Sample records for average bit rate

  1. High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier.

    PubMed

    Pan, Huapu; Assefa, Solomon; Green, William M J; Kuchta, Daniel M; Schow, Clint L; Rylyakov, Alexander V; Lee, Benjamin G; Baks, Christian W; Shank, Steven M; Vlasov, Yurii A

    2012-07-30

    The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.3dBm average optical power is demonstrated with 3.4pJ/bit power-efficiency and 0.6UI horizontal eye opening at a bit-error-rate of 10(-12). The receiver operates error-free (bit-error-rate < 10(-12)) up to 40Gbps with optimized power supply settings demonstrating an energy efficiency of 1.4pJ/bit and 4pJ/bit at data rates of 32Gbps and 40Gbps, respectively, with an average optical power of -0.8dBm.

  2. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard

    2013-01-01

    Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.

  3. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

  4. Acceptable bit-rates for human face identification from CCTV imagery

    NASA Astrophysics Data System (ADS)

    Tsifouti, Anastasia; Triantaphillidou, Sophie; Bilissi, Efthimia; Larabi, Mohamed-Chaker

    2013-01-01

    The objective of this investigation is to produce recommendations for acceptable bit-rates of CCTV footage of people onboard London buses. The majority of CCTV recorders on buses use a proprietary format based on the H.264/AVC video coding standard, exploiting both spatial and temporal redundancy. Low bit-rates are favored in the CCTV industry but they compromise the image usefulness of the recorded imagery. In this context usefulness is defined by the presence of enough facial information remaining in the compressed image to allow a specialist to identify a person. The investigation includes four steps: 1) Collection of representative video footage. 2) The grouping of video scenes based on content attributes. 3) Psychophysical investigations to identify key scenes, which are most affected by compression. 4) Testing of recording systems using the key scenes and further psychophysical investigations. The results are highly dependent upon scene content. For example, very dark and very bright scenes were the most challenging to compress, requiring higher bit-rates to maintain useful information. The acceptable bit-rates are also found to be dependent upon the specific CCTV system used to compress the footage, presenting challenges in drawing conclusions about universal `average' bit-rates.

  5. Purpose-built PDC bit successfully drills 7-in liner equipment and formation: An integrated solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puennel, J.G.A.; Huppertz, A.; Huizing, J.

    1996-12-31

    Historically, drilling out the 7-in, liner equipment has been a time consuming operation with a limited success ratio. The success of the operation is highly dependent on the type of drill bit employed. Tungsten carbide mills and mill tooth rock bits required from 7.5 to 11.5 hours respectively to drill the pack-off bushings, landing collar, shoe track and shoe. Rates of penetration dropped dramatically when drilling the float equipment. While conventional PDC bits have drilled the liner equipment successfully (averaging 9.7 hours), severe bit damage invariably prevented them from continuing to drill the formation at cost-effective penetration rates. This papermore » describes the integrated development and application of an IADC M433 Class PDC bit, which was designed specifically to drill out the 7-in. liner equipment and continue drilling the formation at satisfactory penetration rates. The development was the result of a joint investigation There the operator and bit/liner manufacturers shared their expertise in solving a drilling problem, The heavy-set bit was developed following drill-off tests conducted to investigate the drillability of the 7-in. liner equipment. Key features of the new bit and its application onshore The Netherlands will be presented and analyzed.« less

  6. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.

    PubMed

    Dimitriadis, Stavros I; Marimpis, Avraam D

    2018-01-01

    A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.

  7. A Dynamic Model for C3 Information Incorporating the Effects of Counter C3

    DTIC Science & Technology

    1980-12-01

    birth and death rates exactly cancel one another and H = 0. Although this simple first order linear system is not very sophisti- cated, we see...per hour and refer to the average behavior of the entire system ensemble much as species birth and death rates are typically measured in births (or...unit time) iii) VTX, VIY ; Uncertainty Death Rates resulting from data inputs (bits/bit per unit time) 3 -1 iv) YYV» YvY > Counter C

  8. Characteristics of Single-Event Upsets in a Fabric Switch (ADS151)

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; Carts, Martin A.; McMorrow, Dale; Kim, Hak; Marshall, Paul W.; LaBel, Kenneth A.

    2003-01-01

    Abstract-Two types of single event effects - bit errors and single event functional interrupts - were observed during heavy-ion testing of the AD8151 crosspoint switch. Bit errors occurred in bursts with the average number of bits in a burst being dependent on both the ion LET and on the data rate. A pulsed laser was used to identify the locations on the chip where the bit errors and single event functional interrupts occurred. Bit errors originated in the switches, drivers, and output buffers. Single event functional interrupts occurred when the laser was focused on the second rank latch containing the data specifying the state of each switch in the 33x17 matrix.

  9. The possibility of applying spectral redundancy in DWDM systems on existing long-distance FOCLs for increasing the data transmission rate and decreasing nonlinear effects and double Rayleigh scattering without changes in the communication channel

    NASA Astrophysics Data System (ADS)

    Nekuchaev, A. O.; Shuteev, S. A.

    2014-04-01

    A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.

  10. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; hide

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  11. Measurements of aperture averaging on bit-error-rate

    NASA Astrophysics Data System (ADS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-08-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  12. Increasing N200 Potentials Via Visual Stimulus Depicting Humanoid Robot Behavior.

    PubMed

    Li, Mengfan; Li, Wei; Zhou, Huihui

    2016-02-01

    Achieving recognizable visual event-related potentials plays an important role in improving the success rate in telepresence control of a humanoid robot via N200 or P300 potentials. The aim of this research is to intensively investigate ways to induce N200 potentials with obvious features by flashing robot images (images with meaningful information) and by flashing pictures containing only solid color squares (pictures with incomprehensible information). Comparative studies have shown that robot images evoke N200 potentials with recognizable negative peaks at approximately 260 ms in the frontal and central areas. The negative peak amplitudes increase, on average, from 1.2 μV, induced by flashing the squares, to 6.7 μV, induced by flashing the robot images. The data analyses support that the N200 potentials induced by the robot image stimuli exhibit recognizable features. Compared with the square stimuli, the robot image stimuli increase the average accuracy rate by 9.92%, from 83.33% to 93.25%, and the average information transfer rate by 24.56 bits/min, from 72.18 bits/min to 96.74 bits/min, in a single repetition. This finding implies that the robot images might provide the subjects with more information to understand the visual stimuli meanings and help them more effectively concentrate on their mental activities.

  13. Visual Perception Based Rate Control Algorithm for HEVC

    NASA Astrophysics Data System (ADS)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  14. High-Throughput Bit-Serial LDPC Decoder LSI Based on Multiple-Valued Asynchronous Interleaving

    NASA Astrophysics Data System (ADS)

    Onizawa, Naoya; Hanyu, Takahiro; Gaudet, Vincent C.

    This paper presents a high-throughput bit-serial low-density parity-check (LDPC) decoder that uses an asynchronous interleaver. Since consecutive log-likelihood message values on the interleaver are similar, node computations are continuously performed by using the most recently arrived messages without significantly affecting bit-error rate (BER) performance. In the asynchronous interleaver, each message's arrival rate is based on the delay due to the wire length, so that the decoding throughput is not restricted by the worst-case latency, which results in a higher average rate of computation. Moreover, the use of a multiple-valued data representation makes it possible to multiplex control signals and data from mutual nodes, thus minimizing the number of handshaking steps in the asynchronous interleaver and eliminating the clock signal entirely. As a result, the decoding throughput becomes 1.3 times faster than that of a bit-serial synchronous decoder under a 90nm CMOS technology, at a comparable BER.

  15. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    NASA Astrophysics Data System (ADS)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  16. Adaptive intercolor error prediction coder for lossless color (rgb) picutre compression

    NASA Astrophysics Data System (ADS)

    Mann, Y.; Peretz, Y.; Mitchell, Harvey B.

    2001-09-01

    Most of the current lossless compression algorithms, including the new international baseline JPEG-LS algorithm, do not exploit the interspectral correlations that exist between the color planes in an input color picture. To improve the compression performance (i.e., lower the bit rate) it is necessary to exploit these correlations. A major concern is to find efficient methods for exploiting the correlations that, at the same time, are compatible with and can be incorporated into the JPEG-LS algorithm. One such algorithm is the method of intercolor error prediction (IEP), which when used with the JPEG-LS algorithm, results on average in a reduction of 8% in the overall bit rate. We show how the IEP algorithm can be simply modified and that it nearly doubles the size of the reduction in bit rate to 15%.

  17. Sequenced subjective accents for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  18. Line-of-Sight Data Link Test Set

    DTIC Science & Technology

    1976-06-01

    spheric layer model for layer refraction or a surface reflectivity model for ground reflection paths. Measurement of the channel impulse response...the model is exercised over a path consisting of only a constant direct component. The test would consist of measuring the modem demodulator bit...direct and a fading direct component. The test typically would consist of measuring the bit error-rate over a range of average signal-to-noise

  19. Performance measurement results for a 220 Mbps QPPM optical communication receiver with an EG/G Slik APD

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit.

  20. Event-Triggered Distributed Average Consensus Over Directed Digital Networks With Limited Communication Bandwidth.

    PubMed

    Li, Huaqing; Chen, Guo; Huang, Tingwen; Dong, Zhaoyang; Zhu, Wei; Gao, Lan

    2016-12-01

    In this paper, we consider the event-triggered distributed average-consensus of discrete-time first-order multiagent systems with limited communication data rate and general directed network topology. In the framework of digital communication network, each agent has a real-valued state but can only exchange finite-bit binary symbolic data sequence with its neighborhood agents at each time step due to the digital communication channels with energy constraints. Novel event-triggered dynamic encoder and decoder for each agent are designed, based on which a distributed control algorithm is proposed. A scheme that selects the number of channel quantization level (number of bits) at each time step is developed, under which all the quantizers in the network are never saturated. The convergence rate of consensus is explicitly characterized, which is related to the scale of network, the maximum degree of nodes, the network structure, the scaling function, the quantization interval, the initial states of agents, the control gain and the event gain. It is also found that under the designed event-triggered protocol, by selecting suitable parameters, for any directed digital network containing a spanning tree, the distributed average consensus can be always achieved with an exponential convergence rate based on merely one bit information exchange between each pair of adjacent agents at each time step. Two simulation examples are provided to illustrate the feasibility of presented protocol and the correctness of the theoretical results.

  1. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.

    2013-01-01

    Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.

  2. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Matalgah, Mustafa M; Bobrek, Miljko

    Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subjectmore » to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).« less

  4. A new interferential multispectral image compression algorithm based on adaptive classification and curve-fitting

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke

    2008-08-01

    A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.

  5. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  6. Improving TCP Network Performance by Detecting and Reacting to Packet Reordering

    NASA Technical Reports Server (NTRS)

    Kruse, Hans; Ostermann, Shawn; Allman, Mark

    2003-01-01

    There are many factors governing the performance of TCP-basec applications traversing satellite channels. The end-to-end performance of TCP is known to be degraded by the reordering, delay, noise and asymmetry inherent in geosynchronous systems. This result has been largely based on experiments that evaluate the performance of TCP in single flow tests. While single flow tests are useful for deriving information on the theoretical behavior of TCP and allow for easy diagnosis of problems they do not represent a broad range of realistic situations and therefore cannot be used to authoritatively comment on performance issues. The experiments discussed in this report test TCP s performance in a more dynamic environment with competing traffic flows from hundreds of TCP connections running simultaneously across the satellite channel. Another aspect we investigate is TCP's reaction to bit errors on satellite channels. TCP interprets loss as a sign of network congestion. This causes TCP to reduce its transmission rate leading to reduced performance when loss is due to corruption. We allowed the bit error rate on our satellite channel to vary widely and tested the performance of TCP as a function of these bit error rates. Our results show that the average performance of TCP on satellite channels is good even under conditions of loss as high as bit error rates of 10(exp -5)

  7. Optimal firing rate estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.

  8. The selection of Lorenz laser parameters for transmission in the SMF 3rd transmission window

    NASA Astrophysics Data System (ADS)

    Gajda, Jerzy K.; Niesterowicz, Andrzej; Zeglinski, Grzegorz

    2003-10-01

    The work presents simulation of transmission line results with the fiber standard ITU-T G.652. The parameters of Lorenz laser decide about electrical signal parameters like eye pattern, jitter, BER, S/N, Q-factor, scattering diagram. For a short line lasers with linewidth larger than 100MHz can be used. In the paper cases for 10 Gbit/s and 40 Gbit/s transmission and the fiber length 30km, 50km, and 70km are calculated. The average open eye patterns were 1*10-5-120*10-5. The Q factor was 10-23dB. In calcuations the bit error rate (BER) was 10-40-10-4. If the bandwidth of Lorenz laser increases from 10 MHz to 500MHz a distance of transmission decrease from 70km to 30km. Very important for transmission distance is a rate bit of transmitter. If a bit rate increase from 10Gbit/s to 40 Gbit/s, the transmission distance for the signal mode fiber G.652 will decrease from 70km to 5km.

  9. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  10. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits.

    PubMed

    Ding, Yu-Yang; Chen, Wei; Chen, Hua; Wang, Chao; Li, Ya-Ping; Wang, Shuang; Yin, Zhen-Qiang; Guo, Guang-Can; Han, Zheng-Fu

    2017-03-15

    The calibration of the polarization basis between the transmitter and receiver is an important task in quantum key distribution. A continuously working polarization-basis tracking scheme (PBTS) will effectively promote the efficiency of the system and reduce the potential security risk when switching between the transmission and calibration modes. Here, we proposed a single-photon level continuously working PBTS using only sifted key bits revealed during an error correction procedure, without introducing additional reference light or interrupting the transmission of quantum signals. We applied the scheme to a polarization-encoding BB84 QKD system in a 50 km fiber channel, and obtained an average quantum bit error rate (QBER) of 2.32% and a standard derivation of 0.87% during 24 h of continuous operation. The stable and relatively low QBER validates the effectiveness of the scheme.

  11. A comparison of orthogonal transformations for digital speech processing.

    NASA Technical Reports Server (NTRS)

    Campanella, S. J.; Robinson, G. S.

    1971-01-01

    Discrete forms of the Fourier, Hadamard, and Karhunen-Loeve transforms are examined for their capacity to reduce the bit rate necessary to transmit speech signals. To rate their effectiveness in accomplishing this goal the quantizing error (or noise) resulting for each transformation method at various bit rates is computed and compared with that for conventional companded PCM processing. Based on this comparison, it is found that Karhunen-Loeve provides a reduction in bit rate of 13.5 kbits/s, Fourier 10 kbits/s, and Hadamard 7.5 kbits/s as compared with the bit rate required for companded PCM. These bit-rate reductions are shown to be somewhat independent of the transmission bit rate.

  12. Region-of-interest determination and bit-rate conversion for H.264 video transcoding

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan

    2013-12-01

    This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.

  13. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    NASA Technical Reports Server (NTRS)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  14. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  15. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  16. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  17. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  18. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  19. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  20. Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability

    NASA Astrophysics Data System (ADS)

    Guruvareddiar, Palanivel; Joseph, Biju K.

    2014-03-01

    Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.

  1. Adaptive image coding based on cubic-spline interpolation

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  2. A high-speed BCI based on code modulation VEP

    NASA Astrophysics Data System (ADS)

    Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai

    2011-04-01

    Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.

  3. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    PubMed Central

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  4. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    PubMed

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  5. Acquisition of shape information in working memory, as a function of viewing time and number of consecutive images: evidence for a succession of discrete storage classes.

    PubMed

    Ninio, J

    1998-07-01

    The capacity of visual working memory was investigated using abstract images that were slightly distorted NxN (with generally N=8) square lattices of black or white randomly selected elements. After viewing an image, or a sequence of images, the subjects viewed couples of images containing the test image and a distractor image derived from the first one by changing the black or white value of q randomly selected elements. The number q was adjusted in each experiment to the difficulty of the task and the abilities of the subject. The fraction of recognition errors, given q and N was used to evaluate the number M of bits memorized by the subject. For untrained subjects, this number M varied in a biphasic manner as a function of the time t of presentation of the test image: it was on average 13 bits for 1 s, 16 bits for 2 to 5 s, and 20 bits for 8 s. The slow pace of acquisition, from 1 to 8 s, seems due to encoding difficulties, and not to channel capacity limitations. Beyond 8 s, M(t), accurately determined for one subject, followed a square root law, in agreement with 19th century observations on the memorization of lists of digits. When two consecutive 8x8 images were viewed and tested in the same order, the number of memorized bits was downshifted by a nearly constant amount, independent of t, and equal on average to 6-7 bits. Across the subjects, the shift was independent of M. When two consecutive test images were related, the recognition errors decreased for both images, whether the testing was performed in the presentation or the reverse order. Studies involving three subjects, indicate that, when viewing m consecutive images, the average amount of information captured per image varies with m in a stepwise fashion. The first two step boundaries were around m=3 and m=9-12. The data are compatible with a model of organization of working memory in several successive layers containing increasing numbers of units, the more remote a unit, the lower the rate at which it may acquire encoded information. Copyright 1998 Elsevier Science B.V.

  6. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    NASA Technical Reports Server (NTRS)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  7. Performance of the unique-word-reverse-modulation type demodulator for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Dohi, Tomohiro; Nitta, Kazumasa; Ueda, Takashi

    1993-01-01

    This paper proposes a new type of coherent demodulator, the unique-word (UW)-reverse-modulation type demodulator, for burst signal controlled by voice operated transmitter (VOX) in mobile satellite communication channels. The demodulator has three individual circuits: a pre-detection signal combiner, a pre-detection UW detector, and a UW-reverse-modulation type demodulator. The pre-detection signal combiner combines signal sequences received by two antennas and improves bit energy-to-noise power density ratio (E(sub b)/N(sub 0)) 2.5 dB to yield 10(exp -3) average bit error rate (BER) when carrier power-to-multipath power ratio (CMR) is 15 dB. The pre-detection UW detector improves UW detection probability when the frequency offset is large. The UW-reverse-modulation type demodulator realizes a maximum pull-in frequency of 3.9 kHz, the pull-in time is 2.4 seconds and frequency error is less than 20 Hz. The performances of this demodulator are confirmed through computer simulations and its effect is clarified in real-time experiments at a bit rate of 16.8 kbps using a digital signal processor (DSP).

  8. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  9. Least Reliable Bits Coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Wagner, Paul; Budinger, James

    1992-01-01

    An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  10. Conceptual design of a 10 to the 8th power bit magnetic bubble domain mass storage unit and fabrication, test and delivery of a feasibility model

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The conceptual design of a highly reliable 10 to the 8th power-bit bubble domain memory for the space program is described. The memory has random access to blocks of closed-loop shift registers, and utilizes self-contained bubble domain chips with on-chip decoding. Trade-off studies show that the highest reliability and lowest power dissipation is obtained when the memory is organized on a bit-per-chip basis. The final design has 800 bits/register, 128 registers/chip, 16 chips/plane, and 112 planes, of which only seven are activated at a time. A word has 64 data bits +32 checkbits, used in a 16-adjacent code to provide correction of any combination of errors in one plane. 100 KHz maximum rotational frequency keeps power low (equal to or less than, 25 watts) and also allows asynchronous operation. Data rate is 6.4 megabits/sec, access time is 200 msec to an 800-word block and an additional 4 msec (average) to a word. The fabrication and operation are also described for a 64-bit bubble domain memory chip designed to test the concept of on-chip magnetic decoding. Access to one of the chip's four shift registers for the read, write, and clear functions is by means of bubble domain decoders utilizing the interaction between a conductor line and a bubble.

  11. Characterization, Optimization, and Test of the NPSAT1 MEMS 3-Axis Rate Sensor Suite for Use in Small Satellite Attitude Control

    DTIC Science & Technology

    2007-09-01

    Power Control and Filter Boards (PCFB) are powered. The anticipated temperature range is based on a model, and like all models, it is subject to...voltage regulation, filtering , or averaging at room temperature , and with no rate applied. This data was taken at 1K samples/sec, and resulted in an...buffering or amplification should be done as near to the signal source as possible. The low pass filter was added to the rate, BIT, and temperature

  12. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-03-01

    In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated.

  13. Narrative-compression coding for a channel with errors. Professional paper for period ending June 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J.W.

    1988-01-01

    Data-compression codes offer the possibility of improving the thruput of existing communication systems in the near term. This study was undertaken to determine if data-compression codes could be utilized to provide message compression in a channel with up to a 0.10-bit error rate. The data-compression capabilities of codes were investigated by estimating the average number of bits-per-character required to transmit narrative files. The performance of the codes in a channel with errors (a noisy channel) was investigated in terms of the average numbers of characters-decoded-in-error and of characters-printed-in-error-per-bit-error. Results were obtained by encoding four narrative files, which were resident onmore » an IBM-PC and use a 58-character set. The study focused on Huffman codes and suffix/prefix comma-free codes. Other data-compression codes, in particular, block codes and some simple variants of block codes, are briefly discussed to place the study results in context. Comma-free codes were found to have the most-promising data compression because error propagation due to bit errors are limited to a few characters for these codes. A technique was found to identify a suffix/prefix comma-free code giving nearly the same data compressions as a Huffman code with much less error propagation than the Huffman codes. Greater data compression can be achieved through the use of this comma-free code word assignments based on conditioned probabilities of character occurrence.« less

  14. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  15. True random bit generators based on current time series of contact glow discharge electrolysis

    NASA Astrophysics Data System (ADS)

    Rojas, Andrea Espinel; Allagui, Anis; Elwakil, Ahmed S.; Alawadhi, Hussain

    2018-05-01

    Random bit generators (RBGs) in today's digital information and communication systems employ a high rate physical entropy sources such as electronic, photonic, or thermal time series signals. However, the proper functioning of such physical systems is bound by specific constrains that make them in some cases weak and susceptible to external attacks. In this study, we show that the electrical current time series of contact glow discharge electrolysis, which is a dc voltage-powered micro-plasma in liquids, can be used for generating random bit sequences in a wide range of high dc voltages. The current signal is quantized into a binary stream by first using a simple moving average function which makes the distribution centered around zero, and then applying logical operations which enables the binarized data to pass all tests in industry-standard randomness test suite by the National Institute of Standard Technology. Furthermore, the robustness of this RBG against power supply attacks has been examined and verified.

  16. Quasi-elastic light scattering: Signal storage, correlation, and spectrum analysis under control of an 8-bit microprocessor

    NASA Astrophysics Data System (ADS)

    Glatter, Otto; Fuchs, Heribert; Jorde, Christian; Eigner, Wolf-Dieter

    1987-03-01

    The microprocessor of an 8-bit PC system is used as a central control unit for the acquisition and evaluation of data from quasi-elastic light scattering experiments. Data are sampled with a width of 8 bits under control of the CPU. This limits the minimum sample time to 20 μs. Shorter sample times would need a direct memory access channel. The 8-bit CPU can address a 64-kbyte RAM without additional paging. Up to 49 000 sample points can be measured without interruption. After storage, a correlation function or a power spectrum can be calculated from such a primary data set. Furthermore access is provided to the primary data for stability control, statistical tests, and for comparison of different evaluation methods for the same experiment. A detailed analysis of the signal (histogram) and of the effect of overflows is possible and shows that the number of pulses but not the number of overflows determines the error in the result. The correlation function can be computed with reasonable accuracy from data with a mean pulse rate greater than one, the power spectrum needs a three times higher pulse rate for convergence. The statistical accuracy of the results from 49 000 sample points is of the order of a few percent. Additional averages are necessary to improve their quality. The hardware extensions for the PC system are inexpensive. The main disadvantage of the present system is the high minimum sampling time of 20 μs and the fact that the correlogram or the power spectrum cannot be computed on-line as it can be done with hardware correlators or spectrum analyzers. These shortcomings and the storage size restrictions can be removed with a faster 16/32-bit CPU.

  17. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  18. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, John R.

    1997-01-01

    A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.

  19. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  20. Approximation of Bit Error Rates in Digital Communications

    DTIC Science & Technology

    2007-06-01

    and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase

  1. Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference

    DTIC Science & Technology

    2008-12-01

    The effective two-way tactical data rate is 3,060 bits per second. Note that there is no parity check or forward error correction (FEC) coding used in...of 1800 bits per second. With the use of FEC coding , the channel data rate is 2250 bits per second; however, the information data rate is still the...Link-11. If the parity bits are included, the channel data rate is 28,800 bps. If FEC coding is considered, the channel data rate is 59,520 bps

  2. Illumination-tolerant face verification of low-bit-rate JPEG2000 wavelet images with advanced correlation filters for handheld devices

    NASA Astrophysics Data System (ADS)

    Wijaya, Surya Li; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-02-01

    Face recognition on mobile devices, such as personal digital assistants and cell phones, is a big challenge owing to the limited computational resources available to run verifications on the devices themselves. One approach is to transmit the captured face images by use of the cell-phone connection and to run the verification on a remote station. However, owing to limitations in communication bandwidth, it may be necessary to transmit a compressed version of the image. We propose using the image compression standard JPEG2000, which is a wavelet-based compression engine used to compress the face images to low bit rates suitable for transmission over low-bandwidth communication channels. At the receiver end, the face images are reconstructed with a JPEG2000 decoder and are fed into the verification engine. We explore how advanced correlation filters, such as the minimum average correlation energy filter [Appl. Opt. 26, 3633 (1987)] and its variants, perform by using face images captured under different illumination conditions and encoded with different bit rates under the JPEG2000 wavelet-encoding standard. We evaluate the performance of these filters by using illumination variations from the Carnegie Mellon University's Pose, Illumination, and Expression (PIE) face database. We also demonstrate the tolerance of these filters to noisy versions of images with illumination variations.

  3. Computer modeling and design analysis of a bit rate discrimination circuit based dual-rate burst mode receiver

    NASA Astrophysics Data System (ADS)

    Kota, Sriharsha; Patel, Jigesh; Ghillino, Enrico; Richards, Dwight

    2011-01-01

    In this paper, we demonstrate a computer model for simulating a dual-rate burst mode receiver that can readily distinguish bit rates of 1.25Gbit/s and 10.3Gbit/s and demodulate the data bursts with large power variations of above 5dB. To our knowledge, this is the first such model to demodulate data bursts of different bit rates without using any external control signal such as a reset signal or a bit rate select signal. The model is based on a burst-mode bit rate discrimination circuit (B-BDC) and makes use of a unique preamble sequence attached to each burst to separate out the data bursts with different bit rates. Here, the model is implemented using a combination of the optical system simulation suite OptSimTM, and the electrical simulation engine SPICE. The reaction time of the burst mode receiver model is about 7ns, which corresponds to less than 8 preamble bits for the bit rate of 1.25Gbps. We believe, having an accurate and robust simulation model for high speed burst mode transmission in GE-PON systems, is indispensable and tremendously speeds up the ongoing research in the area, saving a lot of time and effort involved in carrying out the laboratory experiments, while providing flexibility in the optimization of various system parameters for better performance of the receiver as a whole. Furthermore, we also study the effects of burst specifications like the length of preamble sequence, and other receiver design parameters on the reaction time of the receiver.

  4. Bit-rate transparent DPSK demodulation scheme based on injection locking FP-LD

    NASA Astrophysics Data System (ADS)

    Feng, Hanlin; Xiao, Shilin; Yi, Lilin; Zhou, Zhao; Yang, Pei; Shi, Jie

    2013-05-01

    We propose and demonstrate a bit-rate transparent differential phase shift-keying (DPSK) demodulation scheme based on injection locking multiple-quantum-well (MQW) strained InGaAsP FP-LD. By utilizing frequency deviation generated by phase modulation and unstable injection locking state with Fabry-Perot laser diode (FP-LD), DPSK to polarization shift-keying (PolSK) and PolSK to intensity modulation (IM) format conversions are realized. We analyze bit error rate (BER) performance of this demodulation scheme. Experimental results show that different longitude modes, bit rates and seeding power have influences on demodulation performance. We achieve error free DPSK signal demodulation under various bit rates of 10 Gbit/s, 5 Gbit/s, 2.5 Gbit/s and 1.25 Gbit/s with the same demodulation setting.

