Sample records for average crustal values

  1. Seismic properties of the crust and uppermost mantle of North America

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.

    1983-01-01

    Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.

  2. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  3. Origin of the Sudbury Complex by meteoritic impact: Neodymium isotopic evidence

    USGS Publications Warehouse

    Faggart, B.E.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 ?? 21 ?? 106 years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  4. A thin, dense crust for Mercury

    NASA Astrophysics Data System (ADS)

    Sori, Michael M.

    2018-05-01

    Crustal thickness is a crucial geophysical parameter in understanding the geology and geochemistry of terrestrial planets. Recent development of mathematical techniques suggests that previous studies based on assumptions of isostasy overestimated crustal thickness on some of the solid bodies of the solar system, leading to a need to revisit those analyses. Here, I apply these techniques to Mercury. Using MESSENGER-derived elemental abundances, I calculate a map of grain density (average 2974 ± 89 kg/m3) which shows that Pratt isostasy is unlikely to be a major compensation mechanism of Mercury's topography. Assuming Airy isostasy, I find the best fit value for Mercury's mean crustal thickness is 26 ± 11 km, 25% lower than the most recently reported and previously thinnest number. Several geological implications follow from this relatively low value for crustal thickness, including showing that the largest impacts very likely excavated mantle material onto Mercury's surface. The new results also show that Mercury and the Moon have a similar proportion of their rocky silicates composing their crusts, and thus Mercury is not uniquely efficient at crustal production amongst terrestrial bodies. Higher resolution topography and gravity data, especially for the southern hemisphere, will be necessary to refine Mercury's crustal parameters further.

  5. Quantifying crustal thickness over time in magmatic arcs

    NASA Astrophysics Data System (ADS)

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; Decelles, Peter G.

    2015-12-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

  6. Quantifying crustal thickness over time in magmatic arcs

    PubMed Central

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; DeCelles, Peter G.

    2015-01-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens. PMID:26633804

  7. The Precambrian crustal structure of East Africa

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.

    2011-12-01

    We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.

  8. Receiver Function Study of the Crustal Structure Beneath the Northern Andes (colombia)

    NASA Astrophysics Data System (ADS)

    Poveda, E.; Monsalve, G.; Vargas-Jimenez, C. A.

    2013-05-01

    We have investigated crustal thickness beneath the Northern Andes with the teleseismic receiver function technique. We used teleseismic data recorded by an array of 18 broadband stations deployed by the Colombian Seismological Network, and operated by the Colombian Geological Survey. We used the primary P-to-S conversion and crustal reverberations to estimate crustal thickness and average Vp/Vs ratio; using Wadati diagrams, we also calculated the mean crustal Vp/Vs ratio around stations to further constrain the crustal thickness estimation. In northern Colombia, near the Caribbean coast, the estimated crustal thickness ranges from 25 to 30 km; in the Middle Magdalena Valley, crustal thickness is around 40 km; beneath the northern Central Cordillera, the Moho depth is nearly 40 km; at the Ecuador-Colombia border, beneath the western flank of the Andes, the estimated thickness is about 46 km. Receiver functions at a station at the craton in South East Colombia, near the foothills of the Eastern Cordillera, clearly indicate the presence of the Moho discontinuity at a depth near 36 km. The greatest values of crustal thickness occur beneath a plateau (Altiplano Cundiboyacense) on the Eastern Cordillera, near the location of Bogota, with values around 58 km. Receiver functions in the volcanic areas of the south-western Colombian Andes do not show a systematic signal from the Moho, indicating abrupt changes in Moho geometry. Signals at stations on the Eastern Cordillera near Bogota reveal a highly complex crustal structure, with a combination of sedimentary layers up to 9 km thick, dipping interfaces, low velocity layers, anisotropy and/or lateral heterogeneity that still remain to be evaluated. This complexity obeys to the location of these stations at a region of a highly deformed fold and thrust belt.

  9. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward higher latitudes. The glaciated North American and European cratons show a trend of modest thinning (~3km), and glaciated western Asia minor thinning (~1.5 km). These values are at the level of model uncertainties, but we note that cratons without ice sheets during the last glacial period show substantially different patterns.

  10. Evaluation of Earth's Geobiosphere Emergy Baseline and the Emergy of Crustal Cycling

    NASA Astrophysics Data System (ADS)

    De Vilbiss, Chris

    This dissertation quantitatively analyzed the exergy supporting the nucleosynthesis of the heavy isotopes, Earth's geobiosphere, and its crustal cycling. Exergy is that portion of energy that is available to drive work. The exergy sources that drive the geobiosphere are sunlight, Earth's rotational kinetic energy and relic heat, and radionuclides in Earth's interior. These four exergy sources were used to compute the Earth's geobiosphere emergy baseline (GEB), expressed as a single unit, solar equivalent joules (seJ). The seJ of radionuclides were computed by determining the quantity of gravitational exergy that dissipated in the production of both sunlight and heavy isotopes. This is a new method of computing solar equivalences also was applied to Earth's relic heat and rotational energy. The equivalent quantities of these four exergy sources were then added to express the GEB. This new baseline was compared with several other contemporary GEB methods. The new GEB is modeled as the support to Earth's crustal cycle and ultimately to the economical mineral deposits used in the US economy. Given the average annual cycling of crustal material and its average composition, specific emergies were calculated to express the average emergy per mass of particular crustal minerals. Chemical exergies of the minerals were used to develop transformities and specific emergies of minerals at heightened concentrations, i.e. minable concentrations. The effect of these new mineral emergy values were examined using the US economy as an example. The final result is an 83% reduction in the emergy of limestone, a 91% reduction in the aggregated emergy of all other minerals, and a 23% reduction in the emergy of the US economy. This dissertation explored three unique and innovative methods to compute the emergy of Earth's exergy sources and resources. First was a method for computing the emergy of radionuclides. Second was a method to evaluate the Earth's relic heat and dissipation of gravitational exergy that uses forward computation. Third is a more consistent method to compute the emergy value of crustal minerals based on their chemical exergy.

