average yields for all five of these metals were in the developing basin, which also had the highest annual average suspended-sediment yield of all the sites. Estimated wet-deposition watershed loadings suggest that atmospheric deposition may be an important source of some metals, including chromium, copper, lead, and zinc, in Charlotte storm water.Storm water from residential land-use basins has higher concentrations of total nitrogen, fecal coliform bacteria, and organic compounds than do other land-use types. Reductions in suspended-sediment concentrations should generally result in reduced export of phosphorus and metals. Stable land uses, such as industrial areas and built-out residential basins, have lower sediment concentrations in stormwater than do mixed land use and developing basins. Finally, atmospheric deposition may be an important source of nitrogen and some metals in Charlotte stormwater.
Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia
NASA Astrophysics Data System (ADS)
Ismail, W. R.; Hashim, M.
2015-03-01
The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.
Concentrations, loads, and yields of organic carbon in streams of agricultural watersheds
Kronholm, Scott; Capel, Paul
2012-01-01
Carbon is cycled to and from large reservoirs in the atmosphere, on land, and in the ocean. Movement of organic carbon from the terrestrial reservoir to the ocean plays an important role in the global cycling of carbon. The transition from natural to agricultural vegetation can change the storage and movement of organic carbon in and from a watershed. Samples were collected from 13 streams located in hydrologically and agriculturally diverse watersheds, to better understand the variability in the concentrations and loads of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the streams, and the variability in watershed yields. The overall annual median concentrations of DOC and POC were 4.9 (range: 2.1–6.8) and 1.1 (range: 0.4–3.8) mg C L−1, respectively. The mean DOC watershed yield (± SE) was 25 ± 6.8 kg C ha−1 yr−1. The yields of DOC from these agricultural watersheds were not substantially different than the DOC yield from naturally vegetated watersheds in equivalent biomes, but were at the low end of the range for most biomes. Total organic carbon (DOC + POC) annually exported from the agricultural watersheds was found to average 0.03% of the organic carbon that is contained in the labile plant matter and top 1 m of soil in the watershed. Since the total organic carbon exported from agricultural watersheds is a relatively small portion of the sequestered carbon within the watershed, there is the great potential to store additional carbon in plants and soils of the watershed, offsetting some anthropogenic CO2 emissions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...
Code of Federal Regulations, 2011 CFR
2011-04-01
... covered Part E employee's average annual wage and whether he or she experienced compensable wage-loss... OWCP use to determine a covered Part E employee's average annual wage and whether he or she experienced... the Social Security Administration to establish a covered Part E employee's presumed average annual...
Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status
NASA Astrophysics Data System (ADS)
Kvakić, Marko; Pellerin, Sylvain; Ciais, Philippe; Achat, David L.; Augusto, Laurent; Denoroy, Pascal; Gerber, James S.; Goll, Daniel; Mollier, Alain; Mueller, Nathaniel D.; Wang, Xuhui; Ringeval, Bruno
2018-01-01
Phosphorus (P) is an essential element for plant growth. Low P availability in soils is likely to limit crop yields in many parts of the world, but this effect has never been quantified at the global scale by process-based models. Here we attempt to estimate P limitation in three major cereals worldwide for the year 2000 by combining information on soil P distribution in croplands and a generic crop model, while accounting for the nature of soil-plant P transport. As a global average, the diffusion-limited soil P supply meets the crop's P demand corresponding to the climatic yield potential, due to the legacy soil P in highly fertilized areas. However, when focusing on the spatial distribution of P supply versus demand, we found strong limitation in regions like North and South America, Africa, and Eastern Europe. Averaged over grid cells where P supply is lower than demand, the global yield gap due to soil P is estimated at 22, 55, and 26% in winter wheat, maize, and rice. Assuming that a fraction (20%) of the annual P applied in fertilizers is directly available to the plant, the global P yield gap lowers by only 5-10%, underlying the importance of the existing soil P supply in sustaining crop yields. The study offers a base for exploring P limitation in crops worldwide but with certain limitations remaining. These could be better accounted for by describing the agricultural P cycle with a fully coupled and mechanistic soil-crop model.
Managment oriented analysis of sediment yield time compression
NASA Astrophysics Data System (ADS)
Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed
2016-04-01
The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in particular months, even in catchment with low or no inter-annual time compression. The analysis of seasonality of time compression showed that in most of the catchments large sediment yields were more likely to occur between October and January, while in two catchments it was in summer (June and July). The appropriate sediment yield management measure: enhancement of soil properties, (dis)connectivity measures or vegetation cover, should therefore be selected with regard to the type of inter-annual time compression, to the properties of the individual catchments, and to the magnitudes of sediment yield. To increase the effectivity and lower the costs of the applied measures, the management in the months or periods when large sediment yields are most likely to occur should be prioritized. The analysis of the monthly time compression might be used for their identification in areas where no event datasets are available. The R-OSMed network of Mediterranean erosion research catchments was funded by "SicMed-Mistrals" grants from 2011 to 2014. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196). João Pedro Nunes has received support from the European Union (in the framework of the European Social Fund) and the Portuguese Government under a post-doctoral fellowship (SFRH/BPD/87571/2012).
Implementing Six Sigma in The Netherlands.
van den Heuvel, Jaap; Does, Ronald J M M; Bogers, Ad J J C; Berg, Marc
2006-07-01
Six Sigma, a process-focused strategy and methodology for business improvement, can be used to improve care processes, eliminate waste, reduce costs, and enhance patient satisfaction. Six Sigma was introduced in 2001 at the 384-bed Red Cross Hospital (Beverwijk). During the Green Belt training, every participant was required to participate in at least one Six Sigma project. The hospital's total savings in 2004 amounted to 1.4 million dollars, for an average savings of 67,000 dollars for each of the completed 21 projects. In one project, the team designed a new admission process for the operating rooms, resulting in an average starting time nine minutes earlier. This relatively minor improvement made it possible to operate on an additional 400 patients a year and to achieve a net savings of >273,000 dollars. A second project reduced the number of patients receiving intravenous (IV) antibiotics by switching to oral administration, yielding annual savings, based on medication costs alone, of >75,000 dollars. A third project reduced the length of stay in the delivery room from 11.9 to 3.4 hours, yielding an annual savings of 68,000 dollars. The "Ultimate Cure?": Six Sigma, which entails involvement of health care workers; use of improvement tools (from industry); creation of trained project teams to tackle complex, often cross-departmental processes; data analyses; and investment in quality improvement may prove the "ultimate cure" to the current cost, quality, and safety issues that challenge health care.
NASA Astrophysics Data System (ADS)
Le Roux, Jay
2016-04-01
Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.
NASA Astrophysics Data System (ADS)
Al-Shomrany, Adel
The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and soybean levels show yields as a function of precipitation. The GWR models predicted that yields were significantly better than OLS performances for maize (corn) and soybean. The OLS regression model when used showed a general trend of correlation between observed yields and long-term mean precipitation totals, with 84% and 63% of the variability in mean yield explained by the mean annual precipitation for the non-irrigated crops. The GWR technique performance in predicting yields was significantly better than OLS performances. For instance in the months of June, July, and August precipitations had greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of the greater sensitivity maize (corn) had to water stress. SPI is capable of offering various time-scales enabling it to show initial warning signs of drought conditions and accompanying severity levels. SPI calculation techniques used for various locations are reflected upon the precipitation records acquired during those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of the MODIS indices as shown in its results in monitoring vegetation moisture and drought detection. NDII6 performed the best due to its detection abilities. The 9-month SPI provides an indication of inter-seasonal precipitation patterns over medium timescale duration. A new approach used is to average corn and soybean yields for all counties of the study area in comparison with average anomalies of the MODIS indices for the growing season between May through September from 2006-2012. There was a strong correlation between average corn yields versus MODIS NDII6 averages for these years with R2 equaling 0.62. That means NDII6 is the best indicator to show drought conditions and vegetation moisture monitoring. There was a weak correlation with R2 = 0.16 between averages of soybean yields and averages of precipitation. Irrigation and management systems, technological improvements from hybrids, producer management techniques, and other management practices have an impact on crop yield productions. (Abstract shortened by ProQuest.).
Evans, Margaret E K; Ferrière, Régis; Kane, Michael J; Venable, D Lawrence
2007-02-01
Bet hedging is one solution to the problem of an unpredictably variable environment: fitness in the average environment is sacrificed in favor of lower variation in fitness if this leads to higher long-run stochastic mean fitness. While bet hedging is an important concept in evolutionary ecology, empirical evidence that it occurs is scant. Here we evaluate whether bet hedging occurs via seed banking in natural populations of two species of desert evening primroses (Oenothera, Onagraceae), one annual and one perennial. Four years of data on plants and 3 years of data on seeds yielded two transitions for the entire life cycle. One year was exceptionally dry, leading to reproductive failure in the sample areas, and the other was above average in precipitation, leading to reproductive success in four of five populations. Stochastic simulations of population growth revealed patterns indicative of bet hedging via seed banking, particularly in the annual populations: variance in fitness and fitness in the average environment were lower with seed banking than without, whereas long-run stochastic mean fitness was higher with seed banking than without across a wide range of probabilities of the wet year. This represents a novel, unusually rigorous demonstration of bet hedging from field data.
Climate change impact assessment on hydrology of a small watershed using semi-distributed model
NASA Astrophysics Data System (ADS)
Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak
2017-07-01
This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.
Ockerman, Darwin J.; Fernandez, Carlos J.
2010-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3-year study period averaged 2.62 pounds per acre per year from the West Oso Creek subwatershed and 0.839 pound per acre per year from the Oso Creek tributary subwatershed. Total phosphorus yields from the West Oso Creek and Oso Creek tributary subwatersheds for the 3-year period were 0.644 and 0.419 pound per acre per year, respectively. Runoff yields of nitrogen and phosphorus were relatively small compared to inputs of nitrogen in fertilizer and rainfall deposition. Average annual runoff yield of total nitrogen (subwatersheds combined) represents about 2.5 percent of nitrogen applied as fertilizer to cropland in the watershed and nitrogen entering the subwatersheds through rainfall deposition. Average annual runoff yield of total phosphorus (subwatersheds combined) represents about 4.0 percent of the phosphorus in applied fertilizer and rainfall deposition. Suspended-sediment yields from the West Oso Creek subwatershed were more than twice those from the Oso Creek tributary subwatershed. The average suspended-sediment yield from the West Oso Creek subwatershed was 522 pounds per acre per year and from the Oso Creek tributary subwatershed was 139 pounds per acre per year. Twenty-four herbicides and eight insecticides were detected in runoff samples collected at the two subwatershed outlets. At the West Oso Creek site, 19 herbicides and 4 insecticides were detected; at the Oso Creek tributary site, 18 herbicides and 6 insecticides were detected. Fourteen pesticides were detected in only one sample at low concentrations (near the laboratory reporting level). Atrazine and atrazine degradation byproduct 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) were detected in all samples. Glyphosate and glyphosate byproduct aminomethylphosphonic acid (AMPA) were detected in all samples collected and analyzed during water years 2006-07 but were not included in analysis for samples collected in water year 2008. Of all pesticides detected in runoff, the highest runoff yields w
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.
2015-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.
2014-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.
NASA Technical Reports Server (NTRS)
Tellers, T. E.
1980-01-01
An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.
12 CFR Appendix A to Part 230 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2010 CFR
2010-01-01
... following simple formula: APY=100 (Interest/Principal) Examples (1) If an institution pays $61.68 in... percentage yield is 5.39%, using the simple formula: APY=100(134.75/2,500) APY=5.39% For $15,000, interest is... Yield Calculation The annual percentage yield measures the total amount of interest paid on an account...
Moore, M.A.; Lamb, T.E.
1984-01-01
The computed annual yield and deficiency of the subbasins as defined in the Arkansas River Compact, Arkansas-Oklahoma, are given in tables. Actual runoff from the subbasins and depletion caused by major reservoirs in the compact area are also given in tabular form. Monthly, maximum, minimum, and mean discharges are shown for the 14 streamflow stations used in computing annual yield. (USGS)
Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA
Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence
2013-01-01
Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy. PMID:23577208
Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.
2006-01-01
A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and measured streamflow profiles indicates that, in general, the river is gaining ground water from the alluvium in the reach from the town of Red River to between Hottentot and Straight Creeks, and from Columbine Creek to near Thunder Bridge. The river is losing water to the alluvium from upstream of the mill area to Columbine Creek. Interpretations of ground- and surface-water interactions based on comparisons of mean annual basin yield and measured streamflow are supported further with water-level data from piezometers, wells, and the Red River.
Global Crop Yields, Climatic Trends and Technology Enhancement
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.
2016-12-01
During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Oren, R.
2017-12-01
Over the past century, climate change is affecting precipitation regimes across the world. In the Mediterranean regions there is a persistent trend of precipitation and runoff decreases, generating a desertification process. Given the past winter precipitation shifts, the impacts on evapotranspiration (ET) need to be carefully evaluated, and the compelling question is what will be the impact of future climate change scenarios (predicting changes of precipitation and vapor pressure deficit, VPD) on evapotranspiration and water yield? Looking for the key elements of the climate change that are impacting annual ET, we investigate main climate conditions (e.g. precipitation and VPD) and basin physiographic properties contributing to annual ET. We propose a simplified model for annual ET predictions that accounts for the strong meteo seasonality typical of Mediterranean climates, using the steady state assumption of the basin water balance at mean annual scale. We investigate the Sardinia case study because the position of the island of Sardinia in the center of the western Mediterranean Sea basin and its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. Sardinian runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period, and most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The use of our proposed model allows to predict future ET and water yield using future climate scenarios. We use the future climate scenarios predicted by Global climate models (GCM) in the Fifth Assessment report of the Intergovernmental Panel on Climate Change (IPCC), and we select most reliable models testing the past GCM predictions with historical data. Contrasting shifts of precipitation (both positive and negative) are predicted in the future scenarios by GCMs but these changes will produce significant changes (level of significance > 90%) only in runoff and not in ET. Surprisingly, we show that ET is insensitive to intra-annual rainfall distribution changes, and is insensitive to VPD scenario changes.
Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt.
Haynes, Kristine M; Mitchell, Carl P J
2012-08-01
Spring snowmelt is an important period of mercury (Hg) export from watersheds. Limited research has investigated the potential effects of climate variability on hydrologic and Hg fluxes during spring snowmelt. The purpose of this research was to assess the potential impacts of inter-annual climate variability on Hg mobility in forested uplands, as well as spatial variability in hillslope hydrology and Hg fluxes. We compared hydrological flows, Hg and solute mobility from three adjacent hillslopes in the S7 watershed of the Marcell Experimental Forest, Minnesota during two very different spring snowmelt periods: one following a winter (2009-2010) with severely diminished snow accumulation (snow water equivalent (SWE) = 48 mm) with an early melt, and a second (2010-2011) with significantly greater winter snow accumulation (SWE = 98 mm) with average to late melt timing. Observed inter-annual differences in total Hg (THg) and dissolved organic carbon (DOC) yields were predominantly flow-driven, as the proportion by which solute yields increased was the same as the increase in runoff. Accounting for inter-annual differences in flow, there was no significant difference in THg and DOC export between the two snowmelt periods. The spring 2010 snowmelt highlighted the important contribution of melting soil frost in the timing of a considerable portion of THg exported from the hillslope, accounting for nearly 30% of the THg mobilized. Differences in slope morphology and soil depths to the confining till layer were important in controlling the large observed spatial variability in hydrological flowpaths, transmissivity feedback responses, and Hg flux trends across the adjacent hillslopes.
Processes of arroyo filling in northern New Mexico, USA
Friedman, Jonathan M.; Vincent, Kirk R.; Griffin, Eleanor R.; Scott, Michael L.; Shafroth, Patrick B.; Auble, Gregor T.
2015-01-01
We documented arroyo evolution at the tree, trench, and arroyo scales along the lower Rio Puerco and Chaco Wash in northern New Mexico, USA. We excavated 29 buried living woody plants and used burial signatures in their annual rings to date stratigraphy in four trenches across the arroyos. Then, we reconstructed the history of arroyo evolution by combining trench data with arroyo-scale information from aerial imagery, light detection and ranging (LiDAR), longitudinal profiles, and repeat surveys of cross sections. Burial signatures in annual rings of salt cedar and willow dated sedimentary beds greater than 30 cm thick with annual precision. Along both arroyos, incision occurred until the 1930s in association with extreme high flows, and subsequent filling involved vegetation development, channel narrowing, increased sinuosity, and finally vertical aggradation. A strongly depositional sediment transport regime interacted with floodplain shrubs to produce a characteristic narrow, trapezoidal channel. The 55 km study reach along the Rio Puerco demonstrated upstream progression of arroyo widening and filling, but not of arroyo incision, channel narrowing, or floodplain vegetation development. We conclude that the occurrence of upstream progression within large basins like the Rio Puerco makes precise synchrony across basins impossible. Arroyo wall retreat is now mostly limited to locations where meanders impinge on the arroyo wall, forming hairpin bends, for which entry to and exit from the wall are stationary. Average annual sediment storage within the Rio Puerco study reach between 1955 and 2005 was 4.8 × 105 t/yr, 16% of the average annual suspended sediment yield, and 24% of the long-term bedrock denudation rate. At this rate, the arroyo would fill in 310 yr.
50 CFR 217.172 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...
50 CFR 217.172 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... dolphin (Grampus griseus)—100 (an average of 20 annually). (vi) Killer whale (Orcinus orca)—100 (an... right whale (Eubalaena glacialis)—120 (an average of 24 annually). (ii) Fin whale (Balaenoptera physalus)—145 (an average of 29 annually). (iii) Humpback whale (Megaptera novaeangliae)—390 (an average of 78...
A Remote Sensing-Derived Corn Yield Assessment Model
NASA Astrophysics Data System (ADS)
Shrestha, Ranjay Man
Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield due to flood events during the growing season. Using a 2011 Missouri River flood event as a case study, field-level flood impact map on corn yield throughout the flooded regions was produced and an overall agreement of over 82.2% was achieved when compared with the reference impact map. The future research direction of this dissertation research would be to examine other major crops outside the Corn Belt region of the U.S.
Organic Biochar Based Fertilization
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia
2017-04-01
Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.
Flannery, Jennifer A.; Poore, Richard Z.
2013-01-01
Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.
Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.
1996-01-01
A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and northeastern parts of the Delaware River Basin had the largest monthly and annual mean atrazine concentrations. Time- weighted, annual mean atrazine concentrations did not exceed the MCL in water from any sampling site for either the 1993 or 1994 crop years (April-March); however, concentrations were during 1994 than during 1993. Time-weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 0.27 to 1.5 ug/L and from 0.36 to 2.8 ug/L during the 1994 crop year. Furthermore, concentrations in samples from the outflow of Perry Lake were larger during the first 6 months of the 1995 crop year than during the previous year. Flow-weighted, annual mean atrazine concentrations were larger than time-weighted, annual mean concentrations in water from all sampling sites upstream of Perry Lake, and samples from several sites had concentrations were substantially larger than the MCL. This difference explained why time-weighted, annual mean concentrations in the outflow of Perry Lake were larger than corresponding time-weighted concentrations in water from sampling sites upstream of Perry Lake. Flow- weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 1.0 to 4.4 ug/L and from 1.0 to 8.9 ug/L during the 1994 crop year. Statistically significant linear-regression equations were identified relating the percentage of subbasin in cropland to time- and flow-weighted, average annual mean atrazine concentrations. The relations indicate that time-weighted, average annual mean atrazine concentrations may not exceed the MCL in water from subbasins with at least about 70-percent cropland. However, flow-weighted, average annual mean atrazine concentrations may exceed the MCL when the percentage of cropland is greater than about 40 percent. Approximately 90 percent of the annual atrazine load is transport from May through July. Atrazine loads and yields were larger during the 1993 cro
Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah
Sumsion, C.T.
1971-01-01
This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.
Water for a rapidly growing urban community, Oakland County, Michigan
Twenter, F.R.; Knutilla, R.L.
1972-01-01
Oakland County, an area of 899 square miles, is in southeastern Michigan. The southern part of the county is overlapped by the suburbs of the city of Detroit. In 1970, about 850,000 people were living in the county and using about 100 million gallons of water a day. More than 80 percent of the water used for large industrial and municipal supplies came from Detroit's water system. The average annual rate of streamflow from the county is about 370 million gallons per day (575 cubic feet per second). Median annual 7-day low flows range from 0 to 0.25 cfs per square mile. Low flows can be augmented by more than 60,000 acre-feet of water captured during high streamflow by construction of small reservoirs at 21 inventoried sites. Glacial deposits and the Marshall Sandstone are the prime sources of ground water. Most wells that penetrate the full thickness of glacial deposits in the northwestern part of the county will yield at least 50 gpm (gallons per minute), and many will yield more than 400 gpm. The Marshall Sandstone, which occurs only in the Holly area, is capable of yielding more than 1,000 gpm. The chemical quality of both surface and ground water is relatively good throughout the county. Only in the southern part of the county is the dissolved solids above the acceptable standard of 500 milligrams per liter.
Anttila, Peter W.; Tobin, Robert L.
1978-01-01
Characteristics of fluvial sediment in Ohio streams and estimates of sediment yield are reported. Results are based on data from several daily record stations and 5 years of intermittent record from a 38-station network. Most of the sediment transported by Ohio streams is in suspension. Mean annual bedload discharge, in percentage of mean annual suspended-sediment discharge, is estimated to be less than 10 percent at all but one of the sediment stations analyzed. Duration analysis shows that about 90 percent of the suspended sediment is discharged during 10 percent of the time. Concentration of suspended sediment averages less than 100 milligrams per liter 75 percent of the time and less than 50 milligrams per liter 50 percent of the time. Suspended sediment in Ohio streams is composed mostly of silt and clay. Sand particle content ranges from 1 to 2 percent in northwestern Ohio to 15 percent in the east and southeast. Sediment yields range from less than 100 tons per square mile per year (35 tonnes per square kilometer per year) in the northwest corner of Ohio to over 500 tons per square mile per year (17,5 tonnes per square kilometer per year) in the southern part, in Todd Fork basin, lower Paint Creek basin, and the Kentucky Bluegrass area. Yield from about 63 percent of Ohio's land area ranges from 100 to 200 tons per square mile per year (35 to 70 tonnes per square kilometer per year).
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass (Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended. PMID:25105170
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
Export of Nitrogen From the Yukon River Basin to the Bering Sea
NASA Astrophysics Data System (ADS)
Dornblaser, M. M.; Striegl, R. G.
2005-12-01
The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.
Assessing the environmental impacts of soil compaction in Life Cycle Assessment.
Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie
2018-07-15
Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of land use and retention practices on sediment yields in the Stony Brook basin, New Jersey
Mansue, Lawrence J.; Anderson, Peter W.
1974-01-01
The average annual rate of suspended-sediment discharge of the Stony Brook at Princeton, N.J. (44.5 square miles) is about 8,800 tons, or 200 tons per square mile. Annual yields within the basin, which is in the Piedmont Lowlands section of the Piedmont physiographic province in west-central New Jersey, range from 25 to 400 tons per square mile. Storm runoff that transports suspended materials in excess of a ton carries 90 percent of the total suspended-sediment discharge from the basin. Observations of particlesize distributions indicate that the suspended material carried during storms is 55 percent silt, 40 percent clay, and 5 percent sand. A trend analysis of sediment records collected at Princeton between 1956 and 1970 indicated an increase in suspended-sediment discharge per unit of water discharge during 1956-61. From early 1962 to late 1967, sediment trends were difficult to interpret owing to complicating factors, such as reservoir construction, urbanization, and extreme drought. After 1967, yields decreased. Variations in sediment yields during the study are attributed to the integrated influence of several factors. A 2.9 percent decrease in croplands and an increase of 5.1 percent in idle and urban land use probably produced a net increase in sediment yields. Construction of seven sediment-retention reservoirs under Public Law 566 resulted in temporary increases in sediment yields. However, based on a trap-efficiency investigation at 1 site, the combined effect of operation of these 7 reservoirs is estimated to result in a 20 percent reduction in sediment discharge from the basin. Other factors that influence the noted decrease include reduction in yields during 5 years of drought, 1962-66, and reduced construction and development during the latter part of the study period resulting from a general economic slowdown.
Garrison, Aaron T; Abouelhassan, Yasmeen; Kallifidas, Dimitris; Tan, Hao; Kim, Young S; Jin, Shouguang; Luesch, Hendrik; Huigens, Robert W
2018-05-10
Bacterial biofilms are surface-attached communities comprised of nonreplicating persister cells housed within a protective extracellular matrix. Biofilms display tolerance toward conventional antibiotics, occur in ∼80% of infections, and lead to >500000 deaths annually. We recently identified halogenated phenazine (HP) analogues which demonstrate biofilm-eradicating activities against priority pathogens; however, the synthesis of phenazines presents limitations. Herein, we report a refined HP synthesis which expedited the identification of improved biofilm-eradicating agents. 1-Methoxyphenazine scaffolds were generated through a Buchwald-Hartwig cross-coupling (70% average yield) and subsequent reductive cyclization (68% average yield), expediting the discovery of potent biofilm-eradicating HPs (e.g., 61: MRSA BAA-1707 MBEC = 4.69 μM). We also developed bacterial-selective prodrugs (reductively activated quinone-alkyloxycarbonyloxymethyl moiety) to afford HP 87, which demonstrated excellent antibacterial and biofilm eradication activities against MRSA BAA-1707 (MIC = 0.15 μM, MBEC = 12.5 μM). Furthermore, active HPs herein exhibit negligible cytotoxic or hemolytic effects, highlighting their potential to target biofilms.
12 CFR Appendix B to Part 707 - Model Clauses and Sample Forms
Code of Federal Regulations, 2013 CFR
2013-01-01
... your deposit account is ___% with an annual percentage yield (APY) of ___%. [For purposes of this...-bearing Term Share Accounts The dividend rate on your term share account is ___% with an annual percentage... declaration date/ (date)], the dividend rate was ___% with an annual percentage yield (APY) of ___% on your...
12 CFR Appendix B to Part 707 - Model Clauses and Sample Forms
Code of Federal Regulations, 2012 CFR
2012-01-01
... your deposit account is ___% with an annual percentage yield (APY) of ___%. [For purposes of this...-bearing Term Share Accounts The dividend rate on your term share account is ___% with an annual percentage... declaration date/ (date)], the dividend rate was ___% with an annual percentage yield (APY) of ___% on your...
12 CFR Appendix B to Part 707 - Model Clauses and Sample Forms
Code of Federal Regulations, 2011 CFR
2011-01-01
... your deposit account is ___% with an annual percentage yield (APY) of ___%. [For purposes of this...-bearing Term Share Accounts The dividend rate on your term share account is ___% with an annual percentage... declaration date/ (date)], the dividend rate was ___% with an annual percentage yield (APY) of ___% on your...