  5. Efficient and robust quantum random number generation by photon number detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, M. J.; Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE; Thomas, O.

    2015-08-17

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. Wemore » extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.« less

  6. Sleep stage classification with low complexity and low bit rate.

    PubMed

    Virkkala, Jussi; Värri, Alpo; Hasan, Joel; Himanen, Sari-Leena; Müller, Kiti

    2009-01-01

    Standard sleep stage classification is based on visual analysis of central (usually also frontal and occipital) EEG, two-channel EOG, and submental EMG signals. The process is complex, using multiple electrodes, and is usually based on relatively high (200-500 Hz) sampling rates. Also at least 12 bit analog to digital conversion is recommended (with 16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. This is not a problem for in-house laboratory sleep studies, but in the case of online wireless self-applicable ambulatory sleep studies, lower complexity and lower bit rates are preferred. In this study we further developed earlier single channel facial EMG/EOG/EEG-based automatic sleep stage classification. An algorithm with a simple decision tree separated 30 s epochs into wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta power and 0.5-6 Hz amplitude. Improvements included low complexity recursive digital filtering. We also evaluated the effects of a reduced sampling rate, reduced number of quantization steps and reduced dynamic range on the sleep data of 132 training and 131 testing subjects. With the studied algorithm, it was possible to reduce the sampling rate to 50 Hz (having a low pass filter at 90 Hz), and the dynamic range to 244 microV, with an 8 bit resolution resulting in a bit rate of 0.4 kbit/s. Facial electrodes and a low bit rate enables the use of smaller devices for sleep stage classification in home environments.

  7. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.

    PubMed

    Hsu, Hao-Teng; Lee, I-Hui; Tsai, Han-Ting; Chang, Hsiang-Chih; Shyu, Kuo-Kai; Hsu, Chuan-Chih; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Chang, Chun-Yen; Lee, Po-Lei

    2016-05-01

    This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.

  8. Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels.

    PubMed

    Wang, Ping; Zhang, Lu; Guo, Lixin; Huang, Feng; Shang, Tao; Wang, Ranran; Yang, Yintang

    2014-08-25

    The average bit error rate (BER) for binary phase-shift keying (BPSK) modulation in free-space optical (FSO) links over turbulence atmosphere modeled by the exponentiated Weibull (EW) distribution is investigated in detail. The effects of aperture averaging on the average BERs for BPSK modulation under weak-to-strong turbulence conditions are studied. The average BERs of EW distribution are compared with Lognormal (LN) and Gamma-Gamma (GG) distributions in weak and strong turbulence atmosphere, respectively. The outage probability is also obtained for different turbulence strengths and receiver aperture sizes. The analytical results deduced by the generalized Gauss-Laguerre quadrature rule are verified by the Monte Carlo simulation. This work is helpful for the design of receivers for FSO communication systems.

  9. Room temperature single-photon detectors for high bit rate quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  10. A Tuned-RF Duty-Cycled Wake-Up Receiver with -90 dBm Sensitivity.

    PubMed

    Bdiri, Sadok; Derbel, Faouzi; Kanoun, Olfa

    2017-12-29

    A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μ W . It also features scalable addressing of more than 512 bit at a data rate of 128 k bit / s -1 . At a wake-up packet error rate of 10 - 2 , the detection sensitivity reaches a minimum of - 90 dBm . The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance.

  11. Field-Deployable Video Cloud Solution

    DTIC Science & Technology

    2016-03-01

    78 2. Shipboard Server or Video Cloud System .......................................79 3. 4G LTE and Wi-Fi...local area network LED light emitting diode Li-ion lithium ion LTE long term evolution Mbps mega-bits per second MBps mega-bytes per second xv...restrictions on distribution. File size is dependent on both bit rate and content length. Bit rate is a value measured in bits per second (bps) and is

  12. Wireless visual sensor network resource allocation using cross-layer optimization

    NASA Astrophysics Data System (ADS)

    Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.

    2009-01-01

    In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.

  13. Design and implementation of a P300-based brain-computer interface for controlling an internet browser.

    PubMed

    Mugler, Emily M; Ruf, Carolin A; Halder, Sebastian; Bensch, Michael; Kubler, Andrea

    2010-12-01

    An electroencephalographic (EEG) brain-computer interface (BCI) internet browser was designed and evaluated with 10 healthy volunteers and three individuals with advanced amyotrophic lateral sclerosis (ALS), all of whom were given tasks to execute on the internet using the browser. Participants with ALS achieved an average accuracy of 73% and a subsequent information transfer rate (ITR) of 8.6 bits/min and healthy participants with no prior BCI experience over 90% accuracy and an ITR of 14.4 bits/min. We define additional criteria for unrestricted internet access for evaluation of the presented and future internet browsers, and we provide a review of the existing browsers in the literature. The P300-based browser provides unrestricted access and enables free web surfing for individuals with paralysis.

  14. Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system

    NASA Technical Reports Server (NTRS)

    Hamidian, J. P.; Dahlgren, J. B.

    1973-01-01

    Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.

  15. Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches

    NASA Astrophysics Data System (ADS)

    Jeong, Han-You; Seo, Seung-Woo

    2000-09-01

    The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.

  16. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.

    PubMed

    Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa

    2008-07-21

    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

  17. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    NASA Astrophysics Data System (ADS)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  18. Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback.

    PubMed

    Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun

    2015-09-01

    A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.

  19. Differential Fault Analysis on CLEFIA with 128, 192, and 256-Bit Keys

    NASA Astrophysics Data System (ADS)

    Takahashi, Junko; Fukunaga, Toshinori

    This paper describes a differential fault analysis (DFA) attack against CLEFIA. The proposed attack can be applied to CLEFIA with all supported keys: 128, 192, and 256-bit keys. DFA is a type of side-channel attack. This attack enables the recovery of secret keys by injecting faults into a secure device during its computation of the cryptographic algorithm and comparing the correct ciphertext with the faulty one. CLEFIA is a 128-bit blockcipher with 128, 192, and 256-bit keys developed by the Sony Corporation in 2007. CLEFIA employs a generalized Feistel structure with four data lines. We developed a new attack method that uses this characteristic structure of the CLEFIA algorithm. On the basis of the proposed attack, only 2 pairs of correct and faulty ciphertexts are needed to retrieve the 128-bit key, and 10.78 pairs on average are needed to retrieve the 192 and 256-bit keys. The proposed attack is more efficient than any previously reported. In order to verify the proposed attack and estimate the calculation time to recover the secret key, we conducted an attack simulation using a PC. The simulation results show that we can obtain each secret key within three minutes on average. This result shows that we can obtain the entire key within a feasible computational time.

  20. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  1. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1988-01-01

    Slot timing recovery in a direct detection optical PPM communication system can be achieved by processing the photodetector waveform with a nonlinear device whose output forms the input to a phase lock group. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (lambda = 834 nm) and a silicon avalanche photodiode (APD) photodetector and used Q=4 PPM signaling operated at a source data rate of 25 megabits/second. The mathematical model developed to characterize system performance is shown to be in good agreement with actual performance measurements. The use of the recovered slot clock in the receiver resulted in no degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the minus 6 power at received signal energies corresponding to an average of less than 60 detected photons per information bit.

  2. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  3. Meteor burst communications for LPI applications

    NASA Astrophysics Data System (ADS)

    Schilling, D. L.; Apelewicz, T.; Lomp, G. R.; Lundberg, L. A.

    A technique that enhances the performance of meteor-burst communications is described. The technique, the feedback adaptive variable rate (FAVR) system, maintains a feedback channel that allows the transmitted bit rate to mimic the time behavior of the received power so that a constant bit energy is maintained. This results in a constant probability of bit error in each transmitted bit. Experimentally determined meteor-burst channel characteristics and FAVR system simulation results are presented.

  4. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    NASA Astrophysics Data System (ADS)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  5. Enhancing the NS-2 Network Simulator for Near Real-Time Control Feedback and Distributed Simulation

    DTIC Science & Technology

    2009-03-21

    Communication Mediator, see mediator Constant Bit Rate, see cbr Emulation, 8 Georgia Tech Network Simulator, see GT- NetS Globlal Mobile Information ...PAGE Form ApprovedOMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1 hour per response...for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188

  6. Communication system analysis for manned space flight

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1977-01-01

    One- and two-dimensional adaptive delta modulator (ADM) algorithms are discussed and compared. Results are shown for bit rates of two bits/pixel, one bit/pixel and 0.5 bits/pixel. Pictures showing the difference between the encoded-decoded pictures and the original pictures are presented. The effect of channel errors on the reconstructed picture is illustrated. A two-dimensional ADM using interframe encoding is also presented. This system operates at the rate of two bits/pixel and produces excellent quality pictures when there is little motion. The effect of large amounts of motion on the reconstructed picture is described.

  7. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.

    PubMed

    Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai

    2017-02-20

    Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.

  8. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    NASA Astrophysics Data System (ADS)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  9. A hybrid video codec based on extended block sizes, recursive integer transforms, improved interpolation, and flexible motion representation

    NASA Astrophysics Data System (ADS)

    Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.

    2011-01-01

    This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.

  10. Bit-error rate for free-space adaptive optics laser communications.

    PubMed

    Tyson, Robert K

    2002-04-01

    An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

  11. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  12. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenummore » pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.« less

  13. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.

    PubMed

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min.

  14. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip

    PubMed Central

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min. PMID:23493871

  15. Digital color representation

    DOEpatents

    White, James M.; Faber, Vance; Saltzman, Jeffrey S.

    1992-01-01

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes which represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete lookup table (LUT) where an 8-bit data signal is enabled to form a display of 24-bit color values. The LUT is formed in a sampling and averaging process from the image color values with no requirement to define discrete Voronoi regions for color compression. Image color values are assigned 8-bit pointers to their closest LUT value whereby data processing requires only the 8-bit pointer value to provide 24-bit color values from the LUT.

  16. Wear and performance: An experimental study on PDC bits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, O.; Azar, J.J.

    1997-07-01

    Real-time drilling data, gathered under full-scale conditions, was analyzed to determine the influence of cutter dullness on PDC-bit rate of penetration. It was found that while drilling in shale, the cutters` wearflat area was not a controlling factor on rate of penetration; however, when drilling in limestone, wearflat area significantly influenced PDC bit penetration performance. Similarly, the presence of diamond lips on PDC cutters was found to be unimportant while drilling in shale, but it greatly enhanced bit performance when drilling in limestone.

  17. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  18. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  19. Conditions for the optical wireless links bit error ratio determination

    NASA Astrophysics Data System (ADS)

    Kvíčala, Radek

    2017-11-01

    To determine the quality of the Optical Wireless Links (OWL), there is necessary to establish the availability and the probability of interruption. This quality can be defined by the optical beam bit error rate (BER). Bit error rate BER presents the percentage of successfully transmitted bits. In practice, BER runs into the problem with the integration time (measuring time) determination. For measuring and recording of BER at OWL the bit error ratio tester (BERT) has been developed. The 1 second integration time for the 64 kbps radio links is mentioned in the accessible literature. However, it is impossible to use this integration time for singularity of coherent beam propagation.

  20. A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.

    2018-04-01

    Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.

  1. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  2. Antiwhirl PDC bits increased penetration rates in Alberta drilling. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrosky, D.; Osmak, G.

    1993-07-05

    The antiwhirl PDC bits and an inhibitive mud system contributed to the quicker drilling of the time-sensitive shales. The hole washouts in the intermediate section were dramatically reduced, resulting in better intermediate casing cement jobs. Also, the use of antirotation PDC-drillable cementing plugs eliminated the need to drill out plugs and float equipment with a steel tooth bit and then trip for the PDC bit. By using an antiwhirl PDC bit, at least one trip was eliminated in the intermediate section. Offset data indicated that two to six conventional bits would have been required to drill the intermediate hole interval.more » The PDC bit was rebuildable and therefore rerunnable even after being used on five wells. In each instance, the cost of replacing chipped cutters was less than the cost of a new insert roller cone bit. The paper describes the antiwhirl bits; the development of the bits; and their application in a clastic sequence, a carbonate sequence, and the Shekilie oil field; the improvement in the rate of penetration; the selection of bottom hole assemblies; washout problems; and drill-out characteristics.« less

  3. Comparison of a row-column speller vs. a novel lateral single-character speller: assessment of BCI for severe motor disabled patients.

    PubMed

    Pires, Gabriel; Nunes, Urbano; Castelo-Branco, Miguel

    2012-06-01

    Non-invasive brain-computer interface (BCI) based on electroencephalography (EEG) offers a new communication channel for people suffering from severe motor disorders. This paper presents a novel P300-based speller called lateral single-character (LSC). The LSC performance is compared to that of the standard row-column (RC) speller. We developed LSC, a single-character paradigm comprising all letters of the alphabet following an event strategy that significantly reduces the time for symbol selection, and explores the intrinsic hemispheric asymmetries in visual perception to improve the performance of the BCI. RC and LSC paradigms were tested by 10 able-bodied participants, seven participants with amyotrophic lateral sclerosis (ALS), five participants with cerebral palsy (CP), one participant with Duchenne muscular dystrophy (DMD), and one participant with spinal cord injury (SCI). The averaged results, taking into account all participants who were able to control the BCI online, were significantly higher for LSC, 26.11 bit/min and 89.90% accuracy, than for RC, 21.91 bit/min and 88.36% accuracy. The two paradigms produced different waveforms and the signal-to-noise ratio was significantly higher for LSC. Finally, the novel LSC also showed new discriminative features. The results suggest that LSC is an effective alternative to RC, and that LSC still has a margin for potential improvement in bit rate and accuracy. The high bit rates and accuracy of LSC are a step forward for the effective use of BCI in clinical applications. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Comparative assessment of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders for low-delay video applications

    NASA Astrophysics Data System (ADS)

    Grois, Dan; Marpe, Detlev; Nguyen, Tung; Hadar, Ofer

    2014-09-01

    The popularity of low-delay video applications dramatically increased over the last years due to a rising demand for realtime video content (such as video conferencing or video surveillance), and also due to the increasing availability of relatively inexpensive heterogeneous devices (such as smartphones and tablets). To this end, this work presents a comparative assessment of the two latest video coding standards: H.265/MPEG-HEVC (High-Efficiency Video Coding), H.264/MPEG-AVC (Advanced Video Coding), and also of the VP9 proprietary video coding scheme. For evaluating H.264/MPEG-AVC, an open-source x264 encoder was selected, which has a multi-pass encoding mode, similarly to VP9. According to experimental results, which were obtained by using similar low-delay configurations for all three examined representative encoders, it was observed that H.265/MPEG-HEVC provides significant average bit-rate savings of 32.5%, and 40.8%, relative to VP9 and x264 for the 1-pass encoding, and average bit-rate savings of 32.6%, and 42.2% for the 2-pass encoding, respectively. On the other hand, compared to the x264 encoder, typical low-delay encoding times of the VP9 encoder, are about 2,000 times higher for the 1-pass encoding, and are about 400 times higher for the 2-pass encoding.

  5. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Li, Mengfan

    2015-01-01

    In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.

  6. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots

    PubMed Central

    Li, Mengfan

    2015-01-01

    In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot—a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject’s mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper. PMID:26562524

  7. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  8. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    PubMed

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  9. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    NASA Astrophysics Data System (ADS)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  10. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  11. A high-speed brain speller using steady-state visual evoked potentials.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-09-01

    Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP speller with a computer monitor. A frequency and phase approximation approach was developed to eliminate the limitation of the number of targets caused by the monitor refresh rate, resulting in a speller comprising 32 flickers specified by eight frequencies (8-15 Hz with a 1 Hz interval) and four phases (0°, 90°, 180°, and 270°). A multi-channel approach incorporating Canonical Correlation Analysis (CCA) and SSVEP training data was proposed for target identification. In a simulated online experiment, at a spelling rate of 40 characters per minute, the system obtained an averaged information transfer rate (ITR) of 166.91 bits/min across 13 subjects with a maximum individual ITR of 192.26 bits/min, the highest ITR ever reported in electroencephalogram (EEG)-based BCIs. The results of this study demonstrate great potential of a high-speed SSVEP-based BCI in real-life applications.

  12. Traffic management mechanism for intranets with available-bit-rate access to the Internet

    NASA Astrophysics Data System (ADS)

    Hassan, Mahbub; Sirisena, Harsha R.; Atiquzzaman, Mohammed

    1997-10-01

    The design of a traffic management mechanism for intranets connected to the Internet via an available bit rate access- link is presented. Selection of control parameters for this mechanism for optimum performance is shown through analysis. An estimate for packet loss probability at the access- gateway is derived for random fluctuation of available bit rate of the access-link. Some implementation strategies of this mechanism in the standard intranet protocol stack are also suggested.

  13. Long-distance entanglement-based quantum key distribution experiment using practical detectors.

    PubMed

    Takesue, Hiroki; Harada, Ken-Ichi; Tamaki, Kiyoshi; Fukuda, Hiroshi; Tsuchizawa, Tai; Watanabe, Toshifumi; Yamada, Koji; Itabashi, Sei-Ichi

    2010-08-02

    We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.

  14. Compression of multispectral Landsat imagery using the Embedded Zerotree Wavelet (EZW) algorithm

    NASA Technical Reports Server (NTRS)

    Shapiro, Jerome M.; Martucci, Stephen A.; Czigler, Martin

    1994-01-01

    The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely efficient and flexible compression algorithm for low bit rate image coding. The embedding algorithm attempts to order the bits in the bit stream in numerical importance and thus a given code contains all lower rate encodings of the same algorithm. Therefore, precise bit rate control is achievable and a target rate or distortion metric can be met exactly. Furthermore, the technique is fully image adaptive. An algorithm for multispectral image compression which combines the spectral redundancy removal properties of the image-dependent Karhunen-Loeve Transform (KLT) with the efficiency, controllability, and adaptivity of the embedded zerotree wavelet algorithm is presented. Results are shown which illustrate the advantage of jointly encoding spectral components using the KLT and EZW.

  15. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCTune is a technology for optimizing DCT (digital communication technology) quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. Perceptual optimization of DCT color quantization matrices. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays, 1) to verify the advantage of DCTune over standard JPEG (Joint Photographic Experts Group), 2) to verify the quality control feature of DCTune, and 3) to discover regularities in the optimized matrices of a set of images. We optimized matrices for a total of 20 images at two resolutions (150 and 300 dpi) and four bit-rates (0.25, 0.5, 0.75, 1.0 bits/pixel), and examined structural regularities in the resulting matrices. We also conducted psychophysical studies (1) to discover the DCTune quality level at which the images became 'visually lossless,' and (2) to rate the relative quality of DCTune and standard JPEG images at various bitrates. Results include: (1) At both resolutions, DCTune quality is a linear function of bit-rate. (2) DCTune quantization matrices for all images at all bitrates and resolutions are modeled well by an inverse Gaussian, with parameters of amplitude and width. (3) As bit-rate is varied, optimal values of both amplitude and width covary in an approximately linear fashion. (4) Both amplitude and width vary in systematic and orderly fashion with either bit-rate or DCTune quality; simple mathematical functions serve to describe these relationships. (5) In going from 150 to 300 dpi, amplitude parameters are substantially lower and widths larger at corresponding bit-rates or qualities. (6) Visually lossless compression occurs at a DCTune quality value of about 1. (7) At 0.25 bits/pixel, comparative ratings give DCTune a substantial advantage over standard JPEG. As visually lossless bit-rates are approached, this advantage of necessity diminishes. We have concluded that DCTune optimized quantization matrices provide better visual quality than standard JPEG. Meaningful quality levels may be specified by means of the DCTune metric. Optimized matrices are very similar across the class of dental x-rays, suggesting the possibility of a 'class-optimal' matrix. DCTune technology appears to provide some value in the context of compressed dental x-rays.

  16. Robust watermark technique using masking and Hermite transform.

    PubMed

    Coronel, Sandra L Gomez; Ramírez, Boris Escalante; Mosqueda, Marco A Acevedo

    2016-01-01

    The following paper evaluates a watermark algorithm designed for digital images by using a perceptive mask and a normalization process, thus preventing human eye detection, as well as ensuring its robustness against common processing and geometric attacks. The Hermite transform is employed because it allows a perfect reconstruction of the image, while incorporating human visual system properties; moreover, it is based on the Gaussian functions derivates. The applied watermark represents information of the digital image proprietor. The extraction process is blind, because it does not require the original image. The following techniques were utilized in the evaluation of the algorithm: peak signal-to-noise ratio, the structural similarity index average, the normalized crossed correlation, and bit error rate. Several watermark extraction tests were performed, with against geometric and common processing attacks. It allowed us to identify how many bits in the watermark can be modified for its adequate extraction.

  17. Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme

    NASA Astrophysics Data System (ADS)

    He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo

    2018-05-01

    In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.

  18. A high-efficiency real-time digital signal averager for time-of-flight mass spectrometry.

    PubMed

    Wang, Yinan; Xu, Hui; Li, Qingjiang; Li, Nan; Huang, Zhengxu; Zhou, Zhen; Liu, Husheng; Sun, Zhaolin; Xu, Xin; Yu, Hongqi; Liu, Haijun; Li, David D-U; Wang, Xi; Dong, Xiuzhen; Gao, Wei

    2013-05-30

    Analog-to-digital converter (ADC)-based acquisition systems are widely applied in time-of-flight mass spectrometers (TOFMS) due to their ability to record the signal intensity of all ions within the same pulse. However, the acquisition system raises the requirement for data throughput, along with increasing the conversion rate and resolution of the ADC. It is therefore of considerable interest to develop a high-performance real-time acquisition system, which can relieve the limitation of data throughput. We present in this work a high-efficiency real-time digital signal averager, consisting of a signal conditioner, a data conversion module and a signal processing module. Two optimization strategies are implemented using field programmable gate arrays (FPGAs) to enhance the efficiency of the real-time processing. A pipeline procedure is used to reduce the time consumption of the accumulation strategy. To realize continuous data transfer, a high-efficiency transmission strategy is developed, based on a ping-pong procedure. The digital signal averager features good responsiveness, analog bandwidth and dynamic performance. The optimal effective number of bits reaches 6.7 bits. For a 32 µs record length, the averager can realize 100% efficiency with an extraction frequency below 31.23 kHz by modifying the number of accumulation steps. In unit time, the averager yields superior signal-to-noise ratio (SNR) compared with data accumulation in a computer. The digital signal averager is combined with a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). The efficiency of the real-time processing is tested by analyzing the volatile organic compounds (VOCs) from ordinary printed materials. In these experiments, 22 kinds of compounds are detected, and the dynamic range exceeds 3 orders of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.

  19. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  20. Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Gavito, D.; Azar, J.J.

    1994-09-01

    During the past 20 years, the drilling industry has looked to new technology to halt the exponentially increasing costs of drilling oil, gas, and geothermal wells. This technology includes bit design innovations to improve overall drilling performance and reduce drilling costs. These innovations include development of drag bits that use PDC cutters, also called PDC bits, to drill long, continuous intervals of soft to medium-hard formations more economically than conventional three-cone roller-cone bits. The cost advantage is the result of higher rates of penetration (ROP's) and longer bit life obtained with the PDC bits. An experimental study comparing the effectsmore » of polycrystalline-diamond-compact (PDC)-bit design features on the dynamic pressure distribution at the bit/rock interface was conducted on a full-scale drilling rig. Results showed that nozzle location, bit profile, and cutter arrangement are significant factors in PDC-bit performance.« less

  1. PDC bits: What`s needed to meet tomorrow`s challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, T.M.; Sinor, L.A.

    1994-12-31

    When polycrystalline diamond compact (PDC) bits were introduced in the mid-1970s they showed tantalizingly high penetration rates in laboratory drilling tests. Single cutter tests indicated that they had the potential to drill very hard rocks. Unfortunately, 20 years later we`re still striving to reach the potential that these bits seem to have. Many problems have been overcome, and PDC bits have offered capabilities not possible with roller cone bits. PDC bits provide the most economical bit choice in many areas, but their limited durability has hampered their application in many other areas.

  2. Efficient and universal quantum key distribution based on chaos and middleware

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.

  3. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less

  4. Performance of a web-based, realtime, tele-ultrasound consultation system over high-speed commercial telecommunication lines.

    PubMed

    Yoo, Sun K; Kim, D K; Jung, S M; Kim, E-K; Lim, J S; Kim, J H

    2004-01-01

    A Web-based, realtime, tele-ultrasound consultation system was designed. The system employed ActiveX control, MPEG-4 coding of full-resolution ultrasound video (640 x 480 pixels at 30 frames/s) and H.320 videoconferencing. It could be used via a Web browser. The system was evaluated over three types of commercial line: a cable connection, ADSL and VDSL. Three radiologists assessed the quality of compressed and uncompressed ultrasound video-sequences from 16 cases (10 abnormal livers, four abnormal kidneys and two abnormal gallbladders). The radiologists' scores showed that, at a given frame rate, increasing the bit rate was associated with increasing quality; however, at a certain threshold bit rate the quality did not increase significantly. The peak signal to noise ratio (PSNR) was also measured between the compressed and uncompressed images. In most cases, the PSNR increased as the bit rate increased, and increased as the number of dropped frames increased. There was a threshold bit rate, at a given frame rate, at which the PSNR did not improve significantly. Taking into account both sets of threshold values, a bit rate of more than 0.6 Mbit/s, at 30 frames/s, is suggested as the threshold for the maintenance of diagnostic image quality.

  5. Testability Design Rating System: Testability Handbook. Volume 1

    DTIC Science & Technology

    1992-02-01

    4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory

  6. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  7. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  8. Modeling and Analysis of Gated, Pulsed RFI and Its Effect on GPS Receivers: Analysis of Average Cycle Slip Rate and Average Bit Error Probability

    DTIC Science & Technology

    2014-04-01

    as a function of the pulse duty cycle PDC is [1]: ∆C/N0 = 20 log(1 − PDC ) (1) PDC , PW × PRF (2) where PW represents the pulse width (sec) and PRF is...corresponding degradation in C/N0 should now be modeled as ∆C/N0 = 20 log(1 − PDCLIM) (3) PDCLIM , PDC τobs TTC . (4) The degradation model of Eqn. 3 and 4...cycle that is the product of the duty cycle of the pulsed waveform ( PDC ) and the duty cycle of the of the gating waveform (τobs/TTC). While such a model

  9. Using game theory for perceptual tuned rate control algorithm in video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiancong; Ahmad, Ishfaq

    2005-03-01

    This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.

  10. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  11. Multiple speed expandable bit synchronizer

    NASA Technical Reports Server (NTRS)

    Bundinger, J. M.

    1979-01-01

    A multiple speed bit synchronizer was designed for installation in an inertial navigation system data decoder to extract non-return-to-zero level data and clock signal from biphase level data. The circuit automatically senses one of four pre-determined biphase data rates and synchronizes the proper clock rate to the data. Through a simple expansion of the basic design, synchronization of more than four binarily related data rates can be accomplished. The design provides an easily adaptable, low cost, low power alternative to external bit synchronizers with additional savings in size and weight.

  12. Sparse Coding and Dictionary Learning Based on the MDL Principle

    DTIC Science & Technology

    2010-10-01

    average bits per pixel obtained was 4.08 bits per pixel ( bpp ), with p = 250 atoms in the final dictionary. We repeated this using `2 instead of Huber...loss, obtaining 4.12 bpp and p = 245. We now show example results obtained with our framework in two very different applications. In both cases we

  13. Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features.