  11. Arsenic in stream sediments of northern Alabama

    USGS Publications Warehouse

    Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert

    2001-01-01

    OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.

  12. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-07-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate during subduction by accretionary processes. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and have 3 distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. In addition many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. And other times we find evidence of collision leaving behind accreted terranes 25 to 40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to accrete. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.

  13. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-12-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and three distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane-continent collision leaving behind accreted terranes 25-40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to subduct. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.

  14. Interpreting the paleo-redox record: Mn enrichment factors

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.

    2006-12-01

    Redox-sensitive metal enrichment factors (EF), have the ability to describe the redox chemistry of the overlying water and marine sediments at time of burial. Manganese (Mn) precipitates as Mn-rich oxyhydroxides in oxic environments, leading to sedimentary EF > 1 calculated relative to average continental crust as the presumed detrital source. Mn EF can also occur from source changes that are unrelated to redox changes. We compared bulk sediment digestions to sample splits treated with a reductive cleaning step prior to sediment digestion, to test whether the Mn EF are from oxyhydroxides. We measured sedimentary Mn EF for the past 30 m.y. for a Nazca Ridge site in the southeast Pacific (ODP Site 1237). The site is marked by a pronounced color change at 162 mcd, within an interval dominated by calcareous-rich lithology, prompting questions of source versus paleo-redox changes. Mn EF were measured across the Paleocene-Eocene Thermal Maximum (PETM) at three sites on Walvis Ridge in the southeast Atlantic (ODP Sites 1262, 1266, and 1263). The PETM global warming event leads to questions of redox changes. At Nazca Ridge Mn EF range from 10-70 prior to the change with decrease to crustal averages after the boundary. After two reductive cleanings on sediments exhibiting Mn EF >1, Mn EF were at crustal averages. Mn EF prior to the color change are oxyhydroxides and not a major input of detrital material. We suggest the color change represents a paleo-redox boundary, more oxygenated depositional setting prior to the change and more reducing depositional setting afterwards. Walvis Ridge PETM sections exhibit Mn EF values ranging between 4 and 12 prior to the warming, values at crustal averages during the warming, return to pre-event values in the recovery period. After the reductive cleaning procedure the deep (1262) and intermediate (1266) sites with Mn EF >1 before and after the warming event reduced to crustal averages with no change to Mn EF during the event. Bottom waters at those two sites were most likely oxygenated prior to the event, reducing at the onset of the warming, and returned to pre-event conditions in the recovery. Future studies of Mn EF as a paleo-redox indicator should include the reductive cleaning procedure to verify Mn-oxyhydroxides.

  15. Seismic structure of the crust and uppermost mantle of north America and adjacent oceanic basins: A synthesis

    USGS Publications Warehouse

    Chulick, G.S.; Mooney, W.D.

    2002-01-01

    We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.

  16. Divergent plate boundary characteristics and crustal spreading in Aphrodite Terra, Venus - A test of some predictions

    NASA Technical Reports Server (NTRS)

    Head, James W.; Crumpler, L. S.

    1989-01-01

    Predictions concerning the divergence and crustal spreading in the Western Aphrodite Region of Venus are tested using published results from Arecibo, Venera 15/16, and Pioneer Venus data. It is found that the northern middle to high latitudes are characterized by a young average age, that there is a trend in the total number of craters per unit area from high values in the north polar regions to low values toward the equator, and that there is evidence for a latitudinal distribution of tectonic features of different types, with extensional features common in equatorial regions and compressional deformation features common in the northern middle to high latitudes.

  17. Crustal structure of north Peru from analysis of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.

    2017-07-01

    In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.

  18. Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A

    2017-08-16

    Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.

  19. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias

    2014-12-01

    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  20. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.

    2017-12-01

    A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.

  1. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  2. Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) Generic Site Amplification for Graphic Site Amplification

    USGS Publications Warehouse

    Boore, David

    2016-01-01

    This short note contains two contributions related to deriving depth‐dependent velocity and density models for use in computing generic crustal amplifications. The first contribution is a method for interpolating two velocity profiles to obtain a third profile with a time‐averaged velocity  to depth Z that is equal to a specified value (e.g., for shear‐wave velocity VS,  for Z=30  m, in which the subscript S has been added to indicate that the average is for shear‐wave velocities). The second contribution is a procedure for obtaining densities from VS. The first contribution is used to extend and revise the Boore and Joyner (1997) generic rock VS model, for which , to a model with the more common . This new model is then used with the densities from the second contribution to compute crustal amplifications for a generic site with .

  3. The crust of the Moon as seen by GRAIL.

    PubMed

    Wieczorek, Mark A; Neumann, Gregory A; Nimmo, Francis; Kiefer, Walter S; Taylor, G Jeffrey; Melosh, H Jay; Phillips, Roger J; Solomon, Sean C; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Smith, David E; Watkins, Michael M; Williams, James G; Zuber, Maria T

    2013-02-08

    High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.

  4. Crustal structure of China from deep seismic sounding profiles

    USGS Publications Warehouse

    Li, S.; Mooney, W.D.

    1998-01-01

    More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau. ?? 1998 Elsevier Science B.V. All rights reserved.

  5. Abrupt shift in δ18O values at Medicine Lake volcano (California, USA)

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.

    1998-01-01

     Oxygen-isotope analyses of lavas from Medicine Lake volcano (MLV), in the southern Cascade Range, indicate a significant change in δ18O in Holocene time. In the Pleistocene, basaltic lavas with <52% SiO2 averaged +5.9‰, intermediate lavas averaged +5.7‰, and silicic lavas (≥63.0%SiO2) averaged +5.6‰. No analyzed Pleistocene rhyolites or dacites have values greater than +6.3‰. In post-glacial time, basalts were similar at +5.7‰ to those erupted in the Pleistocene, but intermediate lavas average +6.8‰ and silicic lavas +7.4‰ with some values as high as +8.5‰. The results indicate a change in the magmatic system supplying the volcano. During the Pleistocene, silicic lavas resulted either from melting of low-18O crust or from fractionation combined with assimilation of very-low-18O crustal material such as hydrothermally altered rocks similar to those found in drill holes under the center of the volcano. By contrast, Holocene silicic lavas were produced by assimilation and/or wholesale melting of high-18O crustal material such as that represented by inclusions of granite in lavas on the upper flanks of MLV. This sudden shift in assimilant indicates a fundamental change in the magmatic system. Magmas are apparently ponding in the crust at a very different level than in Pleistocene time.