12 CFR Appendix B to Part 707 - Model Clauses and Sample Forms
Code of Federal Regulations, 2014 CFR
2014-01-01
... your deposit account is ___% with an annual percentage yield (APY) of ___%. [For purposes of this...-bearing Term Share Accounts The dividend rate on your term share account is ___% with an annual percentage... declaration date/ (date)], the dividend rate was ___% with an annual percentage yield (APY) of ___% on your...
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
McCabe, Andrew J; Arnold, William A
2016-07-01
The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Sun-Young; Song, Insang
2017-07-01
The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and epidemiological research to answer policy-related questions and to draw comparisons among different countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs
Jones, John R.; Obrecht, Daniel V.; Graham, Jennifer L.; Balmer, Michelle B.; Filstrup, Christopher T.; Downing, John A.
2016-01-01
Evidence suggests that lakes are important sites for atmospheric CO2 exchange and so play a substantial role in the global carbon budget. Previous research has 2 weaknesses: (1) most data have been collected only during the open-water or summer seasons, and (2) data are concentrated principally on natural lakes in northern latitudes. Here, we report on the full annual cycle of atmospheric CO2 exchanges of 15 oligotrophic to eutrophic reservoirs in the Glacial Till Plains of the United States. With one exception, these reservoirs showed an overall loss of CO2 during the year, with most values within the lower range reported for temperate lakes. There was a strong cross-system seasonal pattern: an average of 70% of total annual CO2 efflux occurred by the end of spring mixis; some 20% of annual flux was reabsorbed during summer stratification; and the remaining 50% of efflux was lost during autumnal mixing. Net annual flux was negatively correlated with depth and positively correlated with both water residence time and DOC, with the smallest annual CO2 efflux measured in shallow fertile impoundments. Strong correlations yield relationships allowing regional up-scaling of CO2 evasion. Understanding lacustrine CO2 uptake and evasion requires seasonal analyses across the full range of lake trophic states and morphometric attributes.
A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.
Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V
2018-01-01
Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.
A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.
2018-01-01
Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost. PMID:29706974
NASA Astrophysics Data System (ADS)
Rezaei, Abolfazl; Mohammadi, Zargham
2017-10-01
The safe groundwater yield plays a major role in the appropriate management of groundwater systems, particularly in (semi-)arid areas like Iran. This study incorporates both the water balance equation and the water table fluctuation to estimate the annual safe yield of the unconfined aquifer in the eastern part of the Kaftar Lake, an Iranian semiarid region. Firstly, the water balance year 2002-03, owing same water table elevation at the beginning and year-end, was chosen from the monthly representative groundwater hydrograph of the aquifer to be taken into account as a basic water year for determining the safe yield. Then the ratio of the total groundwater pumping to the annual groundwater recharge in the selected water balance year together with the quantity of total recharge occurred in the wet period (October to May) of the year of interest were applied to evaluate the annual safe yield at the initiation of the dry period (June to September) of the year of interest. Knowing the annual safe groundwater withdrawal rate at the initiation of each dry period could be helpful to decision makers in managing groundwater resources conservation. Analysis results indicate that to develop a safe management strategy in the aquifer; the ratio of the annual groundwater withdrawal to the annually recharged volume should not exceed 0.69. In the water year 2003-04 where the ratio is equal to 0.52, the water table raised up (about 0.48 m) while the groundwater level significantly declined (about 1.54 m) over the water year 2007-08 where the ratio of the annual groundwater withdrawal to the annually recharged volume (i.e., 2.76) is larger than 0.69.
50 CFR 218.171 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...); (2) Northern fur seal (Callorhinus ursinus)—220 (an average of 44 annually); (3) California sea lion (Zalophus californianus)—570 (an average of 114 annually); (4) Northern elephant seal (Mirounga angustirostris)—70 (an average of 14 annually); (5) Harbor seal (Phoca vitulina richardsi) (Washington Inland...
Evapotranspiration and water yield over China's landmass from 2000 to 2010
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-12-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle, altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China because water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. To constrain uncertainties in ET estimation, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) data set, MODIS land cover, meteorological, and soil data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield were analyzed. The influences of climatic factors (temperature and precipitation) and vegetation (land cover types and LAI) on these variations were assessed. Validations against ET measured at five ChinaFLUX sites showed that the BEPS model was able to simulate daily and annual ET well at site scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China. The correlation between annual ET and precipitation was positive in the arid and semiarid areas of northwest and north China, but negative in the Tibetan Plateau and humid southeast China. The national annual ET varied from 345.5 mm in 2001 to 387.8 mm in 2005, with an average of 369.8 mm during the study period. The overall rate of increase, 1.7 mm yr-1 (R2 = 0.18, p = 0.19), was mainly driven by the increase of total ET in forests. During 2006-2009, precipitation and LAI decreased widely and consequently caused a detectable decrease in national total ET. Annual ET increased over 62.2% of China's landmass, especially in the cropland areas of the southern Haihe River basin, most of the Huaihe River basin, and the southeastern Yangtze River basin. It decreased in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibetan Plateau, the south of Yunnan Province, and Hainan Province. Reduction in precipitation and increase in ET caused vast regions in China, especially the regions south of Yangtze River, to experience significant decreases in water yield, while some sporadically distributed areas experienced increases in water yield. This study shows that the terrestrial water cycles in China's terrestrial ecosystems appear to have been intensified by recent climatic variability and human induced vegetation changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-06-15
The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Alabama homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Alabama homeowners will save $2,117 over 30 years under the 2009 IECC, with savings still higher at $6,182 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for both the 2009 and 2012 IECC. Average annual energy savings aremore » $168 for the 2009 IECC and $462 for the 2012 IECC.« less
50 CFR 216.272 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... electra)—100 (an average of 20 annually) (S) Pygmy killer whale (Feresa attenuata)—100 (an average of 20 annually) (T) False killer whale (Pseudorca crassidens)—100 (an average of 20 annually) (U) Killer whale... percent of the number of takes indicated below): (i) Mysticetes: (A) Humpback whale (Megaptera...
50 CFR 217.142 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... method and amount of take: (1) Level B Harassment: (i) Cetaceans: (A) Bowhead whale (Balaena mysticetus)—75 (an average of 15 annually) (B) Gray whale (Eschrichtius robustus)—10 (an average of 2 annually) (C) Beluga whale (Delphinapterus leucas)—100 (an average of 20 annually) (ii) Pinnipeds: (A) Ringed...
Sloto, Ronald A.; Olson, Leif E.
2011-01-01
Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the highest peak discharges generally carried the highest SSLs. For all stations, the greatest SSLs occurred during the late winter in February and March during the 2008 water year. During the 2009 water year, the greatest SSLs occurred during December and August. For French Creek near Phoenixville, the estimated annual SSL was 3,500 tons, and the estimated yield was 59.1 tons per square mile (ton/mi2) for the 2008 water year. For the 2009 water year, the annual SSL was 4,390 tons, and the yield was 74.3 ton/mi2. For West Branch Brandywine Creek near Honey Brook, the estimated annual SSL was 4,580 tons, and the estimated yield was 245 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 2,300 tons, and the yield was 123 ton/mi2. For West Branch Brandywine Creek at Modena, the estimated annual SSL was 7,480 tons, and the estimated yield was 136 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 4,930 tons, and the yield was 90 ton/mi2. For East Branch Brandywine Creek below Downingtown, the estimated annual SSL was 8,900 tons, and the estimated yield was 100 ton/mi2 for the 2008 water year. For the 2009 water year, the annual SSL was 7,590 tons, and the yield was 84 ton/mi2.
NASA Astrophysics Data System (ADS)
Kala, L. D.; Subbarao, P. M. V.
2017-11-01
The amount of pine needles (pinus roxburgii) potentially available for use as energy feedstock in the Central Himalayan state of Uttarakhand in India has been estimated. It involves estimating the gross annual amount of pine needle yield followed by a comprehensive identification and quantification of the factors that affect the net annual pine needle yield available as energy feedstock. These factors include considerations such as accessibility, alternative uses, forest fires, other losses, etc., that are influenced by aspects ranging from physical constraints to traditional societal traits. Tree canopy cover method has been used for estimating the gross annual pine needle yield. The information on canopy density is obtained from remote sensing data, that forms the basis for forest classification. The annual gross pine needle yield has been estimated at 1.9 million tonnes while the annual net pine needle yield at 1.33 million tonnes. The annual primary energy potential of pine needles available as energy feedstock has also been estimated. For annual net energy potential estimation, thermal and electrical routes are considered. Electrical energy generation from pine needles using thermochemical conversion has been examined and the corresponding potential for electricity generation been estimated. An installed capacity of 789 MW can be supported with pine needles feedstock for supplying electricity in rural areas for five hours a day. For round the clock generation, an installed capacity of 165 MW can be supported by the pine needle energy feedstock.
NASA Astrophysics Data System (ADS)
Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.
2017-12-01
Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.
NASA Astrophysics Data System (ADS)
Bunte, Kristin; Swingle, Kurt W.; Turowski, Jens M.; Abt, Steven R.; Cenderelli, Daniel A.
2016-08-01
Coarse particulate organic matter (CPOM) provides a food source for benthic organisms, and the fluvial transport of CPOM is one of the forms in which carbon is exported from a forested basin. However, little is known about transport dynamics of CPOM, its relation to discharge, and its annual exports from mountain streams. Much of this knowledge gap is due to sampling difficulties. In this study, CPOM was sampled over one-month snowmelt high flow seasons in two high-elevation, subalpine, streams in the Rocky Mountains. Bedload traps developed for sampling gravel bedload were found to be suitable samplers for CPOM transport. CPOM transport rates were well related to flow in consecutive samples but showed pronounced hysteresis over the diurnal fluctuations of flow, between consecutive days, and over the rising and falling limbs of the high-flow season. In order to compute annual CPOM load, hysteresis effects require intensive sampling and establishing separate rating curves for all rising and falling limbs. Hysteresis patterns of CPOM transport relations identified in the well-sampled study streams may aid with estimates of CPOM transport and export in less well-sampled Rocky Mountain streams. Transport relations for CPOM were similar among three high elevation mountain stream with mainly coniferous watersheds. Differences among streams can be qualitatively attributed to differences in CPOM contributions from litter fall, from the presence of large woody debris, its grinding into CPOM sized particles by gravel-cobble bedload transport, hillslope connectivity, drainage density, and biological consumption. CPOM loads were 3.6 and 3.2 t/yr for the two Rocky Mountain streams. Adjusted to reflect decadal averages, values increased to 11.3 and 10.2 t/yr. CPOM yields related to the entire watershed were 2.7 and 4 kg/ha/yr for the years studied, but both streams exported similar amounts of 6.5 and 6.6 kg/ha/yr when taking the forested portion of the watershed into account. To reflect decadal averages, CPOM yields per basin area were adjusted to 8.6 and 12.6 kg/ha/yr and to 21 kg/ha/yr for the forested watershed parts. CPOM yield may be more meaningfully characterized if annual CPOM loads are normalized by the area of a seam along the stream banks together with the stream surface area rather than by the forested or total watershed area.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.; Smith, R. A.
2016-12-01
The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.
NASA Astrophysics Data System (ADS)
Stumpf, Felix; Goebes, Philipp; Schmidt, Karsten; Schindewolf, Marcus; Schönbrodt-Stitt, Sarah; Wadoux, Alexandre; Xiang, Wei; Scholten, Thomas
2017-04-01
Soil erosion by water outlines a major threat to the Three Gorges Reservoir Area in China. A detailed assessment of soil conservation measures requires a tool that spatially identifies sediment reallocations due to rainfall-runoff events in catchments. We applied EROSION 3D as a physically based soil erosion and deposition model in a small mountainous catchment. Generally, we aim to provide a methodological frame that facilitates the model parametrization in a data scarce environment and to identify sediment sources and deposits. We used digital soil mapping techniques to generate spatially distributed soil property information for parametrization. For model calibration and validation, we continuously monitored the catchment on rainfall, runoff and sediment yield for a period of 12 months. The model performed well for large events (sediment yield>1 Mg) with an averaged individual model error of 7.5%, while small events showed an average error of 36.2%. We focused on the large events to evaluate reallocation patterns. Erosion occurred in 11.1% of the study area with an average erosion rate of 49.9Mgha 1. Erosion mainly occurred on crop rotation areas with a spatial proportion of 69.2% for 'corn-rapeseed' and 69.1% for 'potato-cabbage'. Deposition occurred on 11.0%. Forested areas (9.7%), infrastructure (41.0%), cropland (corn-rapeseed: 13.6%, potatocabbage: 11.3%) and grassland (18.4%) were affected by deposition. Because the vast majority of annual sediment yields (80.3%) were associated to a few large erosive events, the modelling approach provides a useful tool to spatially assess soil erosion control and conservation measures.
Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0
Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.
2011-01-01
The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.
Annual dose of Taiwanese from the ingestion of 210Po in oysters.
Lee, Hsiu-wei; Wang, Jeng-Jong
2013-03-01
Oysters around the coast of Taiwan were collected, dried, spiked with a (209)Po tracer for yield, digested with concentrated HNO(3) and H(2)O(2), and finally dissolved in 0.5 N HCl. The polonium was then spontaneously deposited onto a silver disc, and the activity of (210)Po was measured using an alpha spectrum analyzer equipped with a silicon barrier detector. Meanwhile, the internal effective dose of (210)Po coming from the intake of oysters by Taiwanese was evaluated. The results of the present study indicate that (210)Po average activity concentrations ranged from 23.4 ± 0.4 to 126 ± 94 Bq kg(-1) of fresh oysters. The oysters coming from Penghu island and Kinmen island regions contain higher concentrations of (210)Po in comparison with oysters from other regions of Taiwan. The value of (210)Po weighted average activity concentrations for all oyster samples studied is 25.9 Bq kg(-1). The annual effective dose of Taiwanese due to the ingestion of (210)Po in oysters was estimated to be 4.1 × 10(-2) mSv y(-1). Copyright © 2013. Published by Elsevier Ltd.
Estimation of sediment deposits in the Ghézala reservoir in northern Tunisia
NASA Astrophysics Data System (ADS)
Mathlouthi, Majid; Lebdi, Fethi
2018-04-01
The control of sedimentation in a reservoir provides a global evaluation of the process of erosion and transportation of sediment. Knowledge of sedimentation is useful for reservoir management. Bathymetric surveys can be used to assess the silting volume of dams. The results of two surveys of the Ghézala dam reservoir in northern Tunisia are available. The measurements provide initial information about the quantity and variability of silting and the mechanism of sediment deposition. According to the results of measurements, the average annual specific sediment yield of the Ghézala dam watershed is estimated at 1851 t km-2 yr-1. The annual average sediment volume trapped varies from 23 000 m3 in 1993 to 66 692 m3 in 2011. The sedimentation rates increases from 0.20 to 0.57 % overtime. The results indicate interdependence between the specific erosion rates and the occurrence of soils on steep slopes. The pressure exerted on the soil by plowing as well as overgrazing to meet the needs of the population of this area has exposed the soil to continued deterioration manifested by increased erosion endangering the only source of revenue for the area.
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.102 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
50 CFR 218.2 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—10 (an average of 2 annually); and (B) Fin whale (Balaenoptera physalus)—10 (an average of 2 annually). (ii) Odontocetes: (A) Sperm whale (Physeter macrocephalus)—10 (an average of 2 annually); (B) Pygmy or dwarf sperm whales (Kogia sp.)—15 (an...
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Estimation of average annual streamflows and power potentials for Alaska and Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdin, Kristine L.
2004-05-01
This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
39 CFR 3010.21 - Calculation of annual limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... notice of rate adjustment and dividing the sum by 12 (Recent Average). Then, a second simple average CPI... Recent Average and dividing the sum by 12 (Base Average). Finally, the annual limitation is calculated by dividing the Recent Average by the Base Average and subtracting 1 from the quotient. The result is...
Cropping management using color and color infrared aerial photographs
NASA Technical Reports Server (NTRS)
Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.
1979-01-01
The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. Solving this equation yields the long-term average annual soil loss that can be expected from rill and inter-rill erosion. In this study, manual interpretation of color and color infrared 70 mm photography at the scale of 1:60,000 is used to determine the cropping management factor in the USLE. Accurate information was collected about plowing practices and crop residue cover (unharvested vegetation) for the winter season on agricultural land in Pheasant Branch Creek watershed in Dane County, Wisconsin.
Effect of corn stover compositional variability on minimum ethanol selling price (MESP).
Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy
2013-07-01
A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Showstack, Randy
Fourteen tropical storms, nine hurricanes, and four intense hurricanes with winds above 111 mph. That's the forecast for hurricane activity in the Atlantic Basin for the upcoming hurricane season which extends from June 1 through November 30, 1999, according to a Colorado State Hurricane Forecast team led by William Gray, professor of atmospheric science. The forecast supports an earlier report by the team.Hurricane activity, said Gray will be similar to 1998—which yielded 14 tropical storms, 10 hurricanes, and 3 intense storms. These numbers are significantly higher than the long-term statistical averages of 9.3, 5.8, and 2.2, annually.
Monirul Islam, Md; Kanungoe, P
2005-01-01
This paper presents the results of water balance study and aquifer simulation modeling for preliminary estimation of the recharge rate and sustainable yield for the semi arid Barind Tract region of Bangladesh. The outcomes of the study are likely to be useful for planning purposes. It is found from detailed water balance study for the area that natural recharge rates in the Barind Tract vary widely year to year. It may have resulted from the method used for the calculation. If the considered time interval had been smaller than the monthly rainfall, the results could have been different. Aquifer Simulation Modeling (ASM) for the Barind aquifer is used to estimate long-term sustainable yield of the groundwater considering limiting drawdown from the standpoint of economic pumping cost. In managing a groundwater basin efficiently and effectively, evaluation of the maximum annual groundwater yield of the basin that can be withdrawn and used without producing any undesirable effect is one of the most important issues. In investigating such recharge rate, introduction of certain terms such as sustainable yield and safe yield has been accompanied. Development of this area involves proper utilization of this vast land, which is possible only through ensured irrigation for agriculture. The Government of Bangladesh has a plan to develop irrigation facilities by optimum utilization of available ground and surface water. It is believed that the groundwater table is lowering rapidly and the whole region is in an acute state of deforestation. Indiscriminate groundwater development may accelerate deforestation trend. In this context estimation of actual natural recharge rate to the aquifer and determination of sustainable yield will assist in proper management and planning of environmentally viable abstraction schemes. It is revealed from the study that the sustainable yield of ground water (204 mm/y) is somewhat higher than the long-term annual average recharge (152.7 mm) to the groundwater reservoir. The reason behind this is that the rivers within and around the Barind Tract might have played the role of influent rivers.
Penobscot woodlands yield annual cuts
A. C. Hart
1958-01-01
Two small woodlands, put under management at the Penobscot Experimental Forest in the early 1950's, have yielded continuous annual cuts. The two woodlands, in the spruce-fir type, were selected to be representative of small forest properties in that region.
Extending Miscanthus Cultivation with Novel Germplasm at Six Contrasting Sites
Kalinina, Olena; Nunn, Christopher; Sanderson, Ruth; Hastings, Astley F. S.; van der Weijde, Tim; Özgüven, Mensure; Tarakanov, Ivan; Schüle, Heinrich; Trindade, Luisa M.; Dolstra, Oene; Schwarz, Kai-Uwe; Iqbal, Yasir; Kiesel, Andreas; Mos, Michal; Lewandowski, Iris; Clifton-Brown, John C.
2017-01-01
Miscanthus is a genus of perennial rhizomatous grasses with C4 photosynthesis which is indigenous in a wide geographic range of Asian climates. The sterile clone, Miscanthus × giganteus (M. × giganteus), is a naturally occurring interspecific hybrid that has been used commercially in Europe for biomass production for over a decade. Although, M. × giganteus has many outstanding performance characteristics including high yields and low nutrient offtakes, commercial expansion is limited by cloning rates, slow establishment to a mature yield, frost, and drought resistance. In this paper, we evaluate the performance of 13 novel germplasm types alongside M. × giganteus and horticultural “Goliath” in trials in six sites (in Germany, Russia, The Netherlands, Turkey, UK, and Ukraine). Mean annual yields across all the sites and genotypes increased from 2.3 ± 0.2 t dry matter ha−1 following the first year of growth, to 7.3 ± 0.3, 9.5 ± 0.3, and 10.5 ± 0.2 t dry matter ha−1 following the second, third, and fourth years, respectively. The highest average annual yields across locations and four growth seasons were observed for M. × giganteus (9.9 ± 0.7 t dry matter ha−1) and interspecies hybrid OPM-6 (9.4 ± 0.6 t dry matter ha−1). The best of the new hybrid genotypes yielded similarly to M. × giganteus at most of the locations. Significant effects of the year of growth, location, species, genotype, and interplay between these factors have been observed demonstrating strong genotype × environment interactions. The highest yields were recorded in Ukraine. Time needed for the crop establishment varied depending on climate: in colder climates such as Russia the crop has not achieved its peak yield by the fourth year, whereas in the hot climate of Turkey and under irrigation the yields were already high in the first growing season. We have identified several alternatives to M. × giganteus which have provided stable yields across wide climatic ranges, mostly interspecies hybrids, and also Miscanthus genotypes providing high biomass yields at specific geographic locations. Seed-propagated interspecific and intraspecific hybrids, with high stable yields and cheaper reliable scalable establishment remain a key strategic objective for breeders. PMID:28469627
A benefit-cost analysis of ten tree species in Modesto, California, U.S.A
E.G. McPherson
2003-01-01
Tree work records for ten species were analyzed to estimate average annual management costs by dbh class for six activity areas. Average annual benefits were calculated by dbh class for each species with computer modeling. Average annual net benefits per tree were greatest for London plane (Platanus acerifolia) ($178.57), hackberry (...
Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A
Griffiths, P.G.; Hereford, R.; Webb, R.H.
2006-01-01
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology
NASA Astrophysics Data System (ADS)
Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix
2018-03-01
During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.
Cost structure and profitability of Assaf dairy sheep farms in Spain.
Milán, M J; Frendi, F; González-González, R; Caja, G
2014-01-01
Twenty dairy sheep farms of Assaf breed, located in the Spanish autonomous community of Castilla y León and included in a group receiving technical support, were used to study their production cost structure and to assess their economic profitability during 2009. On average, farms had 89.2±38.0 ha (own, 38%), 592±63 ewes, yielded 185.9±21.1×10(3) L/yr (i.e., 316±15 L/ewe), and were attended by 2.3±0.2 annual working units (family, 72%). Total annual income was €194.4±23.0×10(3)/yr (€1.0=$1.3) from milk (78.6%), lamb (13.2%), culled ewes (0.5%), and other sales (0.8%, wool and manure), and completed with the European Union sheep subsidy (6.9%). Total costs were €185.9±19.0×10(3)/yr to attend to feeding (61.6%), labor (18.2%), equipment maintenance and depreciation (7.6%), finances (3.0%), animal health (2.5%), energy, water and milking supplies (2.2%), milk recording (0.5%), and other costs (4.4%; assurances, shearing, association fees, and so on). Mean dairy sheep farm profit was €8.5±5.8×10(3)/yr (€7.4±8.3/ewe) on average, and varied between -€40.6 and €81.1/ewe among farms. Only 60% of farms were able to pay all costs, the rest had negative balances. Nevertheless, net margin was €31.0±6.5×10(3)/yr on average, varying between €0.6 and €108.4×10(3)/yr among farms. In this case, without including the opportunity costs, all farms had positive balances. Total annual cost (TAC; €/ewe) and total annual income (TAI; €/ewe) depended on milk yield (MY; L/ewe) and were TAC=161.6 + 0.502 MY (R(2)=0.50), and TAI=78.13 + 0.790 MY (R(2)=0.88), respectively, with the break-even point being 291 L/ewe. Conversely, farm TAC (€/yr) and farm TAI (€/yr) were also predicted as a function of the number of ewes (NOE) per flock, as TAC=18,401 + 282.8 NOE (R(2)=0.89) and TAI=330.9 NOE (R(2)=0.98), with the break-even point being 383 ewes/flock. Finally, according to the increasing trend expected for agricultural commodity prices, it was calculated that a 10% increase of concentrate price will require 5.2% milk price increase for constant profit. Similarly, a 10% increase of forage price will require 2.0% milk price increase to maintain profitability. Under these scenarios of increasing the commodity prices of key feedstuffs, a change of flock feeding should be expected to compensate the losses in farm profitability. Most Assaf dairy sheep farms studied were economically profitable, with flock size, milk yield, and feeding costs key for their profitability. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-04-01
The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for themore » 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-04-01
The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Arizona homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Arizona homeowners will save $3,245 over 30 years under the 2009 IECC, with savings still higher at $6,550 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2009 and 2 years with the 2012 IECC. Average annual energymore » savings are $231 for the 2009 IECC and $486 for the 2012 IECC.« less
The price of innovation: new estimates of drug development costs.
DiMasi, Joseph A; Hansen, Ronald W; Grabowski, Henry G
2003-03-01
The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation. Copyright 2003 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.
2012-04-01
The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energymore » savings are $149 for the 2009 IECC and $672 for the 2012 IECC.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Xiao, J.
2017-12-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of vegetation greening particularly afforestation on the hydrologic cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China's land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation greening and browning on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield or weakened the increase in water yield; vegetation browning reduced ET and increased water yield or weakened the decrease in water yield. At the large river basin and national scales, the greening trends had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the greenness changes on ET and water yield varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrologic cycle are needed to account for the feedbacks to the climate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions Under Subpart JJ 1 2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions Under Subpart JJ 1,2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
50 CFR 218.112 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average of 119274 annually). (ii) Pinnipeds: (A) Northern elephant seal (Mirounga angustirostris)—1890 (an...) Short-beaked common dolphin—10 (an average of 2 annually); (vii) Northern elephant seal—10 (an average...
Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005
Morrison, Jonathan; Colombo, Michael J.
2008-01-01
Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.
1980-01-01
The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
NASA Astrophysics Data System (ADS)
Tong, Yuhe; Chen, Xinjun; Kolody, Dale
2014-10-01
The stock of Bigeye tuna ( Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission (IOTC), does not have an explicit management decision-making framework in place to prevent over-fishing. In this study, we evaluated three harvest control rules, i) constant fishing mortality (CF), from 0.2 to 0.6, ii) constant catch (CC), from 60000 to 140000 t, and iii) constant escapement (CE), from 0.3 to 0.7. The population dynamics simulated by the operating model was based on the most recent stock assessment using Stock Synthesis version III (SS3). Three simulation scenarios (low, medium and high productivity) were designed to cover possible uncertainty in the stock assessment and biological parameters. Performances of three harvest control rules were compared on the basis of three management objectives (over 3, 10 and 25 years): i) the probability of maintaining spawning stock biomass above a level that can sustain maximum sustainable yield (MSY) on average, ii) the probability of achieving average catches between 0.8 MSY and 1.0 MSY, and iii) inter-annual variability in catches. The constant escapement strategy ( CE=0.5), constant fishing mortality strategy ( F=0.4) and constant catch ( CC=80000) were the most rational among the respective management scenarios. It is concluded that the short-term annual catch is suggested at 80000 t, and the potential total allowable catch for a stable yield could be set at 120000 t once the stock had recovered successfully. All the strategies considered in this study to achieve a `tolerable' balance between resource conservation and utilization have been based around the management objectives of the IOTC.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.