    PubMed

    Tan, Chun-Wei; Kumar, Ajay

    2014-07-10

    Accurate iris recognition from the distantly acquired face or eye images requires development of effective strategies which can account for significant variations in the segmented iris image quality. Such variations can be highly correlated with the consistency of encoded iris features and the knowledge that such fragile bits can be exploited to improve matching accuracy. A non-linear approach to simultaneously account for both local consistency of iris bit and also the overall quality of the weight map is proposed. Our approach therefore more effectively penalizes the fragile bits while simultaneously rewarding more consistent bits. In order to achieve more stable characterization of local iris features, a Zernike moment-based phase encoding of iris features is proposed. Such Zernike moments-based phase features are computed from the partially overlapping regions to more effectively accommodate local pixel region variations in the normalized iris images. A joint strategy is adopted to simultaneously extract and combine both the global and localized iris features. The superiority of the proposed iris matching strategy is ascertained by providing comparison with several state-of-the-art iris matching algorithms on three publicly available databases: UBIRIS.v2, FRGC, CASIA.v4-distance. Our experimental results suggest that proposed strategy can achieve significant improvement in iris matching accuracy over those competing approaches in the literature, i.e., average improvement of 54.3%, 32.7% and 42.6% in equal error rates, respectively for UBIRIS.v2, FRGC, CASIA.v4-distance.

  14. Application of a single-flicker online SSVEP BCI for spatial navigation.

    PubMed

    Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander

    2017-01-01

    A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.

  15. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  16. JND measurements of the speech formants parameters and its implication in the LPC pole quantization

    NASA Astrophysics Data System (ADS)

    Orgad, Yaakov

    1988-08-01

    The inherent sensitivity of auditory perception is explicitly used with the objective of designing an efficient speech encoder. Speech can be modelled by a filter representing the vocal tract shape that is driven by an excitation signal representing glottal air flow. This work concentrates on the filter encoding problem, assuming that excitation signal encoding is optimal. Linear predictive coding (LPC) techniques were used to model a short speech segment by an all-pole filter; each pole was directly related to the speech formants. Measurements were made of the auditory just noticeable difference (JND) corresponding to the natural speech formants, with the LPC filter poles as the best candidates to represent the speech spectral envelope. The JND is the maximum precision required in speech quantization; it was defined on the basis of the shift of one pole parameter of a single frame of a speech segment, necessary to induce subjective perception of the distortion, with .75 probability. The average JND in LPC filter poles in natural speech was found to increase with increasing pole bandwidth and, to a lesser extent, frequency. The JND measurements showed a large spread of the residuals around the average values, indicating that inter-formant coupling and, perhaps, other, not yet fully understood, factors were not taken into account at this stage of the research. A future treatment should consider these factors. The average JNDs obtained in this work were used to design pole quantization tables for speech coding and provided a better bit-rate than the standard quantizer of reflection coefficient; a 30-bits-per-frame pole quantizer yielded a speech quality similar to that obtained with a standard 41-bits-per-frame reflection coefficient quantizer. Owing to the complexity of the numerical root extraction system, the practical implementation of the pole quantization approach remains to be proved.

  17. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  18. Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.

    PubMed

    Hu, Sudeng; Wang, Hanli; Kwong, Sam

    2012-04-01

    In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.

  19. Least reliable bits coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Wagner, Paul

    1992-01-01

    LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  20. A study of high density bit transition requirements versus the effects on BCH error correcting coding

    NASA Technical Reports Server (NTRS)

    Ingels, F.; Schoggen, W. O.

    1981-01-01

    Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.

  1. The Effects of Increasing Ocular Surface Stimulation on Blinking and Sensation

    PubMed Central

    Wu, Ziwei; Begley, Carolyn G.; Situ, Ping; Simpson, Trefford

    2014-01-01

    Purpose. The purpose of this study was to determine how increasing ocular surface stimulation affected blinking and sensation, while controlling task concentration. Methods. Ten healthy subjects concentrated on a task while a custom pneumatic device generated air flow toward the central cornea. Six flow rates (FRs) were randomly presented three times each and subjects used visual analog scales to record their sensory responses. The interblink interval (IBI) and the FR were recorded simultaneously and the IBI, sensory response, and corresponding FR were determined for each trial. The FR associated with a statistically significant decrease in IBI, the blink increase threshold (BIT), was calculated for each subject. Results. Both the mean and SD of IBI were decreased with increasing stimulation, from 5.69 ± 3.96 seconds at baseline to 1.02 ± 0.37 seconds at maximum stimulation. The average BIT was 129 ± 20 mL/min flow rate with an IBI of 2.33 ± 1.10 seconds (permutation test, P < 0.001). After log transformation, there was a significant linear function between increasing FR and decreasing IBI within each subject (Pearson's r ≤ −0.859, P < 0.05). The IBI was highly correlated with wateriness, discomfort, and cooling ratings (Pearson's r ≤ −0.606, P < 0.001). Conclusions. There was a dose-response–like relationship between increased surface stimulation and blinking in healthy subjects, presumably for protection of the ocular surface. The blink response was highly correlated with ocular surface sensation, which is not surprising given their common origins. The BIT, a novel metric, may provide an additional end point for studies on dry eye or other conditions. PMID:24557346

  2. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Compression performance of HEVC and its format range and screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Li, Bin; Xu, Jizheng; Sullivan, Gary J.

    2015-09-01

    This paper presents a comparison-based test of the objective compression performance of the High Efficiency Video Coding (HEVC) standard, its format range extensions (RExt), and its draft screen content coding extensions (SCC). The current dominant standard, H.264/MPEG-4 AVC, is used as an anchor reference in the comparison. The conditions used for the comparison tests were designed to reflect relevant application scenarios and to enable a fair comparison to the maximum extent feasible - i.e., using comparable quantization settings, reference frame buffering, intra refresh periods, rate-distortion optimization decision processing, etc. It is noted that such PSNR-based objective comparisons generally provide more conservative estimates of HEVC benefit than are found in subjective studies. The experimental results show that, when compared with H.264/MPEG-4 AVC, HEVC version 1 provides a bit rate savings for equal PSNR of about 23% for all-intra coding, 34% for random access coding, and 38% for low-delay coding. This is consistent with prior studies and the general characterization that HEVC can provide about a bit rate savings of about 50% for equal subjective quality for most applications. The HEVC format range extensions provide a similar bit rate savings of about 13-25% for all-intra coding, 28-33% for random access coding, and 32-38% for low-delay coding at different bit rate ranges. For lossy coding of screen content, the HEVC screen content coding extensions achieve a bit rate savings of about 66%, 63%, and 61% for all-intra coding, random access coding, and low-delay coding, respectively. For lossless coding, the corresponding bit rate savings are about 40%, 33%, and 32%, respectively.

  4. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  5. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  6. Effects of size on three-cone bit performance in laboratory drilled shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.G.; Sandstrom, J.L.

    1982-09-01

    The effects of size on the performance of 3-cone bits were measured during laboratory drilling tests in shale at simulated downhole conditions. Four Reed HP-SM 3-cone bits with diameters of 6 1/2, 7 7/8, 9 1/2 and 11 inches were used to drill Mancos shale with water-based mud. The tests were conducted at constant borehole pressure, two conditions of hydraulic horsepower per square inch of bit area, three conditions of rotary speed and four conditions of weight-on-bit per inch of bit diameter. The resulting penetration rates and torques were measured. Statistical techniques were used to analyze the data.

  7. Post-manufacturing, 17-times acceptable raw bit error rate enhancement, dynamic codeword transition ECC scheme for highly reliable solid-state drives, SSDs

    NASA Astrophysics Data System (ADS)

    Tanakamaru, Shuhei; Fukuda, Mayumi; Higuchi, Kazuhide; Esumi, Atsushi; Ito, Mitsuyoshi; Li, Kai; Takeuchi, Ken

    2011-04-01

    A dynamic codeword transition ECC scheme is proposed for highly reliable solid-state drives, SSDs. By monitoring the error number or the write/erase cycles, the ECC codeword dynamically increases from 512 Byte (+parity) to 1 KByte, 2 KByte, 4 KByte…32 KByte. The proposed ECC with a larger codeword decreases the failure rate after ECC. As a result, the acceptable raw bit error rate, BER, before ECC is enhanced. Assuming a NAND Flash memory which requires 8-bit correction in 512 Byte codeword ECC, a 17-times higher acceptable raw BER than the conventional fixed 512 Byte codeword ECC is realized for the mobile phone application without an interleaving. For the MP3 player, digital-still camera and high-speed memory card applications with a dual channel interleaving, 15-times higher acceptable raw BER is achieved. Finally, for the SSD application with 8 channel interleaving, 13-times higher acceptable raw BER is realized. Because the ratio of the user data to the parity bits is the same in each ECC codeword, no additional memory area is required. Note that the reliability of SSD is improved after the manufacturing without cost penalty. Compared with the conventional ECC with the fixed large 32 KByte codeword, the proposed scheme achieves a lower power consumption by introducing the "best-effort" type operation. In the proposed scheme, during the most of the lifetime of SSD, a weak ECC with a shorter codeword such as 512 Byte (+parity), 1 KByte and 2 KByte is used and 98% lower power consumption is realized. At the life-end of SSD, a strong ECC with a 32 KByte codeword is used and the highly reliable operation is achieved. The random read performance is also discussed. The random read performance is estimated by the latency. The latency is below 1.5 ms for ECC codeword up to 32 KByte. This latency is below the average latency of 15,000 rpm HDD, 2 ms.

  8. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  9. Space shuttle data handling and communications considerations.

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Minor, R. G.

    1971-01-01

    Operational and development flight instrumentation, data handling subsystems and communication requirements of the space shuttle orbiter are discussed. Emphasis is made on data gathering methods, crew display data, computer processing, recording, and telemetry by means of a digital data bus. Also considered are overall communication conceptual system aspects and design features allowing a proper specification of telemetry encoders and instrumentation recorders. An adaptive bit rate concept is proposed to handle the telemetry bit rates which vary with the amount of operational and experimental data to be transmitted. A split-phase encoding technique is proposed for telemetry to cope with the excessive bit jitter and low bit transition density which may affect television performance.

  10. Video semaphore decoding for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  11. Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Shang-Hong; Zhao, Wei-Hu; Liu, Yun; Li, Xuan

    2017-12-01

    This paper presented the performances of asymmetric mixed radio frequency (RF)/free-space optical (FSO) system with the amplify-and-forward relaying scheme. The RF channel undergoes Nakagami- m channel, and the Exponentiated Weibull distribution is adopted for the FSO component. The mathematical formulas for cumulative distribution function (CDF), probability density function (PDF) and moment generating function (MGF) of equivalent signal-to-noise ratio (SNR) are achieved. According to the end-to-end statistical characteristics, the new analytical expressions of outage probability are obtained. Under various modulation techniques, we derive the average bit-error-rate (BER) based on the Meijer's G function. The evaluation and simulation are provided for the system performance, and the aperture average effect is discussed as well.

  12. Single photon quantum cryptography.

    PubMed

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  13. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    NASA Astrophysics Data System (ADS)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  14. Adaptive P300 based control system

    PubMed Central

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2015-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877

  15. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  16. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-01-01

    In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.

  17. Local statistics adaptive entropy coding method for the improvement of H.26L VLC coding

    NASA Astrophysics Data System (ADS)

    Yoo, Kook-yeol; Kim, Jong D.; Choi, Byung-Sun; Lee, Yung Lyul

    2000-05-01

    In this paper, we propose an adaptive entropy coding method to improve the VLC coding efficiency of H.26L TML-1 codec. First of all, we will show that the VLC coding presented in TML-1 does not satisfy the sibling property of entropy coding. Then, we will modify the coding method into the local statistics adaptive one to satisfy the property. The proposed method based on the local symbol statistics dynamically changes the mapping relationship between symbol and bit pattern in the VLC table according to sibling property. Note that the codewords in the VLC table of TML-1 codec is not changed. Since this changed mapping relationship also derived in the decoder side by using the decoded symbols, the proposed VLC coding method does not require any overhead information. The simulation results show that the proposed method gives about 30% and 37% reduction in average bit rate for MB type and CBP information, respectively.

  18. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    PubMed

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  19. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  20. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  1. Development of a Tool Condition Monitoring System for Impregnated Diamond Bits in Rock Drilling Applications

    NASA Astrophysics Data System (ADS)

    Perez, Santiago; Karakus, Murat; Pellet, Frederic

    2017-05-01

    The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.

  2. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).

    PubMed

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  3. Enhancing Heart-Beat-Based Security for mHealth Applications.

    PubMed

    Seepers, Robert M; Strydis, Christos; Sourdis, Ioannis; De Zeeuw, Chris I

    2017-01-01

    In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).

  4. New PDC bit optimizes drilling performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besson, A.; Gudulec, P. le; Delwiche, R.

    1996-05-01

    The lithology in northwest Argentina contains a major section where polycrystalline diamond compact (PDC) bits have not succeeded in the past. The section consists of dense shales and cemented sandstone stringers with limestone laminations. Conventional PDC bits experienced premature failures in the section. A new generation PDC bit tripled rate of penetration (ROP) and increased by five times the potential footage per bit. Recent improvements in PDC bit technology that enabled the improved performance include: the ability to control the PDC cutter quality; use of an advanced cutter lay out defined by 3D software; using cutter face design code formore » optimized cleaning and cooling; and, mastering vibration reduction features, including spiraled blades.« less

  5. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  6. Outage probability of a relay strategy allowing intra-link errors utilizing Slepian-Wolf theorem

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Anwar, Khoirul; Matsumoto, Tad

    2013-12-01

    In conventional decode-and-forward (DF) one-way relay systems, a data block received at the relay node is discarded, if the information part is found to have errors after decoding. Such errors are referred to as intra-link errors in this article. However, in a setup where the relay forwards data blocks despite possible intra-link errors, the two data blocks, one from the source node and the other from the relay node, are highly correlated because they were transmitted from the same source. In this article, we focus on the outage probability analysis of such a relay transmission system, where source-destination and relay-destination links, Link 1 and Link 2, respectively, are assumed to suffer from the correlated fading variation due to block Rayleigh fading. The intra-link is assumed to be represented by a simple bit-flipping model, where some of the information bits recovered at the relay node are the flipped version of their corresponding original information bits at the source. The correlated bit streams are encoded separately by the source and relay nodes, and transmitted block-by-block to a common destination using different time slots, where the information sequence transmitted over Link 2 may be a noise-corrupted interleaved version of the original sequence. The joint decoding takes place at the destination by exploiting the correlation knowledge of the intra-link (source-relay link). It is shown that the outage probability of the proposed transmission technique can be expressed by a set of double integrals over the admissible rate range, given by the Slepian-Wolf theorem, with respect to the probability density function ( pdf) of the instantaneous signal-to-noise power ratios (SNR) of Link 1 and Link 2. It is found that, with the Slepian-Wolf relay technique, so far as the correlation ρ of the complex fading variation is | ρ|<1, the 2nd order diversity can be achieved only if the two bit streams are fully correlated. This indicates that the diversity order exhibited in the outage curve converges to 1 when the bit streams are not fully correlated. Moreover, the Slepian-Wolf outage probability is proved to be smaller than that of the 2nd order maximum ratio combining (MRC) diversity, if the average SNRs of the two independent links are the same. Exact as well as asymptotic expressions of the outage probability are theoretically derived in the article. In addition, the theoretical outage results are compared with the frame-error-rate (FER) curves, obtained by a series of simulations for the Slepian-Wolf relay system based on bit-interleaved coded modulation with iterative detection (BICM-ID). It is shown that the FER curves exhibit the same tendency as the theoretical results.

  7. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  8. Performance of Serially Concatenated Convolutional Codes with Binary Modulation in AWGN and Noise Jamming over Rayleigh Fading Channels

    DTIC Science & Technology

    2001-09-01

    Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE...ABSTRACT In this dissertation, the bit error rates for serially concatenated convolutional codes (SCCC) for both BPSK and DPSK modulation with...INTENTIONALLY LEFT BLANK i EXECUTIVE SUMMARY In this dissertation, the bit error rates of serially concatenated convolutional codes

  9. Analytical evaluation of the combined influence of polarization mode dispersion and group velocity dispersion on the bit error rate performance of optical homodyne quadrature phase-shift keying systems

    NASA Astrophysics Data System (ADS)

    Taher, Kazi Abu; Majumder, Satya Prasad

    2017-12-01

    A theoretical approach is presented to evaluate the bit error rate (BER) performance of an optical fiber transmission system with quadrature phase-shift keying (QPSK) modulation under the combined influence of polarization mode dispersion (PMD) and group velocity dispersion (GVD) in a single-mode fiber (SMF). The analysis is carried out without and with polarization division multiplexed (PDM) transmission considering a coherent homodyne receiver. The probability density function (pdf) of the random phase fluctuations due to PMD and GVD at the output of the receiver is determined analytically, considering the pdf of differential group delay (DGD) to be Maxwellian distribution and that of GVD to be Gaussian approximation. The exact pdf of the phase fluctuation due to PMD and GVD is also evaluated from its moments using a Monte Carlo simulation technique. Average BER is evaluated by averaging the conditional BER over the pdf of the random phase fluctuation. The BER performance results are evaluated for different system parameters. It is found that PDM-QPSK coherent homodyne system suffers more power penalty than the homodyne QPSK system without PDM. A PDM-QPSK system suffers a penalty of 4.3 dB whereas power penalty of QPSK system is 3.0 dB at a BER of 10-9 for DGD of 0.8 Tb and GVD of 1700 ps/nm. Analytical results are compared with the experimental results reported earlier and found to have good conformity.

  10. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  11. Rate-distortion analysis of dead-zone plus uniform threshold scalar quantization and its application--part II: two-pass VBR coding for H.264/AVC.

    PubMed

    Sun, Jun; Duan, Yizhou; Li, Jiangtao; Liu, Jiaying; Guo, Zongming

    2013-01-01

    In the first part of this paper, we derive a source model describing the relationship between the rate, distortion, and quantization steps of the dead-zone plus uniform threshold scalar quantizers with nearly uniform reconstruction quantizers for generalized Gaussian distribution. This source model consists of rate-quantization, distortion-quantization (D-Q), and distortion-rate (D-R) models. In this part, we first rigorously confirm the accuracy of the proposed source model by comparing the calculated results with the coding data of JM 16.0. Efficient parameter estimation strategies are then developed to better employ this source model in our two-pass rate control method for H.264 variable bit rate coding. Based on our D-Q and D-R models, the proposed method is of high stability, low complexity and is easy to implement. Extensive experiments demonstrate that the proposed method achieves: 1) average peak signal-to-noise ratio variance of only 0.0658 dB, compared to 1.8758 dB of JM 16.0's method, with an average rate control error of 1.95% and 2) significant improvement in smoothing the video quality compared with the latest two-pass rate control method.

  12. Some Processing and Dynamic-Range Issues in Side-Scan Sonar Work

    NASA Astrophysics Data System (ADS)

    Asper, V. L.; Caruthers, J. W.

    2007-05-01

    Often side-scan sonar data are collected in such a way that they afford little opportunity to do more than simply display them as images. These images are often limited in dynamic range and stored only in an 8-bit tiff format of numbers representing less than true intensity values. Furthermore, there is little prior knowledge during a survey of the best range in which to set those eight bits. This can result in clipped strong targets and/or the depth of shadows so that the bits that can be recovered from the image are not fully representative of target or bottom backscatter strengths. Several top-of-the-line sonars do have a means of logging high-bit-rate digital data (sometimes only as an option), but only dedicated specialists pay much attention to such data, if they record them at all. Most users of side-scan sonars are interested only in the images. Discussed in this paper are issues related to storing and processing of high-bit-rate digital data to preserve their integrity for future enhanced, after- the-fact use and ability to recover actual backscatter strengths. This papers discusses issues in the use high-bit- rate, digital side-scan sonar data. This work was supported by the Office of Naval Research, Code 321OA, and the Naval Oceanographic Office, Mine Warfare Program.

  13. On the Mutual Information of Multi-hop Acoustic Sensors Network in Underwater Wireless Communication

    DTIC Science & Technology

    2014-05-01

    DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The University of the District of Columbia Computer Science and Informati Briana Lowe Wellman Washington...financial support throughout my Master’s study and research. Also, I would like to acknowledge the Faculty of the Electrical and Computer Engineering...received bits are in error, and then compute the bit-error-rate as the number of bit errors divided by the total number of bits in the transmitted signal

  14. Bit-Wise Arithmetic Coding For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron

    1996-01-01

    Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.

  15. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less

  16. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  17. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  18. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-11-15

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization ofmore » the homodyne detection scheme.« less

  19. A compact presentation of DSN array telemetry performance

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1982-01-01

    The telemetry performance of an arrayed receiver system, including radio losses, is often given by a family of curves giving bit error rate vs bit SNR, with tracking loop SNR at one receiver held constant along each curve. This study shows how to process this information into a more compact, useful format in which the minimal total signal power and optimal carrier suppression, for a given fixed bit error rate, are plotted vs data rate. Examples for baseband-only combining are given. When appropriate dimensionless variables are used for plotting, receiver arrays with different numbers of antennas and different threshold tracking loop bandwidths look much alike, and a universal curve for optimal carrier suppression emerges.

  20. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  1. Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms

    DTIC Science & Technology

    2007-09-01

    punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data

  2. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

    PubMed Central

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393

  3. Application of air hammer drilling technology in igneous rocks of Junggar basin

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  4. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  5. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less

  6. Design and evaluation of a peer network to support adherence to a web-based intervention for adolescents

    PubMed Central

    Ho, Joyce; Corden, Marya E.; Caccamo, Lauren; Tomasino, Kathryn Noth; Duffecy, Jenna; Begale, Mark; Mohr, David C.

    2016-01-01

    Background Depression during adolescence is common but can be prevented. Behavioral intervention technologies (BITs) designed to prevent depression in adolescence, especially standalone web-based interventions, have shown mixed outcomes, likely due to poor intervention adherence. BIT research involving adults has shown that the presence of coaches or peers promotes intervention use. Developmentally, adolescence is a time when peer-based social relationships take precedence. This study examines whether peer-networked support may promote adherence to BITs in this age group. Objective Adopting the framework of the Supportive Accountability model, which defines the types of human support and interactions required to maintain engagement and persistence with BITs, this paper presents a feasibility study of a peer-networked online intervention for depression prevention among adolescents. We described the development of the peer network, the evaluation of participant use of the peer networking features, and qualitative user feedback to inform continued BIT development. Method Two groups of adolescents (N = 13) participated in 10-week programs of the peer networked based online intervention. Adolescents had access to didactic lessons, CBT based mood management tools, and peer networking features. The peer networking features are integrated into the site by making use expectations explicit, allow network members to monitor the activities of others, and to supportively hold each other accountable for meeting use expectations. The study collected qualitative feedback from participants as well as usage of site features and tools. Results Participants logged in an average of 12.8 sessions over an average of 10.4 unique days during the 10-week program. On average, 66% of all use sessions occurred within the first 3 weeks of use. The number of “exchange comments”, that is, comments posted that were part of an exchange between two or more participants, was significantly positively correlated with mean time spent on site (r = 0.62, p = 0.032), use of the Activity Tracker (r = 0.70, p = 0.012) and Didactic Lesson (r = 0.73, p = 0.007). Qualitative interviews revealed that adolescents generally liked and were motivated by the peer networking features during the first weeks of the intervention when general site use by group members was high. However, the decrease of site use by group members during the subsequent weeks negatively affected participants’ desire to log on or engage with group members. Conclusions This pilot study highlights the potential that a BIT designed to harness the connection among a peer network, thereby promoting supportive accountability, may improve adolescent adherence to BITs for depression prevention. PMID:27722095

  7. A new perspective on sexual mixing among men who have sex with men by body image.

    PubMed

    Leung, Ka-Kit; Wong, Horas T H; Naftalin, Claire M; Lee, Shui Shan

    2014-01-01

    "Casual sex" is seldom as non-selective and random as it may sound. During each sexual encounter, people consciously and unconsciously seek their casual sex partners according to different attributes. Influential to a sexual network, research focusing on quantifying the effects of physical appearance on sexual network has been sparse. We evaluated the application of Log odds score (LOD) to assess the mixing patterns of 326 men who have sex with men (MSM) in Hong Kong in their networking of casual sex partners by Body Image Type (BIT). This involved an analysis of 1,196 respondents-casual sex partner pairs. Seven BITs were used in the study: Bear, Chubby, Slender, Lean toned, Muscular, Average and Other. A hierarchical pattern was observed in the preference of MSM for casual sex partners by the latter's BIT. Overall, Muscular men were most preferred, followed by Lean toned while the least preferred was Slender, as illustrated by LOD going down along the hierarchy in the same direction. Marked avoidance was found between men who self-identified as Chubby and men of Other body type (within-group-LOD: 1.25-2.89; between-group-LOD: <-1). None of the respondents reported to have networked a man who self-identified as Average for casual sex. We have demonstrated the possibility of adopting a mathematical prototype to investigate the influence of BIT in a sexual network of MSM. Construction of matrix based on culture-specific BIT and cross-cultural comparisons would generate new knowledge on the mixing behaviors of MSM.

  8. Equipment for the Transient Capture of Chaotic Microwave Signals

    DTIC Science & Technology

    2017-09-14

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the... times are needed and over-sampling by a factor of 8 is required so that the effective number of bits can be increased from the actual bit resolution... time acquisition of transient signals with analog bandwidths up to 70 GHz for one channel, and 30 GHz for two channels.. Training Opportunities

  9. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    Charles W. McMillin; George E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,4000 rpm and removed chips 0.020 inch thick. For wood mositure contents ranging from ovendry to saturation, thrust was lower when boring along the grain (Average 98 pounds)...

  10. PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAYMOND,DAVID W.

    1999-10-14

    Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratorymore » testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.« less

  11. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems.

    PubMed

    Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin

    2014-03-10

    We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.

  12. Efficient bit sifting scheme of post-processing in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong

    2015-10-01

    Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.

  13. Video framerate, resolution and grayscale tradeoffs for undersea telemanipulator

    NASA Technical Reports Server (NTRS)

    Ranadive, V.; Sheridan, T. B.

    1981-01-01

    The product of Frame Rate (F) in frames per second, Resolution (R) in total pixels and grayscale in bits (G) equals the transmission band rate in bits per second. Thus for a fixed channel capacity there are tradeoffs between F, R and G in the actual sampling of the picture for a particular manual control task in the present case remote undersea manipulation. A manipulator was used in the MASTER/SLAVE mode to study these tradeoffs. Images were systematically degraded from 28 frames per second, 128 x 128 pixels and 16 levels (4 bits) grayscale, with various FRG combinations constructed from a real-time digitized (charge-injection) video camera. It was found that frame rate, resolution and grayscale could be independently reduced without preventing the operator from accomplishing his/her task. Threshold points were found beyond which degradation would prevent any successful performance. A general conclusion is that a well trained operator can perform familiar remote manipulator tasks with a considerably degrade picture, down to 50 K bits/ sec.

  14. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  15. Pulsed thrust measurements using electromagnetic calibration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Haibin; Shi Chenbo; Zhang Xin'ai

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less

  16. Note: optical receiver system for 152-channel magnetoencephalography.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  17. Closed form expressions for ABER and capacity over EGK fading channel in presence of CCI

    NASA Astrophysics Data System (ADS)

    Singh, S. Pratap; Kumar, Sanjay

    2017-03-01

    Goal of next generation wireless communication system is to achieve very high data rate. Femto-cell is one of the possibilities to achieve the above target. However, co-channel interference (CCI) is the important concern in femto-cell. This paper presents closed form expressions for average bit error rate (ABER) and capacity for different adaptive schemes under extended generalised-K (EGK) fading channel in the presence of CCI. A novel conditional unified expression (CUE) is derived, which results different conditional error probability and normalised average capacity. Using CUE, a generic expression for ABER is obtained. In addition, closed form expressions for ABER for different modulation schemes under EGK fading channel in presence of CCI are also derived. Further, it is shown that generic ABER expression results into ABER of different modulation schemes. Besides, the closed form expressions of capacity for different adaptive schemes under EGK in presence of CCI are derived. Finally, analytical and simulated results are obtained with excellent agreement.