  6. The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination?

    NASA Astrophysics Data System (ADS)

    Harris, Chris; le Roux, Petrus; Cochrane, Ryan; Martin, Laure; Duncan, Andrew R.; Marsh, Julian S.; le Roex, Anton P.; Class, Cornelia

    2015-07-01

    Oxygen isotope compositions of Karoo and Etendeka large igneous province (LIP) picrites and picrite basalts are presented to constrain the effects of crustal contamination versus mantle source variation. Olivine and orthopyroxene phenocrysts from lavas and dykes (Mg# 64-80) from the Tuli and Mwenezi (Nuanetsi) regions of the ca 180 Ma Karoo LIP have δ18O values that range from 6.0 to 6.7 ‰. They appear to have crystallized from magmas having δ18O values about 1-1.5 ‰ higher than expected in an entirely mantle-derived magma. Olivines from picrite and picrite basalt dykes from the ca 135 Ma Etendeka LIP of Namibia and Karoo-age picrite dykes from Dronning Maud Land, Antarctica, do not have such elevated δ18O values. A range of δ18O values from 4.9 to 6.0 ‰, and good correlations between δ18O value and Sr, Nd and Pb isotope ratios for the Etendeka picrites are consistent with previously proposed models of crustal contamination. Explanations for the high δ18O values in Tuli/Mwenezi picrites are limited to (1) alteration, (2) crustal contamination, and (3) derivation from mantle with an abnormally high δ18O. Previously, a variety of models that range from crustal contamination to derivation from the `enriched' mantle lithosphere have been suggested to explain high concentrations of incompatible elements such as K, and average ɛNd and ɛSr values of -8 and +16 in Mwenezi (Nuanetsi) picrites. However, the primitive character of the magmas (Mg# 73), combined with the lack of correlation between δ18O values and radiogenic isotopic compositions, MgO content, or Mg# is inconsistent with crustal contamination. Thus, an 18O-enriched mantle source having high incompatible trace element concentration and enriched radiogenic isotope composition is indicated. High δ18O values are accompanied by negative Nb and Ta anomalies, consistent with the involvement of the mantle lithosphere, whereas the high δ18O themselves are consistent with an eclogitic source. Magma δ18O values about 1 ‰ higher than expected for mantle-derived magma are also a feature of the Bushveld mafic and ultramafic magmas, and the possibility exists that a long-lived 18O-enriched mantle source has existed beneath southern Africa. A mixed eclogite peridotite source could have developed by emplacement of oceanic lithosphere into the cratonic keel during Archaean subduction.

  7. Seismic structure of the Slave craton crust

    NASA Astrophysics Data System (ADS)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.

    2017-12-01

    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  8. Petrology and geochemistry of charnockites (felsic ortho-granulites) from the Kerala Khondalite Belt, Southern India: Evidence for intra-crustal melting, magmatic differentiation and episodic crustal growth

    NASA Astrophysics Data System (ADS)

    Ravindra Kumar, G. R.; Sreejith, C.

    2016-10-01

    The Kerala Khondalite Belt (KKB) of the southern India encompasses volumetrically significant magmatic components. Among these, orthopyroxene-bearing, felsic ortho-granulites, popularly known as charnockites in Indian context, constitute an important lithology. In contrast to the well-known phenomena of arrested charnockitization, the geochemical characteristics and petrogenesis of these ortho-granulite suites remain poorly studied, leaving geodynamic models envisaged for the KKB highly conjectural. In this paper, we try to bridge this gap with detailed results on orthopyroxene-bearing, felsic ortho-granulites spread over the entire KKB and propose a new petrogenetic and crustal evolution model. Based on geochemical characteristics, the orthopyroxene-bearing, felsic ortho-granulites (charnockites sensu lato) of KKB are classified into (1) tonalitic (TC), (2) granitic (GC), and (3) augen (AC) suites. Members of the TC follow sodic (characterized by decreasing CaO/Na2O), whereas those of the GC and AC follow calc-alkaline trends of differentiation. Geochemical patterns of the TC resemble those of the Archaean tonalite-trondhjemite-granodiorite (TTG) suites, with slightly magnesian character (average Mg# = 33), moderate LREE (average LaN = 154), low HREE (average YbN = 6) and Y (1-53 ppm; average 11 ppm). The TC is also characterized by positive to slightly negative europium anomalies (Eu/Eu* = 0.7 to 1.67). The GC and AC suites, on the other hand, resemble post-Archaean arc-related granites. The GC displays ferroan nature (average Mg# = 22), low to moderate degrees of REE fractionation (average [La/Yb]N = 34.84), high contents of Y (5-128 ppm; average 68), and low Sr/Y (1-98) ratios. Significant negative Eu anomalies (Eu/Eu* = 0.18-0.91; average 0.50) and low Sr (65-690 ppm) are also noted in the GC. Similar chemical characteristics are shown by the AC, with ferroan nature (average Mg# = 21), low to moderate degrees of REE fractionation (average [La/Yb]N = 26), high contents of Y (71-99 ppm; average 87), and low Sr/Y (average 2) ratios with significant negative Eu anomalies (Eu/Eu* = 0.03-0.31; average 0.23) and low Sr (average 160 ppm) contents. The protoliths of the TC are interpreted as being derived from partial melting of thickened oceanic-arc crust composed of Archaean mafic composite source rocks (i.e., eclogite and/or garnet amphibolite) with a garnet amphibolite residue. Geochemical features of the GC, such as high Rb/Sr (average 1.80) and Ba/Sr ratios (average values > 6), are considered as evidence for crustal reworking in their genesis, suggesting remelting of a quartzo-feldspathic (TTG) source, within the plagioclase stability fields. The geochemical features of the felsic ortho-granulite suite, substantiated with published geochronological data on members of the TC, GC, and AC suites, suggest a four-stage crustal evolution of the KKB. The first stage is marked by the formation of an over-thickened oceanic-arc. Zircon Hfc model ages of the TC and GC suites constrain the time of this juvenile magmatic crust-forming event as Meso- to Neoarchaean (2.8 to 2.6 Ga). The second stage corresponds to the production of TTG magmas by melting of the over-thickened oceanic-arc crust, subsequent to basaltic underplating during Palaeoproterozoic (ca. 2.1 Ga). The third stage was initiated by a transition in subduction style from shallow to steep due to continent-arc accretion. This stage is marked by the formation of granitic magmas through partial melting of the TTG crust and their differentiation into GC and TC. The zircon crystallization ages (1.89 and 1.85 Ga) of the GC indicate arc accretion occurred during the Palaeoproterozoic. The fourth stage of crustal evolution is correlated with the Mesoproterozoic ( 1.5 Ga) emplacement of megacrystic K-feldspar granites (protoliths to the AC and augen gneisses). The distinct petrography, geochemistry and crystallization ages of the AC suggests recurrence of megacrystic, high-K calc-alkaline granitoids as the product of final phases of crustal-remelting marking subduction cessation. All these magmatic events are fairly well correlated with the major episodes of crustal growth observed in the once contiguous continental fragments (Sri Lanka and Madagascar) and worldwide events (2.7, 1.9, and 1.2 Ga) implying similar episodic nature in the lower crustal evolution of the KKB.