2014-12-01
Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.
Waldron, Marcus C.; Archfield, Stacey A.
2006-01-01
Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the historical record is not valid. For multiple-reservoir systems, the firm-yield estimate was dependent on the reservoir system's configuration. The firm yield of a system is sensitive to how the water is transferred from one reservoir to another, the capacity of the connection between the reservoirs, and how seasonal variations in demand are represented in the FYE model. Firm yields for 25 (14 single-reservoir systems and 11 multiple-reservoir systems) reservoir systems were determined by using the historical records of streamflow and precipitation. Current water-use data indicate that, on average, 20 of the 25 reservoir systems in the study were operating below their estimated firm yield; during months with peak demands, withdrawals exceeded the firm yield for 8 reservoir systems.
Durham, Catherine A; Bouma, Andrea; Meunier-Goddik, Lisbeth
2015-12-01
Artisan cheese makers lack access to valid economic data to help them evaluate business opportunities and make important business decisions such as determining cheese pricing structure. The objective of this study was to utilize an economic model to evaluate the net present value (NPV), internal rate of return, and payback period for artisan cheese production at different annual production volumes. The model was also used to determine the minimum retail price necessary to ensure positive NPV for 5 different cheese types produced at 4 different production volumes. Milk type, cheese yield, and aging time all affected variable costs. However, aged cheeses required additional investment for aging space (which needs to be larger for longer aging times), as did lower yield cheeses (by requiring larger-volume equipment for pasteurization and milk handling). As the volume of milk required increased, switching from vat pasteurization to high-temperature, short-time pasteurization was necessary for low-yield cheeses before being required for high-yield cheeses, which causes an additional increase in investment costs. Because of these differences, high-moisture, fresh cow milk cheeses can be sold for about half the price of hard, aged goat milk cheeses at the largest production volume or for about two-thirds the price at the lowest production volume examined. For example, for the given model assumptions, at an annual production of 13,608kg of cheese (30,000 lb), a fresh cow milk mozzarella should be sold at a minimum retail price of $27.29/kg ($12.38/lb), whereas a goat milk Gouda needs a minimum retail price of $49.54/kg ($22.47/lb). Artisan cheese makers should carefully evaluate annual production volumes. Although larger production volumes decrease average fixed cost and improve production efficiency, production can reach volumes where it becomes necessary to sell through distributors. Because distributors might pay as little as 35% of retail price, the retail price needs to be higher to compensate. An artisan cheese company that has not achieved the recognition needed to achieve a premium price may not find distribution through distributors profitable. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Statistical Approaches for Spatiotemporal Prediction of Low Flows
NASA Astrophysics Data System (ADS)
Fangmann, A.; Haberlandt, U.
2017-12-01
An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be problematic. Spatiotemporal prediction of L-moments appeared highly uncertain for higher-order moments resulting in unrealistic future low flow values. All in all, the results promote an inclusion of simple statistical methods in climate change impact assessment.
Evaluation of 20-min and Annual Radiation Budget Components and Cloudiness in a Mountainous Valley
NASA Astrophysics Data System (ADS)
Malek, E.
2007-05-01
Logan, Utah (USA) is among cities located in the mountainous valley in the western portion of Rocky Mountains in North America. It is the county seat of Cache Valley, a metropolitan area with a population of about 100,000. The valley had the polluted air in the USA during January 2004. To evaluate the daily and annual radiation budget and cloudiness in this mountainous valley, we set up a radiation station in the middle of the valley to measure the 20- min radiation budget components namely: incoming (Rso) and outgoing (Rso) solar or shortwave radiation, using to CM21 Kipp and Zonen (one inverted) and incoming (Rli) (or atmospheric) and outgoing (Rlo) or terrestrial) longwave radiation using two CG1 Kipp and Zonen Pyrgeometers (one inverted) during the year of 2003. All pyranometers and Pyrgeometers were ventilated with four CV2 Kipp and Zonen ventilation systems throughout the year to prevent deposition of dew, frost and snow, which otherwise would disturb the measurements. We also measured the 2-m air temperature and relative humidity along with surface temperature. All measurements were taken every 2 s, averaged to 20 min, continuously throughout the year 2000. A Met One heated rain gauge measured precipitation. Comparison of the annual radiation budget components indicates that about 25% of the annual Rsi (5848.6 MJ/ (squared m-y)) was reflected back to sky as Rso. Rli and Rlo amounted to 9968.7 and 13303.5 MJ/ (squared m-y)), respectively. This yielded about 1364.9 MJ/ (squared m- y)) available energy (Rn). Having the 2-m air temperature and moisture data and comparison between the theoretical and the measured longwave radiation, we evaluated the 20-m cloudy conditions throughout the year of 2003. The average cloud base height was 587 m (ranged from zero for foggy conditions to about 3000 m). Annual cloudiness contributed about 139.1 MJ/ (squared m-y)) more energy in this valley.
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...
Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.
2014-01-01
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.
Estimation of sediment inflows to Lake Tuscaloosa, Alabama, 2009-11
Lee, K.G.
2013-01-01
The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, evaluated the concentrations, loads, and yields of suspended sediment in the tributaries to Lake Tuscaloosa in west-central Alabama, from October 1, 2008, to January 31, 2012. The collection and analysis of these data will facilitate the comparison with historical data, serve as a baseline for future sediment-collection efforts, and help to identify areas of concern. Lake Tuscaloosa, at the reservoir dam, receives runoff from a drainage area of 423 square miles (mi2). Basinwide in 2006, forested land was the primary land cover (68 percent). Comparison of historical imagery with the National Land Cover Database (2001 and 2006) indicated that the greatest temporal land-use change was timber harvest. The land cover in 2006 was indicative of this change, with shrub/scrub land (12 percent) being the secondary land use in the basin. Agricultural land use (10 percent) was represented predominantly by hay and pasture or grasslands. Urban land use was minimal, accounting for 4 percent of the entire basin. The remaining 6 percent of the basin has a land use of open water or wetlands. Storm and monthly suspended-sediment samples were collected from seven tributaries to Lake Tuscaloosa: North River, Turkey Creek, Binion Creek, Pole Bridge Creek, Tierce Creek, Carroll Creek, and Brush Creek. Suspended-sediment concentrations and streamflow measurements were statistically analyzed to estimate annual suspended-sediment loads and yields from each of these contributing watersheds. Estimated annual suspended-sediment yields in 2009 were 360, 540, and 840 tons per square mile (tons/mi2) at the North River, Turkey Creek, and Carroll Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2010 were 120 and 86 tons/mi2 at the Binion Creek and Pole Bridge Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2011 were 190 and 300 tons/mi2 at the Tierce Creek and Brush Creek streamflow-gaging stations, respectively. The North River watershed at the streamflow-gaging station contributes 53 percent of the drainage area for Lake Tuscaloosa. A previous study in the 1970s analyzed streamflow and historical suspended-sediment samples to estimate a long-term average suspended-sediment yield of 300 tons per year per square mile in the North River watershed. Analysis of data collected in the North River watershed during the 2009 water year (October 2008 to September 2009) estimated a sediment yield of 360 tons/mi2. The North River watershed, a major portion of the Lake Tuscaloosa drainage basin, has not experienced a substantial increase in sedimentation rates. During the 2009 water year, the Turkey Creek watershed (6.16 mi2) and the Carroll Creek watershed (20.9 mi2) produced greater suspended-sediment yields than the North River watershed but contribute a much smaller drainage area to Lake Tuscaloosa. Aerial photography and bathymetric surveys indicate that Carroll Creek has experienced increased sediment deposition in the upstream portions of the channel. Carroll Creek is also the only watershed in the current study that has a substantial percentage (11 percent) of urban
Brabets, Timothy P.
1999-01-01
The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff (averaged over the entire drainage basin) from the larger watershed and 1.1 inches of runoff from the smaller watershed.
Pervez, Md Shahriar; Henebry, Geoffrey M.
2015-01-01
New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate.
Dudley, Robert W.
2015-12-03
The largest average errors of prediction are associated with regression equations for the lowest streamflows derived for months during which the lowest streamflows of the year occur (such as the 5 and 1 monthly percentiles for August and September). The regression equations have been derived on the basis of streamflow and basin characteristics data for unregulated, rural drainage basins without substantial streamflow or drainage modifications (for example, diversions and (or) regulation by dams or reservoirs, tile drainage, irrigation, channelization, and impervious paved surfaces), therefore using the equations for regulated or urbanized basins with substantial streamflow or drainage modifications will yield results of unknown error. Input basin characteristics derived using techniques or datasets other than those documented in this report or using values outside the ranges used to develop these regression equations also will yield results of unknown error.
Ge Sun; Steve G. McNulty; J. Lu; Devendra M. Amatya; Y. Liang; R.K. Kolka
2005-01-01
Regional water yield at a meso-scale can be estimated as the difference between precipitation input and evapotranspiration output. Forest water yield from the southeastern US varies greatly both in space and time. Because of the hot climate and high evapotranspiration, less than half of the annual precipitation that falls on forest lands is available for stream flow...
Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.
Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J
2018-01-22
Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.
Water quality in the St. Croix National Scenic Riverway, Wisconsin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczyk, D.J.
1986-01-01
A water quality study of the St. Croix National Scenic Riverway, was conducted during the period 1975-83. Concentrations of most constituents analyzed, and constituent loads and yields were lower in the Scenic Riverway than in other Wisconsin streams. Water quality samples were collected at 10 stations throughout the study area and were compared to analyses of samples from selected National Stream Quality Accounting Network stations (NASWAN) and the Hydrologic Bench-Mark Network (HBMN) station in Wisconsin. The average suspended sediment (SS) concentration for 9 of the 10 stations in this study was 7.7 mg/L. The concentrations of major cations and anionsmore » at two of the stations were similar to concentrations at the HBMN station Popple River near Fence. Mean total phosphorus concentrations ranged from 0.02 to 0.08 mg/L at the study stations and from 0.03 to 0.16 mg/L at selected NASQAN stations. Concentrations of trace metals were below safe drinking water standards at all the study sites, except for iron and manganese which exceeded drinking water standards at some of the study sites. Pesticides were sampled at the St. Croix River at St. Croix Falls and above and below cranberry bogs that drain into the Namekagon River. Average annual loads of SS, total phosphorus, total nitrogen, and dissolved solids were calculated by a flow duration curve method. Suspended sediment yields ranged from 1.9 to 13.3 tons/sq mi. The average SS yield for Wisconsin is 80 tons/sq mi. total phosphorus and other constituents exhibited the same trend. 26 refs., 10 figs., 12 tabs.« less
Year-to-year variations in annual average indoor 222Rn concentrations.
Martz, D E; Rood, A S; George, J L; Pearson, M D; Langner, G H
1991-09-01
Annual average indoor 222Rn concentrations in 40 residences in and around Grand Junction, CO, have been measured repeatedly since 1984 using commercial alpha-track monitors (ATM) deployed for successive 12-mo time periods. Data obtained provide a quantitative measure of the year-to-year variations in the annual average Rn concentrations in these structures over this 6-y period. A mean coefficient of variation of 25% was observed for the year-to-year variability of the measurements at 25 sampling stations for which complete data were available. Individual coefficients of variation at the various stations ranged from a low of 7.7% to a high of 51%. The observed mean coefficient of variation includes contributions due to the variability in detector response as well as the true year-to-year variation in the annual average Rn concentrations. Factoring out the contributions from the measured variability in the response of the detectors used, the actual year-to-year variability of the annual average Rn concentrations was approximately 22%.
Quantifying periglacial erosion: Insights on a glacial sediment budget, Matanuska Glacier, Alaska
O'Farrell, C. R.; Heimsath, A.M.; Lawson, D.E.; Jorgensen, L.M.; Evenson, E.B.; Larson, G.; Denner, J.
2009-01-01
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8-yr record of proglacial suspended sediment yield. Non-glacial lowering rates range from 1??8 ?? 0??5 mm yr-1 to 8??5 ?? 3??4 mm yr-1 from estimates of rock fall and debris-flow fan volumes. An average erosion rate of 0??08 ?? 0??04 mm yr-1 from eight convex-up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice-cover), it was found that nonglacial processes account for an annual sediment flux of 2??3 ?? 1??0 ?? 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2??9 ?? 1??0 ?? 106 t, corresponding to an erosion rate of 1??8 ?? 0??6 mm yr-1: nonglacial sources therefore account for 80 ?? 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub-basin (32% ice-cover) to determine an erosion rate of 12??1 ?? 6??9 mm yr-1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ?? 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice-free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. ?? 2009 John Wiley & Sons, Ltd.
Fluvial sediment in the little Arkansas River basin, Kansas
Albert, C.D.; Stramel, G.J.
1966-01-01
Characteristics and transport of sediment in the Little Arkansas River basin in south-central Kansas were studied to determine if the water from the river could be used as a supplemental source for municipal supply or would provide adequate recharge to aquifers that are sources of municipal and agricultural water supplies. During periods when overland 1low contributed a significant amount to streamflow, the suspended sediment in the Little Arkansas River at Valley Center averaged about 85 percent of clay, about 13 percent of silt, and about 2 percent of sand. The average annual suspended-sediment discharge for the water years 1958, 1959, 1960, and 1961 was about 306,000 tons, and about 80 percent of the load was transported during 133 days of the 1,461-day period. The average daily water discharge of 352 cubic feet per second for the period 1958-61 was more than the long-term (i}9-year) average of 245 cfs; therefore, the average annual sediment load for 1958-61 was probably greater than the average annual load for the same long-term period. Studies of seepage in a part of the channel of Kisiwa Creek indicated that an upstream gravel-pit operation yielded clays which, when deposited in the channel, reduced seepage. A change in plant operation and subsequent runoff that removed the deposited clays restored natural seepage conditions. Experiments by the Wichita Water Department showed that artificial recharge probably cannot be accomplished by using raw turbid water that is injected into wells or by using pits. Recharge by raw turbid water on large permeable areas or by seepage canals may be feasible. Studies of chemical quality of surface water at several sites in the Little Arkansas River basin indicate that Turkey. Creek is a major contributor of chloride and other dissolved solids to the Little Arkansas River and that the dissolved-solids content is probably highest during low-flow periods when suspended-sediment concentration is low. Data collected by the Wichita Water Department indicate that chloride concentrations are diminishing with time at sampled locations. and they receive recharge from rainwater and snowmelt moving through overlying alluvium and from storage in the De Chelly sandstone which encloses the east half of the diatreme. The quality of water from all areas is suitable for domestic use. However, special treatment may be necessary to make the water suitable for pulp processing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... exceed 50 percent of his or her average annual wage, OWCP will pay the employee $15,000 as compensation... did not exceed 75 percent of such average annual wage, OWCP will pay the employee $10,000 as... EEOICPA Determinations of Average Annual Wage and Percentages of Loss § 30.811 How will OWCP calculate the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-01-01
In another Office of Industrial Technologies Motor Challenge Success Story, Alcoa (formerly Alumax) aluminum reduced annual energy consumption by 12% and reduced both maintenance and noise levels. Order this fact sheet now to learn how your company can both increase energy efficiency and decrease pollution.
12 CFR Appendix A to Part 1030 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2012 CFR
2012-01-01
... stated maturity greater than one year. A. General Rules Except as provided in Part I.E. of this appendix, the annual percentage yield shall be calculated by the formula shown below. Institutions shall... the formula, institutions shall assume that all principal and interest remain on deposit for the...
12 CFR Appendix A to Part 1030 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2013 CFR
2013-01-01
... stated maturity greater than one year. A. General Rules Except as provided in Part I.E. of this appendix, the annual percentage yield shall be calculated by the formula shown below. Institutions shall... the formula, institutions shall assume that all principal and interest remain on deposit for the...
From Paris to Iowa and Back: Global Temperature Targets, Agricultural Impacts, and Producer Response
NASA Astrophysics Data System (ADS)
Anderson, C.; Hayhoe, K.; Terando, A. J.
2016-12-01
Traditionally, assessments such as those produced by IPCC and USGCRP have been structured to provide a one-way flow of information from scientists to national and international policy makers. Because the Paris Agreement will ultimately require corresponding domestic policies, the traditional one-way information flow could be inadequate, since it lacks both direct participation and informed feedback from many of the important entities that influence domestic policy. We have engaged Iowa row crop producers in identifying impacts and feasibility of adaptation under global warming of 1.0 and 2.0OC. Our engagement seeks to create within climate impacts assessment a decision-maker feedback loop. We have engaged an expert panel by using yield data modeling as a first step to communicate vividly the potential yield impacts of global average temperature targets. This engagement included validation with historical global average temperature before presenting yield impact under global mean surface temperature increase of 1.0 and 2.0OC. The expert panel requested further analysis of targets at 0.25 and 0.50OC increase and of possible impacts should they pursue adaptation by increasing maize plant population density and soil moisture storage. Several clear messages have emerged that can be voiced by Iowa agribusiness leaders to national and international decision-makers. While Iowa soybean agriculture may remain robust for the foreseeable future, the Paris Agreement is insufficient to protect Iowa maize production from substantial changes in productivity and volatility. These effects could be largely (though not entirely) mitigated by moving from the current +2OC to the "high ambition" +1.5OC target. The projected spring rainfall increase of 10% under +1OC would increase the cost of spring planting. The data model predicts a 5-day reduction in average number of fieldwork days, which requires the addition of one half-time person or larger planting equipment. The current annual rate of increase in maize plant density will maintain historical yield increase through +1OC but by +2OC is substantially reduced and results in unprecedented yield volatility. By increasing soil moisture during July, Iowa maize production can reduce markedly the impacts of +2OC.
Alternatives to the Moving Average
Paul C. van Deusen
2001-01-01
There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...
Surface Water Qualit: Revisiting Nitrate Concentrations in the Des Moines River: 1945 and 1976-2001
McIsaac, G.F.; Libra, R.D.
2003-01-01
Recent compilations of historical and contemporary riverine nitrate (NO3) concentrations indicate that concentrations in many rivers in the north-central USA increased during the second half of the 20th century. The Des Moines River near Des Moines, Iowa, however, was reported to have had similar NO3 concentrations in 1945 and the 1980s, in spite of substantially greater N input to the watershed during the latter period. The objective of this study was to reconsider the comparison of historical and contemporary NO3 concentrations in the Des Moines River near Des Moines in light of the following: (i) possible errors in the historical data used, (ii) variations in methods of sample collection, (iii) variations in location of sampling, and (iv) additional data collected since 1990. We discovered that an earlier study had compared the flow-weighted average concentration in 1945 to arithmetic annual average concentrations in the 1980s. The intertemporal comparison also appeared to be influenced by differences in sample collection methods and locations used at different times. Depending on the model used and the estimated effects of composite sample collection, the 1945 arithmetic average NO3 concentration was between 44 and 57% of the expected mean value at a similar water yield during 1976-2001. The flow-weighted average NO3 concentration for 1945 was between 54 and 73% of the expected mean value at a similar water yield during 1976-2001. The difference between NO3 concentrations in 1945 and the contemporary period are larger than previously reported for the Des Moines River.
Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005
Striegl, Robert G.; Dornblaser, Mark M.; Aiken, George R.; Wickland, Kimberly P.; Raymond, Peter A.
2007-01-01
Loads and yields of dissolved and particulate organic and inorganic carbon (DOC, POC, DIC, PIC) were measured and modeled at three locations on the Yukon River (YR) and on the Tanana and Porcupine rivers (TR, PR) in Alaska during 2001–2005. Total YR carbon export averaged 7.8 Tg C yr−1, 30% as OC and 70% as IC. Total C yields (0.39–1.03 mol C m−2 yr−1) were proportional to water yields (139–356 mm yr−1; r2 = 0.84) at all locations. Summer DOC had an aged component (fraction modern (FM) = 0.94–0.97), except in the permafrost wetland‐dominated PR, where DOC was modern. POC had FM = 0.63–0.70. DOC had high concentration, high aromaticity, and high hydrophobic content in spring and low concentration, low aromaticity, and high hydrophilic content in winter. About half of annual DOC export occurred during spring. DIC concentration and isotopic composition were strongly affected by dissolution of suspended carbonates in glacial meltwater during summer.
Spatial Mapping of Agricultural Water Productivity Using the SWAT Model
NASA Astrophysics Data System (ADS)
Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.
2015-03-01
The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of groundnut, threefold of wheat, twofold of onion during rabi season and was sevenfold of sugarcane. Analysis suggests that maximization of the area by provision of supplemental irrigation to rainfed areas as well as better on-farm water management practices can provide opportunities for improving water productivity.
75 FR 41556 - Proposed Collection Renewal; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... global education in the classroom. Estimated annual number of respondents: 300. Estimated average time to... the annual World Wise Schools Conference. The information is used as a record of attendance. 2. Title... global education in the classroom. Estimated annual number of responses: 300. Estimated average time to...
Hydrology of Jumper Creek Canal basin, Sumter County, Florida
Anderson, Warren
1980-01-01
Jumper Creek Canal basin in Sumter County, Florida, was investigated to evaluate the overall hydrology and effects of proposed flood-control works on the hydrologic regiment of the canal. Average annual rainfall in the 83-square mile basin is about 53 inches of which about 10 inches runs off in the canal. Average annual evapotranspiration is estimated at about 37 inches. Pumping from limestone mines has lowered the potentiometeric surface in the upper part of the basin, but it has not significantly altered the basin yield. Channel excavation to reduce flooding is proposed with seven control structures located to prevent overdrainage. The investigation indicates that implementation of the proposed plan will result in a rise in the potentiometric surface n the upper basin, a reduction is surface outflow, an increase in subsurface outflow, an increase in the gradient of the potentiometeric surface of the Floridan aquifer, an increase in leakage from the canal to the aquifer in the upper basin, and an increase in the magnitude of flood flows from the basin. Ground water in Jumper Creek basin is a bicarbonate type. Very high concentrations of dissolved iron were found in shallow wells and in some deep wells. Sulfate and strontium were relatively high in wells in the lower basin. (Kosco-USGS)
Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun
2014-09-15
Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes
NASA Astrophysics Data System (ADS)
Poon, Patrick K.; Kinoshita, Alicia M.
2018-04-01
In recent years climate change and other anthropogenic factors have contributed to increased wildfire frequency and size in western United States forests. This research focuses on the evaluation of spatial and temporal changes in evapotranspiration (ET) following the 2011 Las Conchas Fire in New Mexico (USA) using the Operational Simplified Surface Energy Balance Model (SSEBop ET). Evapotranspiration is coupled with soil burn severity and analyzed for 16 watersheds for water years 2001-2014. An average annual decrease of 120 mm of ET is observed within the regions affected by the Las Conchas Fire, and conifers were converted to grassland a year after the fire. On average, the post-fire annual ET in high, moderate, and low burn severity is lower than pre-fire ET by approximately 103-352 mm, 97-304 mm, and 91-268 mm, respectively. The ratio of post-fire evapotranspiration to precipitation (ET/P) is statistically different from pre-fire conditions (α = 0.05) in nine of the watersheds. The largest decrease in ET is approximately 13-57 mm per month and is most prominent during the summer (April to September). The observed decrease in ET contributes to our understanding of changes in water yield following wildfires, which is of interest for accurately modeling and predicting hydrologic processes in semi-arid landscapes.
Kenneth Skog; Susan J. Alexander; John Bergstrom; Ken Cordell; Elizabeth Hill; James Howard; Rebecca Westby
2011-01-01
Average annual incomes for forest management and protection includes salaries for full-time permanent employees of the U.S. Department of Agriculture, Forest Service, which have increased from a median of $41,300 in 1992 to $48,200 in 2000, to $50,500 in 2006 (all in 2005$). Salary of full-time permanent employees in state forestry agencies in 1998, for entry level...
Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape
Stahl, Andreas; Pfeifer, Mara; Frisch, Matthias; Wittkop, Benjamin; Snowdon, Rod J.
2017-01-01
Nitrogen is essential for plant growth, and N fertilization allows farmers to obtain high yields and produce sufficient agricultural commodities. On the other hand, nitrogen losses potentially cause adverse effects to ecosystems and to human health. Increasing nitrogen use efficiency (NUE) is vital to solve the conflict between productivity, to secure the demand of a growing world population, and the protection of the environment. To ensure this, genetic improvement is considered to be a paramount aspect toward ecofriendly crop production. Winter oilseed rape (Brassica napus L.) is the second most important oilseed crop in the world and is cultivated in many regions across the temperate zones. To our knowledge, this study reports the most comprehensive field-based data generated to date for an empirical evaluation of genetic improvement in winter oilseed rape varieties under two divergent nitrogen fertilization levels (NFLs). A collection of 30 elite varieties registered between 1989 and 2014, including hybrids and open pollinated varieties, was tested in a 2-year experiment in 10 environments across Germany for changes in seed yield and seed quality traits. Furthermore, NUE was calculated. We observed a highly significant genetics-driven increase in seed yield per-se and, thus, increased NUE at both NFLs. On average, seed yield from modern open-pollinated varieties and modern hybrids was higher than from old open-pollinated varieties and old hybrids. The annual yield progress across all tested varieties was ~35 kg ha−1 year−1 at low nitrogen and 45 kg ha−1 year−1 under high nitrogen fertilization. Furthermore, in modern varieties an increased oil concentration and decreased protein concentration was observed. Despite, the significant effects of nitrogen fertilization, a surprisingly low average seed yield gap of 180 kg N ha−1 was noted between high and low nitrogen fertilization. Due to contrary effects of N fertilization on seed yield per-se and seed oil concentration an oil yield of 2.04 t ha−1 was measured at both N levels. Collectively, the data reveal that genetic improvement through modern breeding techniques in conjunction with reduced N fertilizer inputs has a tremendous potential to increase NUE of oilseed rape. PMID:28638399
50 CFR 218.31 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...
50 CFR 218.31 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...
Paciullo, D S C; Pires, M F A; Aroeira, L J M; Morenz, M J F; Maurício, R M; Gomide, C A M; Silveira, S R
2014-08-01
The silvopastoral system (SPS) has been suggested to ensure sustainability in animal production systems in tropical ecosystems. The objective of this study was to evaluate pasture characteristics, herbage intake, grazing activity and milk yield of Holstein×Zebu cows managed in two grazing systems (treatments): SPS dominated by a graminaceous forage (Brachiaria decumbens) intercropped with different leguminous herbaceous forages (Stylosanthes spp., Pueraria phaseoloides and Calopogonium mucunoides) and legume trees (Acacia mangium, Gliricidia sepium and Leucaena leucocephala), and open pasture (OP) of B. decumbens intercropped only with Stylosanthes spp. Pastures were managed according to the rules for organic cattle production. The study was carried out by following a switch back format with 12 cows, 6 for each treatment, over 3 experimental years. Herbage mass was similar (P>0.05) for both treatments, supporting an average stocking rate of 1.23 AU/ha. Daily dry matter intake did not vary (P>0.05) between treatments (average of 11.3±1.02 kg/cow per day, corresponding to 2.23±0.2% BW). Milk yield was higher (P0.05) in subsequent years. The highest (P0.05) milk yields. Low persistence of Stylosanthes guianensis was observed over the experimental period, indicating that the persistence of forage legumes under grazing could be improved using adapted cultivars that have higher annual seed production. The SPS and a diversified botanical composition of the pasture using legume species mixed with grasses are recommended for organic milk production.