  18. A Very Efficient Transfer Function Bounding Technique on Bit Error Rate for Viterbi Decoded, Rate 1/N Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1984-01-01

    For rate 1/N convolutional codes, a recursive algorithm for finding the transfer function bound on bit error rate (BER) at the output of a Viterbi decoder is described. This technique is very fast and requires very little storage since all the unnecessary operations are eliminated. Using this technique, we find and plot bounds on the BER performance of known codes of rate 1/2 with K 18, rate 1/3 with K 14. When more than one reported code with the same parameter is known, we select the code that minimizes the required signal to noise ratio for a desired bit error rate of 0.000001. This criterion of determining goodness of a code had previously been found to be more useful than the maximum free distance criterion and was used in the code search procedures of very short constraint length codes. This very efficient technique can also be used for searches of longer constraint length codes.

  19. Guidelines for Design and Test of a Built-In Self Test (BIST) Circuit For Space Radiation Studies of High-Speed IC Technologies

    NASA Technical Reports Server (NTRS)

    Carts, M. A.; Marshall, P. W.; Reed, R.; Curie, S.; Randall, B.; LaBel, K.; Gilbert, B.; Daniel, E.

    2006-01-01

    Serial Bit Error Rate Testing under radiation to characterize single particle induced errors in high-speed IC technologies generally involves specialized test equipment common to the telecommunications industry. As bit rates increase, testing is complicated by the rapidly increasing cost of equipment able to test at-speed. Furthermore as rates extend into the tens of billions of bits per second test equipment ceases to be broadband, a distinct disadvantage for exploring SEE mechanisms in the target technologies. In this presentation the authors detail the testing accomplished in the CREST project and apply the knowledge gained to establish a set of guidelines suitable for designing arbitrarily high speed radiation effects tests.

  20. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

  1. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less

  2. Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams.

    PubMed

    Tagliasacchi, Marco; Valenzise, Giuseppe; Tubaro, Stefano

    2008-07-01

    Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.

  3. Average BER and outage probability of the ground-to-train OWC link in turbulence with rain

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Yang, Yanqiu; Hu, Beibei; Yu, Lin; Hu, Zheng-Da

    2017-09-01

    The bit-error rate (BER) and outage probability of optical wireless communication (OWC) link for the ground-to-train of the curved track in turbulence with rain is evaluated. Considering the re-modulation effects of raining fluctuation on optical signal modulated by turbulence, we set up the models of average BER and outage probability in the present of pointing errors, based on the double inverse Gaussian (IG) statistical distribution model. The numerical results indicate that, for the same covered track length, the larger curvature radius increases the outage probability and average BER. The performance of the OWC link in turbulence with rain is limited mainly by the rain rate and pointing errors which are induced by the beam wander and train vibration. The effect of the rain rate on the performance of the link is more severe than the atmospheric turbulence, but the fluctuation owing to the atmospheric turbulence affects the laser beam propagation more greatly than the skewness of the rain distribution. Besides, the turbulence-induced beam wander has a more significant impact on the system in heavier rain. We can choose the size of transmitting and receiving apertures and improve the shockproof performance of the tracks to optimize the communication performance of the system.

  4. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.

    PubMed

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-15

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  5. A Tuned-RF Duty-Cycled Wake-Up Receiver with −90 dBm Sensitivity

    PubMed Central

    Derbel, Faouzi; Kanoun, Olfa

    2017-01-01

    A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μW. It also features scalable addressing of more than 512 bit at a data rate of 128kbit/s−1. At a wake-up packet error rate of 10−2, the detection sensitivity reaches a minimum of −90 dBm. The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance. PMID:29286345

  6. High speed, very large (8 megabyte) first in/first out buffer memory (FIFO)

    DOEpatents

    Baumbaugh, Alan E.; Knickerbocker, Kelly L.

    1989-01-01

    A fast FIFO (First In First Out) memory buffer capable of storing data at rates of 100 megabytes per second. The invention includes a data packer which concatenates small bit data words into large bit data words, a memory array having individual data storage addresses adapted to store the large bit data words, a data unpacker into which large bit data words from the array can be read and reconstructed into small bit data words, and a controller to control and keep track of the individual data storage addresses in the memory array into which data from the packer is being written and data to the unpacker is being read.

  7. Born a bit too early: recent trends in late preterm births.

    PubMed

    Martin, Joyce A; Kirmeyer, Sharon; Osterman, Michelle; Shepherd, Ruth A

    2009-11-01

    The U.S. late preterm birth rate rose 20% from 1990 to 2006. If the late preterm rate had not risen from the 1990 level, more than 50,000 fewer infants would have been delivered late preterm in 2006. On average, more than 900 late preterm babies are born every day in the United States, or a total of one-third of 1 million infants (333,461). Increases in late preterm births are seen for mothers of all ages, and for non-Hispanic white and Hispanic mothers. The rate for black mothers declined during the 1990s, but has been on the rise since 2000. Late preterm birth rates rose for all U.S. states, but declined in the District of Columbia. The percentage of late preterm births for which labor was induced more than doubled from 1990 to 2006; the percentage of late preterm births delivered by cesarean also rose markedly.

  8. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    C. W. McMillin; G. E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,400 rpm and removed chips 0.020 inch thick. For wood moisture contents ranging from ovendry to saturation, thrust was lower when boring along the grain (average 98 pounds) than...

  9. Implications of scaling on static RAM bit cell stability and reliability

    NASA Astrophysics Data System (ADS)

    Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael

    1993-01-01

    In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.

  10. An auditory brain-computer interface evoked by natural speech

    NASA Astrophysics Data System (ADS)

    Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto

    2012-06-01

    Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.

  11. Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide

    NASA Astrophysics Data System (ADS)

    Kolarczik, Mirco; Ulbrich, Christian; Geiregat, Pieter; Zhu, Yunpeng; Sagar, Laxmi Kishore; Singh, Akshay; Herzog, Bastian; Achtstein, Alexander W.; Li, Xiaoqin; van Thourhout, Dries; Hens, Zeger; Owschimikow, Nina; Woggon, Ulrike

    2018-01-01

    For possible applications of colloidal nanocrystals in optoelectronics and nanophotonics, it is of high interest to study their response at low excitation intensity with high repetition rates, as switching energies in the pJ/bit to sub-pJ/bit range are targeted. We develop a sensitive pump-probe method to study the carrier dynamics in colloidal PbS/CdS quantum dots deposited on a silicon nitride waveguide after excitation by laser pulses with an average energy of few pJ/pulse. We combine an amplitude modulation of the pump pulse with phase-sensitive heterodyne detection. This approach permits to use co-linearly propagating co-polarized pulses. The method allows resolving transmission changes of the order of 10-5 and phase changes of arcseconds. We find a modulation on a sub-nanosecond time scale caused by Auger processes and biexciton decay in the quantum dots. With ground state lifetimes exceeding 1 μs, these processes become important for possible realizations of opto-electronic switching and modulation based on colloidal quantum dots emitting in the telecommunication wavelength regime.

  12. Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response.

  13. A novel comparator featured with input data characteristic

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo; Ye, Desheng; Xu, Xiangmin; Zheng, Shuai

    2016-03-01

    Two types of low-power asynchronous comparators featured with input data statistical characteristic are proposed in this article. The asynchronous ripple comparator stops comparing at the first unequal bit but delivers the result to the least significant bit. The pre-stop asynchronous comparator can completely stop comparing and obtain results immediately. The proposed and contrastive comparators were implemented in SMIC 0.18 μm process with different bit widths. Simulation shows that the proposed pre-stop asynchronous comparator features the lowest power consumption, shortest average propagation delay and highest area efficiency among the comparators. Data path of low-density parity check decoder using the proposed pre-stop asynchronous comparators are most power efficient compared with other data paths with synthesised, clock gating and bitwise competition logic comparators.

  14. The effect of timing errors in optical digital systems.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1972-01-01

    The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be; Tchitnga, Robert; Woafo, Paul

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bitmore » rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.« less

  16. Performance of the JPEG Estimated Spectrum Adaptive Postfilter (JPEG-ESAP) for Low Bit Rates

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2016-01-01

    Frequency-based, pixel-adaptive filtering using the JPEG-ESAP algorithm for low bit rate JPEG formatted color images may allow for more compressed images while maintaining equivalent quality at a smaller file size or bitrate. For RGB, an image is decomposed into three color bands--red, green, and blue. The JPEG-ESAP algorithm is then applied to each band (e.g., once for red, once for green, and once for blue) and the output of each application of the algorithm is rebuilt as a single color image. The ESAP algorithm may be repeatedly applied to MPEG-2 video frames to reduce their bit rate by a factor of 2 or 3, while maintaining equivalent video quality, both perceptually, and objectively, as recorded in the computed PSNR values.

  17. A microcomputer-based data acquisition system for ECG, body and ambient temperatures measurement during bathing.

    PubMed

    Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W

    2000-01-01

    A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.

  18. A new optical post-equalization based on self-imaging

    NASA Astrophysics Data System (ADS)

    Guizani, S.; Cheriti, A.; Razzak, M.; Boulslimani, Y.; Hamam, H.

    2005-09-01

    Driven by the world's growing need for communication bandwidth, progress is constantly being reported in building newer fibers that are capable of handling the rapid increase in traffic. However, building an optical fiber link is a major investment, one that is very expensive to replace. A major impairment that restricts the achievement of higher bit rates with standard single mode fiber is chromatic dispersion. This is particularly problematic for systems operating in the 1550 nm band, where the chromatic dispersion limit decreases rapidly in inverse proportion to the square of the bit rate. For the first time, to the best of our knowledge, this document illustrates a new optical technique to post compensate optically the chromatic dispersion in fiber using temporal Talbot effect in ranges exceeding the 40G bit/s. We propose a new optical post equalization solutions based on the self imaging of Talbot effect.

  19. An overview of Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET) Project

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1991-01-01

    A software application to assist end-users of the link evaluation terminal (LET) for satellite communications is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving (220/110 Mbps) capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. The HBR LET can determine the bit error rate (BER) under various atmospheric conditions by comparing the transmitted bit pattern with the received bit pattern. An algorithm for power augmentation will be applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions.

  20. A wide bandwidth CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K.; Wallace, R. W.; Robinson, C. R.

    1978-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.

  1. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.

    PubMed

    Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang

    2010-08-16

    Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.

  2. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  3. A joint source-channel distortion model for JPEG compressed images.

    PubMed

    Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C

    2006-06-01

    The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.

  4. High bit depth infrared image compression via low bit depth codecs

    NASA Astrophysics Data System (ADS)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  5. Design Consideration and Performance of Networked Narrowband Waveforms for Tactical Communications

    DTIC Science & Technology

    2010-09-01

    four proposed CPM modes, with perfect acquisition parameters, for both coherent and noncoherent detection using an iterative receiver with both inner...Figure 1: Bit error rate performance of various CPM modes with coherent and noncoherent detection. Figure 3 shows the corresponding relationship...symbols. Table 2 summarises the parameter Coherent results (cross) Noncoherent results (diamonds) Figur 1: Bit Error Rate Pe f rmance of

  6. Ultrasound Picture Archiving And Communication Systems

    NASA Astrophysics Data System (ADS)

    Koestner, Ken; Hottinger, C. F.

    1982-01-01

    The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.

  7. A forward error correction technique using a high-speed, high-rate single chip codec

    NASA Astrophysics Data System (ADS)

    Boyd, R. W.; Hartman, W. F.; Jones, Robert E.

    The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.

  8. Subjective quality evaluation of low-bit-rate video

    NASA Astrophysics Data System (ADS)

    Masry, Mark; Hemami, Sheila S.; Osberger, Wilfried M.; Rohaly, Ann M.

    2001-06-01

    A subjective quality evaluation was performed to qualify vie4wre responses to visual defects that appear in low bit rate video at full and reduced frame rates. The stimuli were eight sequences compressed by three motion compensated encoders - Sorenson Video, H.263+ and a Wavelet based coder - operating at five bit/frame rate combinations. The stimulus sequences exhibited obvious coding artifacts whose nature differed across the three coders. The subjective evaluation was performed using the Single Stimulus Continuos Quality Evaluation method of UTI-R Rec. BT.500-8. Viewers watched concatenated coded test sequences and continuously registered the perceived quality using a slider device. Data form 19 viewers was colleted. An analysis of their responses to the presence of various artifacts across the range of possible coding conditions and content is presented. The effects of blockiness and blurriness on perceived quality are examined. The effects of changes in frame rate on perceived quality are found to be related to the nature of the motion in the sequence.

  9. Using Bitmap Indexing Technology for Combined Numerical and TextQueries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockinger, Kurt; Cieslewicz, John; Wu, Kesheng

    2006-10-16

    In this paper, we describe a strategy of using compressedbitmap indices to speed up queries on both numerical data and textdocuments. By using an efficient compression algorithm, these compressedbitmap indices are compact even for indices with millions of distinctterms. Moreover, bitmap indices can be used very efficiently to answerBoolean queries over text documents involving multiple query terms.Existing inverted indices for text searches are usually inefficient forcorpora with a very large number of terms as well as for queriesinvolving a large number of hits. We demonstrate that our compressedbitmap index technology overcomes both of those short-comings. In aperformance comparison against amore » commonly used database system, ourindices answer queries 30 times faster on average. To provide full SQLsupport, we integrated our indexing software, called FastBit, withMonetDB. The integrated system MonetDB/FastBit provides not onlyefficient searches on a single table as FastBit does, but also answersjoin queries efficiently. Furthermore, MonetDB/FastBit also provides avery efficient retrieval mechanism of result records.« less

  10. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  11. Application of morphological bit planes in retinal blood vessel extraction.

    PubMed

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  12. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    PubMed

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  13. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    NASA Astrophysics Data System (ADS)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  14. Methodology and method and apparatus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2011-01-01

    Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.

  15. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  16. Next generation PET data acquisition architectures

    NASA Astrophysics Data System (ADS)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  17. Design and implementation of a telemedicine system using Bluetooth protocol and GSM/GPRS network, for real time remote patient monitoring.

    PubMed

    Jasemian, Yousef; Nielsen, Lars Arendt

    2005-01-01

    This paper introduces the design and implementation of a generic wireless and Real-time Multi-purpose Health Care Telemedicine system applying Bluetooth protocol, Global System for Mobile Communications (GSM) and General Packet Radio Service (GPRS). The paper explores the factors that should be considered when evaluating different technologies for application in telemedicine system. The design and implementation of an embedded wireless communication platform utilising Bluetooth protocol is described, and the implementation problems and limitations are investigated. The system is tested and its telecommunication general aspects are verified. The results showed that the system has (97.9 +/- 1.3)% Up-time, 2.5 x 10(-5) Bit Error Rate, 1% Dropped Call Rate, 97.4% Call Success Rate, 5 second transmission delay in average, (3.42 +/- 0.11) kbps throughput, and the system may have application in electrocardiography.

  18. Averaging of phase noise in PSK signals by an opto-electrical feed-forward circuit

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Ohta, M.

    2013-10-01

    This paper proposes an opto-electrical feed-forward circuit that reduces phase noise in binary PSK signals by averaging the noise. Random and independent phase noise is averaged over several bit slots by externally modulating a phase-fluctuating PSK signal with feed-forward signal obtained from signal processing of the outputs of delay interferometers. The simulation results demonstrate a reduction in the phase noise.

  19. A New Approach for Fingerprint Image Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefactsmore » which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.« less

  20. High-speed reconstruction of compressed images

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  1. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  2. Research on the output bit error rate of 2DPSK signal based on stochastic resonance theory

    NASA Astrophysics Data System (ADS)

    Yan, Daqin; Wang, Fuzhong; Wang, Shuo

    2017-12-01

    Binary differential phase-shift keying (2DPSK) signal is mainly used for high speed data transmission. However, the bit error rate of digital signal receiver is high in the case of wicked channel environment. In view of this situation, a novel method based on stochastic resonance (SR) is proposed, which is aimed to reduce the bit error rate of 2DPSK signal by coherent demodulation receiving. According to the theory of SR, a nonlinear receiver model is established, which is used to receive 2DPSK signal under small signal-to-noise ratio (SNR) circumstances (between -15 dB and 5 dB), and compared with the conventional demodulation method. The experimental results demonstrate that when the input SNR is in the range of -15 dB to 5 dB, the output bit error rate of nonlinear system model based on SR has a significant decline compared to the conventional model. It could reduce 86.15% when the input SNR equals -7 dB. Meanwhile, the peak value of the output signal spectrum is 4.25 times as that of the conventional model. Consequently, the output signal of the system is more likely to be detected and the accuracy can be greatly improved.

  3. Fixed-Rate Compressed Floating-Point Arrays.

    PubMed

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  4. Fast and memory efficient text image compression with JBIG2.

    PubMed

    Ye, Yan; Cosman, Pamela

    2003-01-01

    In this paper, we investigate ways to reduce encoding time, memory consumption and substitution errors for text image compression with JBIG2. We first look at page striping where the encoder splits the input image into horizontal stripes and processes one stripe at a time. We propose dynamic dictionary updating procedures for page striping to reduce the bit rate penalty it incurs. Experiments show that splitting the image into two stripes can save 30% of encoding time and 40% of physical memory with a small coding loss of about 1.5%. Using more stripes brings further savings in time and memory but the return diminishes. We also propose an adaptive way to update the dictionary only when it has become out-of-date. The adaptive updating scheme can resolve the time versus bit rate tradeoff and the memory versus bit rate tradeoff well simultaneously. We then propose three speedup techniques for pattern matching, the most time-consuming encoding activity in JBIG2. When combined together, these speedup techniques can save up to 75% of the total encoding time with at most 1.7% of bit rate penalty. Finally, we look at improving reconstructed image quality for lossy compression. We propose enhanced prescreening and feature monitored shape unifying to significantly reduce substitution errors in the reconstructed images.

  5. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  6. Analog Correlator Based on One Bit Digital Correlator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman (Inventor); Krasowski, Michael (Inventor)

    2017-01-01

    A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.

  7. Dynamic detection-rate-based bit allocation with genuine interval concealment for binary biometric representation.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann

    2013-06-01

    Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.

  8. Quantum key distribution in a multi-user network at gigahertz clock rates

    NASA Astrophysics Data System (ADS)

    Fernandez, Veronica; Gordon, Karen J.; Collins, Robert J.; Townsend, Paul D.; Cova, Sergio D.; Rech, Ivan; Buller, Gerald S.

    2005-07-01

    In recent years quantum information research has lead to the discovery of a number of remarkable new paradigms for information processing and communication. These developments include quantum cryptography schemes that offer unconditionally secure information transport guaranteed by quantum-mechanical laws. Such potentially disruptive security technologies could be of high strategic and economic value in the future. Two major issues confronting researchers in this field are the transmission range (typically <100km) and the key exchange rate, which can be as low as a few bits per second at long optical fiber distances. This paper describes further research of an approach to significantly enhance the key exchange rate in an optical fiber system at distances in the range of 1-20km. We will present results on a number of application scenarios, including point-to-point links and multi-user networks. Quantum key distribution systems have been developed, which use standard telecommunications optical fiber, and which are capable of operating at clock rates of up to 2GHz. They implement a polarization-encoded version of the B92 protocol and employ vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, as well as silicon single-photon avalanche diodes as the single photon detectors. The point-to-point quantum key distribution system exhibited a quantum bit error rate of 1.4%, and an estimated net bit rate greater than 100,000 bits-1 for a 4.2 km transmission range.

  9. Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtanowicz, A.K.; Kuru, E.

    1993-12-01

    An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter`s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verificationsmore » of the model. Qualitative verification shows that the model`s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model`s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.« less

  10. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin

    2018-01-01

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

  11. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    PubMed Central

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-01

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963

  12. Performance of multi-hop parallel free-space optical communication over gamma-gamma fading channel with pointing errors.

    PubMed

    Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei

    2016-11-10

    Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.

  13. Channel correlation and BER performance analysis of coherent optical communication systems with receive diversity over moderate-to-strong non-Kolmogorov turbulence.

    PubMed

    Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan

    2018-04-10

    In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.

  14. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    NASA Astrophysics Data System (ADS)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  15. Performance analysis for mixed FSO/RF Nakagami-m and Exponentiated Weibull dual-hop airborne systems

    NASA Astrophysics Data System (ADS)

    Jing, Zhao; Shang-hong, Zhao; Wei-hu, Zhao; Ke-fan, Chen

    2017-06-01

    In this paper, the performances of mixed free-space optical (FSO)/radio frequency (RF) systems are presented based on the decode-and-forward relaying. The Exponentiated Weibull fading channel with pointing error effect is adopted for the atmospheric fluctuation of FSO channel and the RF link undergoes the Nakagami-m fading. We derived the analytical expression for cumulative distribution function (CDF) of equivalent signal-to-noise ratio (SNR). The novel mathematical presentations of outage probability and average bit-error-rate (BER) are developed based on the Meijer's G function. The analytical results show an accurately match to the Monte-Carlo simulation results. The outage and BER performance for the mixed system by decode-and-forward relay are investigated considering atmospheric turbulence and pointing error condition. The effect of aperture averaging is evaluated in all atmospheric turbulence conditions as well.

  16. High-order noise filtering in nontrivial quantum logic gates.

    PubMed

    Green, Todd; Uys, Hermann; Biercuk, Michael J

    2012-07-13

    Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.

  17. 50 Mbps free space direct detection laser diode optical communication system with Q = 4 PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic; Field, Christopher

    1990-01-01

    A 50 Mbps direct detection optical communication system for use in an intersatellite link was constructed with an AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector. The system used a Q = 4 PPM format. The receiver consisted of a maximum likelihood PPM detector and a timing recovery subsystem. The PPM slot clock was recovered at the receiver by using a transition detector followed by a PLL. The PPM word clock was recovered by using a second PLL whose input was derived from the presence of back-to-back PPM pulses contained in the received random PPM pulse sequences. The system achieved a bit error rate of 0.000001 at less than 50 detected signal photons/information bit. The receiver was capable of acquiring and maintaining slot and word synchronization for received signal levels greater than 20 photons/information bit, at which the receiver bit error rate was about 0.01.

  18. Application of Rosenbrock search technique to reduce the drilling cost of a well in Bai-Hassan oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aswad, Z.A.R.; Al-Hadad, S.M.S.

    1983-03-01

    The powerful Rosenbrock search technique, which optimizes both the search directions using the Gram-Schmidt procedure and the step size using the Fibonacci line search method, has been used to optimize the drilling program of an oil well drilled in Bai-Hassan oil field in Kirkuk, Iran, using the twodimensional drilling model of Galle and Woods. This model shows the effect of the two major controllable variables, weight on bit and rotary speed, on the drilling rate, while considering other controllable variables such as the mud properties, hydrostatic pressure, hydraulic design, and bit selection. The effect of tooth dullness on the drillingmore » rate is also considered. Increasing the weight on the drill bit with a small increase or decrease in ratary speed resulted in a significant decrease in the drilling cost for most bit runs. It was found that a 48% reduction in this cost and a 97-hour savings in the total drilling time was possible under certain conditions.« less

  19. Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkwon; Lee, Jaejin

    2018-05-01

    The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.

  20. On the timing problem in optical PPM communications.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1971-01-01

    Investigation of the effects of imperfect timing in a direct-detection (noncoherent) optical system using pulse-position-modulation bits. Special emphasis is placed on specification of timing accuracy, and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors, from which average error probabilities can be computed for specific synchronization methods. Of significant importance is shown to be the presence of a residual, or irreducible error probability, due entirely to the timing system, that cannot be overcome by the data channel.

  1. Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion.

    PubMed

    Wu, Xiaolin; Zhang, Xiangjun; Wang, Xiaohan

    2009-03-01

    Recently, many researchers started to challenge a long-standing practice of digital photography: oversampling followed by compression and pursuing more intelligent sparse sampling techniques. In this paper, we propose a practical approach of uniform down sampling in image space and yet making the sampling adaptive by spatially varying, directional low-pass prefiltering. The resulting down-sampled prefiltered image remains a conventional square sample grid, and, thus, it can be compressed and transmitted without any change to current image coding standards and systems. The decoder first decompresses the low-resolution image and then upconverts it to the original resolution in a constrained least squares restoration process, using a 2-D piecewise autoregressive model and the knowledge of directional low-pass prefiltering. The proposed compression approach of collaborative adaptive down-sampling and upconversion (CADU) outperforms JPEG 2000 in PSNR measure at low to medium bit rates and achieves superior visual quality, as well. The superior low bit-rate performance of the CADU approach seems to suggest that oversampling not only wastes hardware resources and energy, and it could be counterproductive to image quality given a tight bit budget.

  2. Scene-aware joint global and local homographic video coding

    NASA Astrophysics Data System (ADS)

    Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.

    2016-09-01

    Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.

  3. Designing an efficient LT-code with unequal error protection for image transmission

    NASA Astrophysics Data System (ADS)

    S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.

    2015-10-01

    The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.

  4. QoS mapping algorithm for ETE QoS provisioning

    NASA Astrophysics Data System (ADS)

    Wu, Jian J.; Foster, Gerry

    2002-08-01

    End-to-End (ETE) Quality of Service (QoS) is critical for next generation wireless multimedia communication systems. To meet the ETE QoS requirements, Universal Mobile Telecommunication System (UMTS) requires not only meeting the 3GPP QoS requirements [1-2] but also mapping external network QoS classes to UMTS QoS classes. There are four Quality of Services (QoS) classes in UMTS; they are Conversational, Streaming, Interactive and Background. There are eight QoS classes for LAN in IEEE 802.1 (one reserved). ATM has four QoS categories. They are Constant Bit Rate (CBR) - highest priority, short queue for strict Cell Delay Variation (CDV), Variable Bit Rate (VBR) - second highest priority, short queues for real time, longer queues for non-real time, Guaranteed Frame Rate (GFR)/ Unspecified Bit Rate (UBR) with Minimum Desired Cell Rate (MDCR) - intermediate priority, dependent on service provider UBR/ Available Bit Rate (ABR) - lowest priority, long queues, large delay variation. DiffServ (DS) has six-bit DS codepoint (DSCP) available to determine the datagram's priority relative to other datagrams and therefore, up to 64 QoS classes are available from the IPv4 and IPv6 DSCP. Different organisations have tried to solve the QoS issues from their own perspective. However, none of them has a full picture for end-to-end QoS classes and how to map them among all QoS classes. Therefore, a universal QoS needs to be created and a new set of QoS classes to enable end-to-end (ETE) QoS provisioning is required. In this paper, a new set of ETE QoS classes is proposed and a mappings algorithm for different QoS classes that are proposed by different organisations is given. With our proposal, ETE QoS mapping and control can be implemented.

  5. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    PubMed

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  6. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  7. Generation and transmission of DPSK signals using a directly modulated passive feedback laser.

    PubMed

    Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C

    2012-12-10

    The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.

  8. The transmission of low frequency medical data using delta modulation techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Dawson, C. T.

    1972-01-01

    The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.

  9. Present state of HDTV coding in Japan and future prospect

    NASA Astrophysics Data System (ADS)

    Murakami, Hitomi

    The development status of HDTV digital codecs in Japan is evaluated; several bit rate-reduction codecs have been developed for 1125 lines/60-field HDTV, and performance trials have been conducted through satellite and optical fiber links. Prospective development efforts will attempt to achieve more efficient coding schemes able to reduce the bit rate to as little as 45 Mbps, as well as to apply coding schemes to automated teller machine networks.

  10. Design of pseudo-symmetric high bit rate, bend insensitive optical fiber applicable for high speed FTTH

    NASA Astrophysics Data System (ADS)

    Makouei, Somayeh; Koozekanani, Z. D.