  9. A Regional Seismic Travel Time Model for North America

    DTIC Science & Technology

    2010-09-01

    velocity at the Moho, the mantle velocity gradient, and the average crustal velocity. After tomography across Eurasia, rigorous tests find that Pn...velocity gradient, and the average crustal velocity. After tomography across Eurasia rigorous tests find that Pn travel time residuals are reduced...and S-wave velocity in the crustal layers and in the upper mantle. A good prior model is essential because the RSTT tomography inversion is invariably

  10. Morphology of the transition from an axial high to a rift valley at the Southeast Indian Ridge and the relation to variations in mantle temperature

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.; SempéRé, Jean-Christophe

    1998-03-01

    The Southeast Indian Ridge exhibits a transition in axial morphology from an East Pacific Rise-like axial high near 100°E to a Mid-Atlantic Ridge-like rift valley near 116°E but spreads at a nearly constant rate of 74-76 mm/yr. Assuming that the source of this transition lies in variations in mantle temperature, we use shipboard gravity-derived crustal thickness and ridge flank depth to estimate the variations in temperature associated with the changes in morphological style. Within the transitional region, SeaBeam 2000 bathymetry shows scattered instances of highs, valleys, and split volcanic ridges at the axis. A comparison of axial morphology to abyssal hill shapes and symmetry properties suggests that this unorganized distribution is due to the ridge axis episodically alternating between an axial valley and a volcanic ridge. Axial morphology can then be divided into three classes, with distinct geographic borders: axial highs and rifted highs are observed west of a transform fault at 102°45'E; rift valleys are observed east of a transform fault at 114°E; and an intermediate-style morphology which alternates between a volcanic ridge and a shallow axial valley is observed between the two. One segment, between 107° and 108°30'E, forms an exception to the geographical boundaries. Gravity-derived crustal thickness and flank depth generally vary monotonically over the region, with the exception of the segment between 107°E and 108°30'E. The long-wavelength variations in these properties correlate with the above morphological classification. Gravity-derived crustal thickness varies on average ˜2 km between the axial high and rift valley regions. The application of previous models relating crustal thickness and mantle temperature places the corresponding temperature variation at 25°C-50°C, depending on the model used. The average depth of ridge flanks varies by ˜550 m over the study area. For a variation of 25°-50°C, thermal models of the mantle predict depth variations of 75-150 m. These values are consistent with observations when the combined contributions of crustal thickness and mantle density to ridge flank depth are considered, assuming Airy isostasy. Crustal thickness variations differ at the two transitions described above: A difference of 750 m in crustal thickness is observed at the rift valley/intermediate-style transition, suggesting small variations in crustal thickness and mantle temperature drive this transition. At the axial high-rifted high/intermediate-style transition, crustal thickness variations are not resolvable, suggesting that this transition is controlled by threshold values of crustal thickness and mantle temperature, and is perhaps related to the presence of a steady state magma chamber.

  11. Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.; hide

    2013-01-01

    High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required

  12. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.

  13. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    USGS Publications Warehouse

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-01-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  14. Crustal seismic anisotropy and structure from textural and seismic investigations in the Cycladic region, Greece

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard

    2016-04-01

    Seismic anisotropy data are often used to resolve rock structures and deformation styles in the crust based on compilations of rock properties that may not be representative of the exposed geology. We use teleseismic receiver functions jointly with in situ rock property data to constrain the seismic structure and anisotropy of the crust in the Cyclades, Greece, located in the back arc region of the Hellenic subduction zone. Crystallographic preferred orientations (CPOs) via electron backscatter diffraction (EBSD) analyses were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System; average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by blueschist assemblages, with AVp averaging 20.3% and AVs averaging 14.5% due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localized anisotropies of very high magnitude are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~25% for AVp and AVs. The direction of the fast and slow P-wave velocities occur parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction present in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during back-arc extension. Our results strongly favor radial anisotropy in the Aegean mid-crust over azimuthal anisotropy. The receiver function data indicate that the Moho is relatively flat at 25 km depth in the south and deepens to 33 km in the north, consistent with previous studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.

  15. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tennant Creek inliers of Australia but is dissimilar to other areas like the Central Australian Heat Flow Province that are characterized by anomalously high heat flow. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in the thermal contribution to the overlying ice sheet from upper crustal heat production. Despite these minor differences, ice-sheet models may favor a geologically realistic input of crustal heat flow represented by the distribution of ages and geothermal characteristics found in these glacial clasts.

  16. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt

    NASA Astrophysics Data System (ADS)

    Zhao, Lian-Feng; Xie, Xiao-Bi

    2016-04-01

    Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.