The Optimal Forest Rotation: A Discussion and Annotated Bibliography
David H. Newman
1988-01-01
The literature contains six different criteria of the optimal forest rotation: (1) maximum single-rotation physical yield, (2) maximum single-rotation annual yield, (3) maximum single-rotation discounted net revenues, (4) maximum discounted net revenues from an infinite series of rotations, (5) maximum annual net revenues, and (6) maximum internal rate of return. First...
12 CFR Appendix A to Part 707 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2012 CFR
2012-01-01
... may or may not occur in the future. These formulas apply to both dividend-bearing and interest-bearing... by the formula shown below. Credit unions may calculate the annual percentage yield using projected... the formula, credit unions shall assume that all principal and dividends remain on deposit for the...
12 CFR Appendix A to Part 230 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2013 CFR
2013-01-01
... stepped interest rates, and to certain time accounts with a stated maturity greater than one year. A... calculated by the formula shown below. Institutions shall calculate the annual percentage yield based on the... determining the total interest figure to be used in the formula, institutions shall assume that all principal...
12 CFR Appendix A to Part 707 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2014 CFR
2014-01-01
... may or may not occur in the future. These formulas apply to both dividend-bearing and interest-bearing... by the formula shown below. Credit unions may calculate the annual percentage yield using projected... the formula, credit unions shall assume that all principal and dividends remain on deposit for the...
12 CFR Appendix A to Part 230 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2011 CFR
2011-01-01
... stepped interest rates, and to certain time accounts with a stated maturity greater than one year. A... calculated by the formula shown below. Institutions shall calculate the annual percentage yield based on the... determining the total interest figure to be used in the formula, institutions shall assume that all principal...
12 CFR Appendix A to Part 230 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2014 CFR
2014-01-01
... stepped interest rates, and to certain time accounts with a stated maturity greater than one year. A... calculated by the formula shown below. Institutions shall calculate the annual percentage yield based on the... determining the total interest figure to be used in the formula, institutions shall assume that all principal...
12 CFR Appendix A to Part 707 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2011 CFR
2011-01-01
... may or may not occur in the future. These formulas apply to both dividend-bearing and interest-bearing... by the formula shown below. Credit unions may calculate the annual percentage yield using projected... the formula, credit unions shall assume that all principal and dividends remain on deposit for the...
12 CFR Appendix A to Part 707 - Annual Percentage Yield Calculation
Code of Federal Regulations, 2013 CFR
2013-01-01
... may or may not occur in the future. These formulas apply to both dividend-bearing and interest-bearing... by the formula shown below. Credit unions may calculate the annual percentage yield using projected... the formula, credit unions shall assume that all principal and dividends remain on deposit for the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...
Code of Federal Regulations, 2010 CFR
2010-01-01
... in an eligible dairy operation must meet the average adjusted gross income eligibility requirements... benefit under this subpart if their annual average adjusted nonfarm income is over $500,000 as determined... Corporation A. For DELAP, the relevant period for the annual average adjusted nonfarm income is 2005 through...
Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K
2015-01-01
Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of 8.8 % in system productivity. This study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature variability under a rice-rice cropping system in humid, subhumid, and semiarid ecosystems.
Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1998-01-01
A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).
NASA Astrophysics Data System (ADS)
Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.
2016-06-01
Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.
NASA Astrophysics Data System (ADS)
Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.
2017-12-01
A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.
Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.
2016-01-01
Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.
Code of Federal Regulations, 2011 CFR
2011-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China
NASA Astrophysics Data System (ADS)
Duan, X.; Rong, L.; Gu, Z.; Feng, D.
2017-12-01
Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.
Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei
2016-01-01
The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641
DOT National Transportation Integrated Search
2005-02-01
Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...
ERROR IN ANNUAL AVERAGE DUE TO USE OF LESS THAN EVERYDAY MEASUREMENTS
Long term averages of the concentration of PM mass and components are of interest for determining compliance with annual averages, for developing exposure surrogated for cross-sectional epidemiologic studies of the long-term of PM, and for determination of aerosol sources by chem...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
Mullaney, John R.; Schwarz, Gregory E.
2013-01-01
The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryther, J. H.
1977-01-01
Research was divided between basic physiological studies of the growth and nutrient-uptake kinetics of macroscopic marine algae and the more applied problems involved in the selection of species and the development of inexpensive, non-energy intensive culture methods for growing seaweeds and freshwater plants as a biomass source for conversion to energy. Best growth of the seaweeds occurs at low (0.1 to 1.0 ..mu..molar) concentration of major nutrients, with ammonia as a nitrogen source, with rapid exchange of the culture medium (residence time of 0.05 days or less). Of 43 species of seaweeds evaluated, representatives of the large red alga genusmore » Gracilaria appear most promising with potential yields, in a highly intensive culture system under optimal conditions, of some 129 metric dry tons per hectare per year (about half of which is organic). Non-intensive culture methods have yielded one-third to one-half that figure. Unexplained periodicity of growth and overgrowth by epiphytes remain the most critical constraint to large-scale seaweed culture. Freshwater weed species in culture include water hyacinth (Eichhornia crassipes), duckweed (Lemna minor), and Hydrilla vertecillata, with yields to date averaging 15, 4, and 8 g dry wt/m/sup 2//day, respectively. However, these plants have not yet been grown through the winter, so average annual yields are expected to be lower. In contrast to the seaweeds, the freshwater plants grow well at high nutrient concentrations and slow culture volume exchange rates (residence time ca. 20 days or more). Experiments were initiated on the recycling of digester residues from the fermentation of the freshwater and marine plants as a possible nutrient source for growth of the same species.« less
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
NASA Astrophysics Data System (ADS)
Saidaliyeva, Zarina; Davenport, Ian; Nobakht, Mohamad; White, Kevin; Shahgedanova, Maria
2017-04-01
Kazakhstan is a major producer of grain. Large scale grain production dominates in the north, making Kazakhstan one of the largest exporters of grain in the world. Agricultural production accounts for 9% of the national GDP, providing 25% of national employment. The south relies on grain production from household farms for subsistence, and has low resilience, so is vulnerable to reductions in output. Yields in the south depend on snowmelt and glacier runoff. The major limit to production is water supply, which is affected by glacier retreat and frequent droughts. Climate change is likely to impact all climate drivers negatively, leading to a decrease in crop yield, which will impact Kazakhstan and countries dependent on importing its produce. This work makes initial steps in modelling the impact of climate change on crop yield, by identifying the links between snowfall, soil moisture and agricultural productivity. Several remotely-sensed data sources are being used. The availability of snowmelt water over the period 2010-2014 is estimated by extracting the annual maximum snow water equivalent (SWE) from the Globsnow dataset, which assimilates satellite microwave observations with field observations to produce a spatial map. Soil moisture over the period 2010-2016 is provided by the ESA Soil Moisture and Ocean Salinity (SMOS) mission. Vegetation density is approximated by the Normalised Difference Vegetation Index (NDVI) produced from NASA's MODIS instruments. Statistical information on crop yields is provided by the Ministry of National Economy of the Republic of Kazakhstan Committee on Statistics. Demonstrating the link between snowmelt yield and agricultural productivity depends on showing the impact of snow mass during winter on remotely-sensed soil moisture, the link between soil moisture and vegetation density, and finally the link between vegetation density and crop yield. Soil moisture maps were extracted from SMOS observations, and resampled onto a 40km x 40km grid, and analysed to produce monthly averages. The monthly maximum snow water equivalent estimates for March were resampled onto the same grid, to approximate the total snow contributing to snowmelt. The MODIS MOD13A2 1km 16-day NDVI product was resampled onto the same 40km grid, and aggregated into 32-day averages. Annual crop yield is available in terms of kg of yield per hectare for each region in Kazakhstan between 2004 and 2015. To show the connection between the snowmelt and soil moisture, the cells within the snow and soil moisture grids were compared to calculate correlation. Data were aggregated per region. Regions in northern Kazakhstan showed the strongest correlations, because more of the soil water supply is derived from snowmelt than rain, and the southern regions showed poor correlation because of the greater influence of rainfall and irrigation. Correlations between soil moisture and vegetation density, and crop yield are ongoing, and results will be presented. It is envisaged that this research will assist the Kazakh farming community, providing real-time soil moisture data from SMOS.
Onwujekwe, O; Shu, E; Onwuameze, O; Ndum, C; Okonkwo, P
2001-12-21
To determine the level of affordability of community-directed treatment with ivermectin (CDTI) to households living in two onchocerciasis endemic Nigerian communities namely Toro in the north and Nike in the south. The proportion of the cost of treating people with ivermectin will deplete in average monthly/projected annual household expenditure on food and health care, and on average monthly and projected annual household income were respectively calculated and used to determine the level of affordability of CDTI. Questionnaires administered to heads of households or their representatives were used to collect information on the household expenditures and income. The suggested unit CDTI cost of $0.20 was used. However, as a test of sensitivity, we also used the unit cost of $0.056 which some community based distributors are charging per treatment. Using $0.20 as the unit treatment cost, this will consume less than 0.05% of average annual household income in both communities. It will equally deplete 0.05% of combined annual household expenditures on food and health care in both communities. However, using $0.056 as the unit treatment cost, then 0.02% of average annual household expenditure on health care, 0.01% average annual expenditure on combined health care and food, and 0.01% of average annual household income will be depleted. The households living in both communities may be able to afford CDTI schemes. However, the final decision on levels of affordability lies with the households. They will decide whether they can afford to trade-off some household income for ivermectin distribution.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... FEDERAL HOUSING FINANCE AGENCY [No. 2013-N-04] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Federal Deposit Insurance Corporation and that has average total assets below a statutory cap.\\2\\ The Bank...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... FEDERAL HOUSING FINANCE AGENCY [No. 2010-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... Deposit Insurance Corporation and that has average total assets below a statutory cap. See 12 U.S.C. 1422...
26 CFR 1.411(d)-3 - Section 411(d)(6) protected benefits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... an annual benefit of 2% of career average pay times years of service commencing at normal retirement... an annual benefit of 1.3% of final pay times years of service, with final pay computed as the average... has 16 years of service, M's career average pay is $37,500, and the average of M's highest 3...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
50 CFR 218.122 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (A) Sperm whales (Physeter macrocephalus)—1,645 (an average of 329 annually); (B) Killer whale... the rule must be maintained. (4) Level B Harassment: (i) Mysticetes: (A) Humpback whale (Megaptera novaeangliae)—6,975 (an average of 1,395 annually); (B) Fin whale (Balaenoptera physalus)—55185 (an average of...
Deng, Cai; Zhang, Wanchang
2018-05-30
As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2 = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.
NASA Technical Reports Server (NTRS)
Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.; Prather, Michael J.
1998-01-01
Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS[Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger. 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3 - 0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.
Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study
NASA Technical Reports Server (NTRS)
Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.
1998-01-01
Trifluoroacetic acid (TFA; CF3COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.
Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins
Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.
1968-01-01
The lower Thames and southeastern coastal river basins have a relatively abundant supply of water of generally good quality which is derived from streams entering the area and precipitation that has fallen on the area. Annual precipitation has ranged from about 32 inches to 65 inches and has averaged about 48 inches over a 30-year period. Approximately 22 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the report area through estuaries and coastal streams or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the report area, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced stream-flow and lowered ground-water levels. The mean monthly storage of water on an average is about 3.8 inches higher in November than it is in June. The amount of water that flows through and out of the report area represents the total amount of water potentially available for use by man. For the 30-year period 1931 through 1960, the annual runoff from the report area has averaged nearly 26 inches (200 billion gallons), from the entire Thames River basin above Norwich about 24 inches (530 billion gallons), and from the Pawcatuck River basin about 26 inches (130 billion gallons). A total average annual runoff of 860 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is usually not economically feasible for man to use all of it. On the other hand, with increased development, it is possible that some water will be reused several times. The water available may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed vary from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, permeability, and areal extent of aquifers, and on the variations in chemical and physical quality of the water. Differences in streamflow from point to point are due primarily to differences in the proportion of stratified drift in the drainage basin above each point, which affect the timing of streamflow, and to differences in precipitation, which affect the amount of streamflow. Ground water can be obtained from wells almost anywhere in the area, but the amount obtainable at any particular point depends upon the type and water-bearing properties of the aquifers. For practical purposes, the earth materials in the report area comprise three aquifers--stratified drift, bedrock, and till. Stratified drift is the only aquifer generally capable of yielding more than 100 gpm (gallons per minute) to individual wells. It covers about 20 percent of the area and occurs chiefly in lowlands where it overlies till and bedrock. The coefficient of permeability of the coarse-grained unit of stratified drift averages about 1,500 gbd (gallons per day) per sq ft. Drilled, screened wells tapping this unit are known to yield from 4 to 88o gpm and average 146 gpm. Dug wells in coarse-grained stratified drift supply about 2 gpm per foot of drawdown over a period of a few hours. Fine-grained stratified drift has an average coefficient of permeability of about 300 gpd per sq ft and can usually yield supplies sufficient for household use to dug wells. Bedrock and till are widespread in extent but generally provide only small water supplies. Bedrock is tapped chiefly by drilled wells, about 90 percent of which will supply at least 3 gpm. Very few, however, will supply more than 50 gpm. Till is tapped in a few places by dug wells which can yield small supplies of only a few hundred gpd throughout all or most of the year. The coefficient of permeability of till ranges from about 0.2 gpd per sq ft to 120 gpd per sq ft. The amount of ground water potentially available in the report area depends upon the amount of ground-water outflow, the amount of ground water in storage, and the quantity of water available by induced infiltration from streams and lakes. From data on permeability, saturated thickness, recharge, yield from aquifer storage, well performance, and streamflow, preliminary estimates of ground-water availability can be made for any point in the report area. Long-term yields estimated for 18 areas of stratified drift especially favorable for development of large ground-water supplies ranged from 1.3 to 66 mgd. Detailed site studies to determine optimum yields, drawdowns, and spacing of individual wells are needed before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report area is generally good to excellent. Samples of naturally occurring surface water collected at 24 sites contained less than 151 ppm (parts per million) of dissolved solids and less than 63 ppm of hardness. Water from wells is more highly mineralized than naturally occurring water from streams. Even so only 12 percent of the wells sampled yielded water with more than 200 ppm of dissolved solids and only 8 percent yielded water with more than 120 ppm of hardness. Even in major streams, which are used to transport industrial waste, hardness rarely exceeds 60 ppm and the dissolved mineral content is generally less than 200 ppm. At a few places in the town of Montville however, waters may contain dissolved mineral concentrations of 2,000 to 4,000 ppm. Iron and manganese in both ground water and surface water are the only constituents whose concentrations commonly exceed recommended limits for domestic and industrial use. Most wells in the report area yield clear water with little or no iron or manganese, but distributed among them are wells yielding ground water that contains enough of these dissolved constituents to be troublesome for most uses. Iron concentrations in naturally occurring stream water exceed 0.3 ppm under low-flow conditions at 33 percent of the sites sampled. Large concentrations of iron in stream water result from discharge of iron-bearing water from aquifers or from swamps where it is released largely from decaying vegetation. Ground water more than 30 feet below the land surface has a relatively constant temperature, usually between 48°F and 52°F. Water temperature in very shallow wells may fluctuate from about 38°F in February or March to about 55°F in late summer. Water temperature in the larger streams fluctuates much more widely, ranging from 32°F at least for brief periods in winter, to about 85°F occasionally during summer. The quality of suspended sediment transported by streams in the area is negligible. Turbidity in streams is generally not a problem although amounts large enough to be troublesome may occur locally at times. The total amount of water used in the report area for all purposes during 1964 was about 118,260 million gallons, of which 105,600 million gallons was estuarine water used for cooling by industry. The average per capita water use, excluding estuarine, temporary summer residence, and institutional water was equivalent to 186 gpd. Public water systems supplied the domestic needs of nearly tw0-thirds the population of the report area. All of the 19 systems, which were sampled, provided water of better quality than the U.S. Public Health Service suggests for drinking water standards.
NASA Astrophysics Data System (ADS)
Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Xu, Ke; Zhou, Yanlian; Zhao, Yuntai
2016-09-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China’s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation ‘greening’ and ‘browning’ on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate.
The internalist perspective on inevitable arbitrage in financial markets
NASA Astrophysics Data System (ADS)
Matsuno, Koichiro
2003-06-01
Arbitrage as an inevitable component of financial markets is due to the robust interplay between the continuous and the discontinuous stochastic variables appearing in the underlying dynamics. We present empirical evidence of such an arbitrage through the laboratory experiment on a portfolio management in the Japan-United States financial markets over the last several years, under the condition that the asset allocation was updated every day over the entire period. The portfolio management addressing the foreign exchange, the stock, and the bond markets was accomplished as referring to and processing only those empirical data that have been complied by and made available from the monetary authorities and the relevant financial markets so far. The averaged annual yield of the portfolio counted in the denomination of US currency was slightly greater than the averaged yield of the same physical assets counted in the denomination of Japanese currency, indicating the occurrence of arbitrage pricing in the financial markets. Daily update of asset allocation was conducted as referring to the predictive movement internal to the dynamics such that monetary flow variables, that are discontinuously stochastic upon the act of measurement internal to the markets, generate monetary stock variables that turn out to be both continuously stochastic and robust in the effect.
Jabeen, Nyla; Maqbool, Qaisar; Bibi, Tahira; Nazar, Mudassar; Hussain, Syed Z; Hussain, Talib; Jan, Tariq; Ahmad, Ishaq; Maaza, Malik; Anwaar, Sadaf
2018-06-01
Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.
Cost of illness among patients with diabetic foot ulcer in Turkey
Oksuz, Ergun; Malhan, Simten; Sonmez, Bilge; Numanoglu Tekin, Rukiye
2016-01-01
AIM To evaluate the annual cost of patients with Wagner grade 3-4-5 diabetic foot ulcer (DFU) from the public payer’s perspective in Turkey. METHODS This study was conducted focused on a time frame of one year from the public payer’s perspective. Cost-of-illness (COI) methodology, which was developed by the World Health Organization, was used in the generation of cost data. By following a clinical path with the COI method, the main total expenses were reached by multiplying the number of uses of each expense item, the percentage of cases that used them and unit costs. Clinical guidelines and real data specific to Turkey were used in the calculation of the direct costs. Monte Carlo Simulation was used in the study as a sensitivity analysis. RESULTS The following were calculated in DFU treatment from the public payer’s perspective: The annual average per patient outpatient costs $579.5 (4.1%), imaging test costs $283.2 (2.0%), laboratory test costs $284.8 (2.0%), annual average per patient cost of intervention, rehabilitation and trainings $2291.7 (16.0%), annual average per patient cost of drugs used $2545.8 (17.8%) and annual average per patient cost of medical materials used in DFU treatment $735.0 (5.1%). The average annual per patient cost for hospital admission is $7357.4 (51.5%). The average per patient complication cost for DFU is $210.3 (1.5%). The average annual per patient cost of DFU treatment in Turkey is $14287.70. As a result of the sensitivity analysis, the standard deviation of the analysis was $5706.60 (n = 5000, mean = $14146.8, 95%CI: $13988.6-$14304.9). CONCLUSION The health expenses per person are $-PPP 1045 in 2014 in Turkey and the average annual per patient cost for DFU is 14-fold of said amount. The total health expense in 2014 in Turkey is $-PPP 80.3 billion and the total DFU cost has a 3% share in the total annual health expenses for Turkey. Hospital costs are the highest component in DFU disease costs. In order to prevent DFU, training of the patients at risk and raising consciousness in patients with diabetes mellitus (DM) will provide benefits in terms of economy. Appropriate and efficient treatment of DM is a health intervention that can prevent complications. PMID:27795820
InfoDROUGHT: Technical reliability assessment using crop yield data at the Spanish-national level
NASA Astrophysics Data System (ADS)
Contreras, Sergio; Garcia-León, David; Hunink, Johannes E.
2017-04-01
Drought monitoring (DM) is a key component of risk-centered drought preparedness plans and drought policies. InfoDROUGHT (www.infosequia.es) is a a site- and user-tailored and fully-integrated DM system which combines functionalities for: a) the operational satellite-based weekly-1km tracking of severity and spatial extent of drought impacts, b) the interactive and faster query and delivery of drought information through a web-mapping service. InfoDROUGHT has a flexible and modular structure. The calibration (threshold definitions) and validation of the system is performed by combining expert knowledge and auxiliary impact assessments and datasets. Different technical solutions (basic or advanced versions) or deployment options (open-standard or restricted-authenticated) can be purchased by end-users and customers according to their needs. In this analysis, the technical reliability of InfoDROUGHT and its performance for detecting drought impacts on agriculture has been evaluated in the 2003-2014 period by exploring and quantifying the relationships among the drought severity indices reported by InfoDROUGHT and the annual yield anomalies observed for different rainfed crops (maize, wheat, barley) at Spain. We hypothesize a positive relationship between the crop anomalies and the drought severity level detected by InfoDROUGHT. Annual yield anomalies were computed at the province administrative level as the difference between the annual yield reported by the Spanish Annual Survey of Crop Acreages and Yields (ESYRCE database) and the mean annual yield estimated during the study period. Yield anomalies were finally compared against drought greenness-based and thermal-based drought indices (VCI and TCI, respectively) to check the coherence of the outputs and the hypothesis stated. InfoDROUGHT has been partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant, and by the H2020-EU project "Bridging the Gap for Innovations in Disaster Resilience" (www.brigaid.eu).
NASA Astrophysics Data System (ADS)
Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus
2017-01-01
In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.
[Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].
Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing
2014-06-01
Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... FEDERAL HOUSING FINANCE AGENCY [No. 2011-N-01] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... average total assets below a statutory cap. See 12 U.S.C. 1422(10)(A); 12 CFR 1263.1. The Bank Act was...
Gebert, Warren A.; Rose, William J.; Garn, Herbert S.
2012-01-01
Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are often expected to produce higher sediment and phosphorus loads. The biggest decreases in sediment and phosphorus loads occurred after 2001 when a large detention pond, the Confluence Pond, began operation. Since 2001, the annual suspended-sediment load has decreased from 2,650 tons per year to 1,450 tons per year for a 45-percent decrease. The annual total phosphorus load has decreased from 12,200 pounds per year to 6,300 pounds per year for a 48-percent decrease. A comparison of Pheasant Branch at Middleton with two other streams, Spring Harbor Storm Sewer and Yahara River at Windsor, that drain into Lake Mendota shows that suspended-sediment and total phosphorus load decreases were greatest at Pheasant Branch at Middleton. Prior to the construction of the Confluence Pond, annual suspended-sediment yield and total phosphorus yield from Pheasant Branch watershed was the largest of the three watersheds. After 2001, suspended-sediment yield was greatest at Spring Harbor Storm Sewer, and lowest at Yahara at Windsor; annual total phosphorus yield was greater at Yahara River at Windsor than that of Pheasant Branch. The stormwater-quality plan for Middleton shows that the city has met the present State of Wisconsin Administrative Code chap. NR216/NR151 requirements of reducing total suspended solids by 20 percent for the developed area in Middleton. In addition, the city already has met the 40-percent reduction in total suspended solids required by 2013. Snow and ice melt runoff from road surfaces and parking lots following winter storms can effect water quality because the runoff contains varying amounts of road salt. To evaluate the effect of road deicing on stream water quality in Pheasant Branch, specific conductance and chloride were monitored during two winter seasons. The maximum estimated concentration of chloride during the monitoring period was 931 milligrams per liter, which exceeded the U.S. Environmental Protection Agency acute criterion of 860 milligrams per liter. Chloride concentrations exceeded the U.S. Environmental Protection Agency chronic criterion of 230 milligrams per liter for at least 10 days during February and March 2007 and for 45 days during the 2007-8 winter seasons. The total sodium chloride load for the monitoring period was 1,720 tons and the largest sodium chloride load occurred in March and April of each year.
Paradise Threatened: Land Use and Erosion on St. John, US Virgin Islands
Macdonald; Anderson; Dietrich
1997-11-01
/ Rapid development and the concomitant increases in erosion and sedimentation are believed to threaten the reefs and other marine resources that are a primary attraction of St. John and Virgin Islands National Park. Average annual sediment yields from undeveloped areas were estimated from a sediment pond and a mangrove swamp as less than 20 and less than 40 t/km2/yr, respectively. Geomorphic evidence indicates that plantation agriculture during the 18th and 19th centuries did not cause severe erosion. Since about 1950 there has been rapid growth in roads and development due to increasing tourism and second-home development. Our field investigations identified the approximately 50 km of unpaved roads as the primary source of anthropogenic sediment. Field measurements of the road network in two catchments led to the development of a vector-based GIS model to predict road surface erosion and sediment delivery. We estimate that road erosion has caused at least a fourfold increase in island-wide sediment yields and that current sedimentation rates are unprecedented. Paving the dirt roads and implementing standard sediment control practices can greatly reduce current sediment yields and possible adverse effects on the marine ecosystems surrounding St. John.KEY WORDS: Erosion; Sediment yield; Roads; Dry tropics; Development
Khalil, M. A.K. [Oregon Graduate Institute of Science and Technology Portland, Oregon (USA); Rasmussen, R. A. [Oregon Graduate Institute of Science and Technology Portland, Oregon
1996-01-01
This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the South Pole (Antarctica). At each collection site, monthly averages were obtained from three flask samples collected every week. In addition to the monthly global averages available for 1980-992, this data set also contains annual global average data for 1975-1985. These annual global averages were derived from January measurements at the South Pole and in the Pacific Northwest of the United States (specifically, Washington state and the Oregon coast).