    2014-12-01

    In this paper, with sophisticated modification on modal-field distribution and introducing new design procedure, the single-mode fiber with ultra-low bending-loss and pseudo-symmetric high bit-rate of uplink and downlink, appropriate for fiber-to-the-home (FTTH) operation is presented. The bending-loss reduction and dispersion management are done by the means of Genetic Algorithm. The remarkable feature of this methodology is designing a bend-insensitive fiber without reduction of core radius and MFD. Simulation results show bending loss of 1.27×10-2 dB/turn at 1.55 μm for 5 mm curvature radius. The MFD and Aeff are 9.03 μm and 59.11 μm2. Moreover, the upstream and downstream bit-rates are approximately 2.38 Gbit/s-km and 3.05 Gbit/s-km.

  11. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  12. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  13. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  14. Pattern recognition of electronic bit-sequences using a semiconductor mode-locked laser and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.

    2010-04-01

    A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.

  15. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhang, Limeng; Pan, Biwei; Chen, Guangcan; Guo, Lu; Lu, Dan; Zhao, Lingjuan; Wang, Wei

    2017-04-01

    An ultra-fast physical random number generator is demonstrated utilizing a photonic integrated device based broadband chaotic source with a simple post data processing method. The compact chaotic source is implemented by using a monolithic integrated dual-mode amplified feedback laser (AFL) with self-injection, where a robust chaotic signal with RF frequency coverage of above 50 GHz and flatness of ±3.6 dB is generated. By using 4-least significant bits (LSBs) retaining from the 8-bit digitization of the chaotic waveform, random sequences with a bit-rate up to 640 Gbit/s (160 GS/s × 4 bits) are realized. The generated random bits have passed each of the fifteen NIST statistics tests (NIST SP800-22), indicating its randomness for practical applications.

  16. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  17. Real-time implementation of second generation of audio multilevel information coding

    NASA Astrophysics Data System (ADS)

    Ali, Murtaza; Tewfik, Ahmed H.; Viswanathan, V.

    1994-03-01

    This paper describes real-time implementation of a novel wavelet- based audio compression method. This method is based on the discrete wavelet (DWT) representation of signals. A bit allocation procedure is used to allocate bits to the transform coefficients in an adaptive fashion. The bit allocation procedure has been designed to take advantage of the masking effect in human hearing. The procedure minimizes the number of bits required to represent each frame of audio signals at a fixed distortion level. The real-time implementation provides almost transparent compression of monophonic CD quality audio signals (samples at 44.1 KHz and quantized using 16 bits/sample) at bit rates of 64-78 Kbits/sec. Our implementation uses two ASPI Elf boards, each of which is built around a TI TMS230C31 DSP chip. The time required for encoding of a mono CD signal is about 92 percent of real time and that for decoding about 61 percent.

  18. Direct bit detection receiver noise performance analysis for 32-PSK and 64-PSK modulated signals

    NASA Astrophysics Data System (ADS)

    Ahmed, Iftikhar

    1987-12-01

    Simple two channel receivers for 32-PSK and 64-PSK modulated signals have been proposed which allow digital data (namely bits), to be recovered directly instead of the traditional approach of symbol detection followed by symbol to bit mappings. This allows for binary rather than M-ary receiver decisions, reduces the amount of signal processing operations and permits parallel recovery of the bits. The noise performance of these receivers quantified by the Bit Error Rate (BER) assuming an Additive White Gaussian Noise interference model is evaluated as a function of Eb/No, the signal to noise ratio, and transmitted phase angles of the signals. The performance results of the direct bit detection receivers (DBDR) when compared to that of convectional phase measurement receivers demonstrate that DBDR's are optimum in BER sense. The simplicity of the receiver implementations and the BER of the delivered data make DBDR's attractive for high speed, spectrally efficient digital communication systems.

  19. Monthly average polar sea-ice concentration

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1995-01-01

    The data contained in this CD-ROM depict monthly averages of sea-ice concentration in the modern polar oceans. These averages were derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) instruments aboard satellites of the U.S. Air Force Defense Meteorological Satellite Program from 1978 through 1992. The data are provided as 8-bit images using the Hierarchical Data Format (HDF) developed by the National Center for Supercomputing Applications.

  20. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  1. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    PubMed

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  2. Information rates of probabilistically shaped coded modulation for a multi-span fiber-optic communication system with 64QAM

    NASA Astrophysics Data System (ADS)

    Fehenberger, Tobias

    2018-02-01

    This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.

  3. Variable frame rate transmission - A review of methodology and application to narrow-band LPC speech coding

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. R.; Makhoul, J.; Schwartz, R. M.; Huggins, A. W. F.

    1982-04-01

    The variable frame rate (VFR) transmission methodology developed, implemented, and tested in the years 1973-1978 for efficiently transmitting linear predictive coding (LPC) vocoder parameters extracted from the input speech at a fixed frame rate is reviewed. With the VFR method, parameters are transmitted only when their values have changed sufficiently over the interval since their preceding transmission. Two distinct approaches to automatic implementation of the VFR method are discussed. The first bases the transmission decisions on comparisons between the parameter values of the present frame and the last transmitted frame. The second, which is based on a functional perceptual model of speech, compares the parameter values of all the frames that lie in the interval between the present frame and the last transmitted frame against a linear model of parameter variation over that interval. Also considered is the application of VFR transmission to the design of narrow-band LPC speech coders with average bit rates of 2000-2400 bts/s.

  4. Practical remarks on the heart rate and saturation measurement methodology

    NASA Astrophysics Data System (ADS)

    Kowal, M.; Kubal, S.; Piotrowski, P.; Staniec, K.

    2017-05-01

    A surface reflection-based method for measuring heart rate and saturation has been introduced as one having a significant advantage over legacy methods in that it lends itself for use in special applications such as those where a person’s mobility is of prime importance (e.g. during a miner’s work) and excluding the use of traditional clips. Then, a complete ATmega1281-based microcontroller platform has been described for performing computational tasks of signal processing and wireless transmission. In the next section remarks have been provided regarding the basic signal processing rules beginning with raw voltage samples of converted optical signals, their acquisition, storage and smoothing. This chapter ends with practical remarks demonstrating an exponential dependence between the minimum measurable heart rate and the readout resolution at different sampling frequencies for different cases of averaging depth (in bits). The following section is devoted strictly to the heart rate and hemoglobin oxygenation (saturation) measurement with the use of the presented platform, referenced to measurements obtained with a stationary certified pulsoxymeter.

  5. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  6. APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study

    NASA Astrophysics Data System (ADS)

    Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak

    2017-04-01

    In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.

  7. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  8. Layered video transmission over multirate DS-CDMA wireless systems

    NASA Astrophysics Data System (ADS)

    Kondi, Lisimachos P.; Srinivasan, Deepika; Pados, Dimitris A.; Batalama, Stella N.

    2003-05-01

    n this paper, we consider the transmission of video over wireless direct-sequence code-division multiple access (DS-CDMA) channels. A layered (scalable) video source codec is used and each layer is transmitted over a different CDMA channel. Spreading codes with different lengths are allowed for each CDMA channel (multirate CDMA). Thus, a different number of chips per bit can be used for the transmission of each scalable layer. For a given fixed energy value per chip and chip rate, the selection of a spreading code length affects the transmitted energy per bit and bit rate for each scalable layer. An MPEG-4 source encoder is used to provide a two-layer SNR scalable bitstream. Each of the two layers is channel-coded using Rate-Compatible Punctured Convolutional (RCPC) codes. Then, the data are interleaved, spread, carrier-modulated and transmitted over the wireless channel. A multipath Rayleigh fading channel is assumed. At the other end, we assume the presence of an antenna array receiver. After carrier demodulation, multiple-access-interference suppressing despreading is performed using space-time auxiliary vector (AV) filtering. The choice of the AV receiver is dictated by realistic channel fading rates that limit the data record available for receiver adaptation and redesign. Indeed, AV filter short-data-record estimators have been shown to exhibit superior bit-error-rate performance in comparison with LMS, RLS, SMI, or 'multistage nested Wiener' adaptive filter implementations. Our experimental results demonstrate the effectiveness of multirate DS-CDMA systems for wireless video transmission.

  9. Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding

    PubMed Central

    Niven, Jeremy E; Anderson, John C; Laughlin, Simon B

    2007-01-01

    Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. PMID:17373859

  10. Inter-track interference mitigation with two-dimensional variable equalizer for bit patterned media recording

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Vijaya Kumar, B. V. K.

    2017-05-01

    The increased track density in bit patterned media recording (BPMR) causes increased inter-track interference (ITI), which degrades the bit error rate (BER) performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS) for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR) detector and decoded with low-density parity-check (LDPC) decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER) compared to that with the 2D fixed equalizer.

  11. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  12. A novel PON-based mobile distributed cluster of antennas approach to provide impartial and broadband services to end users

    NASA Astrophysics Data System (ADS)

    Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.

    2010-01-01

    In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.

  13. A software reconfigurable optical multiband UWB system utilizing a bit-loading combined with adaptive LDPC code rate scheme

    NASA Astrophysics Data System (ADS)

    He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin

    2017-07-01

    In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).

  14. Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Heinemann, M. A.; Mckinnis, R. W.; Bridge, H. S.

    1973-01-01

    Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data.

  15. A study of electro-osmosis as applied to drilling engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, Peringandoor Raman

    In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)

  16. Reducing temperature elevation of robotic bone drilling.

    PubMed

    Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe

    2016-12-01

    This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Energy-efficient human body communication receiver chipset using wideband signaling scheme.

    PubMed

    Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun

    2007-01-01

    This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.

  18. Mapping from multiple-control Toffoli circuits to linear nearest neighbor quantum circuits

    NASA Astrophysics Data System (ADS)

    Cheng, Xueyun; Guan, Zhijin; Ding, Weiping

    2018-07-01

    In recent years, quantum computing research has been attracting more and more attention, but few studies on the limited interaction distance between quantum bits (qubit) are deeply carried out. This paper presents a mapping method for transforming multiple-control Toffoli (MCT) circuits into linear nearest neighbor (LNN) quantum circuits instead of traditional decomposition-based methods. In order to reduce the number of inserted SWAP gates, a novel type of gate with the optimal LNN quantum realization was constructed, namely NNTS gate. The MCT gate with multiple control bits could be better cascaded by the NNTS gates, in which the arrangement of the input lines was LNN arrangement of the MCT gate. Then, the communication overhead measurement model on inserted SWAP gate count from the original arrangement to the new arrangement was put forward, and we selected one of the LNN arrangements with the minimum SWAP gate count. Moreover, the LNN arrangement-based mapping algorithm was given, and it dealt with the MCT gates in turn and mapped each MCT gate into its LNN form by inserting the minimum number of SWAP gates. Finally, some simplification rules were used, which can further reduce the final quantum cost of the LNN quantum circuit. Experiments on some benchmark MCT circuits indicate that the direct mapping algorithm results in fewer additional SWAP gates in about 50%, while the average improvement rate in quantum cost is 16.95% compared to the decomposition-based method. In addition, it has been verified that the proposed method has greater superiority for reversible circuits cascaded by MCT gates with more control bits.

  19. Node synchronization schemes for the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Swanson, L.; Arnold, S.

    1992-01-01

    The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods.

  20. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.; Sandstrom, J.

    1983-10-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-base muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure with different back pressures maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was also varied. Filtration rates were measured while drilling and with the bit off bottom and mud circulating. Penetration rates were found to be related to the difference between the filtration rates measured while drilling and circulating. There was no observedmore » correlation between standard API filtration measurements and penetration rate.« less

  1. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; Dearing, H.L.; DiBona, B.G.

    1985-09-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-based muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure while different backpressures were maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was varied also. Filtration rates were measured while circulating mud during drilling and with the bit off bottom. Penetration rates were found to be related qualitatively to the difference between the filtration rates measured while drilling and circulating. There was nomore » observed correlation between standard API filtration measurements and penetration rate.« less

  2. A torsion balance for impulse and thrust measurements of micro-Newton thrusters

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun

    2012-01-01

    This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 μNs with a resolution of 0.47 μNs, and the average thrust up to 264 μN with a resolution of 0.09 μN in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 μNs with a repeatability of about 5%.

  3. Performance of correlation receivers in the presence of impulse noise.

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Houts, R. C.

    1972-01-01

    An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.

  4. Performance of the ICAO standard core service modulation and coding techniques

    NASA Technical Reports Server (NTRS)

    Lodge, John; Moher, Michael

    1988-01-01

    Aviation binary phase shift keying (A-BPSK) is described and simulated performance results are given that demonstrate robust performance in the presence of hardlimiting amplifiers. The performance of coherently-detected A-BPSK with rate 1/2 convolutional coding are given. The performance loss due to the Rician fading was shown to be less than 1 dB over the simulated range. A partially coherent detection scheme that does not require carrier phase recovery was described. This scheme exhibits similiar performance to coherent detection, at high bit error rates, while it is superior at lower bit error rates.

  5. Digital Signal Processing For Low Bit Rate TV Image Codecs

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  6. Autosophy: an alternative vision for satellite communication, compression, and archiving

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus; Holtz, Eric; Kalienky, Diana

    2006-08-01

    Satellite communication and archiving systems are now designed according to an outdated Shannon information theory where all data is transmitted in meaningless bit streams. Video bit rates, for example, are determined by screen size, color resolution, and scanning rates. The video "content" is irrelevant so that totally random images require the same bit rates as blank images. An alternative system design, based on the newer Autosophy information theory, is now evolving, which transmits data "contend" or "meaning" in a universally compatible 64bit format. This would allow mixing all multimedia transmissions in the Internet's packet stream. The new systems design uses self-assembling data structures, which grow like data crystals or data trees in electronic memories, for both communication and archiving. The advantages for satellite communication and archiving may include: very high lossless image and video compression, unbreakable encryption, resistance to transmission errors, universally compatible data formats, self-organizing error-proof mass memories, immunity to the Internet's Quality of Service problems, and error-proof secure communication protocols. Legacy data transmission formats can be converted by simple software patches or integrated chipsets to be forwarded through any media - satellites, radio, Internet, cable - without needing to be reformatted. This may result in orders of magnitude improvements for all communication and archiving systems.

  7. VLSI for High-Speed Digital Signal Processing

    DTIC Science & Technology

    1994-09-30

    particular, the design, layout and fab - rication of integrated circuits. The primary project for this grant has been the design and implementation of a...targeted at 33.36 dB, and PSNR (dB) Rate ( bpp ) the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- Filter FDSBC FRSBC FDSBC FRSBC tively. The filter...to mean square error d by as shown in Fig. 6, is used, yielding a total of 16 subbands. 255’ The rates, in bits per pixel ( bpp ), and the peak signal

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasner, Evan; Bearden, Sean; Žutić, Igor, E-mail: zigor@buffalo.edu

    Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers.

  9. Quantum cryptography with entangled photons

    PubMed

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  10. Correlation Between Analog Noise Measurements and the Expected Bit Error Rate of a Digital Signal Propagating Through Passive Components

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Theofylaktos, Onoufrios

    2012-01-01

    A method of determining the bit error rate (BER) of a digital circuit from the measurement of the analog S-parameters of the circuit has been developed. The method is based on the measurement of the noise and the standard deviation of the noise in the S-parameters. Once the standard deviation and the mean of the S-parameters are known, the BER of the circuit can be calculated using the normal Gaussian function.

  11. Region of interest video coding for low bit-rate transmission of carotid ultrasound videos over 3G wireless networks.

    PubMed

    Tsapatsoulis, Nicolas; Loizou, Christos; Pattichis, Constantinos

    2007-01-01

    Efficient medical video transmission over 3G wireless is of great importance for fast diagnosis and on site medical staff training purposes. In this paper we present a region of interest based ultrasound video compression study which shows that significant reduction of the required, for transmission, bit rate can be achieved without altering the design of existing video codecs. Simple preprocessing of the original videos to define visually and clinically important areas is the only requirement.

  12. Almost certain escape from black holes in final state projection models.

    PubMed

    Lloyd, Seth

    2006-02-17

    Recent models of the black-hole final state suggest that quantum information can escape from a black hole by a process akin to teleportation. These models rely on a controversial process called final-state projection. This Letter discusses the self-consistency of the final-state projection hypothesis and investigates escape from black holes for arbitrary final states and for generic interactions between matter and Hawking radiation. Quantum information escapes with fidelity approximately = (8/3pi)2: only half a bit of quantum information is lost on average, independent of the number of bits that escape from the hole.

  13. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  14. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  15. Link Performance Analysis and monitoring - A unified approach to divergent requirements

    NASA Astrophysics Data System (ADS)

    Thom, G. A.

    Link Performance Analysis and real-time monitoring are generally covered by a wide range of equipment. Bit Error Rate testers provide digital link performance measurements but are not useful during real-time data flows. Real-time performance monitors utilize the fixed overhead content but vary widely from format to format. Link quality information is also present from signal reconstruction equipment in the form of receiver AGC, bit synchronizer AGC, and bit synchronizer soft decision level outputs, but no general approach to utilizing this information exists. This paper presents an approach to link tests, real-time data quality monitoring, and results presentation that utilizes a set of general purpose modules in a flexible architectural environment. The system operates over a wide range of bit rates (up to 150 Mbs) and employs several measurement techniques, including P/N code errors or fixed PCM format errors, derived real-time BER from frame sync errors, and Data Quality Analysis derived by counting significant sync status changes. The architecture performs with a minimum of elements in place to permit a phased update of the user's unit in accordance with his needs.

  16. Dispersion and dispersion slope compensation impact on high channel bit rate optical signal transmission degradation

    NASA Astrophysics Data System (ADS)

    Hamidine, Mahamadou; Yuan, Xiuhua

    2011-11-01

    In this article a numerical simulation is carried out on a single channel optical transmission system with channel bit rate greater than 40 Gb/s to investigate optical signal degradation due to the impact of dispersion and dispersion slope of both transmitting and dispersion compensating fibers. By independently varying the input signal power and the dispersion slope of both transmitting and dispersion compensating fibers of an optical link utilizing a channel bit rate of 86 Gb/s, a good quality factor (Q factor) is obtained with a dispersion slope compensation ratio change of +/-10% for a faithful transmission. With this ratio change a minimum Q factor of 16 dB is obtained in the presence of amplifier noise figure of 5 dB and fiber nonlinearities effects at input signal power of 5 dBm and 3 spans of 100 km standard single mode fiber with a dispersion (D) value of 17 ps/nm.km.

  17. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  18. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  19. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  20. An adaptive P300-based online brain-computer interface.

    PubMed

    Lenhardt, Alexander; Kaper, Matthias; Ritter, Helge J

    2008-04-01

    The P300 component of an event related potential is widely used in conjunction with brain-computer interfaces (BCIs) to translate the subjects intent by mere thoughts into commands to control artificial devices. A well known application is the spelling of words while selection of the letters is carried out by focusing attention to the target letter. In this paper, we present a P300-based online BCI which reaches very competitive performance in terms of information transfer rates. In addition, we propose an online method that optimizes information transfer rates and/or accuracies. This is achieved by an algorithm which dynamically limits the number of subtrial presentations, according to the subject's current online performance in real-time. We present results of two studies based on 19 different healthy subjects in total who participated in our experiments (seven subjects in the first and 12 subjects in the second one). In the first, study peak information transfer rates up to 92 bits/min with an accuracy of 100% were achieved by one subject with a mean of 32 bits/min at about 80% accuracy. The second experiment employed a dynamic classifier which enables the user to optimize bitrates and/or accuracies by limiting the number of subtrial presentations according to the current online performance of the subject. At the fastest setting, mean information transfer rates could be improved to 50.61 bits/min (i.e., 13.13 symbols/min). The most accurate results with 87.5% accuracy showed a transfer rate of 29.35 bits/min.

  1. Word-Synchronous Optical Sampling of Periodically Repeated OTDM Data Words for True Waveform Visualization

    NASA Astrophysics Data System (ADS)

    Benkler, Erik; Telle, Harald R.

    2007-06-01

    An improved phase-locked loop (PLL) for versatile synchronization of a sampling pulse train to an optical data stream is presented. It enables optical sampling of the true waveform of repetitive high bit-rate optical time division multiplexed (OTDM) data words such as pseudorandom bit sequences. Visualization of the true waveform can reveal details, which cause systematic bit errors. Such errors cannot be inferred from eye diagrams and require word-synchronous sampling. The programmable direct-digital-synthesis circuit used in our novel PLL approach allows flexible adaption of virtually any problem-specific synchronization scenario, including those required for waveform sampling, for jitter measurements by slope detection, and for classical eye-diagrams. Phase comparison of the PLL is performed at 10-GHz OTDM base clock rate, leading to a residual synchronization jitter of less than 70 fs.

  2. Achieving unequal error protection with convolutional codes

    NASA Technical Reports Server (NTRS)

    Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.

    1994-01-01

    This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.

  3. Towards a ternary NIRS-BCI: single-trial classification of verbal fluency task, Stroop task and unconstrained rest

    NASA Astrophysics Data System (ADS)

    Schudlo, Larissa C.; Chau, Tom

    2015-12-01

    Objective. The majority of near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have investigated binary classification problems. Limited work has considered differentiation of more than two mental states, or multi-class differentiation of higher-level cognitive tasks using measurements outside of the anterior prefrontal cortex. Improvements in accuracies are needed to deliver effective communication with a multi-class NIRS system. We investigated the feasibility of a ternary NIRS-BCI that supports mental states corresponding to verbal fluency task (VFT) performance, Stroop task performance, and unconstrained rest using prefrontal and parietal measurements. Approach. Prefrontal and parietal NIRS signals were acquired from 11 able-bodied adults during rest and performance of the VFT or Stroop task. Classification was performed offline using bagging with a linear discriminant base classifier trained on a 10 dimensional feature set. Main results. VFT, Stroop task and rest were classified at an average accuracy of 71.7% ± 7.9%. The ternary classification system provided a statistically significant improvement in information transfer rate relative to a binary system controlled by either mental task (0.87 ± 0.35 bits/min versus 0.73 ± 0.24 bits/min). Significance. These results suggest that effective communication can be achieved with a ternary NIRS-BCI that supports VFT, Stroop task and rest via measurements from the frontal and parietal cortices. Further development of such a system is warranted. Accurate ternary classification can enhance communication rates offered by NIRS-BCIs, improving the practicality of this technology.

  4. Effect of using different cover image quality to obtain robust selective embedding in steganography

    NASA Astrophysics Data System (ADS)

    Abdullah, Karwan Asaad; Al-Jawad, Naseer; Abdulla, Alan Anwer

    2014-05-01

    One of the common types of steganography is to conceal an image as a secret message in another image which normally called a cover image; the resulting image is called a stego image. The aim of this paper is to investigate the effect of using different cover image quality, and also analyse the use of different bit-plane in term of robustness against well-known active attacks such as gamma, statistical filters, and linear spatial filters. The secret messages are embedded in higher bit-plane, i.e. in other than Least Significant Bit (LSB), in order to resist active attacks. The embedding process is performed in three major steps: First, the embedding algorithm is selectively identifying useful areas (blocks) for embedding based on its lighting condition. Second, is to nominate the most useful blocks for embedding based on their entropy and average. Third, is to select the right bit-plane for embedding. This kind of block selection made the embedding process scatters the secret message(s) randomly around the cover image. Different tests have been performed for selecting a proper block size and this is related to the nature of the used cover image. Our proposed method suggests a suitable embedding bit-plane as well as the right blocks for the embedding. Experimental results demonstrate that different image quality used for the cover images will have an effect when the stego image is attacked by different active attacks. Although the secret messages are embedded in higher bit-plane, but they cannot be recognised visually within the stegos image.

  5. A compact multi-bit flip-flop with smaller height implementation and metal-less intra-cell routing

    NASA Astrophysics Data System (ADS)

    Seo, Jaewoo; Jung, Jinwook; Shin, Youngsoo

    2018-03-01

    Multi-bit flip-ops (MBFFs) are widely used in modern circuit designs because of their lower power consumption and smaller footprint. However, conventional MBFFs have routability issues due to the dense intra-cell connections. Since many horizontal connections are populated in the typical MBFF layouts, metal-2 (M2) tracks are highly occupied inside the cell. Accordingly, routers cannot leverage the M2 tracks for inter-cell connections. The conventional MBFFs also show a limited impact on the cell area reduction. Since the cell area saving of an MBFF mainly comes from the clock driver sharing, the layouts of other ip-op modules remain almost the same. In this paper, we propose a compact MBFF with metal-less clock routing and smaller height implementation. To achieve a sparse population of M2 routing tracks, we vertically place MBFF modules and interconnect them using the poly layer. As a result, the wire length of M2 layer inside a cell is significantly reduced. We also propose the smaller cell height implementation for compact MBFF layouts. Assuming the default standard cell height of 9 tracks, we present a 6-track MBFF implementation and the glue logic which makes legal cell placement with the 9-track logic cells. Experiments with a few test circuits show that the number of routing grids having congestion overflow is reduced by 16% and 73%, on average, compared to the single-bit flip-op and conventional MBFF based designs, respectively. Total cell area is also reduced by 8% and 2%, on average, compared to the single-bit flip-op and conventional MBFF based designs, respectively.

  6. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  <1.97 dB and maximum isolation of  >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  <6 dB, return loss of  >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  7. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    PubMed

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  8. Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Balaji, K. A.; Prabu, K.

    2018-03-01

    There is an immense demand for high bandwidth and high data rate systems, which is fulfilled by wireless optical communication or free space optics (FSO). Hence FSO gained a pivotal role in research which has a added advantage of both cost-effective and licence free huge bandwidth. Unfortunately the optical signal in free space suffers from irradiance and phase fluctuations due to atmospheric turbulence and pointing errors which deteriorates the signal and degrades the performance of communication system over longer distance which is undesirable. In this paper, we have considered polarization shift keying (POLSK) system applied with wavelength and time diversity technique over Malaga(M)distribution to mitigate turbulence induced fading. We derived closed form mathematical expressions for estimating the systems outage probability and average bit error rate (BER). Ultimately from the results we can infer that wavelength and time diversity schemes enhances these systems performance.

  9. Strategies for the Evolution of Sex

    NASA Astrophysics Data System (ADS)

    Erzan, Ayse

    2002-03-01

    Using a bit-string model of evolution we find a successful route to diploidy and sex in simple organisms, for a step-like fitness function. Assuming that an excess of deleterious mutations triggers the conversion of haploids to diploidy and sex, we find that only one pair of sexual organisms can take over a finite population, if they engage in sexual reproduction under unfavorable conditions, and otherwise perform mitosis. Then, a haploid-diploid (HD) cycle is established, with an abbreviated haploid phase, as in present day sexual reproduction. If crossover is allowed during meiosis, HD cycles of arbitrary duration can be maintained. We find that the sexual population has a higher mortality rate than asexual diploids, but also a relaxation rate that is an order of magnitude higher. As a result, sexuals have a higher adaptability and lower mutational load on the average, since they can select out the undesirable genes much faster.

  10. Performance evaluation of the intra compression in the video coding standards

    NASA Astrophysics Data System (ADS)

    Abramowski, Andrzej

    2015-09-01

    The article presents a comparison of the Intra prediction algorithms in the current state-of-the-art video coding standards, including MJPEG 2000, VP8, VP9, H.264/AVC and H.265/HEVC. The effectiveness of techniques employed by each standard is evaluated in terms of compression efficiency and average encoding time. The compression efficiency is measured using BD-PSNR and BD-RATE metrics with H.265/HEVC results as an anchor. Tests are performed on a set of video sequences, composed of sequences gathered by Joint Collaborative Team on Video Coding during the development of the H.265/HEVC standard and 4K sequences provided by Ultra Video Group. According to results, H.265/HEVC provides significant bit-rate savings at the expense of computational complexity, while VP9 may be regarded as a compromise between the efficiency and required encoding time.