  17. Variation in Crustal Structure of the Lesser Caucasus Region from Teleseismic Receiver Functions

    NASA Astrophysics Data System (ADS)

    Lin, C. M.; Tseng, T. L.; Huang, B. S.; Legendre, C. P.; Karakhanian, A.

    2016-12-01

    The Caucasus, including the mountains of Greater and Lesser Caucasus, is formed by the continental collision between Arabia and Eurasia. The crustal thickness for this region was mostly constrained by joint analysis of receiver functions and surface waves. Although the thickest value of 52 km was reported under the Lesser Caucasus, the resolution of earlier studies were often limited by sparse array. Large gradient across Moho also makes the definition of Moho difficult. Moreover, higher value of the Vp/Vs ratio is commonly reported in the northeastern Turkey but no estimates had been made for the Caucasus. To further investigate the detail structure around the Lesser Caucasus, we constructed a new seismic network in Georgia and Armenia. We also include other broadband stations to enhance the coverage. The average interval in the Lesser Caucasus is roughly 30 km, much denser than any previous experiments. We selected P-waveforms from teleseismic earthquakes during the operation (January 2012 - June 2016) to calculate receiver functions and then estimate the crustal thickness (H) and Vp/Vs ratio (k) with the H-k stacking technique. Our preliminary results show that Moho depth increases from 40 km under the northeastern Turkey to 50 km beneath northern Georgia, no station with Moho deeper than 50 km under the Lesser Caucasus. The Vp/Vs ratios in the northeastern Anatolian plateau are around 1.8, which is slightly higher than the average of global continents but consistent with the previous estimates. Further to the east, some stations show anomalously higher Vp/Vs ratio in central & southern Armenia that may be associated with Holocene volcanism. In the future, we plan to join locally measured dispersion curves to invert the velocity model without velocity-depth trade-off. We expect to resolve the velocity variations of the crust beneath this region in small scale that may be tied to the continental collision and surface volcanism. Keywords: Caucasus, receiver function, continental collision, volcanic plateau, crustal structure

  18. Crustal structure of the Kaapvaal craton and its significance for early crustal evolution

    NASA Astrophysics Data System (ADS)

    James, David E.; Niu, Fenglin; Rokosky, Juliana

    2003-12-01

    High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.

  19. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  20. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Barua, Bijoy Sonker; Uddin Khandaker, Mayeen; Kamal, Masud; Abdur Rashid, Md.; Abdul Sani, S. F.; Ahmed, H.; Nikouravan, Bijan; Bradley, D. A.

    2018-03-01

    Accurate quantification of naturally occurring radioactive materials in soil provides information on geological characteristics, possibility of petroleum and mineral exploration, radiation hazards to the dwelling populace etc. Of practical significance, the earth surface media (soil, sand and sediment) collected from the densely populated coastal area of Chittagong city, Bangladesh were analysed using a high purity germanium γ-ray spectrometer with low background radiation environment. The mean activities of 226Ra (238U), 232Th and 40K in the studied materials show higher values than the respective world average of 33, 36 and 474 Bq/kg reported by the UNSCEAR (2000). The deduced mass concentrations of the primordial radionuclides 238U, 232Th and 40K in the investigated samples are corresponding to the granite rocks, crustal minerals and typical rocks respectively. The estimated mean value of 232Th/238U for soil (3.98) and sediment (3.94) are in-line with the continental crustal average concentration of 3.82 for typical rock range reported by the National Council on Radiation Protection and Measurements (NCRP). But the tonalites and more silicic rocks elevate the mean value of 232Th/238U for sand samples amounting to 4.69. This indicates a significant fractionation during weathering or associated with the metasomatic activity in the investigated area of sand collection.

  1. Layered Crustal Anisotropy in the NE Tibetan Plateau Inferred from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Yang, Y.; Zheng, Y.

    2016-12-01

    The Tibetan Plateau is the highest and largest plateau in the world with an average elevation of 4-5 km and 60-70 km thick crust, about twice of the thickness of average continental crust. Two end-member models have bene invoked to explain the crustal thickening and the growth of the plateau: (1) continuous and uniform thickening of the whole crust and (2) mid/lower crustal channel flow. However, which mechanism dominates the crustal thickening and the growth of the plateau is still under hot debate. Seismic anisotropy can provide observational constraints on deformation mode, which would have distinguished pattern resulting from the two different thickening models. Thus, by studying seismic anisotropy, we can distinguish different models of crustal thickening and plateau growth. In this study, we employ an eikonal tomography method of ambient noise to investigate azimuthal anisotropy of Rayleigh waves in the NE Tibetan Plateau. Our tomography reveals significant anisotropy in the crust. In particular, stratification of crustal azimuthal anisotropy is observed: an upper crustal anisotropic layer characterized by a NE-SW fast direction and a mid/lower crustal anisotropic layer with a NNE-SSW fast direction. The dominantly NE-SW oriented anisotropy in the upper crust is likely caused by shape-preferred orientation (SPO) of faults and fractures in the shallow depths. The anisotropy in the mid/lower crust, however, is nearly orthogonal to that in the shallow crust, suggesting a different mechanism. The NNE-SSW fast direction coincides with the proposed flow direction by the crustal flow model in NE Tibetan Plateau, suggesting anisotropy in the mid/lower crust may be related to the crustal flow. The two-layered crustal stratigraphy observed in the NE Tibetan Plateau is contrary to the continuous thickening model, but favours the crustal flow model.

  2. Origin of peralkaline granites of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Radain, A. A. M.; Fyfe, W. S.; Kerrich, R.