Lu, Chao; Yu, Ye; Li, Lan; Yu, Chaohui; Xu, Ping
2018-04-17
Helicobacter pylori (H. pylori) infection is a worldwide threat to human health with high prevalence. In this study, we analyzed the relationship between latitude, average annual temperature, average daily sunshine time and H. pylori infection. The PubMed, ClinicalTrials.gov , EBSCO and Web of Science databases were searched to identify studies reporting H. pylori infection. Latitude 30° was the cut-off level for low and mid-latitude areas. We obtained information for latitude, average annual temperature, average daily sunshine, and Human Development Index (HDI) from reports of studies of the relationships with H. pylori infection. Of the 51 studies included, there was significant difference in H. pylori infection between the low- and mid-latitude areas (P = 0.05). There was no significant difference in the prevalence of H. pylori infection in each 15°-latitude zone analyzed (P = 0.061). Subgroup analysis revealed the highest and lowest H. pylori infection rates in the developing regions at > 30° latitude subgroup and the developed regions at < 30° latitude subgroup, respectively (P < 0.001). Multivariate analysis showed that average annual temperature, average daily sunshine time and HDI were significantly correlated with H. pylori infection (P = 0.009, P < 0.001, P < 0.001), while there was no correlation between H. pylori infection and latitude. Our analysis showed that higher average annual temperature was associated with lower H. pylori infection rates, while average daily sunshine time correlated positively with H. pylori infection. HDI was also found to be a significant factor, with higher HDI associated with lower infection rates. These findings provide evidence that can be used to devise strategies for the prevention and control of H. pylori.
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
Impacts of climate variability and change on crop yield in sub-Sahara Africa
NASA Astrophysics Data System (ADS)
Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.
2017-12-01
Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.
Population dynamics of the Concho water snake in rivers and reservoirs
Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.
2008-01-01
The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ < 1, suggesting populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ = 1.26, SE ˆ(λ ˆ) = 0.18 and λ ˆ = 0.99, SE ˆ(λ ˆ) = 0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty.
Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay
Hartman, Blayne; Hammond, Douglas E.
1984-01-01
Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.
Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea
NASA Astrophysics Data System (ADS)
Parkhomenko, A. V.; Kukushkin, A. S.
2018-03-01
The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.
An estimation of Canadian population exposure to cosmic rays.
Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko
2009-08-01
The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.
Earth's portfolio of extreme sediment transport events
NASA Astrophysics Data System (ADS)
Korup, Oliver
2012-05-01
Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage for fuelling rather than buffering high sediment transport rates.
NASA Astrophysics Data System (ADS)
Glennie, Erin; Anyamba, Assaf
2018-06-01
A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) data were compared to National Agricultural Statistics Service (NASS) corn yield data in the United States Corn Belt from 1982 to 2014. The main objectives of the comparison were to assess 1) the consistency of regional Corn Belt responses to El Niño/Southern Oscillation (ENSO) teleconnection signals, and 2) the reliability of using NDVI as an indicator of crop yield. Regional NDVI values were used to model a seasonal curve and to define the growing season - May to October. Seasonal conditions in each county were represented by NDVI and land surface temperature (LST) composites, and corn yield was represented by average annual bushels produced per acre. Correlation analysis between the NDVI, LST, corn yield, and equatorial Pacific sea surface temperature anomalies revealed patterns in land surface dynamics and corn yield, as well as typical impacts of ENSO episodes. It was observed from the study that growing seasons coincident with La Niña events were consistently warmer, but El Niño events did not consistently impact NDVI, temperature, or corn yield data. Moreover, the El Niño and La Niña composite images suggest that impacts vary spatially across the Corn Belt. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be attributed to soy crops and other background interference. The overall correlation between the total growing season NDVI anomaly and detrended corn yield was 0.61(p = 0.00013), though the strength of the relationship varies across the Corn Belt.
Estimating average annual per cent change in trend analysis
Clegg, Limin X; Hankey, Benjamin F; Tiwari, Ram; Feuer, Eric J; Edwards, Brenda K
2009-01-01
Trends in incidence or mortality rates over a specified time interval are usually described by the conventional annual per cent change (cAPC), under the assumption of a constant rate of change. When this assumption does not hold over the entire time interval, the trend may be characterized using the annual per cent changes from segmented analysis (sAPCs). This approach assumes that the change in rates is constant over each time partition defined by the transition points, but varies among different time partitions. Different groups (e.g. racial subgroups), however, may have different transition points and thus different time partitions over which they have constant rates of change, making comparison of sAPCs problematic across groups over a common time interval of interest (e.g. the past 10 years). We propose a new measure, the average annual per cent change (AAPC), which uses sAPCs to summarize and compare trends for a specific time period. The advantage of the proposed AAPC is that it takes into account the trend transitions, whereas cAPC does not and can lead to erroneous conclusions. In addition, when the trend is constant over the entire time interval of interest, the AAPC has the advantage of reducing to both cAPC and sAPC. Moreover, because the estimated AAPC is based on the segmented analysis over the entire data series, any selected subinterval within a single time partition will yield the same AAPC estimate—that is it will be equal to the estimated sAPC for that time partition. The cAPC, however, is re-estimated using data only from that selected subinterval; thus, its estimate may be sensitive to the subinterval selected. The AAPC estimation has been incorporated into the segmented regression (free) software Joinpoint, which is used by many registries throughout the world for characterizing trends in cancer rates. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19856324
NASA Astrophysics Data System (ADS)
Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Wada, Yoshihide
2016-01-01
The Yellow River Basin (YRB), the second largest river basin of China, has experienced a booming agriculture over the past decades. But data on variability of and trends in water consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, the inter- and intra-annual water footprint (WF) of crop production in the YRB for the period 1961-2009 and the variation of monthly scarcity of blue water (ground and surface water) for 1978-2009, by comparing the blue WF of agriculture, industry and households in the basin to the maximum sustainable level. Results show that the average overall green (from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and phosphorus-related grey WFs (water required to assimilate pollutants) of crop production grew by factors of 24 and 36, respectively. The green-blue WF per ton of crop reduced significantly due to improved crop yields, while the grey WF increased because of the growing application of fertilizers. The ratio of blue to green WF increased during the study period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the annual total blue WFs related to agriculture, industry and households varied between 19% and 52% of the basin's natural runoff. The blue WF in the YRB generally peaks around May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate to severe blue water scarcity during seven months (January-July) per year. Even in the wettest month in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, especially in the basin's northern part.
Annual and Semi-Annual Temperature Oscillations in the Upper Mesosphere
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.; Killeen, T. L.
1995-01-01
Fourier transform spectrometer observations of the mesosphere have been performed at the University of Michigan (latitude: 42.5 N) on a long term basis. A database of near infrared Meinel hydroxyl spectra has been accumulated from which rotational temperatures have been determined. Harmonic analysis of one-day averaged temperatures for the period 1992.0 to 1994.5 has shown a distinct annual and semi-annual variation. Subsequent fitting of a five term periodic function characterizing the annual and semi-annual temperature oscillations to the daily averaged temperatures was performed. The resultant mean temperature and the amplitudes and phases of the annual and semi-annual variations are shown to coincide with an emission height slightly above 85 km which is consistent with the mean rocket derived altitude for peak nocturnal hydroxyl emission.
NASA Astrophysics Data System (ADS)
Sarapata, Sonia
2014-09-01
The country's energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)
Metrics and methods for characterizing dairy farm intensification using farm survey data.
Gonzalez-Mejia, Alejandra; Styles, David; Wilson, Paul; Gibbons, James
2018-01-01
Evaluation of agricultural intensification requires comprehensive analysis of trends in farm performance across physical and socio-economic aspects, which may diverge across farm types. Typical reporting of economic indicators at sectorial or the "average farm" level does not represent farm diversity and provides limited insight into the sustainability of specific intensification pathways. Using farm business data from a total of 7281 farm survey observations of English and Welsh dairy farms over a 14-year period we calculate a time series of 16 key performance indicators (KPIs) pertinent to farm structure, environmental and socio-economic aspects of sustainability. We then apply principle component analysis and model-based clustering analysis to identify statistically the number of distinct dairy farm typologies for each year of study, and link these clusters through time using multidimensional scaling. Between 2001 and 2014, dairy farms have largely consolidated and specialized into two distinct clusters: more extensive farms relying predominantly on grass, with lower milk yields but higher labour intensity, and more intensive farms producing more milk per cow with more concentrate and more maize, but lower labour intensity. There is some indication that these clusters are converging as the extensive cluster is intensifying slightly faster than the intensive cluster, in terms of milk yield per cow and use of concentrate feed. In 2014, annual milk yields were 6,835 and 7,500 l/cow for extensive and intensive farm types, respectively, whilst annual concentrate feed use was 1.3 and 1.5 tonnes per cow. For several KPIs such as milk yield the mean trend across all farms differed substantially from the extensive and intensive typologies mean. The indicators and analysis methodology developed allows identification of distinct farm types and industry trends using readily available survey data. The identified groups allow the accurate evaluation of the consequences of the reduction in dairy farm numbers and intensification at national and international scales.
Metrics and methods for characterizing dairy farm intensification using farm survey data
Gonzalez-Mejia, Alejandra; Styles, David; Wilson, Paul
2018-01-01
Evaluation of agricultural intensification requires comprehensive analysis of trends in farm performance across physical and socio-economic aspects, which may diverge across farm types. Typical reporting of economic indicators at sectorial or the “average farm” level does not represent farm diversity and provides limited insight into the sustainability of specific intensification pathways. Using farm business data from a total of 7281 farm survey observations of English and Welsh dairy farms over a 14-year period we calculate a time series of 16 key performance indicators (KPIs) pertinent to farm structure, environmental and socio-economic aspects of sustainability. We then apply principle component analysis and model-based clustering analysis to identify statistically the number of distinct dairy farm typologies for each year of study, and link these clusters through time using multidimensional scaling. Between 2001 and 2014, dairy farms have largely consolidated and specialized into two distinct clusters: more extensive farms relying predominantly on grass, with lower milk yields but higher labour intensity, and more intensive farms producing more milk per cow with more concentrate and more maize, but lower labour intensity. There is some indication that these clusters are converging as the extensive cluster is intensifying slightly faster than the intensive cluster, in terms of milk yield per cow and use of concentrate feed. In 2014, annual milk yields were 6,835 and 7,500 l/cow for extensive and intensive farm types, respectively, whilst annual concentrate feed use was 1.3 and 1.5 tonnes per cow. For several KPIs such as milk yield the mean trend across all farms differed substantially from the extensive and intensive typologies mean. The indicators and analysis methodology developed allows identification of distinct farm types and industry trends using readily available survey data. The identified groups allow the accurate evaluation of the consequences of the reduction in dairy farm numbers and intensification at national and international scales. PMID:29742166
An approach to DNI transients characterization for system evaluation
NASA Astrophysics Data System (ADS)
Feldhoff, Jan Fabian; Hirsch, Tobias
2017-06-01
The direct normal irradiance (DNI) is of utmost importance for concentrated solar power (CSP) plants. For annual yield prediction, a steady-state heat balance is made for each hour of the year or for a smaller time period such as 15 min with the corresponding average DNI value. However, short term DNI variations by clouds are ignored by this approach. In consequence, there is no information on the transient behavior of the plant and the question remains how the plant is influenced by the DNI disturbance. The paper intends to start a discussion on DNI characterization and its application to CSP. An approach to categorize the DNI behavior from a transient system point of view is presented by using purpose-/system-specific filters. Resulting DNI disturbance classes are proposed to directly compare different sites and technologies. They can be useful for better yield analysis and better commercial project selection in the future. An example on a once-through direct steam generation plant is provided.
20 CFR 226.63 - Determining monthly compensation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...
20 CFR 226.63 - Determining monthly compensation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...
20 CFR 226.63 - Determining monthly compensation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...
20 CFR 226.63 - Determining monthly compensation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...
20 CFR 226.63 - Determining monthly compensation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... obtained by dividing the average annual wage for the indexing year by the average annual wage for the year... wage for 1951 is used. (2) Indexing year defined. The indexing year is the second year before the year...
Schedule of average annual equipment ownership expense
DOT National Transportation Integrated Search
2003-03-06
The "Schedule of Average Annual Equipment Ownership Expense" is designed for use on Force Account bills of Contractors performing work for the Illinois Department of Transportation and local government agencies who choose to adopt these rates. This s...
The Great Basin Canada goose in southcentral Washington: A 40-year nesting history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.
1991-04-01
Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above themore » 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab.« less
Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.
2006-01-01
Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.
Integration of surface and groundwater resources for the development of Hamad Basin project
NASA Astrophysics Data System (ADS)
Rofail, Nabil; Asaad, S. I.
1989-11-01
Hamad Basin (166,000 km2) is an extensive basin, inhabited by 219,000 souls. It is located in the arid region within the border of four Arab States: Syria, Jordan, Iraq, and Saudi Arabia. Average annual precipitation depth is 78 mm, falling mostly during winter. Integrated studies of the natural resources, (water, soil, range, and animal) were carried out with other complementary studies to formulate a socioeconomic development plan for the promissing areas within the basin. Modern technologies were applied such as remote sensing, isotope analysis, processing, and documenting of basic hydrogeological data within the data bank system using computer facilities. Results revealed that the output of the natural dry plant production amounts to 2.0 × 106 tons. Animal wealth comprise 2 × 106 head mainly of sheep. Average annual surface runoff is 146 × 106 m3, which could be appropriately exploited in water spreading schemes to improve range. Water lost presently through evaporation from vast flat depression (Khabra) could be conserved through deepening the Khabras, and recharging shallow perched aquifer by surface runoff, which could be mined later. Results of regional geology, partial geophysical studies, and hydrogeological, hydrochemical interpretations have concuded the existance of two main aquifer systems, the first lies within the tertiary and quaternary formations, while the second extends to the mesozoic, and paleozoic. Their yield varies quantitively and qualitively, up to 100 × 106 m3 could be safely drawn annually. One compound pilot project was selected within the sector of each of the four Arab States to test the feasibility of the proposed development program for the promissing areas of the basin.
NASA Astrophysics Data System (ADS)
Aswandi; Kholibrina, C. R.
2018-02-01
Kemenyan is Styrax tree resin, the main of non-timber forest product commodity in Lake Toba catchment area, North Sumatra since hundreds years ago. However, there are lack of information about the growth and yield prediction for this tree species. The objective of study is to construct the growth and yield models for Styrax sumatrana in Tapanuli region, North Sumatra. Measurement data from 20 temporary plots were used to formulate stand diameter and height equations, and to project the incense production. The highest Current Annual Increment (CAI) of diameter occurs in the stand’s age 21 to 25 years (1.00 cm/year). The growth of diameter declines significantly to 0.48 cm/year in age 46 to 50 years, and decrease to 0.26 cm/year at age 50 years up. The intersection of CAI and MAI curves occur in stand age 31 to 35 years. It shows that the optimal growth occurs in this period. The average of incenses production was 318.59 g/tree/year. The optimum incense production was achieved when the diameter growth was maximal and tapping scars accumulation was limited.
Sakandé, Jean; Nikièma, Abdoulaye; Kabré, Elie; Sawadogo, Charles; Nacoulma, Eric W; Sanou, Mamadou; Sangaré, Lassana; Traoré-Ouédraogo, Rasmata; Sawadogo, Mamadou; Gershy-Damet, Guy Michel
2014-02-01
The National External Quality Assessment (NEQA) program of Burkina Faso is a proficiency testing program mandatory for all laboratories in the country since 2006. The program runs two cycles per year and covers all areas of laboratories. All panels were validated by the expert committee before dispatch under optimal storage and transport conditions to participating laboratories along with report forms. Performance in the last 5 years varied by panel, with average annual performance of bacteriology panels for all laboratories rising from 75% in 2006 to 81% in 2010 and with a best average performance of 87% in 2007 and 2008. During the same period, malaria microscopy performance varied from 85% to 94%, with a best average performance of 94% in 2010; chemistry performance increased from 87% to 94%, with a best average annual performance of 97% in 2009. Hematology showed more variation in performance, ranging from 61% to 86%, with a best annual average performance of 90% in 2008. Average annual performance for immunology varied less between 2006 and 2010, recording 97%, 90%, and 95%. Except for malaria microscopy, annual performances for enrolled panels varied substantially from year to year, indicating some difficulty in maintaining consistency in quality. The main challenges of the NEQA program observed between 2006 to 2010 were funding, sourcing, and safe transportation of quality panels to all laboratories countrywide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2011-04-01 2011-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...
Code of Federal Regulations, 2012 CFR
2012-04-01
... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2012-04-01 2011-04-01 true If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...
Code of Federal Regulations, 2013 CFR
2013-04-01
... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2013-04-01 2013-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...
Code of Federal Regulations, 2010 CFR
2010-04-01
... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2010-04-01 2010-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...
Code of Federal Regulations, 2014 CFR
2014-04-01
... participated in the assessment. (b) Method B—Uniform Averaging Procedure. A school may use uniform averaging... 25 Indians 1 2014-04-01 2014-04-01 false If a school fails to achieve its annual measurable... Adequate Yearly Progress § 30.116 If a school fails to achieve its annual measurable objectives, what other...
NASA Astrophysics Data System (ADS)
Smettem, Keith; Waring, Richard; Callow, Nik; Wilson, Melissa; Mu, Qiaozhen
2013-04-01
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. Ecological optimality proposes that the long term average canopy size of undisturbed perennial vegetation is tightly coupled to climate. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study we analysed satellite-derived estimates of monthly LAI across forested coastal catchments of South-west Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, inter-annual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long term decline in areal average underground water storage storage and diminished summer flows, with a trend towards more ephemeral flow regimes.
Estimation of annual average daily traffic for off-system roads in Florida
DOT National Transportation Integrated Search
1999-07-28
Estimation of Annual Average Daily Traffic (AADT) is extremely important in traffic planning and operations for the state departments of transportation (DOTs), because AADT provides information for the planning of new road construction, determination...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville
Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less
Roe, Richard H; Lass, Jonathan H; Brown, Gary C; Brown, Melissa M
2008-10-01
To perform a base case, comparative effectiveness, and cost-effectiveness (cost-utility) analysis of penetrating keratoplasty for patients with severe keratoconus. Visual acuity data were obtained from a large, retrospective multicenter study in which patients with keratoconus with less than 20/40 best corrected visual acuity and/or the inability to wear contact lenses underwent penetrating keratoplasty, with an average follow-up of 2.1 years. The results were combined with other retrospective studies investigating complication rates of penetrating keratoplasty. The data were then incorporated into a cost-utility model using patient preference-based, time trade-off utilities, computer-based decision analysis, and a net present value model to account for the time value of outcomes and money. The comparative effectiveness of the intervention is expressed in quality-of-life gain and QALYs (quality-adjusted life-years), and the cost-effectiveness results are expressed in the outcome of $/QALY (dollars spent per QALY). Penetrating keratoplasty in 1 eye for patients with severe keratoconus results in a comparative effectiveness (value gain) of 16.5% improvement in quality of life every day over the 44-year life expectancy of the average patient with severe keratoconus. Discounting the total value gain of 5.36 QALYs at a 3% annual discount rate yields 3.05 QALYs gained. The incremental cost for penetrating keratoplasty, including all complications, is $5934 ($5913 discounted at 3% per year). Thus, the incremental cost-utility (discounted at 3% annually) for this intervention is $5913/3.05 QALYs = $1942/QALY. If both eyes undergo corneal transplant, the total discounted value gain is 30% and the overall cost-utility is $2003. Surgery on the second eye confers a total discounted value gain of 2.5 QALYs, yielding a quality-of-life gain of 11.6% and a discounted cost-utility of $2238/QALY. Penetrating keratoplasty for patients with severe keratoconus seems to be a comparatively effective and cost-effective procedure when compared with other interventions across different medical specialties.
2010-01-01
Background There are growing concerns regarding inequities in health, with poverty being an important determinant of health as well as a product of health status. Within the People's Republic of China (P.R. China), disparities in socio-economic position are apparent, with the rural-urban gap of particular concern. Our aim was to compare direct and proxy methods of estimating household wealth in a rural and a peri-urban setting of Hunan province, P.R. China. Methods We collected data on ownership of household durable assets, housing characteristics, and utility and sanitation variables in two village-wide surveys in Hunan province. We employed principal components analysis (PCA) and principal axis factoring (PAF) to generate household asset-based proxy wealth indices. Households were grouped into quartiles, from 'most wealthy' to 'most poor'. We compared the estimated household wealth for each approach. Asset-based proxy wealth indices were compared to those based on self-reported average annual income and savings at the household level. Results Spearman's rank correlation analysis revealed that PCA and PAF yielded similar results, indicating that either approach may be used for estimating household wealth. In both settings investigated, the two indices were significantly associated with self-reported average annual income and combined income and savings, but not with savings alone. However, low correlation coefficients between the proxy and direct measures of wealth indicated that they are not complementary. We found wide disparities in ownership of household durable assets, and utility and sanitation variables, within and between settings. Conclusion PCA and PAF yielded almost identical results and generated robust proxy wealth indices and categories. Pooled data from the rural and peri-urban settings highlighted structural differences in wealth, most likely a result of localized urbanization and modernization. Further research is needed to improve measurements of wealth in low-income and transitional country contexts. PMID:20813070
Production of biomass/energy crops on phosphatic clay soils in central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stricker, J.A.; Prine, G.M.; Woodard, K.R.
1993-12-31
Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus weremore » planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic clay.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... posting of the availability of the submittal on EPA's Adequacy Web site (at http://www.epa.gov/otaq... average annual fourth-highest daily maximum 8-hour average ozone concentration), if it had a 1-hour design... ozone standard is attained when the three-year average of the annual fourth-highest daily maximum 8-hour...
NASA Astrophysics Data System (ADS)
Vico, Giulia; Brunsell, Nathaniel
2017-04-01
The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. A shift from annual to perennial crops has been suggested as a way to enhance ecosystem services. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion and nutrient losses, while enhancing carbon sequestration in the root zone. Nevertheless, the net effect of a shift to perennial crops on water use for agriculture is still unknown, despite its relevance for the sustainability of such a shift. We explore here the implications for water management at the field- to farm-scale of a shift from annual to perennial crops, under rainfed and irrigated agriculture. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. We show that the larger and more developed roots of perennial crops may allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species. At the same time, perennial crops are larger and may require adequate water supply for longer periods, thus leading to higher water requirements. Furthermore, they lead to lower yields per unit area, thus requiring irrigation of larger areas.
GIS Tools to Estimate Average Annual Daily Traffic
DOT National Transportation Integrated Search
2012-06-01
This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...
1994-08-01
ANNUAL PRECIPITATION, 30-YEAR NORMALS (1951-1980) A-I-3 A-I-2 MEAN MONTHLY AND ANNUAL TEMPERATURE , 30-YEAR NORMALS (1951-1980) A-I-4 A-1-3 AVERAGE ...Environmental Quality (DEQ). CLIMATE The climate of the area is humid si!btropicl. AMual average temperature in the project area is 68°F, with monthly...normal temperatures varying from 82’F in July to 531F in Januwry. Average annual precipitation over tae area is 63 inche!, maiying from a monthly
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
...-ACL (Annual Catch Limit) Harvested for Management Area 1A AGENCY: National Marine Fisheries Service... catch, annual catch limit (ACL), optimum yield, domestic harvest and processing, U.S. at-sea processing, border transfer, and the sub-ACL for each management area. The 2012 Domestic Annual Harvest was set as 91...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
...-Annual Catch Limit (ACL) Harvested for Management Area 3 AGENCY: National Marine Fisheries Service (NMFS... the overfishing limit, acceptable biological catch, annual catch limit (ACL), optimum yield, domestic.... The 2013 Domestic Annual Harvest is 107,800 metric tons (mt); the 2013 sub-ACL allocated to Area 3 is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
...-ACL (Annual Catch Limit) Harvested for Management Area 3 AGENCY: National Marine Fisheries Service..., annual catch limit (ACL), optimum yield, domestic harvest and processing, U.S. at-sea processing, border transfer, and the sub-ACL for each management area. The 2012 Domestic Annual Harvest was set as 91,200...
National Economic Development Procedures Manual. Coastal Storm Damage and Erosion
1991-09-01
study area is temperate with warm summers and moderate winters. The annual temperature averages approximately 53 degrees Fahrenheit (*F). On average ...January is the coolest month with a mean temperature of 32°F and July is the warmest month. The average annual precipitation is about 45 inches with...0704.0188 Public rooing burden for rhr$ LoIlecton of ,nformaton .s estma eO to average I hour oer resiorse including the time for resrewing inttuctiOn
This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006. Biological N fixation (BNF) in natural/semi-natural ecosystems was estimated using a correlation with actual evapotranspiration (AET). This correlation is based on a global meta-analysis of BNF in natural/semi-natural ecosystems (Cleveland et al. 1999). AET estimates for 2006 were calculated using a regression equation describing the correlation of AET with climate (average annual daily temperature, average annual minimum daily temperature, average annual maximum daily temperature, and annual precipitation) and land use/land cover variables in the conterminous US (Sanford and Selnick 2013). Data describing annual average minimum and maximum daily temperatures and total precipitation for 2006 were acquired from the PRISM climate dataset (http://prism.oregonstate.edu). Average annual climate data were then calculated for individual 12-digit USGS Hydrologic Unit Codes (HUC12s; http://water.usgs.gov/GIS/huc.html; 22 March 2011 release) using the Zonal Statistics tool in ArcMap 10.0. AET for individual HUC12s was estimated using equations described in Sanford and Selnick (2013). BNF in natural/semi-natural ecosystems within individual HUC12s was modeled with an equation describing the statistical relationship between BNF (kg N ha-1 yr-1) and actual evapotranspiration (AET; cm yr-1) and scaled to the proportion
Innovation in the pharmaceutical industry: New estimates of R&D costs.
DiMasi, Joseph A; Grabowski, Henry G; Hansen, Ronald W
2016-05-01
The research and development costs of 106 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug and biologics development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per approved new compound is $1395 million (2013 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 10.5% yields a total pre-approval cost estimate of $2558 million (2013 dollars). When compared to the results of the previous study in this series, total capitalized costs were shown to have increased at an annual rate of 8.5% above general price inflation. Adding an estimate of post-approval R&D costs increases the cost estimate to $2870 million (2013 dollars). Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of the solar radiation data for Beer Sheva, Israel, and its environs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chuck; Scofield, Ben; Pavlik, Deanne
2003-03-01
A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less
Wasiolek, Maryann
1995-01-01
Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... FEDERAL HOUSING FINANCE AGENCY [No. 2012-N-02] Notice of Annual Adjustment of the Cap on Average.... ACTION: Notice. SUMMARY: The Federal Housing Finance Agency (FHFA) has adjusted the cap on average total... statutory cap.\\2\\ The Bank Act was amended in 2008 to set the statutory cap at $1 billion and to require the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... information regarding these corrections and removals and to determine whether recall action is adequate... Annual Reporting Burden\\1\\ Annual 21 CFR section Number of frequency per Total annual Hours per Total... Average Annual Recordkeeping Burden \\1\\ Annual 21 CFR Section Number of frequency per Total annual Hours...
Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.