  11. Digital codec for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    The authors present the hardware implementation of a digital television bandwidth compression algorithm which processes standard NTSC (National Television Systems Committee) composite color television signals and produces broadcast-quality video in real time at an average of 1.8 b/pixel. The sampling rate used with this algorithm results in 768 samples over the active portion of each video line by 512 active video lines per video frame. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a nonadaptive predictor, nonuniform quantizer, and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The nonadaptive predictor and multilevel Huffman coder combine to set this technique apart from prior-art DPCM encoding algorithms. The authors describe the data compression algorithm and the hardware implementation of the codec and provide performance results.

  12. Inexpensive programmable clock for a 12-bit computer

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.

    1972-01-01

    An inexpensive programmable clock was built for a digital PDP-12 computer. The instruction list includes skip on flag; clear the flag, clear the clock, and stop the clock; and preset the counter with the contents of the accumulator and start the clock. The clock counts at a rate determined by an external oscillator and causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can occur after 1 to 4096 counts. The clock can be built for a total parts cost of less than $100 including power supply and I/O connector. Slight modification can be made to permit its use on larger machines (16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any computer.

  13. Servo-integrated patterned media by hybrid directed self-assembly.

    PubMed

    Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David

    2014-11-25

    A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.

  14. New PDC cutters improve drilling efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.

    1997-10-27

    New polycrystalline diamond compact (PDC) cutters increase penetration rates and cumulative footage through improved abrasion, impact, interface strength, thermal stability, and fatigue characteristics. Studies of formation characterization, vibration analysis, hydraulic layouts, and bit selection continue to improve and expand PDC bit applications. The paper discusses development philosophy, performance characteristics and requirements, Types A, B, and C cutters, and combinations.

  15. A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    PubMed Central

    Mercier, Patrick P.; Bandyopadhyay, Saurav; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.

    2015-01-01

    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 µm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply during energy harvesting operation. PMID:26246641

  16. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a mutual information of 0.2217 bits which is 75.8% of maximum achievable. The implication is that only by coding both MSB and LSB jointly can we hope to get close to this 75.8% limit. Hence, non-binary codes are essential to achieve acceptable performance.

  17. New coding advances for deep space communications

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H.

    1987-01-01

    Advances made in error-correction coding for deep space communications are described. The code believed to be the best is a (15, 1/6) convolutional code, with maximum likelihood decoding; when it is concatenated with a 10-bit Reed-Solomon code, it achieves a bit error rate of 10 to the -6th, at a bit SNR of 0.42 dB. This code outperforms the Voyager code by 2.11 dB. The use of source statics in decoding convolutionally encoded Voyager images from the Uranus encounter is investigated, and it is found that a 2 dB decoding gain can be achieved.

  18. Multi-rate, real time image compression for images dominated by point sources

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.; Harris, Richard W.

    1993-01-01

    An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.

  19. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  20. Analytical Evaluation of the Effect of Cross-Polarization-induced Crosstalk on the BER Performance of a PDM-QPSK Coherent Homodyne Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Taher, K. A.; Majumder, S. P.

    2017-05-01

    An analytical approach is developed to find the effect of cross-polarization (XPol)-induced crosstalk on the bit error rate (BER) performance of a polarization division multiplex (PDM) quadrature phase shift keying (QPSK) optical transmission system with polarization diversity receiver. Analytical expression for the XPol-induced crosstalk and signal to crosstalk plus noise ratio (SCNR) are developed at the output of polarization diversity PDM-QPSK coherent optical homodyne receiver conditioned on a given value of mean misalignment angle. Considering Maxwellian distribution for the pdf of the misalignment angle, the average SCNR and average BER are derived. Results show that there is significant deterioration in the BER performance and power penalty due to XPol-induced crosstalk. Penalties in signal power are found to be 8.85 dB, 11.28 dB and 12.59 dB correspondingly for LO laser power of -10 dBm, -5 dBm and 0 dBm at a data rate of 100 Gbps, mean misalignment angle of 7.5 degree and BER of 10-9 compared to the signal power without crosstalk.

  1. Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle

    PubMed Central

    2014-01-01

    Background The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. Results Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. Conclusion The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption. PMID:24847379

  2. Outer planet Pioneer imaging communications system study. [data compression

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.

  3. Bandwidth reduction for video-on-demand broadcasting using secondary content insertion

    NASA Astrophysics Data System (ADS)

    Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy

    2005-01-01

    An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.

  4. Effects of amplitude distortions and IF equalization on satellite communication system bit-error rate performance

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene; Svoboda, James S.; Lizanich, Paul J.

    1990-01-01

    Satellite communications links are subject to distortions which result in an amplitude versus frequency response which deviates from the ideal flat response. Such distortions result from propagation effects such as multipath fading and scintillation and from transponder and ground terminal hardware imperfections. Bit-error rate (BER) degradation resulting from several types of amplitude response distortions were measured. Additional tests measured the amount of BER improvement obtained by flattening the amplitude response of a distorted laboratory simulated satellite channel. The results of these experiments are presented.

  5. Current Status of the Beam Position Monitoring System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny

    2006-11-20

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less

  6. Current Status of the Beam Position Monitoring System at TLS

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  7. Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-06-01

    Temporal steering, which is a temporal analog of Einstein-Podolsky-Rosen steering, refers to temporal quantum correlations between the initial and final state of a quantum system. Our analysis of temporal steering inequalities in relation to the average quantum bit error rates reveals the interplay between temporal steering and quantum cloning, which guarantees the security of quantum key distribution based on mutually unbiased bases against individual attacks. The key distributions analyzed here include the Bennett-Brassard 1984 protocol and the six-state 1998 protocol by Bruss. Moreover, we define a temporal steerable weight, which enables us to identify a kind of monogamy of temporal correlation that is essential to quantum cryptography and useful for analyzing various scenarios of quantum causality.

  8. Cepstral domain modification of audio signals for data embedding: preliminary results

    NASA Astrophysics Data System (ADS)

    Gopalan, Kaliappan

    2004-06-01

    A method of embedding data in an audio signal using cepstral domain modification is described. Based on successful embedding in the spectral points of perceptually masked regions in each frame of speech, first the technique was extended to embedding in the log spectral domain. This extension resulted at approximately 62 bits /s of embedding with less than 2 percent of bit error rate (BER) for a clean cover speech (from the TIMIT database), and about 2.5 percent for a noisy speech (from an air traffic controller database), when all frames - including silence and transition between voiced and unvoiced segments - were used. Bit error rate increased significantly when the log spectrum in the vicinity of a formant was modified. In the next procedure, embedding by altering the mean cepstral values of two ranges of indices was studied. Tests on both a noisy utterance and a clean utterance indicated barely noticeable perceptual change in speech quality when lower range of cepstral indices - corresponding to vocal tract region - was modified in accordance with data. With an embedding capacity of approximately 62 bits/s - using one bit per each frame regardless of frame energy or type of speech - initial results showed a BER of less than 1.5 percent for a payload capacity of 208 embedded bits using the clean cover speech. BER of less than 1.3 percent resulted for the noisy host with a capacity was 316 bits. When the cepstrum was modified in the region of excitation, BER increased to over 10 percent. With quantization causing no significant problem, the technique warrants further studies with different cepstral ranges and sizes. Pitch-synchronous cepstrum modification, for example, may be more robust to attacks. In addition, cepstrum modification in regions of speech that are perceptually masked - analogous to embedding in frequency masked regions - may yield imperceptible stego audio with low BER.

  9. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    PubMed

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  10. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-02-01

    Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  11. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.

    PubMed

    Mainsah, B O; Collins, L M; Colwell, K A; Sellers, E W; Ryan, D B; Caves, K; Throckmorton, C S

    2015-02-01

    The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  12. Increasing BCI Communication Rates with Dynamic Stopping Towards More Practical Use: An ALS Study

    PubMed Central

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-01-01

    Objective The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute signal-to-noise ratio of a user’s electroencephalography data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main Results Results from online testing of the dynamic stopping algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/sec (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the dynamic stopping algorithms. Significance We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication. PMID:25588137

  13. Design of high-speed burst mode clock and data recovery IC for passive optical network

    NASA Astrophysics Data System (ADS)

    Yan, Minhui; Hong, Xiaobin; Huang, Wei-Ping; Hong, Jin

    2005-09-01

    Design of a high bit rate burst mode clock and data recovery (BMCDR) circuit for gigabit passive optical networks (GPON) is described. A top-down design flow is established and some of the key issues related to the behavioural level modeling are addressed in consideration for the complexity of the BMCDR integrated circuit (IC). Precise implementation of Simulink behavioural model accounting for the saturation of frequency control voltage is therefore developed for the BMCDR, and the parameters of the circuit blocks can be readily adjusted and optimized based on the behavioural model. The newly designed BMCDR utilizes the 0.18um standard CMOS technology and is shown to be capable of operating at bit rate of 2.5Gbps, as well as the recovery time of one bit period in our simulation. The developed behaviour model is verified by comparing with the detailed circuit simulation.

  14. Adaptive distributed source coding.

    PubMed

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  15. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  16. Experimental study of entanglement evolution in the presence of bit-flip and phase-shift noises

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Cao, Lian-Zhen; Zhao, Jia-Qiang; Yang, Yang; Lu, Huai-Xin

    2017-10-01

    Because of its important role both in fundamental theory and applications in quantum information, evolution of entanglement in a quantum system under decoherence has attracted wide attention in recent years. In this paper, we experimentally generate a high-fidelity maximum entangled two-qubit state and present an experimental study of the decoherence properties of entangled pair of qubits at collective (non-collective) bit-flip and phase-shift noises. The results shown that entanglement decreasing depends on the type of the noises (collective or non-collective and bit-flip or phase-shift) and the number of qubits which are subject to the noise. When two qubits are depolarized passing through non-collective noisy channel, the decay rate is larger than that depicted for the collective noise. When two qubits passing through depolarized noisy channel, the decay rate is larger than that depicted for one qubit.

  17. FBCOT: a fast block coding option for JPEG 2000

    NASA Astrophysics Data System (ADS)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).

  18. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamrick, Todd

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less

  19. A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool.

    PubMed

    Li, Xuan; Harkness, Patrick; Worrall, Kevin; Timoney, Ryan; Lucas, Margaret

    2017-03-01

    Traditional rotary drilling for planetary rock sampling, in situ analysis, and sample return are challenging because the axial force and holding torque requirements are not necessarily compatible with lightweight spacecraft architectures in low-gravity environments. This paper seeks to optimize an ultrasonic percussive drill tool to achieve rock penetration with lower reacted force requirements, with a strategic view toward building an ultrasonic planetary core drill (UPCD) device. The UPCD is a descendant of the ultrasonic/sonic driller/corer technique. In these concepts, a transducer and horn (typically resonant at around 20 kHz) are used to excite a toroidal free mass that oscillates chaotically between the horn tip and drill base at lower frequencies (generally between 10 Hz and 1 kHz). This creates a series of stress pulses that is transferred through the drill bit to the rock surface, and while the stress at the drill-bit tip/rock interface exceeds the compressive strength of the rock, it causes fractures that result in fragmentation of the rock. This facilitates augering and downward progress. In order to ensure that the drill-bit tip delivers the greatest effective impulse (the time integral of the drill-bit tip/rock pressure curve exceeding the strength of the rock), parameters such as the spring rates and the mass of the free mass, the drill bit and transducer have been varied and compared in both computer simulation and practical experiment. The most interesting findings and those of particular relevance to deep drilling indicate that increasing the mass of the drill bit has a limited (or even positive) influence on the rate of effective impulse delivered.

  20. 45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.

    PubMed

    Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile

    2012-07-30

    In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.

  1. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.

    PubMed

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min -1 across 10 subjects. The maximum individual ITR is 107.55 bits min -1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min -1 are achieved with CCA and NCCA respectively. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  2. Optimization of Wireless Transceivers under Processing Energy Constraints

    NASA Astrophysics Data System (ADS)

    Wang, Gaojian; Ascheid, Gerd; Wang, Yanlu; Hanay, Oner; Negra, Renato; Herrmann, Matthias; Wehn, Norbert

    2017-09-01

    Focus of the article is on achieving maximum data rates under a processing energy constraint. For a given amount of processing energy per information bit, the overall power consumption increases with the data rate. When targeting data rates beyond 100 Gb/s, the system's overall power consumption soon exceeds the power which can be dissipated without forced cooling. To achieve a maximum data rate under this power constraint, the processing energy per information bit must be minimized. Therefore, in this article, suitable processing efficient transmission schemes together with energy efficient architectures and their implementations are investigated in a true cross-layer approach. Target use cases are short range wireless transmitters working at carrier frequencies around 60 GHz and bandwidths between 1 GHz and 10 GHz.

  3. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 1: Development of a high capacity memory element

    NASA Technical Reports Server (NTRS)

    Besser, P. J.

    1977-01-01

    Several versions of the 100K bit chip, which is configured as a single serial loop, were designed, fabricated and evaluated. Design and process modifications were introduced into each succeeding version to increase device performance and yield. At an intrinsic field rate of 150 KHz the final design operates from -10 C to +60 C with typical bias margins of 12 and 8 percent, respectively, for continuous operation. Asynchronous operation with first bit detection on start-up produces essentially the same margins over the temperature range. Cost projections made from fabrication yield runs on the 100K bit devices indicate that the memory element cost will be less than 10 millicents/bit in volume production.

  4. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  5. High density bit transition requirements versus the effects on BCH error correcting code. [bit synchronization

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.

  6. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-03-01

    The limits of areal storage density that is achievable with heat-assisted magnetic recording are unknown. We addressed this central question and investigated the areal density of bit-patterned media. We analyzed the detailed switching behavior of a recording bit under various external conditions, allowing us to compute the bit error rate of a write process (shingled and conventional) for various grain spacings, write head positions, and write temperatures. Hence, we were able to optimize the areal density yielding values beyond 10 Tb/in2. Our model is based on the Landau-Lifshitz-Bloch equation and uses hard magnetic recording grains with a 5-nm diameter and 10-nm height. It assumes a realistic distribution of the Curie temperature of the underlying material, grain size, as well as grain and head position.

  7. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    NASA Astrophysics Data System (ADS)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  8. Cross-reactivity between methylisothiazolinone, octylisothiazolinone and benzisothiazolinone using a modified local lymph node assay.

    PubMed

    Schwensen, J F; Menné Bonefeld, C; Zachariae, C; Agerbeck, C; Petersen, T H; Geisler, C; Bollmann, U E; Bester, K; Johansen, J D

    2017-01-01

    In the light of the exceptionally high rates of contact allergy to the preservative methylisothiazolinone (MI), information about cross-reactivity between MI, octylisothiazolinone (OIT) and benzisothiazolinone (BIT) is needed. To study cross-reactivity between MI and OIT, and between MI and BIT. Immune responses to MI, OIT and BIT were studied in vehicle and MI-sensitized female CBA mice by a modified local lymph node assay. The inflammatory response was measured by ear thickness, cell proliferation of CD4 + and CD8 + T cells, and CD19 + B cells in the auricular draining lymph nodes. MI induced significant, strong, concentration-dependent immune responses in the draining lymph nodes following a sensitization phase of three consecutive days. Groups of MI-sensitized mice were challenged on day 23 with 0·4% MI, 0·7% OIT and 1·9% BIT - concentrations corresponding to their individual EC3 values. No statistically significant difference in proliferation of CD4 + and CD8 + T cells was observed between mice challenged with MI compared with mice challenged with BIT and OIT. The data indicate cross-reactivity between MI, OIT and BIT, when the potency of the chemical was taken into account in choice of challenge concentration. This means that MI-sensitized individuals may react to OIT and BIT if exposed to sufficient concentrations. © 2016 British Association of Dermatologists.

  9. Improved P300 speller performance using electrocorticography, spectral features, and natural language processing.

    PubMed

    Speier, William; Fried, Itzhak; Pouratian, Nader

    2013-07-01

    The P300 speller is a system designed to restore communication to patients with advanced neuromuscular disorders. This study was designed to explore the potential improvement from using electrocorticography (ECoG) compared to the more traditional usage of electroencephalography (EEG). We tested the P300 speller on two epilepsy patients with temporary subdural electrode arrays over the occipital and temporal lobes respectively. We then performed offline analysis to determine the accuracy and bit rate of the system and integrated spectral features into the classifier and used a natural language processing (NLP) algorithm to further improve the results. The subject with the occipital grid achieved an accuracy of 82.77% and a bit rate of 41.02, which improved to 96.31% and 49.47 respectively using a language model and spectral features. The temporal grid patient achieved an accuracy of 59.03% and a bit rate of 18.26 with an improvement to 75.81% and 27.05 respectively using a language model and spectral features. Spatial analysis of the individual electrodes showed best performance using signals generated and recorded near the occipital pole. Using ECoG and integrating language information and spectral features can improve the bit rate of a P300 speller system. This improvement is sensitive to the electrode placement and likely depends on visually evoked potentials. This study shows that there can be an improvement in BCI performance when using ECoG, but that it is sensitive to the electrode location. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.

    PubMed

    Riechmann, Hannes; Finke, Andrea; Ritter, Helge

    2016-06-01

    Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use.

  11. Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay

    1999-11-01

    The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.

  12. Preliminary design for a standard 10 sup 7 bit Solid State Memory (SSM)

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Howle, W. M., Jr.; Stermer, R. L., Jr.

    1978-01-01

    A modular concept with three separate modules roughly separating bubble domain technology, control logic technology, and power supply technology was employed. These modules were respectively the standard memory module (SMM), the data control unit (DCU), and power supply module (PSM). The storage medium was provided by bubble domain chips organized into memory cells. These cells and the circuitry for parallel data access to the cells make up the SMM. The DCU provides a flexible serial data interface to the SMM. The PSM provides adequate power to enable one DCU and one SMM to operate simultaneously at the maximum data rate. The SSM was designed to handle asynchronous data rates from dc to 1.024 Mbs with a bit error rate less than 1 error in 10 to the eight power bits. Two versions of the SSM, a serial data memory and a dual parallel data memory were specified using the standard modules. The SSM specification includes requirements for radiation hardness, temperature and mechanical environments, dc magnetic field emission and susceptibility, electromagnetic compatibility, and reliability.

  13. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps

    PubMed Central

    Wu, Tsai-Chen; Chi, Yu-Chieh; Wang, Huai-Yung; Tsai, Cheng-Ting; Lin, Gong-Ru

    2017-01-01

    To enable high-speed underwater wireless optical communication (UWOC) in tap-water and seawater environments over long distances, a 450-nm blue GaN laser diode (LD) directly modulated by pre-leveled 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data was employed to implement its maximal transmission capacity of up to 10 Gbps. The proposed UWOC in tap water provided a maximal allowable communication bit rate increase from 5.2 to 12.4 Gbps with the corresponding underwater transmission distance significantly reduced from 10.2 to 1.7 m, exhibiting a bit rate/distance decaying slope of −0.847 Gbps/m. When conducting the same type of UWOC in seawater, light scattering induced by impurities attenuated the blue laser power, thereby degrading the transmission with a slightly higher decay ratio of 0.941 Gbps/m. The blue LD based UWOC enables a 16-QAM OFDM bit rate of up to 7.2 Gbps for transmission in seawater more than 6.8 m. PMID:28094309

  14. Development of the Low-cost Analog-to-Digital Converter (for nuclear physics experiments) with PC sound card

    NASA Astrophysics Data System (ADS)

    Sugihara, Kenkoh

    2009-10-01

    A low-cost ADC (Analogue-to-Digital Converter) with shaping embedded for undergraduate physics laboratory is developed using a home made circuit and a PC sound card. Even though an ADC is needed as an essential part of an experimental set up, commercially available ones are very expensive and are scarce for undergraduate laboratory experiments. The system that is developed from the present work is designed for a gamma-ray spectroscopy laboratory with NaI(Tl) counters, but not limited. For this purpose, the system performance is set to sampling rate of 1-kHz with 10-bit resolution using a typical PC sound card with 41-kHz or higher sampling rate and 16-bit resolution ADC with an addition of a shaping circuit. Details of the system and the status of development will be presented. Ping circuit and PC soundcard as typical PC sound card has 41.1kHz or heiger sampling rate and 16bit resolution ADCs. In the conference details of the system and the status of development will be presented.

  15. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  16. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  17. The Performance of Noncoherent Orthogonal M-FSK in the Presence of Timing and Frequency Errors

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Simon, Marvin K.; Raphaeli, Dan

    1993-01-01

    Practical M-FSK systems experience a combination of time and frequency offsets (errors). This paper assesses the deleterious effect of these offsets, first individually and then combined, on the average bit error probability performance of the system.

  18. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGES

    Squires, Lile; Lim, Yong Chae; Miles, Michael; ...

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  19. Characterization of impulse noise and analysis of its effect upon correlation receivers

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Moore, J. D.

    1971-01-01

    A noise model is formulated to describe the impulse noise in many digital systems. A simplified model, which assumes that each noise burst contains a randomly weighted version of the same basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. A procedure is established for extending the results for the simplified noise model to the general model. Unlike the performance results for Gaussian noise, it is shown that for impulse noise the error performance is affected by the choice of signal-set basis functions and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy.

  20. Development of elastomeric isolators to reduce roof bolting machine drilling noise

    PubMed Central

    Michael, Robert; Yantek, David; Johnson, David; Ferro, Ernie; Swope, Chad

    2015-01-01

    Among underground coal miners, hearing loss remains one of the most common occupational illnesses. In response to this problem, the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducts research to reduce the noise emission of underground coal-mining equipment, an example of which is a roof bolting machine. Field studies show that, on average, drilling noise is the most significant contributor to a roof bolting machine operator’s noise exposure. NIOSH OMSHR has determined that the drill steel and chuck are the dominant sources of drilling noise. NIOSH OMSHR, Corry Rubber Corporation, and Kennametal, Inc. have developed a bit isolator that breaks the steel-to-steel link between the drill bit and drill steel and a chuck isolator that breaks the mechanical connection between the drill steel and the chuck, thus reducing the noise radiated by the drill steel and chuck, and the noise exposure of the roof bolter operator. This paper documents the evolution of the bit isolator and chuck isolator including various alternative designs which may enhance performance. Laboratory testing confirms that production bit and chuck isolators reduce the A-weighted sound level generated during drilling by 3.7 to 6.6 dB. Finally, this paper summarizes results of a finite element analysis used to explore the key parameters of the drill bit isolator and chuck isolator to understand the impact these parameters have on noise. PMID:26568650

  1. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.

    PubMed

    Chang, Hsiang-Chih; Lee, Po-Lei; Lo, Men-Tzung; Lee, I-Hui; Yeh, Ting-Kuang; Chang, Chun-Yen

    2012-05-01

    This study proposes a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) independent of amplitude-frequency and phase calibrations. Six stepping delay flickering sequences (SDFSs) at 32-Hz flickering frequency were used to implement a six-command BCI system. EEG signals recorded from Oz position were first filtered within 29-35 Hz, segmented based on trigger events of SDFSs to obtain SDFS epochs, and then stored separately in epoch registers. An epoch-average process suppressed the inter-SDFS interference. For each detection point, the latest six SDFS epochs in each epoch register were averaged and the normalized power of averaged responses was calculated. The visual target that induced the maximum normalized power was identified as the visual target. Eight subjects were recruited in this study. All subjects were requested to produce the "563241" command sequence four times. The averaged accuracy, command transfer interval, and information transfer rate (mean ± std.) values for all eight subjects were 97.38 ± 5.97%, 3.56 ± 0.68 s, and 42.46 ± 11.17 bits/min, respectively. The proposed system requires no calibration in either the amplitude-frequency characteristic or the reference phase of SSVEP which may provide an efficient and reliable channel for the neuromuscular disabled to communicate with external environments.

  2. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution.

    PubMed

    Liu, Mao Tong; Lim, Han Chuen

    2014-09-22

    When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmit the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

  3. Spin-Valve and Spin-Tunneling Devices: Read Heads, MRAMs, Field Sensors

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.

    Hard disk magnetic data storage is increasing at a steady state in terms of units sold, with 144 million drives sold in 1998 (107 million for desktops, 18 million for portables, and 19 million for enterprise drives), corresponding to a total business of 34 billion US [1]. The growing need for storage coming from new PC operating systems, INTERNET applications, and a foreseen explosion of applications connected to consumer electronics (digital TV, video, digital cameras, GPS systems, etc.), keep the magnetics community actively looking for new solutions, concerning media, heads, tribology, and system electronics. Current state of the art disk drives (January 2000), using dual inductive-write, magnetoresistive-read (MR) integrated heads reach areal densities of 15 to 23 bit/μm2, capable of putting a full 20 GB in one platter (a 2 hour film occupies 10 GB). Densities beyond 80 bit/μm2 have already been demonstrated in the laboratory (Fujitsu 87 bit/μm2-Intermag 2000, Hitachi 81 bit/μm2, Read-Rite 78 bit/μ m2, Seagate 70 bit/μ m2 - all the last three demos done in the first 6 months of 2000, with IBM having demonstrated 56 bit/μ m2 already at the end of 1999). At densities near 60 bit/μm2, the linear bit size is sim 43 nm, and the width of the written tracks is sim 0.23 μm. Areal density in commercial drives is increasing steadily at a rate of nearly 100% per year [1], and consumer products above 60 bit/μm2 are expected by 2002. These remarkable achievements are only possible by a stream of technological innovations, in media [2], write heads [3], read heads [4], and system electronics [5]. In this chapter, recent advances on spin valve materials and spin valve sensor architectures, low resistance tunnel junctions and tunnel junction head architectures will be addressed.

  4. Counter-Rotating Tandem Motor Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less

  5. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    NASA Astrophysics Data System (ADS)

    Riera-Palou, Felip; den Brinker, Albertus C.

    2007-12-01

    This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).

  6. Real-time fast physical random number generator with a photonic integrated circuit.

    PubMed

    Ugajin, Kazusa; Terashima, Yuta; Iwakawa, Kento; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki; Inubushi, Masanobu

    2017-03-20

    Random number generators are essential for applications in information security and numerical simulations. Most optical-chaos-based random number generators produce random bit sequences by offline post-processing with large optical components. We demonstrate a real-time hardware implementation of a fast physical random number generator with a photonic integrated circuit and a field programmable gate array (FPGA) electronic board. We generate 1-Tbit random bit sequences and evaluate their statistical randomness using NIST Special Publication 800-22 and TestU01. All of the BigCrush tests in TestU01 are passed using 410-Gbit random bit sequences. A maximum real-time generation rate of 21.1 Gb/s is achieved for random bit sequences in binary format stored in a computer, which can be directly used for applications involving secret keys in cryptography and random seeds in large-scale numerical simulations.

  7. LDPC product coding scheme with extrinsic information for bit patterned media recoding

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkwon; Lee, Jaejin

    2017-05-01

    Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.

  8. A high-speed digital signal processor for atmospheric radar, part 7.3A

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  9. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  10. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  11. Fault-tolerant simple quantum-bit commitment unbreakable by individual attacks

    NASA Astrophysics Data System (ADS)

    Shimizu, Kaoru; Imoto, Nobuyuki

    2002-03-01

    This paper proposes a simple scheme for quantum-bit commitment that is secure against individual particle attacks, where a sender is unable to use quantum logical operations to manipulate multiparticle entanglement for performing quantum collective and coherent attacks. Our scheme employs a cryptographic quantum communication channel defined in a four-dimensional Hilbert space and can be implemented by using single-photon interference. For an ideal case of zero-loss and noiseless quantum channels, our basic scheme relies only on the physical features of quantum states. Moreover, as long as the bit-flip error rates are sufficiently small (less than a few percent), we can improve our scheme and make it fault tolerant by adopting simple error-correcting codes with a short length. Compared with the well-known Brassard-Crepeau-Jozsa-Langlois 1993 (BCJL93) protocol, our scheme is mathematically far simpler, more efficient in terms of transmitted photon number, and better tolerant of bit-flip errors.