    1982-01-01

    Small volumes of peralkaline granites were generated as the final phase of a Pan African calc-alkaline igneous event which built the Arabian Peninsula. The peralkaline granites are closely associated with trends or sutures related to ophiolites. Peralkaline rocks are chemically heterogeneous, with anomalous abundances of Zr (average 2,150 ppm±2,600 1σ), Y (200±190), and Nb (105±100), representing up to ten-fold enrichments of these elements relative to abundances in calc alkaline granite counterparts. Large enrichments of some rare earth elements and fluorine are also present. The peralkaline granites have scattered whole rock 18O values, averaging 8.7±0.6% in the Hadb Aldyaheen Complex and 10.7±1% in the Jabal Sayid Complex. Quartz-albite fractionations of 0.5 to 1.5% signify that the heavier whole rock δ-values probably represent the oxygen isotope composition of the peralkaline magma. Small variable enrichments of 18O, in conjunction with slightly elevated 87Sr/86Sr initial ratios relative to broadly contemporaneous calc alkaline granites, are both suggestive of a small degree of involvement of crustal, or crustal derived material in the peralkaline magmas. It is proposed that the peculiar magma genesis is associated with a relaxation event which followed continental collision and underthrusting of salt rich sediments.

  3. Thin Crust and High Crustal Vp/Vs beneath the Central Armenia Plateau of the Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Tseng, T. L.; Lin, C. M.; Huang, B. S.; Karakhanyan, A.

    2017-12-01

    Armenia volcanic highland is part of the Lesser Caucasus directly connected with the East Anatolian Plateau to the west and Iranian Plateau to the east. Abundant Quaternary volcanoes in Armenia are the youngest among those associated with post-collision of Arabia-Eurasian since Miocene ( 11 Ma). In this study, teleseismic receiver functions were analyzed from a temporary array to constrain the crustal structures under Armenia and the vicinity. The results show that the Moho depth is shallowest beneath central Armenia where the estimated crustal thickness is 32 km with high averaged crustal Vp/Vs of 1.8-2.0 using H-κ technique. The high crustal Vp/Vs is distributed in a wider area but thin crust is confined more locally around stratovolcano Aragats, whose last eruption was about 0.5 Ma. High crustal Vp/Vs value approaching to 2.1 is found near East of volcano Ghegam complex and NW of volcano Ararat with last dated ages of 0.5 and <0.1 Ma, respectively. Such high Vp/Vs (2.0) cannot be explained without high mafic content and the presence of partial melt in the crust. The 1-D velocity models inverted demonstrate that the partial melt is more likely in the low-velocity layer of the lower crust. To support the unusually thin crust in central Armenia, it requires additional thermal buoyancy in the uppermost mantle which is consistent with regionally low Pn velocity found in previous studies. We propose that the volcanism here is facilitated by the stretches of lithosphere.

  4. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments

    NASA Astrophysics Data System (ADS)

    Cole, Devon B.; Zhang, Shuang; Planavsky, Noah J.

    2017-10-01

    The enrichment and depletion of redox sensitive trace metals in marine sediments have been used extensively as paleoredox proxies. The trace metals in shale are comprised of both detrital (transported or particulate) and authigenic (precipitated, redox-driven) constituents, potentially complicating the use of this suite of proxies. Untangling the influence of these components is vital for the interpretation of enrichments, depletions, and isotopic signals of iron (Fe), chromium (Cr), uranium (U), and vanadium (V) observed in the rock record. Traditionally, a single crustal average is used as a cutoff for detrital input, and concentrations above or below this value are interpreted as redox derived authigenic enrichment or depletion, while authigenic isotopic signals are frequently corrected for an assumed detrital contribution. Building from an extensive study of soils across the continental United States - which upon transport will become marine sediments - and their elemental concentrations, we find large deviations from accepted crustal averages in redox-sensitive metals (Fe, Cr, U, V) compared to typical detrital tracers (Al, Ti, Sc, Th) and provide new estimates for detrital contributions to the ocean. The variability in these elemental ratios is present over large areas, comparable to the catchment-size of major rivers around the globe. This heterogeneity in detrital flux highlights the need for a reevaluation of how the detrital contribution is assessed in trace metal studies, and the use of confidence intervals rather than single average values, especially in local studies or in the case of small authigenic enrichments.

  5. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study

    NASA Astrophysics Data System (ADS)

    Farner, Michael J.; Lee, Cin-Ty A.

    2017-07-01

    The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas from being extracted; in the rare case that residual magmas can be extracted, they represent the very last melt fractions, which are highly silicic. When the crust is thick, cooling is slow, so intermediate melt fractions can readily segregate and erupt to the surface, where they cool and crystallize before highly silicic residual melts can be generated.

  6. Magmatic zircon Lu-Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia

    NASA Astrophysics Data System (ADS)

    Reid, Anthony J.; Payne, Justin L.

    2017-11-01

    New in situ zircon Lu-Hf isotopic data are presented from magmatic rocks distributed across the Gawler Craton, Australia. These rocks range in composition from granite to gabbro, with the majority being granite or granodiorite and moderately peraluminous in composition. The new Lu-Hf isotopic data, together with previously published data, provide insight into the magmatic evolution of the craton and crust and mantle interaction through time. Increased juvenile content of magmatic rocks correlate with periods of extensional tectonism, in particular basin formation and associated magmatism during the Neoarchean to earliest Paleoproterozoic (c. 2555-2480 Ma), Middle Paleoproterozoic (c. 2020-1710 Ma) and Late Paleoproterozoic (c. 1630-160 Ma). In contrast, magmatic rocks associated with periods of orogenic activity show greater proportions of crustal derivation, particularly the magmatic rocks generated during the c. 1730-1690 Ma Kimban Orogeny. The final two major magmatic events of the Gawler Craton at c. 1630-1604 Ma and c. 1595-1575 Ma both represent periods of juvenile input into the Gawler Craton, with εHf(t) values extending to as positive as + 8. However, widespread crustal melting at this time is also indicated by the presence of more evolved εHf(t) values to - 6.5. The mixing between crust and mantle sources during these two youngest magmatic events is also indicated by the range in two stage depleted mantle model ages (TDMc) between 1.76 Ga and 2.51 Ga. Significant mantle input into the crust, particularly during formation of the c. 1595-1575 Ma Hiltaba Suite and Gawler Range Volcanics, likely facilitated the widespread crustal magmatism of this time period. Viewed spatially, average εHf(t) and TDMc values highlight three of the major shear zones within the Gawler Craton as potentially being isotopic as well as structural boundaries. Differences in isotopic composition across the Coorabbie Shear Zone in the western Gawler Craton, the Middle Bore Fault in the northern Gawler Craton and, to a lesser extent, the Kalinjala Shear Zone in the southern Gawler Craton, broadly correspond to crustal and even lithospheric-scale discontinuities evident in geophysical studies. Therefore, these shear zones may approximate some of the first order crustal domains within the Gawler Craton.