Good, Laura W; Vadas, Peter; Panuska, John C; Bonilla, Carlos A; Jokela, William E
2012-01-01
The Wisconsin Phosphorus Index (WPI) is one of several P indices in the United States that use equations to describe actual P loss processes. Although for nutrient management planning the WPI is reported as a dimensionless whole number, it is calculated as average annual dissolved P (DP) and particulate P (PP) mass delivered per unit area. The WPI calculations use soil P concentration, applied manure and fertilizer P, and estimates of average annual erosion and average annual runoff. We compared WPI estimated P losses to annual P loads measured in surface runoff from 86 field-years on crop fields and pastures. As the erosion and runoff generated by the weather in the monitoring years varied substantially from the average annual estimates used in the WPI, the WPI and measured loads were not well correlated. However, when measured runoff and erosion were used in the WPI field loss calculations, the WPI accurately estimated annual total P loads with a Nash-Sutcliffe Model Efficiency (NSE) of 0.87. The DP loss estimates were not as close to measured values (NSE = 0.40) as the PP loss estimates (NSE = 0.89). Some errors in estimating DP losses may be unavoidable due to uncertainties in estimating on-farm manure P application rates. The WPI is sensitive to field management that affects its erosion and runoff estimates. Provided that the WPI methods for estimating average annual erosion and runoff are accurately reflecting the effects of management, the WPI is an accurate field-level assessment tool for managing runoff P losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Medical expenditures in division I collegiate athletics: an analysis by sport and gender.
Kaeding, Christopher C; Borchers, James; Oman, Janine; Pedroza, Angela
2014-09-01
Medical expenses for collegiate athletics include providing a training room with its supplies, equipment, personnel costs, and insurance coverage. Additional expenses beyond the training room include imaging, diagnostic testing, specialty consultations, and surgeries. We hypothesized that there would be no difference in average expenses or number of claims between male and female athletes over a 5-year period. Prospective patient cohort. A sports medicine center serving athletes in Big 10 Conference intercollegiate sports. All medical claims and charges for 36 varsity teams were analyzed from 2005 to 2010. The teams were categorized into 3 groups: female-only teams, male-only teams, and coed teams. Analysis of sports with corresponding male and female teams was also performed. Claims and charges for medical care for 36 intercollegiate athletic teams over 5 years. Individual team claims and charges were stable over the study period. In 11 of the 14 sex-matched sports, the female teams had higher average annual charges. After normalizing for roster size in the sex-matched sports, females had 0.97 more average annual claims (P < 0.01) and $1459 higher annual charges (P = 0.001) than their male counterparts. The charges per claim were similar between the sexes. The 5 teams with the highest average annual charges were football, wrestling, softball, women's crew, and men's lacrosse. When normalized for roster size, the 5 sports with the highest average annual charges per athlete were softball, women's diving, men's basketball, wrestling, and men's gymnastics. Charges per claim were similar between the sex-matched sports, but the female sports had a higher number of annual claims per athlete and thus higher total charges per athlete/year. Football had the highest average annual total charges as a team, but when normalized for roster size football charges per athlete/year were similar to those of other sports.
Ockerman, Darwin J.; Petri, Brian L.
2001-01-01
During 1996?98, rainfall and runoff were monitored on a 49,680-acre agricultural watershed in Kleberg and Nueces Counties in South Texas. Nineteen rainfall samples were analyzed for selected nutrients, and runoff samples from 29 storms were analyzed for major ions, nutrients, and pesticides. Loads of nutrients in rainfall and loads of nutrients and pesticides in runoff were computed. For a 40,540-acre part of the watershed (lower study area), constituent loads entering the watershed in rainfall, in runoff from the upper study area, and from agricultural chemical applications to the lower study area were compared with runoff loads exiting the lower study area. Total rainfall for 1996?98 averaged 25.86 inches per year, which is less than the long-term annual average rainfall of 29.80 inches for the area. Rainfall and runoff during 1996?98 were typical of historical patterns, with periods of below average rainfall and runoff interspersed with extreme events. Five individual storms accounted for about 38 percent of the total rainfall and 94 percent of the total runoff. During the 3-year study, the total nitrogen runoff yield from the lower study area was 1.3 pounds per acre per year, compared with 49 pounds per acre per year applied as fertilizer and 3.1 pounds per acre per year from rainfall. While almost all of the fertilizer and rainfall nitrogen was ammonia and nitrate, most of the nitrogen in runoff was particulate organic nitrogen, associated with crop residue. Total nitrogen exiting the lower study area in surface-water runoff was about 2.5 percent of the nitrogen inputs (fertilizer and rainfall nitrogen). Annual deposition of total nitrogen entering the lower study area in rainfall exceeded net yields of total nitrogen exiting the watershed in runoff because most of the rainfall does not contribute to runoff. During the study, the total phosphorus runoff yield from the lower study area was 0.48 pound per acre per year compared with 4.2 pounds per acre per year applied as fertilizer and 0.03 pound per acre per year from rainfall. Twenty-one pesticides were detected in runoff with varying degrees of frequency during the study. The herbicide atrazine was detected in all runoff samples. All of the most frequently detected pesticides (atrazine, trifluralin, simazine, pendimethalin, and diuron) exhibited higher concentrations during the pre-harvest period (March? May) than during the post-harvest period (August? October). During 1996?98, an average of 0.37 pound per acre per year of atrazine was applied to the lower study area. During the same period, 0.0027 pound per acre per year of atrazine and its breakdown product deethylatrazine exited the lower study area in runoff (about 0.7 percent of the total atrazine applied to the cropland). During 1997, when heavy rainfall occurred during the months of April and May, the atrazine plus deethylatrazine exiting the lower study area was 1.8 percent of the applied atrazine. The 1996?98 average sediment yield was 610 pounds per acre per year. Sediment loads from the study area are associated with large storm events. Of the 45,300 tons of sediment transported from the study area during 1996?98 about 87 percent was transported during the three largest runoff events (April 1997, October 1997, and October 1998). Runoff-weighted average concentrations were computed for selected nutrients and pesticides. The 1996?98 runoff-weighted concentrations for total nitrogen and total phosphorus were 1.3 and 0.50 milligrams per liter, respectively. The 1996?98 runoff-weighted concentration for atrazine plus deethylatrazine was 2.7 micrograms per liter.
Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly
2009-06-01
Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.
Statistical analysis of CSP plants by simulating extensive meteorological series
NASA Astrophysics Data System (ADS)
Pavón, Manuel; Fernández, Carlos M.; Silva, Manuel; Moreno, Sara; Guisado, María V.; Bernardos, Ana
2017-06-01
The feasibility analysis of any power plant project needs the estimation of the amount of energy it will be able to deliver to the grid during its lifetime. To achieve this, its feasibility study requires a precise knowledge of the solar resource over a long term period. In Concentrating Solar Power projects (CSP), financing institutions typically requires several statistical probability of exceedance scenarios of the expected electric energy output. Currently, the industry assumes a correlation between probabilities of exceedance of annual Direct Normal Irradiance (DNI) and energy yield. In this work, this assumption is tested by the simulation of the energy yield of CSP plants using as input a 34-year series of measured meteorological parameters and solar irradiance. The results of this work show that, even if some correspondence between the probabilities of exceedance of annual DNI values and energy yields is found, the intra-annual distribution of DNI may significantly affect this correlation. This result highlights the need of standardized procedures for the elaboration of representative DNI time series representative of a given probability of exceedance of annual DNI.
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
40 CFR 80.90 - Conventional gasoline baseline emissions determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's exhaust...
Acid rain monitoring in East-Central Florida from 1977 to present
NASA Technical Reports Server (NTRS)
Madsen, B. C.; Kheoh, T.; Hinkle, C. R.; Dreschel, T. W.
1990-01-01
Rainfall has been collected on the University of Central Florida campus and at the Kennedy Space Center over a 12 year period. The chemical composition has been determined and summarized by monthly, annual periods, and for the entire 12 year period at both locations. The weighted average pH at each site is 4.58; however, annual weighted average pH has been equal to or above the 12 year average during six of the past eight years. Nitrate concentrations have increased slightly during recent years while excess sulfate concentrations have remained below the 12 year weighted average during six of the past seven years. Stepwise regression suggests that sulfate, nitrate, ammonium ion and calcium play major roles in the description of rainwater acidity. Annual acid deposition and annual rainfall have varied from 20 to 50 meg/(m(exp 2) year) and 100 to 180 cm/year, respectively. Sea salt comprises at least 25 percent of the total ionic composition.
Waterfowl production on the Woodworth Station in south-central North Dakota, 1965-1981
Higgins, K.F.; Kirsch, L.M.; Klett, A.T.; Miller, H.W.
1992-01-01
During 17 years of study at the Woodworth, North Dakota study area, the percent of 548 wetland basin with water during 1-15 May ranged from 8 to 87 and averaged 56; waterfowl pair densities varied from 19 to 56/km2 and averaged 40/km2. Pond occupancy by duck pairs averaged 37% during mid-May counts and 48% for late May and early June counts. A positive linear relation occurred between the estimated number of duck pairs and the percent of basins with water during 1-15 May.There were 3,339 duck nests found in grassland habitats from 1966 through 1981. Approximately 66% (85% Mayfield) of these were depredated or abandoned. Mammals caused 88% of nest failures. Half or more of the eventually successful clutches were unhatched by 10 July in 9 of 16 years. Haying would have disturbed or destroyed an average of 43%, 33%, 22%, 15%, and 9% of the duck nests if initiated on 10 July, 15 July, 20 July, 25 July, and 1 August, respectively.The total average size of completed clutch for all species was 29% smaller at the end of the nesting season than at the beginning, underscoring the importance of protecting early clutches.Production averaged 30 broods per 100 pairs of ducks and ranged from 15 to 61 broods per 100 pairs. Brood densities ranged from 10 to 63/km2 and averaged 12/km2. Mean brood size averaged 6.4 for all species. July broods averaged 7.2 ducklings and August broods 5.7 ducklings. Duckling loss averaged 2.6 per brood and 85% (2.2 ducklings) of this loss was estimated to occur during the first 14 days after hatch.Wetlands of all sizes and classes were important at some time to one species of duck or another. With the exception of some diving ducks, all species used a complex of sizes and classes of wetlands for space, food, and shelter necessary for nesting and brooding. Pair counts during 20 May-7 June were most indicative of the breeding population. A combination of two brood counts resulted in the best estimate of annual production. An average of only 50% of the total duck broods per year was counted during the 1-15 July surveys, which approximated the average time of the Service's July aerial surveys. During this study the area produced an average of 1 duck per 4 ha of upland and had a nest density of approximately 1 nest per 14 ha. Nest success rates averaged 35.1% (16.3% Mayfield). Predation was significantly reduced by good vegetative cover at nest sites. Seeded grasslands (dense nesting cover) yielded better production than native prairie or croplands. Seeded grasslands also produced 3 times more ducklings per unit area than adjacent native prairie and more than 14 times as many as adjacent, annually tilled croplands.Ducks generally showed higher nest densities and better nesting success when using growing grain crops than when nesting in standing or mulched stubble fields. Among native mixed-grass prairie and seeded grassland, production was enhanced by leaving fields idle or by treating them with periodic burning. Duck production was generally lowered by grazing field of native prairie but duck production on grazing lands was higher than in annually tilled croplands.
Internal loading of phosphorus in western Lake Erie
Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.
2016-01-01
This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryther, J.H.
1982-02-01
A number of experiments have been carried out supporting the development of a seaweed-based ocean energy farm. Beginning in 1976, forty-two species of seaweed indigenous to the coastal waters of Central Florida were screened for high biomass yields in intensive culture. Gracilaria tikvahiae achieved the highest annual yield of 34.8 g dry wt/m/sup 2/ day. Yield has been found to vary inversely with seawater exchange rate, apparently because of carbon dioxide limitation at low exchange rates. Gracilaria was anaerobically digested in 120 liter and 2 liter reactors. Gas yields in the large digesters averaged 0.4 1/g volatile solids (.24 1more » CH/sub 4//gv.s.) with a bioconversion efficiency of 48%. Studies of the suitability of digester residue as a nutrient source for growing Gracilaria have been conducted. Nitrogen recycling efficiency from harvested plant through liquid digestion residue to harvested plant approached 75%. Studies of nutrient uptake and storage by Gracilaria, Ascophyllum, and Sargassum showed that nutrient starved plants are capable of rapidly assimilating and storing inorganic nutrients which may be used later for growth when no nutrients are present in the medium. A shallow water seaweed farm was proposed which would produce methane from harvested seaweed and use digester residues as a concentrated source of nutrients for periodic fertilizations.« less
Licht, Andrea S; Hyland, Andrew; Travers, Mark J; Chapman, Simon
2013-05-01
This paper considers the evidence on whether outdoor secondhand smoke (SHS) is present in hospitality venues at high levels enough to potentially pose health risks, particularly among employees. Searches in PubMed and Web of Science included combinations of environmental tobacco smoke, secondhand smoke, or passive smoke AND outdoor, yielding 217 and 5,199 results, respectively through June, 2012. Sixteen studies were selected that reported measuring any outdoor SHS exposures (particulate matter (PM) or other SHS indicators). The SHS measurement methods were assessed for inclusion of extraneous variables that may affect levels or the corroboration of measurements with known standards. The magnitude of SHS exposure (PM2.5) depends on the number of smokers present, measurement proximity, outdoor enclosures, and wind. Annual excess PM2.5 exposure of full-time waitstaff at outdoor smoking environments could average 4.0 to 12.2 μg/m3 under variable smoking conditions. Although highly transitory, outdoor SHS exposures could occasionally exceed annual ambient air quality exposure guidelines. Personal monitoring studies of waitstaff are warranted to corroborate these modeled estimates.
A 5-year analysis of crop phenologies from the United States Heartland (Invited)
NASA Astrophysics Data System (ADS)
Johnson, D. M.
2010-12-01
Time series imagery data from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) was intersected with annually updated field-level crop data from the United States Department of Agriculture (USDA) Farm Service Agency (FSA). Phenological metrics were derived for major crop types found in the United States (US) Heartland region. The specific MODIS data consisted of the 16-day composited Normalized Difference Vegetation Index (NDVI) 250 meter spatial resolution imagery from the Terra satellite. Crops evaluated included corn, soybeans, wheat, cotton, sorghum, rice, and other small grains. Charts showing the annual average state-level NDVI phenologies by crop were constructed for the five years between 2006 and 2010. The states of interest covered the intensively cultivated regions in the US Great Plains, Corn Belt, and Mississippi River Alluvial Plain. Results demonstrated the recent biophysical growth cycles of prevalent and widespread US crops and how they varied by geography and year. Linkages between the time series data and planting practices, weather impacts, crop progress reports, and yields were also investigated.
Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steve Norman; Erika Cohen Mack; Yongqiang Liu; Eric J. Ward; Steve McNulty
2016-01-01
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for...
Downscaled climate change impacts on agricultural water resources in Puerto Rico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmsen, E.W.; Miller, N.L.; Schlegel, N.J.
2009-04-01
The purpose of this study is to estimate reference evapotranspiration (ET{sub o}), rainfall deficit (rainfall - ET{sub o}) and relative crop yield reduction for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayaguez, and Lajas. Reference evapotranspiration is estimated by the Penman-Monteith method. Rainfall and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reductions were estimated from a function dependent watermore » stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach. Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year mean 1990-2010 September rainfall excess (i.e., rainfall - ET{sub o} > 0) increased for all scenarios and locations from 149.8 to 356.4 mm for 2080-2100. Similarly, the 20-year average February rainfall deficit (i.e., rainfall - ET{sub o} < 0) decreased from a -26.1 mm for 1990-2010 to -72.1 mm for the year 2080-2100. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. Relative crop yield reduction did not change significantly under the B1 projected emissions scenario, but increased by approximately 20% during the summer months under the A1fi emissions scenario. Components of the annual water balance for the three climate change scenarios are rainfall, evapotranspiration (adjusted for soil moisture), surface runoff, aquifer recharge and change in soil moisture storage. Under the A1fi scenario, for all locations, annual evapotranspiration decreased owing to lower soil moisture, surface runoff decreased, and aquifer recharge increased. Aquifer recharge increased at all three locations because the majority of recharge occurs during the wet season and the wet season became wetter. This is good news from a groundwater production standpoint. Increasing aquifer recharge also suggests that groundwater levels may increase and this may help to minimize saltwater intrusion near the coasts as sea levels increase, provided that groundwater use is not over-subscribed.« less
Water and sediment transport modeling of a large temporary river basin in Greece.
Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N
2015-03-01
The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the sediment yield within the catchment with the highest annual sediment yield (3.5 t ha(-1)yr(-1)) to be generated from the western part of the watershed. The developed methodology facilitated the simulation of hydrology and sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management. Copyright © 2014 Elsevier B.V. All rights reserved.
Ground water resources of southeastern Oakland County, Michigan
Ferris, J.G.; Burt, E.M.; Stramel, G.J.; Crosthwaite, E.G.
1954-01-01
The area covered by this report comprises a square which measures three townships on a side and enclose 318 square miles in southeastern Oakland County. The investigation of the ground-water resources of this area was made by the U.S. Geological Survey in cooperation with the Detroit Metropolitan Area Regional Planning Commission, the Michigan Department of Conservation, and the Michigan Water Resources Commission.In 1950 the population of this nine-township area exceeded 341,000, or more than 86 percent of the total population of Oakland County. This county ranks third in the state in number of industrial establishments and workers and is fifteenth in agricultural importance. Its numerous lakes and rolling uplands contribute to its top rank in the state in the number of recreational enterprises in rural or suburban areas.The climate is moderately humid. The average annual precipitation is 30 inches and the mean air temperature is 47.2° F. Snowfall averages 38 inches in the November-April interval. The growing season averages 151 days.The regional land surface slopes from northwest to southeast and has a total relief of 360 feet. Pitted outwash plains and morainal hills that are more than 1,000 feet above sea level in the northwest corner of the area give way southeastward to a sequence of terminal moraines and intervening till plains in the middle part. These give way to the broad lake plains that cover the southeastern third of the area.The area lies on the southeast edge of the Michigan Basin and the bedrock is composed of northwest dipping strata of the Devonian and Mississippian systems. The Antrim shale, of Lake Devonian and early Mississippian age, is the oldest formation cropping out beneath the mantle of glacial Berea sandstone, and Sunbury shale overlie the Antrim and are overlain by the Coldwater shale, their areas of outcrop beneath the drift lying successively farther northwest. These formations are of early Mississippian age.Throughout the area the bedrock is covered by glacial drift which ranges in thickness from 25 to more than 350 feet. The drift increases in thickness from southeast to northwest, but considerable relief on the underlying bedrock surface greatly modifies this trend. Extensive moraines, till plains, lake plains, and gravel outwash plains cover the area. In the northwestern third of the area an extensive upland of gravel plains is dotted with lakes ranging from a few feet to more than 100 feet in depth.Precipitation is the perennial source of all water in this area, whether on the surface of underground. The average annual rainfall on the nine-townships is equivalent to a continuous supply of 450 m.g.d. or 9 times the combined annual withdrawal from all wells in the area.About 53 percent of the area is drained by the Clinton River, 44 percent by the River Rouge, and the remaining 3 percent by the Huron River. Less than one-third of the annual precipitation reappears as surface discharge from the watersheds of this area.About two-thirds of the annual precipitation on the area is lost by evaporation from water and land surfaces and by transpirations from vegetative cover. A substantial part of this large annual water loss is from the many lakes and other exposed water surfaces and from contiguous lands where the depth to the water table is slight. Average annual water losses by evapotranspiration are equivalent to about 280 m.g.d. or nearly 6 times the combined withdrawal from all ground-water supplies in the area.The principal aquifers are the alluvial deposits bordering streams and the buried outwash deposits which represent alluvial fills in preglacial or interglacial stream channels. Intensive well developments in the urban areas have greatly lowered ground-water levels in the buried outwash deposits, have brought localized problems of declining well yield, and have induced migration of mineralized waters from the underlying consolidated formations. During 1952, withdrawals of ground water in the nine township area averages about 50 m.g.d., most of this quantity being pumped from municipal wells. This annual pumpage was distributed as follows: 60 percent in Pontiac and environs; 20 percent in Birmingham, Royal Oak and Troy Township; and the remaining 20 percent throughout the suburban and rural areas.
AVERAGE ANNUAL SOLAR UV DOSE OF THE CONTINENTAL US CITIZEN
The average annual solar UV dose of US citizens is not known, but is required for relative risk assessments of skin cancer from UV-emitting devices. We solved this problem using a novel approach. The EPA's "National Human Activity Pattern Survey" recorded the daily ou...
Code of Federal Regulations, 2013 CFR
2013-01-01
... hours of a U.S. Federal Government employee. This result in the hourly government paid cost of an... average annual leave hours and 1,800 average annual hours available for work for computer manpower...
40 CFR 464.44 - New source performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...
40 CFR 464.14 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
40 CFR 464.14 - New source performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...
40 CFR 464.44 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.24 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
40 CFR 464.24 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...
40 CFR 464.24 - New source performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 464...
40 CFR 464.44 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
40 CFR 464.44 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
40 CFR 464.24 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.44 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...
40 CFR 464.24 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
40 CFR 464.14 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.14 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 30 2011-07-01 2011-07-01 false New source performance standards. 464...
40 CFR 464.14 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., total phenols, oil and grease, and TSS. For non-continuous dischargers, annual average mass standards.... Concentration standards and annual average mass standards shall only apply to non-continuous dischargers. (a... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
Comparison of Selected EIA-782 Data With Other Data Sources
2012-01-01
This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources.
Teratogens: a public health issue – a Brazilian overview
Mazzu-Nascimento, Thiago; Melo, Débora Gusmão; Morbioli, Giorgio Gianini; Carrilho, Emanuel; Vianna, Fernanda Sales Luiz; da Silva, André Anjos; Schuler-Faccini, Lavinia
2017-01-01
Abstract Congenital anomalies are already the second cause of infant mortality in Brazil, as in many other middle-income countries in Latin America. Birth defects are a result of both genetic and environmental factors, but a multifactorial etiology has been more frequently observed. Here, we address the environmental causes of birth defects – or teratogens – as a public health issue and present their mechanisms of action, categories and their respective maternal-fetal deleterious effects. We also present a survey from 2008 to 2013 of Brazilian cases involving congenital anomalies (annual average of 20,205), fetal deaths (annual average of 1,530), infant hospitalizations (annual average of 82,452), number of deaths of hospitalized infants (annual average of 2,175), and the average cost of hospitalizations (annual cost of $7,758). Moreover, we report on Brazilian cases of teratogenesis due to the recent Zika virus infection, and to the use of misoprostol, thalidomide, alcohol and illicit drugs. Special attention has been given to the Zika virus infection, now proven to be responsible for the microcephaly outbreak in Brazil, with 8,039 cases under investigation (from October 2015 to June 2016). From those cases, 1,616 were confirmed and 324 deaths occurred due to microcephaly complications or alterations on the central nervous system. Congenital anomalies impact life quality and raise costs in specialized care, justifying the classification of teratogens as a public health issue. PMID:28534929
Radiation exposure from consumer products and miscellaneous sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
March, Rod S.
2003-01-01
The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.52 Definitions. In addition to... purposes of the APH Coverage Program: (a) APH. Actual Production History. (b) Actual yield. The yield per... report contains yield history by unit, if applicable, including planted acreage for annual crops...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.52 Definitions. In addition to... purposes of the APH Coverage Program: (a) APH. Actual Production History. (b) Actual yield. The yield per... report contains yield history by unit, if applicable, including planted acreage for annual crops...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.52 Definitions. In addition to... purposes of the APH Coverage Program: (a) APH. Actual Production History. (b) Actual yield. The yield per... report contains yield history by unit, if applicable, including planted acreage for annual crops...
40 CFR 141.132 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... H system serving at least 10,000 persons which has a source water annual average TOC level, before.... Subpart H system serving from 500 to 9,999 persons which has a source water annual average TOC level... monitoring. (iii) Monitoring requirements for source water TOC. In order to qualify for reduced monitoring...
26 CFR 1.401(l)-1 - Permitted disparity in employer-provided contributions or benefits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... with respect to an employee's average annual compensation at or below the integration level (expressed... or below the integration level (expressed as a percentage of such plan year compensation). (5... plan with respect to an employee's average annual compensation above the integration level (expressed...
50 CFR 218.181 - Permissible methods of taking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...
50 CFR 218.181 - Permissible methods of taking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...
50 CFR 218.181 - Permissible methods of taking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; ...
2016-08-11
Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; Kravchenko, Alexandra N; Robertson, G Philip
2016-11-01
Differences in soil nitrous oxide (N 2 O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2 O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn-soybean-wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2 O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2 O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30-80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2 O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NO3- pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2 O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.
2015-03-01
Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.
Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus
NASA Astrophysics Data System (ADS)
Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado
2014-05-01
In the Mediterranean region, water catchment sediment yield as a result of erosion is higher than in many other regions in Europe due to the climatic conditions, topography, lithology and land-use. Modelling sediment transport is difficult due to intermittent stream flow and highly irregular rainfall conditions in this region. The objective of this study is to quantify sediment yield of a highly sloping Mediterranean environment. This study is conducted in the Peristerona Watershed in Cyprus, which has ephemeral water flow. In the downstream area a series of check dams have been placed across the stream to slow the flow and increase groundwater recharge. The surface area of the watershed, upstream of the check dams, is 103 km2 with elevation changing between 1540 m and 280 m and a mean local slope higher than 40% for the mountainous part and lower than 8% for the plain. The long-term average annual precipitation ranges from 755 mm in the upstream area to 276 mm in the plain. The surface extent of the sediment that was deposited at the most upstream check dam during two seasons was measured with a Differential Global Positioning System. The depth of the sediment was measured with utility poles and bulk density samples from the sediment profile were collected. The sediment had a surface area of 12600 m2 and an average depth of 0.23 m. The mean of the sediment dry bulk density samples was 1.05 t m-3 with a standard deviation of 0.11. Based on these values, area specific sediment yield was computed as 1 t ha-1 per year for the entire catchment area upstream of the check dam, assuming a check dam sediment trap efficiency of 15%. Erosion in the watershed is currently modeled with PESERA using detailed watershed data.
Karkanis, Anestis; Lykas, Christos; Liava, Vasiliki; Bezou, Anna; Petropoulos, Spyridon; Tsiropoulos, Nikolaos
2018-01-01
'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Health Benefits and Cost-Effectiveness of Brief Clinician Tobacco Counseling for Youth and Adults.
Maciosek, Michael V; LaFrance, Amy B; Dehmer, Steven P; McGree, Dana A; Xu, Zack; Flottemesch, Thomas J; Solberg, Leif I
2017-01-01
To help clinicians and care systems determine the priority for tobacco counseling in busy clinic schedules, we assessed the lifetime health and economic value of annually counseling youth to discourage smoking initiation and of annually counseling adults to encourage cessation. We conducted a microsimulation analysis to estimate the health impact and cost effectiveness of both types of tobacco counseling in a US birth cohort of 4,000,000. The model used for the analysis was constructed from nationally representative data sets and structured literature reviews. Compared with no tobacco counseling, the model predicts that annual counseling for youth would reduce the average prevalence of smoking cigarettes during adult years by 2.0 percentage points, whereas annual counseling for adults will reduce prevalence by 3.8 percentage points. Youth counseling would prevent 42,686 smoking-attributable fatalities and increase quality-adjusted life years (QALYs) by 756,601 over the lifetime of the cohort. Adult counseling would prevent 69,901 smoking-attributable fatalities and increase QALYs by 1,044,392. Youth and adult counseling would yield net savings of $225 and $580 per person, respectively. If annual tobacco counseling was provided to the cohort during both youth and adult years, then adult smoking prevalence would be 5.5 percentage points lower compared with no counseling, and there would be 105,917 fewer smoking-attributable fatalities over their lifetimes. Only one-third of the potential health and economic benefits of counseling are being realized at current counseling rates. Brief tobacco counseling provides substantial health benefits while producing cost savings. Both youth and adult intervention are high-priority uses of limited clinician time. © 2017 Annals of Family Medicine, Inc.