  12. Will available bit rate (ABR) services give us the capability to offer virtual LANs over wide-area ATM networks?

    NASA Astrophysics Data System (ADS)

    Ferrandiz, Ana; Scallan, Gavin

    1995-10-01

    The available bit rate (ABR) service allows connections to exceed their negotiated data rates during the life of the connections when excess capacity is available in the network. These connections are subject to flow control from the network in the event of network congestion. The ability to dynamically adjust the data rate of the connection can provide improved utilization of the network and be a valuable service to end users. ABR type service is therefore appropriate for the transmission of bursty LAN traffic over a wide area network in a manner that is more efficient and cost effective than allocating bandwdith at the peak cell rate. This paper describes the ABR service and discusses if it is realistic to operate a LAN like service over a wide area using ABR.

  13. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  14. SEMICONDUCTOR INTEGRATED CIRCUITS A 10-bit 200-kS/s SAR ADC IP core for a touch screen SoC

    NASA Astrophysics Data System (ADS)

    Xingyuan, Tong; Yintang, Yang; Zhangming, Zhu; Wenfang, Sheng

    2010-10-01

    Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conversion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topology and resistor string low gradient mismatch placement method, an 8-channel 10-bit 200-kS/s SAR ADC (successive-approximation-register analog-to-digital converter) IP core for a touch screen SoC (system-on-chip) is implemented in a 0.18 μm 1P5M CMOS logic process. Design considerations for the touch screen SAR ADC are included. With a 1.8 V power supply, the DNL (differential non-linearity) and INL (integral non-linearity) of this converter are measured to be about 0.32 LSB and 0.81 LSB respectively. With an input frequency of 91 kHz at 200-kS/s sampling rate, the spurious-free dynamic range and effective-number-of-bits are measured to be 63.2 dB and 9.15 bits respectively, and the power is about 136 μW. This converter occupies an area of about 0.08 mm2. The design results show that it is very suitable for touch screen SoC applications.

  15. Quantization and training of object detection networks with low-precision weights and activations

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Liu, Jian; Zhou, Li; Wang, Yun; Chen, Jie

    2018-01-01

    As convolutional neural networks have demonstrated state-of-the-art performance in object recognition and detection, there is a growing need for deploying these systems on resource-constrained mobile platforms. However, the computational burden and energy consumption of inference for these networks are significantly higher than what most low-power devices can afford. To address these limitations, this paper proposes a method to train object detection networks with low-precision weights and activations. The probability density functions of weights and activations of each layer are first directly estimated using piecewise Gaussian models. Then, the optimal quantization intervals and step sizes for each convolution layer are adaptively determined according to the distribution of weights and activations. As the most computationally expensive convolutions can be replaced by effective fixed point operations, the proposed method can drastically reduce computation complexity and memory footprint. Performing on the tiny you only look once (YOLO) and YOLO architectures, the proposed method achieves comparable accuracy to their 32-bit counterparts. As an illustration, the proposed 4-bit and 8-bit quantized versions of the YOLO model achieve a mean average precision of 62.6% and 63.9%, respectively, on the Pascal visual object classes 2012 test dataset. The mAP of the 32-bit full-precision baseline model is 64.0%.

  16. Constrained motion estimation-based error resilient coding for HEVC

    NASA Astrophysics Data System (ADS)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  17. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The 2.5 bit/detected photon demonstration program: Phase 2 and 3 experimental results

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1982-01-01

    The experimental program for laboratory demonstration of and energy efficient optical communication channel operating at a rate of 2.5 bits/detected photon is described. Results of the uncoded PPM channel performance are presented. It is indicated that the throughput efficiency can be achieved not only with a Reed-Solomon code as originally predicted, but with a less complex code as well.

  19. Classical and quantum communication without a shared reference frame.

    PubMed

    Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W

    2003-07-11

    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.

  20. A robust H.264/AVC video watermarking scheme with drift compensation.

    PubMed

    Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.

  1. A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation

    PubMed Central

    Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376

  2. Alsep data processing: How we processed Apollo Lunar Seismic Data

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1979-01-01

    The Apollo lunar seismic station network gathered data continuously at a rate of 3 x 10 to the 8th power bits per day for nearly eight years until the termination in September, 1977. The data were processed and analyzed using a PDP-15 minicomputer. On the average, 1500 long-period seismic events were detected yearly. Automatic event detection and identification schemes proved unsuccessful because of occasional high noise levels and, above all, the risk of overlooking unusual natural events. The processing procedures finally settled on consist of first plotting all the data on a compressed time scale, visually picking events from the plots, transferring event data to separate sets of tapes and performing detailed analyses using the latter. Many problems remain especially for automatically processing extraterrestrial seismic signals.

  3. PAPR reduction in CO-OFDM systems using IPTS and modified clipping and filtering

    NASA Astrophysics Data System (ADS)

    Tong, Zheng-rong; Hu, Ya-nong; Zhang, Wei-hua

    2018-05-01

    Aiming at the problem of the peak to average power ratio ( PAPR) in coherent optical orthogonal frequency division multiplexing (CO-OFDM), a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative partial transmit sequence (IPTS) scheme with modified clipping and filtering (MCF) is proposed. The simulation results show that at the complementary cumulative distribution function ( CCDF) of 10-4, the PAPR of proposed scheme is optimized by 1.86 dB and 2.13 dB compared with those of IPTS and CF schemes, respectively. Meanwhile, when the bit error rate ( BER) is 10-3, the optical signal to noise ratio ( OSNR) are optimized by 1.57 dB and 0.66 dB compared with those of CF and IPTS-CF schemes, respectively.

  4. Bit error rate performance of Image Processing Facility high density tape recorders

    NASA Technical Reports Server (NTRS)

    Heffner, P.

    1981-01-01

    The Image Processing Facility at the NASA/Goddard Space Flight Center uses High Density Tape Recorders (HDTR's) to transfer high volume image data and ancillary information from one system to another. For ancillary information, it is required that very low bit error rates (BER's) accompany the transfers. The facility processes about 10 to the 11th bits of image data per day from many sensors, involving 15 independent processing systems requiring the use of HDTR's. When acquired, the 16 HDTR's offered state-of-the-art performance of 1 x 10 to the -6th BER as specified. The BER requirement was later upgraded in two steps: (1) incorporating data randomizing circuitry to yield a BER of 2 x 10 to the -7th and (2) further modifying to include a bit error correction capability to attain a BER of 2 x 10 to the -9th. The total improvement factor was 500 to 1. Attention is given here to the background, technical approach, and final results of these modifications. Also discussed are the format of the data recorded by the HDTR, the magnetic tape format, the magnetic tape dropout characteristics as experienced in the Image Processing Facility, the head life history, and the reliability of the HDTR's.

  5. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  6. Tracking and data system support for the Mariner Mars 1971 mission. Prelaunch phase through first trajectory correction maneuver, volume 1

    NASA Technical Reports Server (NTRS)

    Laeser, R. P.; Textor, G. P.; Kelly, L. B.; Kelly, M.

    1972-01-01

    The DSN command system provided the capability to enter commands in a computer at the deep space stations for transmission to the spacecraft. The high-rate telemetry system operated at 16,200 bits/sec. This system will permit return to DSS 14 of full-resolution television pictures from the spacecraft tape recorder, plus the other science experiment data, during the two playback periods of each Goldstone pass planned for each corresponding orbit. Other features included 4800 bits/sec modem high-speed data lines from all deep space stations to Space Flight Operations Facility (SFOF) and the Goddard Space Flight Center, as well as 50,000 bits/sec wideband data lines from DSS 14 to the SFOF, thus providing the capability for data flow of two 16,200 bits/sec high-rate telemetry data streams in real time. The TDS performed prelaunch training and testing and provided support for the Mariner Mars 1971/Mission Operations System training and testing. The facilities of the ETR, DSS 71, and stations of the MSFN provided flight support coverage at launch and during the near-earth phase. The DSSs 12, 14, 41, and 51 of the DSN provided the deep space phase support from 30 May 1971 through 4 June 1971.

  7. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  8. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system.

    PubMed

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju

    2017-08-21

    Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

  9. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2002-12-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.

  10. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber.

    PubMed

    Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2012-03-15

    We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.

  11. High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor

    NASA Astrophysics Data System (ADS)

    Lazarev, Grigory; Bonifer, Stefanie; Engel, Philip; Höhne, Daniel; Notni, Gunther

    2017-06-01

    We report about the implementation of the liquid crystal on silicon (LCOS) microdisplay with 1920 by 1080 resolution and 720 Hz frame rate. The driving solution is FPGA-based. The input signal is converted from the ultrahigh-resolution HDMI 2.0 signal into HD frames, which follow with the specified 720 Hz frame rate. Alternatively the signal is generated directly on the FPGA with built-in pattern generator. The display is showing switching times below 1.5 ms for the selected working temperature. The bit depth of the addressed image achieves 8 bit within each frame. The microdisplay is used in the fringe projection-based 3D sensing system, implemented by Fraunhofer IOF.

  12. Image coding using entropy-constrained residual vector quantization

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.

  13. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  14. Ultralow-Power Digital Correlator for Microwave Polarimetry

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hass, K. Joseph

    2004-01-01

    A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.

  15. Protocol Processing for 100 Gbit/s and Beyond - A Soft Real-Time Approach in Hardware and Software

    NASA Astrophysics Data System (ADS)

    Büchner, Steffen; Lopacinski, Lukasz; Kraemer, Rolf; Nolte, Jörg

    2017-09-01

    100 Gbit/s wireless communication protocol processing stresses all parts of a communication system until the outermost. The efficient use of upcoming 100 Gbit/s and beyond transmission technology requires the rethinking of the way protocols are processed by the communication endpoints. This paper summarizes the achievements of the project End2End100. We will present a comprehensive soft real-time stream processing approach that allows the protocol designer to develop, analyze, and plan scalable protocols for ultra high data rates of 100 Gbit/s and beyond. Furthermore, we will present an ultra-low power, adaptable, and massively parallelized FEC (Forward Error Correction) scheme that detects and corrects bit errors at line rate with an energy consumption between 1 pJ/bit and 13 pJ/bit. The evaluation results discussed in this publication show that our comprehensive approach allows end-to-end communication with a very low protocol processing overhead.

  16. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  17. Selectively Encrypted Pull-Up Based Watermarking of Biometric data

    NASA Astrophysics Data System (ADS)

    Shinde, S. A.; Patel, Kushal S.

    2012-10-01

    Biometric authentication systems are becoming increasingly popular due to their potential usage in information security. However, digital biometric data (e.g. thumb impression) are themselves vulnerable to security attacks. There are various methods are available to secure biometric data. In biometric watermarking the data are embedded in an image container and are only retrieved if the secrete key is available. This container image is encrypted to have more security against the attack. As wireless devices are equipped with battery as their power supply, they have limited computational capabilities; therefore to reduce energy consumption we use the method of selective encryption of container image. The bit pull-up-based biometric watermarking scheme is based on amplitude modulation and bit priority which reduces the retrieval error rate to great extent. By using selective Encryption mechanism we expect more efficiency in time at the time of encryption as well as decryption. Significant reduction in error rate is expected to be achieved by the bit pull-up method.

  18. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  19. A microprocessor based high speed packet switch for satellite communications

    NASA Technical Reports Server (NTRS)

    Arozullah, M.; Crist, S. C.

    1980-01-01

    The architectures of a single processor, a three processor, and a multiple processor system are described. The hardware circuits, and software routines required for implementing the three and multiple processor designs are presented. A bit-slice microprocessor was designed and microprogrammed. Maximum throughput was calculated for all three designs. Queue theoretic models for these three designs were developed and utilized to obtain analytical expressions for the average waiting times, overall average response times and average queue sizes. From these expressions, graphs were obtained showing the effect on the system performance of a number of design parameters.

  20. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  1. List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.

    2013-08-01

    Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.

  2. List-mode Reconstruction for the Biograph mCT with Physics Modeling and Event-by-Event Motion Correction

    PubMed Central

    Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.

    2013-01-01

    Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32-bit packets, where averaging of lines of response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic assignment of LOR positions (pLOR) that addresses axial and transaxial LOR grouping in 32-bit data. Second, two simplified approaches for 3D TOF scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + time-of-flight (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32-bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction. PMID:23892635

  3. Performance analysis of decode-and-forward dual-hop optical spatial modulation with diversity combiner over atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-11-01

    Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.

  4. Applying EVM to Satellite on Ground and In-Orbit Testing - Better Data in Less Time

    NASA Technical Reports Server (NTRS)

    Peters, Robert; Lebbink, Elizabeth-Klein; Lee, Victor; Model, Josh; Wezalis, Robert; Taylor, John

    2008-01-01

    Using Error Vector Magnitude (EVM) in satellite integration and test allows rapid verification of the Bit Error Rate (BER) performance of a satellite link and is particularly well suited to measurement of low bit rate satellite links where it can result in a major reduction in test time (about 3 weeks per satellite for the Geosynchronous Operational Environmental Satellite [GOES] satellites during ground test) and can provide diagnostic information. Empirical techniques developed to predict BER performance from EVM measurements and lessons learned about applying these techniques during GOES N, O, and P integration test and post launch testing, are discussed.

  5. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  6. Optical modulator system

    NASA Technical Reports Server (NTRS)

    Brand, J.

    1972-01-01

    The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.

  7. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    NASA Astrophysics Data System (ADS)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  8. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    PubMed

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  9. Optimized bit extraction using distortion modeling in the scalable extension of H.264/AVC.

    PubMed

    Maani, Ehsan; Katsaggelos, Aggelos K

    2009-09-01

    The newly adopted scalable extension of H.264/AVC video coding standard (SVC) demonstrates significant improvements in coding efficiency in addition to an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. Due to the complicated hierarchical prediction structure of the SVC and the concept of key pictures, content-aware rate adaptation of SVC bit streams to intermediate bit rates is a nontrivial task. The concept of quality layers has been introduced in the design of the SVC to allow for fast content-aware prioritized rate adaptation. However, existing quality layer assignment methods are suboptimal and do not consider all network abstraction layer (NAL) units from different layers for the optimization. In this paper, we first propose a technique to accurately and efficiently estimate the quality degradation resulting from discarding an arbitrary number of NAL units from multiple layers of a bitstream by properly taking drift into account. Then, we utilize this distortion estimation technique to assign quality layers to NAL units for a more efficient extraction. Experimental results show that a significant gain can be achieved by the proposed scheme.

  10. Performance Analysis of OCDMA Based on AND Detection in FTTH Access Network Using PIN & APD Photodiodes

    NASA Astrophysics Data System (ADS)

    Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.

    2011-06-01

    In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.

  11. Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rupali

    2018-03-01

    Reversible data hiding means embedding a secret message in a cover image in such a manner, to the point that in the midst of extraction of the secret message, the cover image and, furthermore, the secret message are recovered with no error. The goal of by far most of the reversible data hiding algorithms is to have improved the embedding rate and enhanced visual quality of stego image. An improved encrypted-domain-based reversible data hiding algorithm to embed two binary bits in each gray pixel of original cover image with minimum distortion of stego-pixels is employed in this paper. Highlights of the proposed algorithm are minimum distortion of pixel's value, elimination of underflow and overflow problem, and equivalence of stego image and cover image with a PSNR of ∞ (for Lena, Goldhill, and Barbara image). The experimental outcomes reveal that in terms of average PSNR and embedding rate, for natural images, the proposed algorithm performed better than other conventional ones.

  12. Multi-beam transmitter geometries for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Tellez, Jason A.; Schmidt, Jason D.

    2010-02-01

    Free-space optical communications systems provide the opportunity to take advantage of higher data transfer rates and lower probability of intercept compared to radio-frequency communications. However, propagation through atmospheric turbulence, such as for airborne laser communication over long paths, results in intensity variations at the receiver and a corresponding degradation in bit error rate (BER) performance. Previous literature has shown that two transmitters, when separated sufficiently, can effectively average out the intensity varying effects of the atmospheric turbulence at the receiver. This research explores the impacts of adding more transmitters and the marginal reduction in the probability of signal fades while minimizing the overall transmitter footprint, an important design factor when considering an airborne communications system. Analytical results for the cumulative distribution function are obtained for tilt-only results, while wave-optics simulations are used to simulate the effects of scintillation. These models show that the probability of signal fade is reduced as the number of transmitters is increased.

  13. Enhanced intercarrier interference mitigation based on encoded bit-sequence distribution inside optical superchannels

    NASA Astrophysics Data System (ADS)

    Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero

    2016-10-01

    In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.

  14. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  15. NNvPDB: Neural Network based Protein Secondary Structure Prediction with PDB Validation.

    PubMed

    Sakthivel, Seethalakshmi; S K M, Habeeb

    2015-01-01

    The predicted secondary structural states are not cross validated by any of the existing servers. Hence, information on the level of accuracy for every sequence is not reported by the existing servers. This was overcome by NNvPDB, which not only reported greater Q3 but also validates every prediction with the homologous PDB entries. NNvPDB is based on the concept of Neural Network, with a new and different approach of training the network every time with five PDB structures that are similar to query sequence. The average accuracy for helix is 76%, beta sheet is 71% and overall (helix, sheet and coil) is 66%. http://bit.srmuniv.ac.in/cgi-bin/bit/cfpdb/nnsecstruct.pl.

  16. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: Implications for the BIT Index

    NASA Astrophysics Data System (ADS)

    Smith, Richard W.; Bianchi, Thomas S.; Li, Xinxin

    2012-03-01

    This study examines estimates of soil organic matter content (%OMsoil) in marine sediments based on the branched/isoprenoid tetraether (BIT) Index, and suggests a new calculation method based on branched GDGT (brGDGT) concentrations. Four sediment cores were collected in 2008 at the 20 m isobath of the Louisiana Continental Shelf. Glycerol dialkyl glycerol tetraether (GDGTs) and cupric oxide (CuO) oxidation products were analyzed down to ˜20 cm depth to examine terrestrially-derived organic matter. BIT Indices ranged from 0.50 to 0.03, and correlated poorly with lignin (mg S, V, and C phenols 10 g-1 sediment; ∑810) and 3,5-dihydroxybenzoic acid (μg 3,5-Bd g-1 sediment; 3,5:g) concentrations, which ranged from 0.01 to 0.87 mg g-1 and 0.00 (below detection limit) to 1.39 μg g-1, respectively. By calculating mass normalized core-lipid branched GDGT (brGDGT) and crenarchaeol mass abundances with the assistance of a surrogate standard, it was shown that overall, large variations in sedimentary crenarchaeol concentrations were responsible for vertical distributions of BIT Indices, due to the relatively smaller range of brGDGT concentrations. brGDGT concentrations produced stronger correlations with terrestrial CuO oxidation products than the BIT Index, which correlated strongly with crenarchaeol concentrations. Variations in the BIT Index may therefore reflect changes in the delivery of marine-derived organic matter to sediments in regions with large seasonal or decadal shifts in productivity, such as stratified continental shelves. An in depth look at conversions of the BIT Index to percent soil organic matter using a binary mixing model with a marine BIT value of 0 and a terrestrial BIT value of 1 (%OMsoil = BIT Index * 100) used in recent literature reveals that this method results in non-linear mixing of marine and terrestrial end-members, and the shape of the mixing line is based on sedimentary crenarchaeol concentrations. An alternative approach is to use sedimentary brGDGT yields as a OMsoil proxy, rather than normalizing them to crenarchaeol. %OMsoil could then be calculated using brGDGT concentrations in a two end-member mixing model as follows:%OMsoil = ([brGDGT]sample * 100)/[brGDGT]soil, where [brGDGT]sample and [brGDGT]soil represent the concentrations of branched GDGTs in the given sediment sample and in the average soil end-member, respectively. However, due to the wide range of brGDGT concentrations found in soils both regionally and globally, assigning a terrestrial end-member may not always be possible. While this method may in some instances also be a misrepresentation of %OMsoil in sediments, both estimation methods should be used with regard to their individual strengths and weaknesses.

  17. Robust High-Capacity Audio Watermarking Based on FFT Amplitude Modification

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods.

  18. Area, speed and power measurements of FPGA-based complex orthogonal space-time block code channel encoders

    NASA Astrophysics Data System (ADS)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-01-01

    Space-time coding (STC) is an important milestone in modern wireless communications. In this technique, more copies of the same signal are transmitted through different antennas (space) and different symbol periods (time), to improve the robustness of a wireless system by increasing its diversity gain. STCs are channel coding algorithms that can be readily implemented on a field programmable gate array (FPGA) device. This work provides some figures for the amount of required FPGA hardware resources, the speed that the algorithms can operate and the power consumption requirements of a space-time block code (STBC) encoder. Seven encoder very high-speed integrated circuit hardware description language (VHDL) designs have been coded, synthesised and tested. Each design realises a complex orthogonal space-time block code with a different transmission matrix. All VHDL designs are parameterisable in terms of sample precision. Precisions ranging from 4 bits to 32 bits have been synthesised. Alamouti's STBC encoder design [Alamouti, S.M. (1998), 'A Simple Transmit Diversity Technique for Wireless Communications', IEEE Journal on Selected Areas in Communications, 16:55-108.] proved to be the best trade-off, since it is on average 3.2 times smaller, 1.5 times faster and requires slightly less power than the next best trade-off in the comparison, which is a 3/4-rate full-diversity 3Tx-antenna STBC.

  19. Effects of training and motivation on auditory P300 brain-computer interface performance.

    PubMed

    Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S

    2016-01-01

    Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.

    PubMed

    Chabuda, Anna; Durka, Piotr; Zygierewicz, Jaroslaw

    2018-02-01

    We present an efficient implementation of brain-computer interface (BCI) based on high-frequency steady state visually evoked potentials (SSVEP). Individual shape of the SSVEP response is extracted by means of a feedforward comb filter, which adds delayed versions of the signal to itself. Rendering of the stimuli is controlled by specialized hardware (BCI Appliance). Out of 15 participants of the study, nine were able to produce stable response in at least eight out of ten frequencies from the 30-39 Hz range. They achieved on average 96±4% accuracy and 47±5 bit/min information transfer rate (ITR) for an optimized simple seven-letter speller, while generic full-alphabet speller allowed in this group for 89±9% accuracy and 36±9 bit/min ITR. These values exceed the performances of high-frequency SSVEP-BCI systems reported to date. Classical approach to SSVEP parameterization by relative spectral power in the frequencies of stimulation, implemented on the same data, resulted in significantly lower performance. This suggests that specific shape of the response is an important feature in classification. Finally, we discuss the differences in SSVEP responses of the participants who were able or unable to use the interface, as well as the statistically significant influence of the layout of the speller on the speed of BCI operation.

  1. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for removal of cuttings in the same manner as that of a twist drill: An USRoHD includes a USDC and a motor with gearhead (see figure). The USDC provides the bit hammering and the motor provides the bit rotation. Like a twist drill bit, the shank of the tool bit of the USRoHD is fluted. As in the operation of a twist drill, the rotation of the fluted drill bit removes cuttings from the drilled hole. The USRoHD tool bit is tipped with a replaceable crown having cutting teeth on its front surface. The teeth are shaped to promote fracturing of the rock face through a combination of hammering and rotation of the tool bit. Helical channels on the outer cylindrical surface of the crown serve as a continuation of the fluted surface of the shank, helping to remove cuttings. In the event of a failure of the USDC, the USRoHD can continue to operate with reduced efficiency as a twist drill. Similarly, in the event of a failure of the gearmotor, the USRoHD can continue to operate with reduced efficiency as a USDC.

  2. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  3. Combined peak-to-average power ratio reduction and physical layer security enhancement in optical orthogonal frequency division multiplexing visible-light communication systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Chen, Shoufa

    2016-07-01

    A physical encryption scheme for discrete Hartley transform (DHT) precoded orthogonal frequency division multiplexing (OFDM) visible-light communication (VLC) systems using frequency domain chaos scrambling is proposed. In the scheme, the chaos scrambling, which is generated by a modified logistic mapping, is utilized to enhance the physical layer of security, and the DHT precoding is employed to reduce of OFDM signal for OFDM-based VLC. The influence of chaos scrambling on peak-to-average power ratio (PAPR) and bit error rate (BER) of systems is studied. The experimental simulation results prove the efficiency of the proposed encryption method for DHT-precoded, OFDM-based VLC systems. Furthermore, the influence of the proposed encryption to the PAPR and BER of systems is evaluated. The experimental results show that the proposed security scheme can protect the DHT-precoded, OFDM-based VLC from eavesdroppers, while keeping the good BER performance of DHT-precoded systems. The BER performance of the encrypted and DHT-precoded system is almost the same as that of the conventional DHT-precoded system without encryption.

  4. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.

    PubMed

    Lyke, Stephen D; Voelz, David G; Roggemann, Michael C

    2009-11-20

    The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.

  5. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  6. Economic evaluation of an internet-based weight management program

    USDA-ARS?s Scientific Manuscript database

    To determine whether a behavioral Internet treatment (BIT) program for weight management is a viable, cost-effective option compared with usual care (UC) in a diverse sample of overweight (average body mass index = 29 kg/m2), healthy adults (mean age = 34 years) serving in the US Air Force. Two-grou...

  7. A Wearable Healthcare System With a 13.7 μA Noise Tolerant ECG Processor.

    PubMed

    Izumi, Shintaro; Yamashita, Ken; Nakano, Masanao; Kawaguchi, Hiroshi; Kimura, Hiromitsu; Marumoto, Kyoji; Fuchikami, Takaaki; Fujimori, Yoshikazu; Nakajima, Hiroshi; Shiga, Toshikazu; Yoshimoto, Masahiko

    2015-10-01

    To prevent lifestyle diseases, wearable bio-signal monitoring systems for daily life monitoring have attracted attention. Wearable systems have strict size and weight constraints, which impose significant limitations of the battery capacity and the signal-to-noise ratio of bio-signals. This report describes an electrocardiograph (ECG) processor for use with a wearable healthcare system. It comprises an analog front end, a 12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random Access Memory (FeRAM). The IHR monitor uses a short-term autocorrelation (STAC) algorithm to improve the heart-rate detection accuracy despite its use in noisy conditions. The ECG processor chip consumes 13.7 μA for heart rate logging application.

  8. Compensation for first-order polarization-mode dispersion by using a novel tunable compensator

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Ning, Tigang; Pei, Shanshan; Xing, Yujun; Jian, Shuisheng

    2005-01-01

    Polarization-related impairments have become a critical issue for high-data-rate optical systems, particularly when considering polarization-mode dispersion (PMD). Consequently, compensation of PMD, especially for the first-order PMD is necessary to maintain adequate performance in long-haul systems at a high bit rate of 10 Gb/s or beyond. In this paper, we successfully demonstrated automatic and tunable compensation for first-order polarization-mode dispersion. Furthermore, we reported the statistical assessment of this tunable compensator at 10 Gbit/s. Experimental results, including bit error rate measurements, are successfully compared with theory, therefore demonstrating the compensator efficiency at 10 Gbit/s. The first-order PMD was max 274 ps before PMD compensation, and it was lower than 7ps after PMD compensation.

  9. Video on phone lines: technology and applications

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1996-03-01

    Recent advances in communications signal processing and VLSI technology are fostering tremendous interest in transmitting high-speed digital data over ordinary telephone lines at bit rates substantially above the ISDN Basic Access rate (144 Kbit/s). Two new technologies, high-bit-rate digital subscriber lines and asymmetric digital subscriber lines promise transmission over most of the embedded loop plant at 1.544 Mbit/s and beyond. Stimulated by these research promises and rapid advances on video coding techniques and the standards activity, information networks around the globe are now exploring possible business opportunities of offering quality video services (such as distant learning, telemedicine, and telecommuting etc.) through this high-speed digital transport capability in the copper loop plant. Visual communications for residential customers have become more feasible than ever both technically and economically.