  7. Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate

    NASA Astrophysics Data System (ADS)

    Ramstad, R.; Barbash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.

    2015-12-01

    Eight years (2007-2015) of ion flux measurements from Mars Express are used to empirically investigate the influence of the Martian crustal magnetic fields on the atmospheric ion escape rate. We combine ASPERA-3/IMA (Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer) measurements taken during nominal upstream solar wind and solar Extreme Ultraviolet (EUV) conditions to compute global average ion distribution functions for varying solar zenith angles (SZA) of the strongest crustal field. Escape rates are subsequently calculated from each of the average distribution functions. A statistically significant increase in escape rate is found for high dayside SZA, compared to low SZA.

  8. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  9. Martian interior structure models with different crustal density

    NASA Astrophysics Data System (ADS)

    Gudkova, T. V.; Zharkov, V. N.

    2007-08-01

    The information necessary to construct a model of Mars (observation data, a choice of a chemical model, a cosmogonic aspect of the problem) is discussed. We consider an interior structure model which comprises four submodels - a model of the outer porous layer, a model of the crust, a model of the mantle and a model of the core. The first 10-11 km layer is considered as an averaged transition from regolith to consolidated rock. The mineral composition of the crustal basaltic rock varies with depth because of the gabbro-eclogite phase transition. Mineralogical and seismic models of the Martian crust were constructed by numerical thermodynamic simulation by Babeiko and Zharkov (2000). For the obtained from this simulation densities at the crust-mantle boundary (about 3.3-3.4 g/cm3) a density contrast between the crust and the mantle is low enough. However, the joint interpretation of gravity and topography data assumes that there is a noticeable density jump at the crust-mantle boundary. As discussed by many authors a plausible range of bulk crustal densities is from 2.7 to 3.1 g/ cm3. It can be interpreted as either the composition of rocks at the surface of Mars is somewhat different than those of the Martian basaltic meteorites or a certain amount of crustal porosity might be expected if water (or some other substances) is present in the subsurface. Assuming a range of crustal densities (2.7-3.2 g/cm3) and the average thickness of the martian crust of 50 and 100 km we have recalculated a set of interior structure models of Mars to determine this effect on the other model parameters. The models are stronly constrained by new values of Love number k2 and the mean moment of inertia have been derived by Konopliv et al. (2006). The inferred radius of Martian core (from the Love number k2) is between 1700 and 1800 km. Keeping in mind that the estimated value of the correction introduced to the Love number k2 due to the inelasticity of the interior can be both somewhat higher (~ 0.005) or slightly lower (~ 0.003) we have the inferred model radius of Martian core between 1650 and 1830 km. As the radius of the core is increasing two tendencies are seen: the density of the core is decreasing and the Fe/Si weight ratio is approaching to its chondritic value 1.7. From cosmochemical point of view, it is difficult to assume that the core contains more than 20 wt % of sulfur. The radius of such core is about 1600 km. Therefore, if the core of Mars turns out to be larger, it should contain some light admixture elements.

  10. Osmium isotopes in Ivory Coast tektites: Confirmation of a meteoritic component and rhenium depletion

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shirey, Steven B.

    1993-01-01

    The sensitive negative thermal ionization mass spectrometry method was used for the measurement of concentrations and isotopic ratios of osmium and rhenium in four Ivory Coast tektites. These tektites have crustal major and trace element composition, as well as large negative epsilon(sub Nd)(-20) and positive epsilon(sub Sr)(+260 to +300) which are characteristic for old continental crust. Os concentrations ranging from 0.09 to 0.30 ppb were found, clearly much higher than average crustal values, Os-187/Os-186 ratios of about 1.2-1.7, and low Re-187/Os-186 ratios. These results show unambiguously the existence of a meteoritic component (on the order of 0.06%) in the Ivory Coast tektites. Low Re abundances are the result of fractionation of Re during the impact.

  11. Coal resources of the Alton, Utah, EMRIA site

    USGS Publications Warehouse

    Bowers, William E.; Aigen, A.A.; Landis, Edwin R.

    1976-01-01

    The estimated original identified coal resources of the Alton, Utah, EMRIA (Energy Minerals Rehabilitation Inventory and Analysis) site--an area of about 3.6 square miles (9.3 square kilometres)--total almost 49 million tons (45 megatonnes). A larger area that surrounds and includes the Alton EMRIA site proper contains estimated original identified coal resources of almost 309 million tons (281 megatonnes). Of these estimated resources in the EMRIA site proper, almost 27 million tons (25 megatonnes) are in beds more than 10 feet thick (3 metres); these beds are overlain by less-than 200 feet (60 metres) of overburden. In the larger area around and including the EMRIA site, about 88.5 million tons (81 megatonnes) are in beds more than ten feet (3 metres) thick with less than 200 feet (60 metres) of overburden. All the estimated resources are in the Smirl zone in the upper part of the Dakota Formation of Cretaceous age. The coal has an apparent rank of subbituminous B, an average heating value of about 9,560 Btu, an average sulfur content of about 1.0 percent, and an average ash content of 7.2 percent. When compared with the average abundance of elements in the crust of the Earth as a whole, only selenium and boron were present in the Alton area coal samples in amounts an order of magnitude greater than the average crustal abundance. Beryllium, fluorine, nickel, zinc, and zirconium are all present in the Alton area samples in amounts that are about an order of magnitude less than the average crustal abundance.

  12. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.

    2017-12-01

    In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.

  13. Estimating Crustal Properties Directly from Satellite Tracking Data by Using a Topography-based Constraint

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Sabaka, T. J.; Genova, A.; Mazarico, E. M.; Nicholas, J. B.; Neumann, G. A.; Lemoine, F. G.