Health Benefits and Cost-Effectiveness of Brief Clinician Tobacco Counseling for Youth and Adults
Maciosek, Michael V.; LaFrance, Amy B.; Dehmer, Steven P.; McGree, Dana A.; Xu, Zack; Flottemesch, Thomas J.; Solberg, Leif I.
2017-01-01
PURPOSE To help clinicians and care systems determine the priority for tobacco counseling in busy clinic schedules, we assessed the lifetime health and economic value of annually counseling youth to discourage smoking initiation and of annually counseling adults to encourage cessation. METHODS We conducted a microsimulation analysis to estimate the health impact and cost effectiveness of both types of tobacco counseling in a US birth cohort of 4,000,000. The model used for the analysis was constructed from nationally representative data sets and structured literature reviews. RESULTS Compared with no tobacco counseling, the model predicts that annual counseling for youth would reduce the average prevalence of smoking cigarettes during adult years by 2.0 percentage points, whereas annual counseling for adults will reduce prevalence by 3.8 percentage points. Youth counseling would prevent 42,686 smoking-attributable fatalities and increase quality-adjusted life years (QALYs) by 756,601 over the lifetime of the cohort. Adult counseling would prevent 69,901 smoking-attributable fatalities and increase QALYs by 1,044,392. Youth and adult counseling would yield net savings of $225 and $580 per person, respectively. If annual tobacco counseling was provided to the cohort during both youth and adult years, then adult smoking prevalence would be 5.5 percentage points lower compared with no counseling, and there would be 105,917 fewer smoking-attributable fatalities over their lifetimes. Only one-third of the potential health and economic benefits of counseling are being realized at current counseling rates. CONCLUSIONS Brief tobacco counseling provides substantial health benefits while producing cost savings. Both youth and adult intervention are high-priority uses of limited clinician time. PMID:28376459
NASA Astrophysics Data System (ADS)
Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen
2015-04-01
Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959-1961 in order to quantify 44-46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources. Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9-4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were positively correlated with drainage area. Measured deposition within channels accounted for an average of 46% (28-75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6-90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% (± 16%) of the measured gross erosion. Extrapolated results indicated that first- and second-order streams accounted for 62% (± 38%) of total streambank erosion from 1005 km2 of northern Baltimore County. After accounting for estimated redeposition, extrapolated net streambank sediment yields (72 Mg/km2/y) constituted 70% of estimated average Piedmont watershed yields (104 Mg/km2/y). The results suggest that streambank sediments are a relatively large source of sediment from Piedmont tributaries to the Chesapeake Bay.
Structure and performance of Awassi and Assaf dairy sheep farms in northwestern Spain.
Milán, M J; Caja, G; González-González, R; Fernández-Pérez, A M; Such, X
2011-02-01
Data of 69 dairy sheep farms (70% Assaf and 30% Awassi crossbred), located in the Spanish Autonomous Community of Castilla y León and grouped for receiving technical advice, were used to study their structure and performance. Farm surface was 55.4ha, on average. Approximately 25% of the farms did not have cultivation land, and the other 75% had, on average, 73ha (from which 67% were devoted to forage). Farms used 2.1 annual work units (familiar, 90%), 493 ewes, and yielded 147,000 L/yr of milk. Farmers were tenant (84%), younger than 45 yr (70%), had new houses, and were grouped in cooperatives (83%). Sheep were fed indoors (occasional grazing only) in modern loose stalls and had machine milking. Planned mating (summer to fall) was done in 91% of farms (hormonal treatment, 54%) but artificial insemination was scarce (23%). Annual milk sales averaged 309 L/ewe (fat, 6.5%; protein, 5.3%; log(10) somatic cell count, 5.7), and milk was sent to local dairy industries for cheese production, and 1.35 lambs/ewe were harvested as milk-fed lambs (lechazo). Artificial lamb rearing was done in 38% of farms (automatic, 81%; manual, 19%). Total mixed rations were used in 33% of farms, and the rest used rationed concentrate (including self-produced cereals) according to physiological stage of the ewes (0.45 to 1.97 kg/d) and ad libitum forage (dehydrated, 70%; hay, 68%; fresh, 25%; silage, 12%). The concentrate-to-forage ratio ranged between 32 and 61%. In total, 68% of farms bought more than half of the forage, and 87% of them bought more than half of the required concentrates. According to structural, productive, and managerial traits, 4 types of farms were differentiated by using multiple correspondence analysis and cluster analysis. Type groups were: 1) large-surface farms, devoted to cereal and forage production, predominantly with Awassi crossbreed sheep and a high level of self-consumed commodities (12% of the farms); 2) large flocks with intermediate farm surfaces devoted to forage production and predominantly with Assaf sheep (30% of the farms); 3) high-yielding farms, with intermediate sized flocks of Assaf sheep and very intensive management (42% of the farms); and, 4) no-land farms predominantly with Assaf sheep (16% of the farms). In conclusion, the dairy sheep farms studied showed more adoption of intensive production systems than traditional farms, which resulted in higher milk and lamb yields. Despite all of them being based on familiar units, as traditional farms, they were highly dependent on external resources and became more vulnerable, faced with future uncertainties of the market. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen C.
2015-01-01
Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont.We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959–1961 in order to quantify 44–46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources.Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9–4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were positively correlated with drainage area. Measured deposition within channels accounted for an average of 46% (28–75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6–90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% (± 16%) of the measured gross erosion. Extrapolated results indicated that first- and second-order streams accounted for 62% (± 38%) of total streambank erosion from 1005 km2 of northern Baltimore County. After accounting for estimated redeposition, extrapolated net streambank sediment yields (72 Mg/km2/y) constituted 70% of estimated average Piedmont watershed yields (104 Mg/km2/y). The results suggest that streambank sediments are a relatively large source of sediment from Piedmont tributaries to the Chesapeake Bay.
Genetic progress in oat associated with fungicide use in Rio Grande do Sul, Brazil.
Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A
2016-12-19
The State of Rio Grande do Sul (RS) is the largest producer of oat in Brazil with the aid of consolidated breeding programs, which are constantly releasing new cultivars. The main objectives of this study were to: 1) evaluate the annual genetic progress in grain yield and hectoliter weight of the oat cultivars in RS, with and without fungicide use on aerial parts of plants; and 2) evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars through network yield trials conducted with and without fungicide use on aerial plant parts. The data on grain yield and hectoliter weight were obtained from 89 competition field trials of oat cultivars carried out from 2007 to 2014 in nine municipalities of RS. Of the total 89 trials, 44 were carried out with fungicide application on aerial plant parts and 45 were carried out without fungicide application. The annual genetic progress in oat cultivars was studied using the methodology proposed by Vencovsky (1988). The annual genetic progress in oat grain yield was 1.02% with fungicide use and 4.02% without fungicide use during the eight-year study period in RS. The annual genetic progress with respect to the hectoliter weight was 0.08% for trials with fungicide use and 0.71% for trials without fungicide use. Performing network yield trials with and without fungicide use on the aerial plants parts is a feasible method to evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars.
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0771 0.0421 Lead (T) 0.0791 0.039 Zinc (T) 0.114 0.0431 Maximum for any 1 day Maximum for monthly average Annual average 1 (mg/l) 2 (mg/l) 2 Copper (T) 0.77 0.42 0.017 Lead (T) 0.79 0.39 0.022 Zinc (T) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0771 0.0421 Lead (T) 0.0791 0.039 Zinc (T) 0.114 0.0431 Maximum for any 1 day Maximum for monthly average Annual average 1 (mg/l) 2 (mg/l) 2 Copper (T) 0.77 0.42 0.017 Lead (T) 0.79 0.39 0.022 Zinc (T) 1...
Formation, distribution and variability in snow cover on the Asian territory of the USSR
NASA Technical Reports Server (NTRS)
Pupkov, V. N.
1985-01-01
A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.
Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia
Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.
2007-01-01
Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre
Cultivated Lands of Kuban and Features of Their Development
ERIC Educational Resources Information Center
Belyuchenko, Ivan S.
2016-01-01
The basis of cultivated lands consists of the interacting populations of annual and perennial weeds and updated annually cultural annual plants, which have very limited data on the aboveground net production, and even less information about the yield of their underground organs. The aim of the research is scientific and theoretical development of…
Family planning in sub-Saharan Africa: progress or stagnation?
Cleland, John G; Ndugwa, Robert P; Zulu, Eliya M
2011-02-01
To review progress towards adoption of contraception among married or cohabiting women in western and eastern Africa between 1991 and 2004 by examining subjective need, approval, access and use. Indicators of attitudes towards and use of contraception were derived from Demographic and Health Surveys, which are nationally representative and yield internationally comparable data. Trends were examined for 24 countries that had conducted at least two surveys between 1986 and 2007. In western Africa, the subjective need for contraception remained unchanged; about 46% of married or cohabiting women reported a desire to stop and/or postpone childbearing for at least two years. The percentage of women who approved of contraception rose from 32 to 39 and the percentage with access to contraceptive methods rose from 8 to 29. The proportion of women who were using a modern method when interviewed increased from 7 to 15% (equivalent to an average annual increase of 0.6 percentage points). In eastern African countries, trends were much more favourable, with contraceptive use showing an average annual increase of 1.4 percentage points (from 16% in 1986 to 33% in 2007). In western Africa, progress towards adoption of contraception has been dismally slow. Attitudinal resistance remains a barrier and access to contraceptives, though improving, is still shockingly limited. If this situation does not change radically in the short run, the United Nations population projections for this subregion are likely to be exceeded. In eastern Africa, the prospects for a future decline in fertility are much more positive.
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-04-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr-1 in 2001 to 387.8 mm yr-1 in 2005, with an average of 369.8 mm yr-1 during the study period. The overall increase rate of 1.7 mm yr-2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently caused a detectable decrease of national total ET. The temporal patterns of ET varied spatially during the 11 yr study period, increasing in 62.2% of China's landmass, especially in the cropland areas of southern Haihe river basin, most of the Huaihe river basin, and southeastern Yangtze river basin. Decreases of annual ET mainly occurred in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibet plateau, the south part of Yunnan province, and Hainan province. Vast regions in China, especially the regions south of Yangtze river, experienced significant decreases in water yield caused by the reduction of precipitation and increase of ET while some areas sporadically distributed in northeast, east, northwest, central, and south China experienced increases in water yield. This study shows that recent climatic variability and human activity induced vegetations changes have intensified the terrestrial water cycles in China's terrestrial ecosystems, which is worthy of further thorough investigation.
Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena
2015-04-01
Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation <500 mm, NT yields are 18% higher than for conventional tillage. Such greater yields reduce the probability of food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.
Miller, Cherie V.; Gutierrez-Magness, Angelica L.; Feit Majedi, Brenda L.; Foster, Gregory D.
2007-01-01
From 2003 through 2005, continuous and discrete waterquality data were collected at two stations on the Anacostia River in Maryland: Northeast Branch at Riverdale, Maryland (U.S. Geological Survey Station 01649500) and Northwest Branch near Hyattsville, Maryland (Station 01651000). Both stations are above the heads of tide for the river, and measurements approximately represent contributions of chemicals from the nontidal watersheds in the Anacostia River. This study was a cooperative effort between the U.S. Geological Survey, the Prince George's County Department of Environmental Resources, the Maryland Department of the Environment, the U.S. Environmental Protection Agency, and George Mason University. Samples were collected for suspended sediment, nutrients, and trace metals; data were used to calculate loads of selected chemical parameters, and to evaluate the sources and transport processes of contaminants. Enrichment factors were calculated for some trace metals and used to interpret patterns of occurrence over different flow regimes. Some metals, such as cadmium, lead, and zinc, were slightly enriched as compared to global averages for shales; overall, median values of enrichment factors for all metals were approximately 15 to 35. Stepwise linear regression models were developed on log-transformed concentrations to estimate the concentrations of suspended sediment, total nitrogen, and total phosphorus from continuous data of discharge and turbidity. The use of multiple explanatory variables improved the predictions over traditional rating curves that use only streamflow as the explanatory variable, because other variables such as turbidity measure the hysteretic effects of fine-grained suspended sediment over storm hydrographs. Estimates of the concentrations of suspended sediment from continuous discharge and turbidity showed coefficients of determination for the predictions (multiple R2) of 0.95 and biases of less than 4 percent. Models to estimate the concentrations of total phosphorus and total nitrogen had lower values of multiple R2 than suspended sediment, but the estimated bias for all the models was similar. The models for total nitrogen and total phosphorus tended to under-predict high concentrations and to over-predict low concentrations as compared to measured values. Annual yields (loads per square area in kilograms per year per square kilometer) were estimated for suspended sediment, total nitrogen, and total phosphorus using the U.S. Geological Survey models ESTIMATOR and LOADEST. The model LOADEST used hourly time steps and allowed the use of turbidity, which is strongly correlated to concentrations of suspended sediment, as a predictor variable. Annual yields for total nitrogen and total phosphorus were slightly higher but similar to previous estimates for other watersheds of the Chesapeake Bay, but annual yields for suspended sediment were higher by an order of magnitude for the two Anacostia River stations. Annual yields of suspended sediment at the two Anacostia River stations ranged from 131,000 to 248,000 kilograms per year per square kilometer for 2004 and 2005. LOADEST estimates were similar to those determined with ESTIMATOR, but had reduced errors associated with the estimates.
Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.
2010-01-01
Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.
Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus
2014-12-01
Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure for such calculations, key factors influencing the uncertainty of the estimates were identified and a procedure developed. The results of the study demonstrated that there had been no significant change in mean annual soil loss in recent years and this was consistent with the information provided by the estimates of sediment yield from the catchment for the same periods. The study demonstrates the potential for using a re-sampling technique to document recent changes in soil redistribution rates. Copyright © 2014. Published by Elsevier Ltd.
Villamor, Grace B.; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi
2018-01-01
Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield. PMID:29346406
Aleza, Koutchoukalo; Villamor, Grace B; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi
2018-01-01
Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield.
The Regional Differences of Gpp Estimation by Solar Induced Fluorescence
NASA Astrophysics Data System (ADS)
Wang, X.; Lu, S.
2018-04-01
Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.
Nutrient transport in surface runoff and interflow from an aspen-birch forest
D.R. Timmons; E.S. Verry; R.E. Burwell; R.F. Holt
1977-01-01
Nutrients transported in surface runoff and interflow from an undisturbed aspen-birch (Populus tremuloides Michx., and Betula papyrifera Marsh.) forest (6.48 ha) in northern Minnesota were measured for 3 years. Surface runoff from snowmelt accounted for 97% of the average annual surface runoff and for 57% of the average annual...
Annual forest inventory estimates based on the moving average
Francis A. Roesch; James R. Steinman; Michael T. Thompson
2002-01-01
Three interpretations of the simple moving average estimator, as applied to the USDA Forest Service's annual forest inventory design, are presented. A corresponding approach to composite estimation over arbitrarily defined land areas and time intervals is given for each interpretation, under the assumption that the investigator is armed with only the spatial/...
18 CFR 381.104 - Annual adjustment of fees.
Code of Federal Regulations, 2012 CFR
2012-04-01
... data are available multiplied by the average monthly employee cost in the most recent fiscal year for... multiplied by the average monthly employee cost in the most recent fiscal year for which data are available... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Annual adjustment of...
18 CFR 381.104 - Annual adjustment of fees.
Code of Federal Regulations, 2013 CFR
2013-04-01
... data are available multiplied by the average monthly employee cost in the most recent fiscal year for... multiplied by the average monthly employee cost in the most recent fiscal year for which data are available... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Annual adjustment of...
18 CFR 381.104 - Annual adjustment of fees.
Code of Federal Regulations, 2014 CFR
2014-04-01
... data are available multiplied by the average monthly employee cost in the most recent fiscal year for... multiplied by the average monthly employee cost in the most recent fiscal year for which data are available... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Annual adjustment of...
18 CFR 381.104 - Annual adjustment of fees.
Code of Federal Regulations, 2010 CFR
2010-04-01
... data are available multiplied by the average monthly employee cost in the most recent fiscal year for... multiplied by the average monthly employee cost in the most recent fiscal year for which data are available... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Annual adjustment of...
18 CFR 381.104 - Annual adjustment of fees.
Code of Federal Regulations, 2011 CFR
2011-04-01
... data are available multiplied by the average monthly employee cost in the most recent fiscal year for... multiplied by the average monthly employee cost in the most recent fiscal year for which data are available... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Annual adjustment of...
Twenty-year trends in the prevalence of disability in China
Chen, Gong; Song, Xinming; Liu, Jufen; Yan, Lijing; Du, Wei; Pang, Lihua; Zhang, Lei; Wu, Jilei; Zhang, Bingzi; Zhang, Jun
2011-01-01
Abstract Objective To evaluate changes in the age-adjusted prevalence of disability in transitional China from 1987 to 2006. Methods Data from nationally representative surveys conducted in 1987 and 2006 were used to calculate age-adjusted disability prevalence rates by applying appropriate sample weights and directly adjusting to the age distribution of the 1990 Chinese population. Trends were assessed in terms of average annual percentage change. Findings The estimated number of disabled people in China in 1987 and 2006 was 52.7 and 84.6 million, respectively, corresponding to a weighted prevalence of 4.9% and 6.5%. The age-adjusted prevalence of disability decreased by an average of 0.5% per year (average annual percentage change, AAPC: −0.5%; 95% confidence interval, CI: −0.7 to −0.4) during 1987–2006. However, it increased by an average of 0.3% (AAPC: 0.3%; 95% CI: 0.1 to 0.5) per year in males and by an average of 1.0% (AAPC: 1.0%; 95% CI: 0.8 to 1.2) per year among rural residents, whereas among females it showed an average annual decrease of 1.5% (AAPC: −1.5%; 95% CI: −1.7 to −1.3) and among urban residents, an average annual decrease of 3.9% (AAPC: −3.9%; 95% CI: −4.3 to −3.5). Despite significant declining trends for hearing and speech, intellectual and visual disabilities, the annual age-adjusted prevalence of physical and mental disabilities increased by an average of 11.2% (AAPC: 11.2%; 95% CI: 10.5 to 11.9) and 13.3% (AAPC: 13.3%; 95% CI: 10.7 to 16.2), respectively. Conclusion In China, the age-adjusted prevalence of disability has declined since 1987, with inconsistencies dependent on the type of disability. These findings call for continuing and specific efforts to prevent disabilities in China. PMID:22084524
Muskrat investigations on the Blackwater National Wildlife Refuge, Maryland, 1941-1945
Dozier, H.L.; Markely, M.H.; Llewellyn, L.M.
1948-01-01
1. Approximately 5,233 acres of tidal marsh on the Blackwater National Wildlife Refuge in Maryland were trapped by Fish and Wildlife Service personnel from 1941-1945, with the closely controlled operations yielding 23,539 muskrats; 13,421 (57 per cent) were males and 10,090 (43 per cent) were females, a sex ratio of 133: 100. This preponderance of males was consistently maintained throughout the entire trapping period each season and is regarded as significant. ...2. In the race discussed, Ondatra z. macrodon, two distinct color phases occur. Of the total catch for the five-year period, 52 per cent were of the black-and-tan phase and 48 per cent brown....3. Males were heavier than females, averaging 2 pounds 4 ounces (1,030 g.) and 2 pounds 2 ounces (962 g.) respectively, or a difference of 2.4 ounces (68 g.). Maximum individual weights were: male-4 pounds (1,814 g.) ; and female 3 pounds 12 ounces (1,701 g.).....4. Carcasses consistently showed a rather small amount of fat, including those coming from luxuriant stands of Scirpus olneyi...5. Average weights of the total catch varied little from year to year....6. Weights increased progressively from January 1 to February 15, followed by a rapid decline....7. Summarization of the catch into bi-weekly and monthly periods showed January to be the most productive month (53 per cent); January 16-31, the most productive bi-weekly period (27 per cent); and February 16-28, the least productive period with only 12 per cent of the average annual catch....8. The best prime condition was generally reached during the last half of February but this period, unfortunately, yielded the smallest number of pelts....9.A brief discussion of pertinent management principles is given.
NASA Astrophysics Data System (ADS)
Al-Waeli, Ali H. A.; Kazem, Hussein A.; Sopian, K.; Chaichan, Miqdam T.
2018-07-01
In this study, the techno-economic assessment of GCPVT with nanofluid has been investigated based on theoretical and experimental work in Malaysia. The productivity and utilisation of the PV have been investigated using yield and capacity factors (CFs), respectively. Also, the cost of energy and payback period has been calculated. The system installed, tested, and data have been collected. Evaluation of the system in terms of current, voltage, power and efficiency are presented. The average daily ambient temperature and total global solar energy in Kuala Lumpur are 38.89°C and 4062 Wh/m2, respectively. MATLAB software is used to analyse the measured data. The assessment results show that the GCPVT system has annual yield factor, CF, the cost of energy; payback period, and efficiency are (128.34-183.75) kWh/kWp, (17.82-25.52)%, 0.196 USD/kWh, 7-8 years and 9.1%, respectively. This study indicates that the GCPVT system with nanofluid improved the PV technical and economic performance.
Hospitalization for Suicide Ideation or Attempt: 2008-2015.
Plemmons, Gregory; Hall, Matthew; Doupnik, Stephanie; Gay, James; Brown, Charlotte; Browning, Whitney; Casey, Robert; Freundlich, Katherine; Johnson, David P; Lind, Carrie; Rehm, Kris; Thomas, Susan; Williams, Derek
2018-06-01
Suicide ideation (SI) and suicide attempts (SAs) have been reported as increasing among US children over the last decade. We examined trends in emergency and inpatient encounters for SI and SA at US children's hospitals from 2008 to 2015. We used retrospective analysis of administrative billing data from the Pediatric Health Information System database. There were 115 856 SI and SA encounters during the study period. Annual percentage of all visits for SI and SA almost doubled, increasing from 0.66% in 2008 to 1.82% in 2015 (average annual increase 0.16 percentage points [95% confidence intervals (CIs) 0.15 to 0.17]). Significant increases were noted in all age groups but were higher in adolescents 15 to 17 years old (average annual increase 0.27 percentage points [95% CI 0.23 to 0.30]) and adolescents 12 to 14 years old (average annual increase 0.25 percentage points [95% CI 0.21 to 0.27]). Increases were noted in girls (average annual increase 0.14 percentage points [95% CI 0.13 to 0.15]) and boys (average annual increase 0.10 percentage points [95% CI 0.09 to 0.11]), but were higher for girls. Seasonal variation was also observed, with the lowest percentage of cases occurring during the summer and the highest during spring and fall. Encounters for SI and SA at US children's hospitals increased steadily from 2008 to 2015 and accounted for an increasing percentage of all hospital encounters. Increases were noted across all age groups, with consistent seasonal patterns that persisted over the study period. The growing impact of pediatric mental health disorders has important implications for children's hospitals and health care delivery systems. Copyright © 2018 by the American Academy of Pediatrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.
2007-06-06
The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following; Native grasses, even simple grass mixtures, can be produced profitably in the northern plains asmore » far west as the 100th meridian with yields ranging from 2 to 6 tons per acre; Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties; Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare; Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years; Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland; The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass; Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land); Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion; Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests; Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre; Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate); Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles; There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal; Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel; Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants; Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive; Although we were able to create available glucose from the AHG fraction in the bio-oil it proved recalcitrant to fermentation by yeast. Although fermentation results were much more positive with wood based bio-oil sugars, ethanol does not appear to be a likely product from grass based bio-oil; and A package of policy recommendations has been developed with roughly 75 key stakeholders from throughout the region that would support the transition to greater development of advanced biofuels and products in the region, as well as a strong role for native grass agriculture to support those industries.« less
Water resources inventory of Connecticut Part 6: Upper Housatonic River basin
Cervione, Michael A.; Mazzaferro, David L.; Melvin, Robert T.
1972-01-01
The upper Housatonic River basin report area has an abundant supply of water of generally good quality, which is derived from precipitation on the area and streams entering the area. Annual precipitation has averaged about 46 inches over a 30-year period. Of this, approximately 22 inches of water is returned to the atmosphere each year by evaporation and transpiration; the remainder flows overland to streams or percolates downward to the water table and ultimately flows out of the report area in the Housatonic River or in smaller streams tributary to the Hudson River. During the autumn and winter precipitation normally is sufficient to cause a substantial increase in the amount of water stored in surface reservoirs and in aquifers, whereas in the summer, losses through evaporation and transpiration result in sharply reduced streamflow and lowered ground-water levels. Mean monthly storage of water in November is 2.8 inches more than it is in June. The amount of water that flows into, through, and out of the report area represents the total amount potentially available for use ignoring reuse. For the 30-year period 1931 through 1960, the annual runoff from precipitation has averaged 24 inches (294 billion gallons). During the same period, inflows from Massachusetts and New York have averaged 220 and 64 billion gallons per year, respectively. A total average annual runoff of 578 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is rarely feasible to use all of it. On the other hand, with increased development, some water may be reused several times. The water availability may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed differ from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, transmissivity, and areal extent of aquifers, and on the variations in chemical and physical quality of water. Differences in precipitation cause differences in the amount of streamflow whereas differences in the proportion of stratified drift affect its timing. Water can be obtained from wells almost anywhere in the area, but the amount obtainable at any particular point depends on the type and water-bearing properties of the aquifers tapped. Stratified-drift aquifers are the only ones generally capable of yielding more than 100 gpm (gallons per minute) to individual wells. Drilled, screened wells tapping this unit yield from 17 to 1,400 gpm, with a median yield of 200 gpm. Till and bedrock are widespread but generally provide only small supplies of water. Till is tapped in a few places by dug wells, which can yield small supplies of only a few hundred gallons per day throughout all or most of the year. Bedrock is the chief aquifer for privately owned domestic and rural supplies; it is tapped by drilled wells, about 90 percent of which will supply at least 2 gpm. Only 1 of 10 bedrock wells, however, will supply more than 30 gpm. The amount of ground water potentially available in the report area depends upon the thickness and hydraulic properties of aquifers, the amount of salvageable natural discharge of ground water, and the quantity of water available by induced infiltration from streams and lakes. From data on transmissivity, thickness, recharge, well performance, and streamflow, preliminary estimates of ground-water availability can be made for most stratified-drift aquifers in the report area. Long-term yields estimated for eight areas of stratified drift especially favorable for development of large ground-water supplies ranged from 0.6 to 5 mgd (million gallons per day). Detailed site studies are needed to verity these estimates and to determine optimum yields, drawdowns, and spacing of individual wells before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report area is generally good; carbonate-bedrock units exert considerable local influence on water quality. Samples of naturally occurring surface water collected at 24 sites during low flow averaged 90 mg/l (milligrams per liter) dissolved solids and 60 mg/l hardness. Water from wells is generally more highly mineralized than naturally occurring water from streams. About 37 percent of the wells sampled yielded water with more than 200 mg/l dissolved solids and 50 percent yielded water with more than 120 mg/l hardness. These concentrations reflect the high degree of mineralization of ground water in carbonate bedrock and unconsolidated deposits derived from this bedrock. The larger streams, which transport varying amounts of industrial and domestic effluents, averaged about 150 mg/l dissolved solids and 90 mg/l hardness. Iron and manganese concentrations in both ground water and surface water at some places exceed recommended limits for domestic and industrial use. Most wells in the report area yield water with little or no iron or manganese. In certain localities however, the probability is high of encountering water with excessive concentrations of these constituents. Schists, especially the unit in the northwestern corner of the basin, are the likely sources of water with excessive iron and manganese. Iron concentrations in naturally occurring stream water exceed 0.3 mg/l under low-flow conditions at 29 percent of the sites sampled. These excessive concentrations result from discharge of iron-bearing water from aquifers or from swamps where iron is released from decaying vegetation. Water temperature in the larger streams ranges from 0°C (degrees Celsius) to about 28°C. Ground water between 30 feet and 200 feet below the land surface has a relatively constant temperature, usually between 8°C and 11°C. The quantity of suspended sediment transported by streams under natural conditions is negligible. Even in streams affected by man, turbidity is rarely a problem. The total amount of water used in the report area for all purposes during 1967 was about 6,360 million gallons, or 140 gpd per person. Public supplies furnished the domestic needs of nearly half the population of the area. All of the 14 public supplies sampled provided water that meets the drinking water standards of the U.S. Public Health Service.