  10. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  11. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  12. Multiple trellis coded modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1990-01-01

    A technique for designing trellis codes to minimize bit error performance for a fading channel. The invention provides a criteria which may be used in the design of such codes which is significantly different from that used for average white Gaussian noise channels. The method of multiple trellis coded modulation of the present invention comprises the steps of: (a) coding b bits of input data into s intermediate outputs; (b) grouping said s intermediate outputs into k groups of s.sub.i intermediate outputs each where the summation of all s.sub.i,s is equal to s and k is equal to at least 2; (c) mapping each of said k groups of intermediate outputs into one of a plurality of symbols in accordance with a plurality of modulation schemes, one for each group such that the first group is mapped in accordance with a first modulation scheme and the second group is mapped in accordance with a second modulation scheme; and (d) outputting each of said symbols to provide k output symbols for each b bits of input data.

  13. A Low-cost 4 Bit, 10 Giga-samples-per-second Analog-to-digital Converter Printed Circuit Board Assembly for FPGA-based Backends

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Yu, Chen-Yu; Kubo, Derek; Chen, Ming-Tang; Guzzino, Kim

    2016-11-01

    In this study, a 4 bit, 10 giga-samples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was designed, manufactured, and characterized for digitizing radio telescopes. For this purpose, an Adsantec ANST7120A-KMA flash ADC chip was used. Together with the field-programmable gate array platform, developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the PCBA enables data acquisition with a wide bandwidth and simplifies the intermediate frequency section. In the current version, the PCBA and the chip exhibit an analog bandwidth of 10 GHz (3 dB loss) and 20 GHz, respectively, which facilitates second, third, and even fourth Nyquist sampling. The following average performance parameters were obtained from the first and second Nyquist zones of the three boards: a spurious-free dynamic range of 31.35/30.45 dB, a signal-to-noise and distortion ratio of 22.95/21.83 dB, and an effective number of bits of 3.65/3.43, respectively.

  14. Achieving the Holevo bound via a bisection decoding protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosati, Matteo; Giovannetti, Vittorio

    2016-06-15

    We present a new decoding protocol to realize transmission of classical information through a quantum channel at asymptotically maximum capacity, achieving the Holevo bound and thus the optimal communication rate. At variance with previous proposals, our scheme recovers the message bit by bit, making use of a series of “yes-no” measurements, organized in bisection fashion, thus determining which codeword was sent in log{sub 2} N steps, N being the number of codewords.

  15. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  16. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2015-02-01

    A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.

  17. An optical disk archive for a data base management system

    NASA Technical Reports Server (NTRS)

    Thomas, Douglas T.

    1985-01-01

    An overview is given of a data base management system that can catalog and archive data at rates up to 50M bits/sec. Emphasis is on the laser disk system that is used for the archive. All key components in the system (3 Vax 11/780s, a SEL 32/2750, a high speed communication interface, and the optical disk) are interfaced to a 100M bits/sec 16-port fiber optic bus to achieve the high data rates. The basic data unit is an autonomous data packet. Each packet contains a primary and secondary header and can be up to a million bits in length. The data packets are recorded on the optical disk at the same time the packet headers are being used by the relational data base management software ORACLE to create a directory independent of the packet recording process. The user then interfaces to the VAX that contains the directory for a quick-look scan or retrieval of the packet(s). The total system functions are distributed between the VAX and the SEL. The optical disk unit records the data with an argon laser at 100M bits/sec from its buffer, which is interfaced to the fiber optic bus. The same laser is used in the read cycle by reducing the laser power. Additional information is given in the form of outlines, charts, and diagrams.

  18. Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications

    NASA Astrophysics Data System (ADS)

    Choi, Jinseok; Evans, Brian L.; Gatherer, Alan

    2017-12-01

    In this paper, we propose a hybrid analog-digital beamforming architecture with resolution-adaptive ADCs for millimeter wave (mmWave) receivers with large antenna arrays. We adopt array response vectors for the analog combiners and derive ADC bit-allocation (BA) solutions in closed form. The BA solutions reveal that the optimal number of ADC bits is logarithmically proportional to the RF chain's signal-to-noise ratio raised to the 1/3 power. Using the solutions, two proposed BA algorithms minimize the mean square quantization error of received analog signals under a total ADC power constraint. Contributions of this paper include 1) ADC bit-allocation algorithms to improve communication performance of a hybrid MIMO receiver, 2) approximation of the capacity with the BA algorithm as a function of channels, and 3) a worst-case analysis of the ergodic rate of the proposed MIMO receiver that quantifies system tradeoffs and serves as the lower bound. Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the revised BA algorithm makes the quantization error negligible while achieving 22% better energy efficiency. Having negligible quantization error allows existing state-of-the-art digital beamformers to be readily applied to the proposed system.

  19. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  20. Efficacy, fate, and potential effects on salmonids of mosquito larvicides in catch basins in Seattle, Washington

    USGS Publications Warehouse

    Sternberg, Morgan; Grue, Christian; Conquest, Loveday; Grassley, James; King, Kerensa

    2012-01-01

    We investigated the efficacy, fate, and potential for direct effects on salmonids of 4 common mosquito larvicides (Mosquito Dunks® and Bits® (AI: Bacillis thuringiensis var. israelensis, [Bti]), VectoLex® WSP (AI: Bacillus sphaericus [Bs], VectoLex CG [AI: Bs], and Altosid® Briquets [AI: s-methoprene]) in Seattle, WA, during 3 summers. During efficacy trials in 2006, all treatments resulted in a rapid reduction in number of mosquito pupae (Mosquito Dunks and Bits and VectoLex WSP) or emergence success (Altosid Briquets). VectoLex CG was chosen for city-wide application in 2007 and 2008. The average counts of pupae within round-top basins remained significantly below the control average for 11 wk in 2007, whereas efficacy in grated-top basins was short-lived. In 2008 the average counts of pupae within grated-top basins remained significantly below the control average for 10 wk. Altosid XR was also effective in reducing adult emergence within grated basins in 2008. In 2007 and 2008, frequent precipitation events made the evaluation of efficacy difficult due to reductions in pupae across control and treated basins. Four separate analyses of VectoLex products revealed that the product was a combination of Bs and Bti. Both Bs and Bti were detected in 3 urban creeks connected to treated basins in 2007 and 2008. Laboratory toxicity test results suggest that concentrations of Bs and Bti detected in each of the watersheds pose little direct hazard to juvenile salmonids.

  1. Method of joint bit rate/modulation format identification and optical performance monitoring using asynchronous delay-tap sampling for radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2016-08-01

    In the context of carrying a wide variety of modulation formats and data rates for home networks, the study covers the radio-over-fiber (RoF) technology, where the need for an alternative way of management, automated fault diagnosis, and formats identification is expressed. Also, RoF signals in an optical link are impaired by various linear and nonlinear effects including chromatic dispersion, polarization mode dispersion, amplified spontaneous emission noise, and so on. Hence, for this purpose, we investigated the sampling method based on asynchronous delay-tap sampling in conjunction with a cross-correlation function for the joint bit rate/modulation format identification and optical performance monitoring. Three modulation formats with different data rates are used to demonstrate the validity of this technique, where the identification accuracy and the monitoring ranges reached high values.

  2. Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multicomputers.

    PubMed

    Louri, A; Furlonge, S; Neocleous, C

    1996-12-10

    A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit/s data rate (2(7) - 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10(-13)/link by the use of commercially available devices. OMMH is a scaleable network [Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994)] architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola's Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits/s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL's, and noise.

  3. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  4. Satellite-to-Ground Entanglement-Based Quantum Key Distribution.

    PubMed

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Ren, Ji-Gang; Liao, Sheng-Kai; Zhang, Liang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Ming; Huang, Yong-Mei; Deng, Lei; Li, Li; Zhang, Qiang; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-11-17

    We report on entanglement-based quantum key distribution between a low-Earth-orbit satellite equipped with a space borne entangled-photon source and a ground observatory. One of the entangled photons is measured locally at the satellite, and the other one is sent via a down link to the receiver in the Delingha ground station. The link attenuation is measured to vary from 29 dB at 530 km to 36 dB at 1000 km. We observe that the two-photon entanglement survives after being distributed between the satellite and the ground, with a measured state fidelity of ≥0.86. We then perform the entanglement-based quantum key distribution protocol and obtain an average final key rate of 3.5  bits/s at the distance range of 530-1000 km.

  5. Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Zhong, Xionghu

    2015-01-01

    Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. PMID:26251908

  6. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2007-06-01

    A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.

  7. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  8. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II)

    PubMed Central

    Marcinkiewicz, Cezary; Li, Jie; Shiloh, Aaron O; Sternberg, Mark

    2017-01-01

    The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100–10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device. PMID:29200855

  9. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  10. Drilling plastic formations using highly polished PDC cutters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.H.; Lund, J.B.; Anderson, M.

    1995-12-31

    Highly plastic and over-pressured formations are troublesome for both roller cone and PDC bits. Thus far, attempts to increase penetration rates in these formations have centered around re-designing the bit or modifying the cutting structure. These efforts have produced only moderate improvements. This paper presents both laboratory and field data to illustrate the benefits of applying a mirror polished surface to the face of PDC cutters in drilling stressed formations. These cutters are similar to traditional PDC cutters, with the exception of the reflective mirror finish, applied to the diamond table surfaces prior to their installation in the bit. Resultsmore » of tests conducted in a single point cutter apparatus and a full-scale drilling simulator will be presented and discussed. Field results will be presented that demonstrate the effectiveness of polished cutters, in both water and oil-based muds. Increases in penetration rates of 300-400% have been observed in the Wilcox formation and other highly pressured shales. Typically, the beneficial effects of polished cutters have been realized at depths greater than 7000 ft, and with mud weights exceeding 12 ppg.« less

  11. Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin

    2017-09-01

    In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.

  12. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  13. Utilizing a language model to improve online dynamic data collection in P300 spellers.

    PubMed

    Mainsah, Boyla O; Colwell, Kenneth A; Collins, Leslie M; Throckmorton, Chandra S

    2014-07-01

    P300 spellers provide a means of communication for individuals with severe physical limitations, especially those with locked-in syndrome, such as amyotrophic lateral sclerosis. However, P300 speller use is still limited by relatively low communication rates due to the multiple data measurements that are required to improve the signal-to-noise ratio of event-related potentials for increased accuracy. Therefore, the amount of data collection has competing effects on accuracy and spelling speed. Adaptively varying the amount of data collection prior to character selection has been shown to improve spelling accuracy and speed. The goal of this study was to optimize a previously developed dynamic stopping algorithm that uses a Bayesian approach to control data collection by incorporating a priori knowledge via a language model. Participants ( n = 17) completed online spelling tasks using the dynamic stopping algorithm, with and without a language model. The addition of the language model resulted in improved participant performance from a mean theoretical bit rate of 46.12 bits/min at 88.89% accuracy to 54.42 bits/min ( ) at 90.36% accuracy.

  14. An Ultra-Low Power Charge Redistribution Successive Approximation Register A/D Converter for Biomedical Applications.

    PubMed

    Koppa, Santosh; Mohandesi, Manouchehr; John, Eugene

    2016-12-01

    Power consumption is one of the key design constraints in biomedical devices such as pacemakers that are powered by small non rechargeable batteries over their entire life time. In these systems, Analog to Digital Convertors (ADCs) are used as interface between analog world and digital domain and play a key role. In this paper we present the design of an 8-bit Charge Redistribution Successive Approximation Register (CR-SAR) analog to digital converter in standard TSMC 0.18μm CMOS technology for low power and low data rate devices such as pacemakers. The 8-bit optimized CR-SAR ADC achieves low power of less than 250nW with conversion rate of 1KB/s. This ADC achieves integral nonlinearity (INL) and differential nonlinearity (DNL) less than 0.22 least significant bit (LSB) and less than 0.04 LSB respectively as compared to the standard requirement for the INL and DNL errors to be less than 0.5 LSB. The designed ADC operates at 1V supply voltage converting input ranging from 0V to 250mV.

  15. Experimental Demonstration of Long-Range Underwater Acoustic Communication Using a Vertical Sensor Array

    PubMed Central

    Zhao, Anbang; Zeng, Caigao; Hui, Juan; Ma, Lin; Bi, Xuejie

    2017-01-01

    This paper proposes a composite channel virtual time reversal mirror (CCVTRM) for vertical sensor array (VSA) processing and applies it to long-range underwater acoustic (UWA) communication in shallow water. Because of weak signal-to-noise ratio (SNR), it is unable to accurately estimate the channel impulse response of each sensor of the VSA, thus the traditional passive time reversal mirror (PTRM) cannot perform well in long-range UWA communication in shallow water. However, CCVTRM only needs to estimate the composite channel of the VSA to accomplish time reversal mirror (TRM), which can effectively mitigate the inter-symbol interference (ISI) and reduce the bit error rate (BER). In addition, the calculation of CCVTRM is simpler than traditional PTRM. An UWA communication experiment using a VSA of 12 sensors was conducted in the South China Sea. The experiment achieves a very low BER communication at communication rate of 66.7 bit/s over an 80 km range. The results of the sea trial demonstrate that CCVTRM is feasible and can be applied to long-range UWA communication in shallow water. PMID:28653976

  16. Turbo Trellis Coded Modulation With Iterative Decoding for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1997-01-01

    In this paper, analytical bounds on the performance of parallel concatenation of two codes, known as turbo codes, and serial concatenation of two codes over fading channels are obtained. Based on this analysis, design criteria for the selection of component trellis codes for MPSK modulation, and a suitable bit-by-bit iterative decoding structure are proposed. Examples are given for throughput of 2 bits/sec/Hz with 8PSK modulation. The parallel concatenation example uses two rate 4/5 8-state convolutional codes with two interleavers. The convolutional codes' outputs are then mapped to two 8PSK modulations. The serial concatenated code example uses an 8-state outer code with rate 4/5 and a 4-state inner trellis code with 5 inputs and 2 x 8PSK outputs per trellis branch. Based on the above mentioned design criteria for fading channels, a method to obtain he structure of the trellis code with maximum diversity is proposed. Simulation results are given for AWGN and an independent Rayleigh fading channel with perfect Channel State Information (CSI).

  17. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    PubMed

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less

  19. Missile Manufacturing Technology Conference Held at Hilton Head Island, South Carolina on 22-26 September 1975. Panel Presentations. Test Equipment

    DTIC Science & Technology

    1975-01-01

    in the computer in 16 bit parallel computer DIO transfers at the max- imum computer I/O speed. it then transmits this data in a bit- serial echo...maximum DIO rate under computer interrupt control. The LCI also provides station interrupt information for transfer to the computer under computer...been in daily operation since 1973. The SAM-D Missile system is currently in the Engineering De - velopment phase which precedes the Production and

  20. VINSON/AUTOVON Interface Applique for the Modem, Digital Data, AN/GSC-38

    DTIC Science & Technology

    1980-11-01

    Measurement Indication Result Before Step 6 None Noise and beeping are heard in handset After Step 7 None Noise and beepi ng disappear Condition Measurement...linear range due to the compression used. Lowering the levels below the compression range may give increased linearity, but may cause signal-to- noise ...are encountered where the bit error rate at 16 KB/S results is objectionable audio noise or causes the KY-58 to squelch. On these channels the bit

  1. An improved electronic twist-drill craniostomy procedure with post-operative urokinase instillation in treating chronic subdural hematoma.

    PubMed

    Lu, Jing; Shen, Dongwei; Hu, Fangjin; Zhou, Jianjun; Lan, Folin; Guo, Dongbing; Liu, Tianqing

    2015-09-01

    Twist-drill craniostomy (TDC) with closed-system drainage is a less invasive surgical technique for the treatment of chronic subdural hematoma (CSDH), but results in a higher disease recurrence rate. Therefore, we aimed to modify the TDC procedure in order to reduce the recurrence rate and further decrease complications. We retrospectively reviewed 230 cases of standard CSDH in 202 patients treated in our hospital between January 2006 and December 2013. We employed a new TDC device called micro-steel-needle-tube-bit for puncture and drainage. We chose an entry point 0.5cm anterior to the coronal suture at the superior temporal line and maintained post-operative drainage with urokinase instillation into the hematoma cavity. Clinical performance was assessed and compared by the Markwalder Grading Scale (MGS) score during the pre-operative period and at discharge. Recurrence of CSDH and complications were also recorded. Mean operation time was only 8.9 (6-13) min. Mean catheter indwelling duration and hospital stay were 1.18 (271/230, 1-3) and 2.27 (458/202, 2-9) days, respectively. The average frequency of urokinase instillation was 1.14 (262/230, 1-3) times. Intracerebral and sub-arachnoid hemorrhages were found in one patient, but were not in the puncture pathway. No perioperative deaths occurred. Recurrence was observed in only one patient at 28 days post-operation. Among 202 patients, 193 (95.54%) showed improved clinical symptoms and neurological function, and significantly lower MGS scores at discharge than pre-operation (0.13±0.45 vs. 1.37±0.55, P<0.01). In conclusion, electric TDC with micro-steel-needle-tube-bit at the pre-coronal suture entry point might be a safer, simpler, and faster mini-invasive surgical procedure for CSDH treatment. Post-operative drainage with instillation of urokinase could dramatically shorten drainage time and decrease recurrence rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  3. Verification testing of the compression performance of the HEVC screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng

    2017-09-01

    This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.

  4. Confidence Intervals for Error Rates Observed in Coded Communications Systems

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2015-05-01

    We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.

  5. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  6. Miniaturized module for the wireless transmission of measurements with Bluetooth.

    PubMed

    Roth, H; Schwaibold, M; Moor, C; Schöchlin, J; Bolz, A

    2002-01-01

    The wiring of patients for obtaining medical measurements has many disadvantages. In order to limit these, a miniaturized module was developed which digitalizes analog signals and sends the signal wirelessly to the receiver using Bluetooth. Bluetooth is especially suitable for this application because distances of up to 10 m are possible with low power consumption and robust transmission with encryption. The module consists of a Bluetooth chip, which is initialized in such a way by a microcontroller that connections from other bluetooth receivers can be accepted. The signals are then transmitted to the distant end. The maximum bit rate of the 23 mm x 30 mm module is 73.5 kBit/s. At 4.7 kBit/s, the current consumption is 12 mA.

  7. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    NASA Astrophysics Data System (ADS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  8. Performance of convolutionally encoded noncoherent MFSK modem in fading channels

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.

    1976-01-01

    The performance of a convolutionally encoded noncoherent multiple-frequency shift-keyed (MFSK) modem utilizing Viterbi maximum-likelihood decoding and operating on a fading channel is described. Both the lognormal and classical Rician fading channels are considered for both slow and time-varying channel conditions. Primary interest is in the resulting bit error rate as a function of the ratio between the energy per transmitted information bit and noise spectral density, parameterized by both the fading channel and code parameters. Fairly general upper bounds on bit error probability are provided and compared with simulation results in the two extremes of zero and infinite channel memory. The efficacy of simple block interleaving in combatting channel memory effects are thoroughly explored. Both quantized and unquantized receiver outputs are considered.

  9. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Objective. Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. Approach. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. Main results. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min-1 across 10 subjects. The maximum individual ITR is 107.55 bits min-1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min-1 are achieved with CCA and NCCA respectively. Significance. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  10. Motion-Compensated Compression of Dynamic Voxelized Point Clouds.

    PubMed

    De Queiroz, Ricardo L; Chou, Philip A

    2017-05-24

    Dynamic point clouds are a potential new frontier in visual communication systems. A few articles have addressed the compression of point clouds, but very few references exist on exploring temporal redundancies. This paper presents a novel motion-compensated approach to encoding dynamic voxelized point clouds at low bit rates. A simple coder breaks the voxelized point cloud at each frame into blocks of voxels. Each block is either encoded in intra-frame mode or is replaced by a motion-compensated version of a block in the previous frame. The decision is optimized in a rate-distortion sense. In this way, both the geometry and the color are encoded with distortion, allowing for reduced bit-rates. In-loop filtering is employed to minimize compression artifacts caused by distortion in the geometry information. Simulations reveal that this simple motion compensated coder can efficiently extend the compression range of dynamic voxelized point clouds to rates below what intra-frame coding alone can accommodate, trading rate for geometry accuracy.

  11. The Path to Presidency: Tips for Teaching Elementary Students about the Election Process

    ERIC Educational Resources Information Center

    Conrad, Marika

    2016-01-01

    Teaching about presidential elections at the elementary level can seem a bit daunting at times. Students are quick to share their strong opinions on the current candidates running for office. These opinions often involve repeating feelings and phrases shared by parents around the dinner table the night before. For the average seven- or…

  12. Entropy/information flux in Hawking radiation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2018-01-01

    Blackbody radiation contains (on average) an entropy of 3.9 ± 2.5 bits per photon. If the emission process is unitary, then this entropy is exactly compensated by "hidden information" in the correlations. We extend this argument to the Hawking radiation from GR black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget. The key technical aspect of our calculation is a variant of the "average subsystem" approach developed by Page, which we extend beyond bipartite pure systems, to a tripartite pure system that considers the influence of the environment.

  13. An OFDM System Using Polyphase Filter and DFT Architecture for Very High Data Rate Applications

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Vanderaar, Mark J.

    2001-01-01

    This paper presents a conceptual architectural design of a four-channel Orthogonal Frequency Division Multiplexing (OFDM) system with an aggregate information throughput of 622 megabits per second (Mbps). Primary emphasis is placed on the generation and detection of the composite waveform using polyphase filter and Discrete Fourier Transform (DFT) approaches to digitally stack and bandlimit the individual carriers. The four-channel approach enables the implementation of a system that can be both power and bandwidth efficient, yet enough parallelism exists to meet higher data rate goals. It also enables a DC power efficient transmitter that is suitable for on-board satellite systems, and a moderately complex receiver that is suitable for low-cost ground terminals. The major advantage of the system as compared to a single channel system is lower complexity and DC power consumption. This is because the highest sample rate is half that of the single channel system and synchronization can occur at most, depending on the synchronization technique, a quarter of the rate of a single channel system. The major disadvantage is the increased peak-to-average power ratio over the single channel system. Simulation results in a form of bit-error-rate (BER) curves are presented in this paper.

  14. Audiovisual signal compression: the 64/P codecs

    NASA Astrophysics Data System (ADS)

    Jayant, Nikil S.

    1996-02-01

    Video codecs operating at integral multiples of 64 kbps are well-known in visual communications technology as p * 64 systems (p equals 1 to 24). Originally developed as a class of ITU standards, these codecs have served as core technology for videoconferencing, and they have also influenced the MPEG standards for addressable video. Video compression in the above systems is provided by motion compensation followed by discrete cosine transform -- quantization of the residual signal. Notwithstanding the promise of higher bit rates in emerging generations of networks and storage devices, there is a continuing need for facile audiovisual communications over voice band and wireless modems. Consequently, video compression at bit rates lower than 64 kbps is a widely-sought capability. In particular, video codecs operating at rates in the neighborhood of 64, 32, 16, and 8 kbps seem to have great practical value, being matched respectively to the transmission capacities of basic rate ISDN (64 kbps), and voiceband modems that represent high (32 kbps), medium (16 kbps) and low- end (8 kbps) grades in current modem technology. The purpose of this talk is to describe the state of video technology at these transmission rates, without getting too literal about the specific speeds mentioned above. In other words, we expect codecs designed for non- submultiples of 64 kbps, such as 56 kbps or 19.2 kbps, as well as for sub-multiples of 64 kbps, depending on varying constraints on modem rate and the transmission rate needed for the voice-coding part of the audiovisual communications link. The MPEG-4 video standards process is a natural platform on which to examine current capabilities in sub-ISDN rate video coding, and we shall draw appropriately from this process in describing video codec performance. Inherent in this summary is a reinforcement of motion compensation and DCT as viable building blocks of video compression systems, although there is a need for improving signal quality even in the very best of these systems. In a related part of our talk, we discuss the role of preprocessing and postprocessing subsystems which serve to enhance the performance of an otherwise standard codec. Examples of these (sometimes proprietary) subsystems are automatic face-tracking prior to the coding of a head-and-shoulders scene, and adaptive postfiltering after conventional decoding, to reduce generic classes of artifacts in low bit rate video. The talk concludes with a summary of technology targets and research directions. We discuss targets in terms of four fundamental parameters of coder performance: quality, bit rate, delay and complexity; and we emphasize the need for measuring and maximizing the composite quality of the audiovisual signal. In discussing research directions, we examine progress and opportunities in two fundamental approaches for bit rate reduction: removal of statistical redundancy and reduction of perceptual irrelevancy; we speculate on the value of techniques such as analysis-by-synthesis that have proved to be quite valuable in speech coding, and we examine the prospect of integrating speech and image processing for developing next-generation technology for audiovisual communications.

  15. The 10 to the 8th power bit solid state spacecraft data recorder. [utilizing bubble domain memory technology

    NASA Technical Reports Server (NTRS)

    Murray, G. W.; Bohning, O. D.; Kinoshita, R. Y.; Becker, F. J.

    1979-01-01

    The results are summarized of a program to demonstrate the feasibility of Bubble Domain Memory Technology as a mass memory medium for spacecraft applications. The design, fabrication and test of a partially populated 10 to the 8th power Bit Data Recorder using 100 Kbit serial bubble memory chips is described. Design tradeoffs, design approach and performance are discussed. This effort resulted in a 10 to the 8th power bit recorder with a volume of 858.6 cu in and a weight of 47.2 pounds. The recorder is plug reconfigurable, having the capability of operating as one, two or four independent serial channel recorders or as a single sixteen bit byte parallel input recorder. Data rates up to 1.2 Mb/s in a serial mode and 2.4 Mb/s in a parallel mode may be supported. Fabrication and test of the recorder demonstrated the basic feasibility of Bubble Domain Memory technology for such applications. Test results indicate the need for improvement in memory element operating temperature range and detector performance.

  16. A high SFDR 6-bit 20-MS/s SAR ADC based on time-domain comparator

    NASA Astrophysics Data System (ADS)

    Xue, Han; Hua, Fan; Qi, Wei; Huazhong, Yang

    2013-08-01

    This paper presents a 6-bit 20-MS/s high spurious-free dynamic range (SFDR) and low power successive approximation register analog to digital converter (SAR ADC) for the radio-frequency (RF) transceiver front-end, especially for wireless sensor network (WSN) applications. This ADC adopts the modified common-centroid symmetry layout and the successive approximation register reset circuit to improve the linearity and dynamic range. Prototyped in a 0.18-μm 1P6M CMOS technology, the ADC performs a peak SFDR of 55.32 dB and effective number of bits (ENOB) of 5.1 bit for 10 MS/s. At the sample rate of 20 MS/s and the Nyquist input frequency, the 47.39-dB SFDR and 4.6-ENOB are achieved. The differential nonlinearity (DNL) is less than 0.83 LSB and the integral nonlinearity (INL) is less than 0.82 LSB. The experimental results indicate that this SAR ADC consumes a total of 522 μW power and occupies 0.98 mm2.

  17. Multi-bit wavelength coding phase-shift-keying optical steganography based on amplified spontaneous emission noise

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Wang, Hongxiang; Ji, Yuefeng

    2018-01-01

    In this paper, a multi-bit wavelength coding phase-shift-keying (PSK) optical steganography method is proposed based on amplified spontaneous emission noise and wavelength selection switch. In this scheme, the assignment codes and the delay length differences provide a large two-dimensional key space. A 2-bit wavelength coding PSK system is simulated to show the efficiency of our proposed method. The simulated results demonstrate that the stealth signal after encoded and modulated is well-hidden in both time and spectral domains, under the public channel and noise existing in the system. Besides, even the principle of this scheme and the existence of stealth channel are known to the eavesdropper, the probability of recovering the stealth data is less than 0.02 if the key is unknown. Thus it can protect the security of stealth channel more effectively. Furthermore, the stealth channel will results in 0.48 dB power penalty to the public channel at 1 × 10-9 bit error rate, and the public channel will have no influence on the receiving of the stealth channel.

  18. Compact FPGA-based beamformer using oversampled 1-bit A/D converters.

    PubMed

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-05-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.

  19. Areal density optimizations for heat-assisted magnetic recording of high-density media

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  20. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

Top