Li, Yan; An, Zhijie; Yin, Dapeng; Liu, Yanmin; Huang, Zhuoying; Xu, Jianfang; Ma, Yujie; Tu, Qiufeng; Li, Qi; Wang, Huaqing
2016-01-01
To understand the disease burden due to Herpes Zoster (HZ) among people aged ≥50 years old in China and provide baseline data for future similar studies, and provide evidence for development of herpes zoster vaccination strategy. Retrospective cohort study was conducted in 4 townships and one community. A questionnaire was used to collect information on incidence and cost of HZ among people aged ≥ 50 years old. The cumulative incidence rate was 22.6/1,000 among people aged ≥ 50 years old. The average annual incidence rate of HZ was 3.43/1,000 among people aged ≥ 50 years old in 2010-2012. Cumulative incidence and average annual incidence rate increased with age: the cumulative incidence of HZ among people aged ≥ 80 years old was 3.34 times of that among 50-years old (52.3/1000 vs 15.7/1,000); average annual incidence rate rises from 2.66/1,000 among 50-years old to 8.55/1,000 among 80-year old. Cumulative incidence and average annual incidence rate for females were higher than that for males (cumulative incidence, 26.5/1000 vs 18.7/1,000; annual incidence rate, 3.95/1000 vs 2.89/1,000). Cumulative incidence and average annual incidence rate in urban were higher than in rural (cumulative incidence, 39.5/1000 vs 17.2/1,000; annual incidence rate, 7.65/1000 vs 2.06/1,000). The hospitalization rate of HZ was 4.53%. And with the increase of age, the rate has an increasing trend. HZ costs 945,709.5 RMB in total, corresponding to 840.6 RMB per patient with a median cost of 385 RMB (interquartile range 171.7-795.6). Factors associated with cost included the first onset year, area, whether hospitalized and whether sequelae left. Incidence rate, complications, hospitalization rate and average cost of HZ increase with age. We recommend that the HZ vaccinations should target people aged ≥50 years old if Zoster vaccine is licensed in China.
NASA Astrophysics Data System (ADS)
Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.
2015-10-01
Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle transport from the glacial rivers is far higher than all other measured fluxes. This observation, together with the finding that the flux to the oceans of biolimiting elements such as P and Fe is dominated by particulates, suggests that particulate transport by melting glaciers have a relatively strong effect on the feedback between continental weathering, atmospheric chemistry, and climate regulation over geologic time.
Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.
2014-01-01
The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.
Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida
Muslic, Adis; Flannery, Jennifer A.; Reich, Christopher D.; Umberger, Daniel K.; Smoak, Joseph M.; Poore, Richard Z.
2013-01-01
Colonies of three coral species, Montastraea faveolata, Diploria strigosa, and Siderastrea siderea, located in the Dry Tortugas National Park (DRTO), Florida, were sampled and analyzed to evaluate annual linear extension rates. Montastraea faveolata had the highest average linear extension and variability in (DRTO: C2 = 0.67 centimeters/year (cm yr-1) ± 0.04, B3 = 0.85 cm yr-1 ± 0.07), followed by D. strigosa (DRTO: C1 = 0.73 cm yr-1 ± 0.04; MK = 0.59 cm yr-1 ± 0.06) and S. siderea (DRTO: A1 = 0.41 cm yr-1 ± 0.03). Intercolony comparison of M. faveolata from DRTO yielded a significant correlation (r = 0.34, df = 67, P = 0.005) and similar long-term patterns. DRTO S. siderea core A1 showed an overall increasing trend (r = 0.61, df = 119, P < 0.0001) in extension rates that correlated significantly with International Comprehensive Ocean/Atmosphere Data Set annual sea-surface temperature (r = 0.42, df = 115, P < 0.0001) and an air temperature record from Key West (r = 0.37, df = 111, P < 0.0001). In conclusion, annual linear extension rates are species specific and potentially influence by long-term variability in sea-surface temperature.
NASA Astrophysics Data System (ADS)
Kalejta, B.; Hockey, P. A. R.
1991-08-01
Twenty-five benthic invertebrate species were identified from samples taken monthly over 17 months at four sites on the Berg River estuary, South Africa. Gastropods and polychaetes dominated the macrofauna in terms of both numbers and biomass. Abundance of the dominant species fluctuated in response to seasonal growth of eelgrass Zostera capensis and filamentous alga Cladophora sp. Differences in distributions of invertebrates on the estuary were attributed to differences in physical properties of the substratum and in vegetation cover. Hydrobia sp., Ceratonereis erythraeensis and C. keiskama were the most important species in terms of biomass and accounted for an average of 75% of total biomass at all study sites. Biomass peaked during the austral winter, early spring and again in autumn. An increase in biomass in winter was due to somatic production, whereas spring and autumn increases were attributed to recruitment of juveniles following reproduction. Mean annual biomass for the whole estuary was 19·36 g m -2, and mean annual production 87·58 g m -2 year -1, yielding a net P/B ratio of 4·52. Production and P/B ratios of invertebrates in estuaries and coastal lagoons at temperate and subtropical latitudes were positively correlated with mean annual ambient temperature and negatively with distance from the equator. Production data are lacking from tropical estuaries.
Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma
Laine, L.L.
1958-01-01
Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the available water supplies in this region. The surface waters of the North Boggy Creek basin are of excellent quality, being suitable for municipal, agricultural and most industrial uses. The concentration of the dissolved mineral content is usually about 75 ppm (parts per million) and the hardness about 50 ppm. The water is slightly acidic, with a range of pH values from 6.5 to 7.0. This report gives the estimated average discharge at gaging stations and 3 selected other sites in the basin for the 16-year period October 1938 to September 1954, used as a base period in this report. Duration-of-flow data for selected percentages of the time are shown for the period of observed record on North Boggy and Chickasaw Creeks; similar data are estimated for the base period 1938-54. The basic records in the basin are presented on a monthly and annual basis (through March 1958). For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. These data have been correlated to obtain information on the low-water portion of the duration curves at 2 of the sites. (available as photostat copy only)
Rainfall extremes from TRMM data and the Metastatistical Extreme Value Distribution
NASA Astrophysics Data System (ADS)
Zorzetto, Enrico; Marani, Marco
2017-04-01
A reliable quantification of the probability of weather extremes occurrence is essential for designing resilient water infrastructures and hazard mitigation measures. However, it is increasingly clear that the presence of inter-annual climatic fluctuations determines a substantial long-term variability in the frequency of occurrence of extreme events. This circumstance questions the foundation of the traditional extreme value theory, hinged on stationary Poisson processes or on asymptotic assumptions to derive the Generalized Extreme Value (GEV) distribution. We illustrate here, with application to daily rainfall, a new approach to extreme value analysis, the Metastatistical Extreme Value Distribution (MEVD). The MEVD relaxes the above assumptions and is based on the whole distribution of daily rainfall events, thus allowing optimal use of all available observations. Using a global dataset of rain gauge observations, we show that the MEVD significantly outperforms the Generalized Extreme Value distribution, particularly for long average recurrence intervals and when small samples are available. The latter property suggests MEVD to be particularly suited for applications to satellite rainfall estimates, which only cover two decades, thus making extreme value estimation extremely challenging. Here we apply MEVD to the TRMM TMPA 3B42 product, an 18-year dataset of remotely-sensed daily rainfall providing a quasi-global coverage. Our analyses yield a global scale mapping of daily rainfall extremes and of their distributional tail properties, bridging the existing large gaps in ground-based networks. Finally, we illustrate how our global-scale analysis can provide insight into how properties of local rainfall regimes affect tail estimation uncertainty when using the GEV or MEVD approach. We find a dependence of the estimation uncertainty, for both the GEV- and MEV-based approaches, on the average annual number and on the inter-annual variability of rainy days. In particular, estimation uncertainty decreases 1) as the mean annual number of wet days increases, and 2) as the variability in the number of rainy days, expressed by its coefficient of variation, decreases. We tentatively explain this behavior in terms of the assumptions underlying the two approaches.
V. Hernandez-Santana; X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M. Tomer
2013-01-01
Intensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was...
Lai, Liming; Kumar, Sandeep; Mbonimpa, Eric G; Hong, Chang Oh; Owens, Vance N; Neupane, Ram P
2016-04-15
Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E
2008-01-01
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.
Average M shell fluorescence yields for elements with 70≤Z≤92
NASA Astrophysics Data System (ADS)
Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.
2015-03-01
The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω¯M ) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.
Wu, Rong Jun; Xing, Xiao Yong
2016-06-01
The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.
USDA-ARS?s Scientific Manuscript database
Mean on-farm USA soybean yield increased at a rate of 21.3 kg per ha per year between 1924 and 2010, due to adoption of yield-enhancing genetic and agronomic technologies. To estimate annual rates of genetic yield gain in three northern USA soybean maturity groups (MG) and determine if these estimat...
Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,
1984-01-01
Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.
NASA Astrophysics Data System (ADS)
Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.
2017-06-01
Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.
Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12
Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald
2015-01-01
Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
An Examination of Selected Geomagnetic Indices in Relation to the Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
Previous studies have shown geomagnetic indices to be useful for providing early estimates for the size of the following sunspot cycle several years in advance. Examined this study are various precursor methods for predicting the minimum and maximum amplitude of the following sunspot cycle, these precursors based on the aa and Ap geomagnetic indices and the number of disturbed days (NDD), days when the daily Ap index equaled or exceeded 25. Also examined is the yearly peak of the daily Ap index (Apmax), the number of days when Ap greater than or equal to 100, cyclic averages of sunspot number R, aa, Ap, NDD, and the number of sudden storm commencements (NSSC), as well the cyclic sums of NDD and NSSC. The analysis yields 90-percent prediction intervals for both the minimum and maximum amplitudes for cycle 24, the next sunspot cycle. In terms of yearly averages, the best regressions give Rmin = 9.8+/-2.9 and Rmax = 153.8+/-24.7, equivalent to Rm = 8.8+/-2.8 and RM = 159+/-5.5, based on the 12-mo moving average (or smoothed monthly mean sunspot number). Hence, cycle 24 is expected to be above average in size, similar to cycles 21 and 22, producing more than 300 sudden storm commencements and more than 560 disturbed days, of which about 25 will be Ap greater than or equal to 100. On the basis of annual averages, the sunspot minimum year for cycle 24 will be either 2006 or 2007.
1998 Annual Tropical Cyclone Report
1998-01-01
1998 ANNUAL TROPICAL CYCLONE REPORT Microwave imagery of Typhoon Rex (06W) as it passed through the Bonin Islands, taken at 0800Z on 28 August... DAVE ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.3 TESTING AND RESULTS...weighting the forecasts given by XTRP and CLIM. 5.2.5.2 DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell
Forest statistics for Florida, 1987
Mark J. Brown; Michael T. Thompson
1988-01-01
Since 1980, area of timberland in Florida was decreased by 4 percent to less than 15.0 million acres. Area of nonindustrial private forest land has declined 12 percent to 7.1 million acres. Area harvested and retained in timberland averaged 296,000 acres annually. An average of 272,000 acres regenerated annually. 72 percent of which occurred through artificial methods...
Anatomy of backcountry management costs
Herbert E Echelberger; Harriet J. Plumley; Harriet J. Plumley
1986-01-01
Operation and management costs for several dispersed overnight site locations and backcountry trails in the White Mountain National Forest were studied. Average annual costs ranged from $200 to $1,500 per mile for trails and from $0.35 to $4.29 per visitor for overnight sites. Average annual costs for trails and overnight sites increased with elevation and use levels,...
40 CFR 76.5 - NOX emission limitations for Group 1 boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wall-fired boiler (other than units applying cell burner technology) shall not discharge, or allow to... input on an annual average basis for tangentially fired boilers. (2) 0.50 lb/mmBtu of heat input on an annual average basis for dry bottom wall-fired boilers (other than units applying cell burner technology...
Green strips or vegetative fuel breaks
Loren St. John; Dan Ogle
2009-01-01
According to the National Interagency Fire Center, between 1998 and 2008 there were on average 65,581 fires per year and an average of 6,114,135 acres burned each year in the United States. Rangelands in the western United States have been invaded by many annual weed species including cheatgrass, an introduced winter annual grass that produces large quantities of...
Nutrient loading to Lewisville Lake, north-central Texas, 1984-87
Gain, W.S.; Baldys, Stanley
1995-01-01
The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.
Sun, Aijun; Dai, Yan; Zhang, Xinsheng; Li, Chunmin; Meng, Kun; Xu, Honglin; Wei, Xiaoli; Xiao, Guifang; Ouwerkerk, Pieter B F; Wang, Mei; Zhu, Zhen
2011-07-01
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant. © 2011 Institute of Botany, Chinese Academy of Sciences.
Rice, S.M.; Collazo, J.A.; Alldredge, M.W.; Harrington, B.A.; Lewis, A.R.
2007-01-01
We report seasonal residency and local annual survival rates of migratory Semipalmated Sandpipers (Calidris pusilla) at the Cabo Rojo salt flats, Puerto Rico. Residency rate (daily probability of remaining on the flats) was 0.991 ± 0.001 (x̄ ± SE), yielding a mean length of stay of 110 days. This finding supports the inclusion of the Caribbean as part of the species' winter range. Average estimated percentage of fat was low but increased throughout the season, which suggests that birds replenish some spent fat reserves and strive for energetic maintenance. Local annual survival rate was 0.62 ± 0.04, within the range of values reported for breeding populations at Manitoba and Alaska (0.53–0.76). The similarity was not unexpected because estimates were obtained annually but at opposite sites of their annual migratory movements. Birds captured at the salt flats appeared to be a mix of birds from various parts of the breeding range, judging from morphology (culmen's coefficient of variation = 9.1, n = 106). This suggested that origin (breeding area) of birds and their proportion in the data should be ascertained and accounted for in analyses to glean the full conservation implications of winter-based annual survival estimates. Those data are needed to unravel the possibility that individuals of distinct populations are affected by differential mortality factors across different migratory routes. Mean length of stay strongly suggested that habitat quality at the salt flats was high. Rainfall and tidal flow combine to increase food availability during fall. The salt flats dry up gradually toward late January, at the onset of the dry season. Semipalmated Sandpipers may move west to other Greater Antilles or south to sites such as coastal Surinam until the onset of spring migration. They are not an oversummering species at the salt flats. Conservation efforts in the Caribbean region require understanding the dynamics of this species throughout winter to protect essential habitat.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Lobell, D. B.; Chen, X.
2015-12-01
A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.
Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.
Puente, Celso; Atkins, John T.
1989-01-01
Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou
Nelson, Richard G; Ascough, James C; Langemeier, Michael R
2006-06-01
The primary objectives of this research were to determine SWAT model predicted reductions in four water quality indicators (sediment yield, surface runoff, nitrate nitrogen (NO(3)-N) in surface runoff, and edge-of-field erosion) associated with producing switchgrass (Panicum virgatum) on cropland in the Delaware basin in northeast Kansas, and evaluate switchgrass break-even prices. The magnitude of potential switchgrass water quality payments based on using switchgrass as an alternative energy source was also estimated. SWAT model simulations showed that between 527,000 and 1.27 million metric tons (Mg) of switchgrass could be produced annually across the basin depending upon nitrogen (N) fertilizer application levels (0-224 kg N ha(-1)). The predicted reductions in sediment yield, surface runoff, NO(3)-N in surface runoff, and edge-of-field erosion as a result of switchgrass plantings were 99, 55, 34, and 98%, respectively. The average annual cost per hectare for switchgrass ranged from about 190 US dollars with no N applied to around 345 US dollars at 224 kg N ha(-1) applied. Edge-of-field break-even price per Mg ranged from around 41 US dollars with no N applied to slightly less than 25 US dollars at 224 kg N ha(-1) applied. A majority of the switchgrass produced had an edge-of-field break-even price of 30 Mg(-1) US dollars or less. Savings of at least 50% in each of the four water quality indicators could be attained for an edge-of-field break-even price of 22-27.49 US dollars Mg(-1).
Water resources of the Salmon Falls Creek basin, Idaho-Nevada
Crosthwaite, E.G.
1969-01-01
The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is presently economically feasible. About 8,000 acre-feet was withdrawn for all uses in 1960. Natural discharge of ground water is northward -- toward the Twin Falls South Side Project and the Snake River--and is provisionally estimated to be 115,000 acre-feet annually. Ground water in the Salmon Falls tract has a medium- to high salinity hazard and a low sodium hazard. The salinity does not appear to affect crops presently grown in the tract. The southern part of the Salmon Falls Creek basin, referred to as the upper drainage basin, has little agricultural development and is used mostly for grazing livestock. Silicic volcanic rocks and tuffaceous sedimentary rocks of Tertiary age and alluvial deposits yield water to livestock, domestic, and commercial wells.
Sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi
Izuka, Scot K.
2012-01-01
Data from streamflow/sediment gages and measurements of changes in channel-bed sediment storage were gathered between October 1, 2007, and September 30, 2010, to assess the sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi. Streamflow from the watershed averaged 33 cubic feet per second during the study period, with interannual variations corresponding with variations in the frequency and magnitude of storm-flow peaks. Average streamflow during the study period was lower than the long-term average, but the study period included a storm on December 11, 2008, that caused record-high streamflows in parts of the watershed. Suspended-sediment yield from the Waikele watershed during the study period averaged 82,500 tons per year, which is 2.7 times higher than the long-term average. More than 90 percent of the yield during the study period was discharged during the December 11, 2008, storm. The study-period results are consistent with long-term records that show that the vast majority of suspended-sediment transport occurs during a few large storms. Results of this study also show that all but a small percentage of the suspended-sediment yield came from hillslopes. Only a small fraction of bed sediments is fine enough to be transported as suspended load; most bed sediments in the watershed are coarse. Silt and clay constitute less than 3 percent of the bed-sediment volume on average. Some larger clasts, however, can disintegrate during transport and contribute to the suspended load downstream. During the study period, suspended-sediment yield from the urbanized Mililani subbasin averaged 25 tons per year per square mile (tons/yr/mi2), which was much smaller than the yield from any other subbasin; these results indicate that urban land use yields much less sediment than other land uses. The wet, forested Kipapa subbasin had an average normalized hillslope suspended-sediment yield of 386 tons/yr/mi2; the average yield for forested areas in the watershed may be lower. Suspended-sediment yield from agricultural land use in the watershed is estimated to range between 5,590 and 6,440 tons/yr/mi2 during the study period; the long-term average is estimated to be 2,070 to 2,390 tons/yr/mi2. Of the three land uses considered, agriculture had by far the highest normalized suspended-sediment yield during this study - about an order of magnitude higher than forests and two orders of magnitude higher than urban areas.
Water resources in the Big Lost River Basin, south-central Idaho
Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.
1970-01-01
The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the ground into the surface streams. Large quantities of water disappear in the Chilly, Darlington, and other sinks and reappear above Mackay Narrows, above Moore Canal heading, and in other reaches. A cumulative summary of water yield upstream from selected points in the basin is as follows : Above Howell Ranch: water yield: 345 cfs; surface water: 310 cfs; ground water: 35 cfs Above. Mackay Narrows water yield: 450 cfs; surface water: 325 cfs; ground water: 75 cfs; crop evapotranspiration: 50 cfs Above Arco: water yield: 650 cfs; surface water: 75 cfs; ground water: 425 cfs; crop evapotranspiration: 150 cfs Ground-water pumping affects streamflow in reaches , where the stream and water table are continuous, but the effects of pumping were not measured except locally. Pumping depletes the total water supply by the. amount of the pumped water that is evapotranspired by crops. The part of the pumped water that is not consumed percolates into the ground or runs off over the land surface to the stream. The estimated 425 cfs that leaves the basin as ground-water flow is more than adequate for present and foreseeable needs. However because much of the outflow occurs at considerable depth, the quantity that is salvageable is unknown. Both the surface and ground waters are of good quality and are suitable for most uses. Although these waters are low in total dissolved solids, they tend to be hard or very hard.
Climate change impacts on crop yield and quality with CO2 fertilization in China
Erda, Lin; Wei, Xiong; Hui, Ju; Yinlong, Xu; Yue, Li; Liping, Bai; Liyong, Xie
2005-01-01
A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications. PMID:16433100
[Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization].
Gao, Jing; Zhang, Shu-xiang; Xu, Ming-gang; Huang, Shao-min; Yang, Xue-yun
2009-09-01
Field experiments were conducted on three typical farmland soils (loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil) in Northern China to study the grain yield, phosphorus agronomic efficiency (PAE), and phosphorus use efficiency (PUE) of wheat under effects of long-term fertilizations. Seven treatments were installed, i.e., non-fertilization (CK), nitrogen fertilization (N), nitrogen-potassium fertilization (NK), nitrogen-phosphorus fertilization (NP), nitrogen-phosphorus-potassium fertilization (NPK), NPK plus straw returning (NPKS), and NPK plus manure application (NPKM). The averaged wheat grain yields under long-term P fertilizations (treatments NP, NPK, NPKS, and NPKM) ranged from 2914 kg x hm(-2) to 6219 kg x hm(-2), being 200%-400% higher than those under no P fertilizations (treatments CK, N, and NK), and no significant differences were observed between the P fertilizations. In the early years of the experiment, the PAE in treatment NPK on the loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil was 17.0 kg x kg(-1), 20.3 kg x kg(-1), and 13.3 kg x kg(-1), and the PUE was 15.3%, 31.2%, and 23.8%, respectively. After 15-year fertilization, the PAE and PUE in treatment NPK increased annually by 3.9 kg x kg(-1) and 1.3% on loess soil, 2.5 kg x kg(-1) and 0.9% on fluvo-aquic soil, and 2.8 kg x kg(-1) and 1.0% on cinnamon fluvo-aquic soil, respectively. There were no significant differences in the PAE and PUE among the P treatments for the same soils. In Northern China, long-term P fertilization could increase the wheat grain yield and PUE significantly, and the mean annual increase of PAE and PUE in treatment NPKM was higher on loess soil than on fluvo-aquic soil and cinnamon fluvo-aquic soil.
Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.
Zhang, Tianyi; Huang, Yao
2012-06-01
Negative climate impacts on crop yield increase pressures on food security in China. In this study, climatic impacts on cereal yields (rice, wheat and maize) were investigated by analyzing climate-yield relationships from 1980 to 2008. Results indicated that warming was significant, but trends in precipitation and solar radiation were not statistically significant in most of China. In general, maize is particularly sensitive to warming. However, increase in temperature was correlated with both lower and higher yield of rice and wheat, which is inconsistent with the current view that warming results in decline in yields. Of the three cereal crops, further analysis suggested that reduction in yields with higher temperature is accompanied by lower precipitation, which mainly occurred in northern parts of China, suggesting droughts reduced yield due to lack of water resources. Similarly, a positive correlation between temperature and yield can be alternatively explained by the effect of solar radiation, mainly in the southern part of China where water resources are abundant. Overall, our study suggests that it is inter-annual variations in precipitation and solar radiation that have driven change in cereal yields in China over the last three decades. Copyright © 2011 Society of Chemical Industry.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
...-ACL (Annual Catch Limit) Harvested for Management Area 2 AGENCY: National Marine Fisheries Service... biological catch, annual catch limit (ACL), optimum yield, domestic harvest and processing, U.S. at-sea...,200 metric tons (mt); the 2012 sub-ACL allocated to Area 2 is 22,146 mt, and 0 mt of the sub-ACL is...
Anthony, S.S.
1996-01-01
The lens of fresh ground water on Pingelap Island, Pingelap Atoll contains about 384 million gallons of potable water. Recharge to the freshwater lens is estimated to be 230,000 gallons per day on the basis of an average annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 69,000 gallons per day. The estimated demand for water is about 50,000 gallons per day. Shallow-vertical-tube wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Pingelap can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.
NASA Astrophysics Data System (ADS)
Pontbriand, Claire W.; Sohn, Robert A.
2014-02-01
We detected 32,078 very small, local microearthquakes (average ML = -1) during a 9 month deployment of five ocean bottom seismometers on the periphery of the Trans-Atlantic Geotraverse active mound. Seismicity rates were constant without any main shock-aftershock behavior at ~243 events per day at the beginning of the experiment, 128 events per day after an instrument failed, and 97 events per day at the end of the experiment when whale calls increased background noise levels. The microearthquake seismograms are characterized by durations of <1 s and most have single-phase P wave arrivals (i.e., no S arrivals). We accurately located 6207 of the earthquakes, with hypocenters clustered within a narrow depth interval from ~50 to 125 m below seafloor on the south and west flanks of the deposit. We model the microearthquakes as reaction-driven fracturing events caused by anhydrite deposition in the secondary circulation system of the hydrothermal mound and show that under reasonable modeling assumptions an average event represents a volume increase of 31-58 cm3, yielding an annual (seismogenic) anhydrite deposition rate of 27-51 m3.
Average M shell fluorescence yields for elements with 70≤Z≤92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr; LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030; Deghfel, B.
2015-03-30
The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement wasmore » typically obtained between our result and other works.« less