    2017-12-01

    The crust of a terrestrial planet is formed by differentiation processes in its early history, followed by magmatic evolution of the planetary surface. It is further modified through impact processes. Knowledge of the crustal structure can thus place constraints on the planet's formation and evolution. In particular, the average bulk density of the crust is a fundamental parameter in geophysical studies, such as the determination of crustal thickness, studies of the mechanisms of topography support, and the planet's thermo-chemical evolution. Yet even with in-situ samples available, the crustal density is difficult to determine unambiguously, as exemplified by the results for the Gravity and Recovery Interior Laboratory (GRAIL) mission, which found an average crustal density for the Moon that was lower than generally assumed. The GRAIL results were possible owing to the combination of its high-resolution gravity and high-resolution topography obtained by the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO), and high correlations between the two datasets. The crustal density can be determined by its contribution to the gravity field of a planet, but at long wavelengths flexure effects can dominate. On the other hand, short-wavelength gravity anomalies are difficult to measure, and either not determined well enough (other than at the Moon), or their power is suppressed by the standard `Kaula' regularization constraint applied during inversion of the gravity field from satellite tracking data. We introduce a new constraint that has infinite variance in one direction, called xa . For constraint damping factors that go to infinity, it can be shown that the solution x becomes equal to a scale factor times xa. This scale factor is completely determined by the data, and we call our constraint rank-minus-1 (RM1). If we choose xa to be topography-induced gravity, then we can estimate the average bulk crustal density directly from the data (assuming uncompensated topography). We validate our constraint with pre-GRAIL lunar data, showing that we obtain the same bulk density from data, of much lower resolution than GRAIL's. We will present the results of our new methodology applied to the case of Mars. We will discuss the results, namely an average crustal density lower than generally assumed.

  14. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.

  15. Viscous relaxation of impact crater relief on Venus - Constraints on crustal thickness and thermal gradient

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Solomon, Sean C.

    1988-01-01

    Models for the viscous relaxation of impact crater topography are used to constrain the crustal thickness (H) and the mean lithospheric thermal gradient beneath the craters on Venus. A general formulation for gravity-driven flow in a linearly viscous fluid has been obtained which incorporates the densities and temperature-dependent effective viscosities of distinct crust and mantle layers. An upper limit to the crustal volume of Venus of 10 to the 10th cu km is obtained which implies either that the average rate of crustal generation has been much smaller on Venus than on earth or that some form of crustal recycling has occurred on Venus.

  16. Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate

    NASA Astrophysics Data System (ADS)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Nilsson, Hans; Holmström, Mats

    2016-10-01

    Eight years (2007-2015) of ion flux measurements from Mars Express are used to statistically investigate the influence of the Martian magnetic crustal fields on the atmospheric ion escape rate. We combine all Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer (ASPERA-3/IMA) measurements taken during nominal upstream solar wind and solar extreme ultraviolet conditions to compute global average ion distribution functions, individually for the north/south hemispheres and for varying solar zenith angles (SZAs) of the strongest crustal magnetic field. Escape rates are subsequently calculated from each of the average distribution functions. The maximum escape rate (4.2 ± 1.2) × 1024s-1 is found for SZA = 60°-80°, while the minimum escape rate (1.7 ± 0.6) × 1024s-1 is found for SZA = 28°-60°, showing that the dayside orientation of the crustal fields significantly affects the global escape rate (p = 97%). However, averaged over time, independent of SZA, we find no statistically significant difference in the escape rates from the two hemispheres (escape from southern hemisphere 46% ± 18% of global rate).

  17. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  18. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications

    USGS Publications Warehouse

    Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.

    2003-01-01

    Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.

  19. Crustal and upper mantle structure of the Hangay Dome, central Mongolia

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Meltzer, A.; Tsaagan, B.; Munkhuu, U.; Russo, R.; Souza, S.; Martin, P.

    2013-12-01

    The origin and support of high topography within continental interiors away from active tectonic margins remains a fundamental question in the dynamics and deformation of continents. The Hangay Dome in central Mongolia is one such region that is a broad regional uplift with average elevation of about 2 km, sitting between two large strike-slip faults, the Bulnay Fault to the north and the Gobi-Altay Fault to the south. Both of these faults are seismically active and have experienced M8+ earthquakes as recently as 1957. This portion of the Mongolian Plateau is approximately 300 km south of the Baikal Rift and located at the northern margin of the diffuse-deformation field in Central Asia, adjacent to the Siberian Craton. From previous research, the dynamic support of the Hangay Dome has been attributed to both crustal thickening and low density upper mantle material. However, seismic data leading to these interpretations have been limited to global tomographic models and sparse regional sampling of the wave field leaving the question unresolved. To address this major question in plate tectonic theory, in June 2012 a temporary IRIS/PASSCAL/University of Florida array of 72 seismic stations was deployed around the Hangay Dome to determine lithospheric structure in the region. Preliminary results from the first of two years of data are shown from receiver function analysis, ambient noise surface wave tomography, and teleseismic travel time residual analysis. Using teleseismic waveform records from over 300 earthquakes above M5.5 between 30 and 90 degrees epicentral distance, crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. At each station the bulk crustal Vp/Vs ratio is also determined with median value for the array of 1.77, perhaps indicating a more mafic composition crust in the region.Teleseismic P-wave travel time residuals generally diminish from south to north across the array consistent with thinning crust, however the depth resolution and magnitude of seismic wavespeed anomalies will be further explored with three-dimensional finite-frequency tomography. Constraints on crustal shear wave velocity from ambient noise surface wave tomography complement both the receiver function analysis and teleseismic tomography. Initial inversions of phase velocity dispersion curves in the central Hangay indicate an average crustal Vs of 3.6 km/s within the Hangay Dome, which translates to an average Vp of 6.4 km/s using Vp/Vs of 1.77. Further refinement of current analysis and an additional year of recording will reveal the first high resolution lithospheric scale model in the region.

  20. Average sedimentary rock rare Earth element patterns and crustal evolution: Some observations and implications from the 3800 Ma ISUA supracrustal belt, West Greenland

    NASA Technical Reports Server (NTRS)

    Dymek, R. F.; Boak, J. L.; Gromet, L. P.

    1983-01-01

    Rare earth element (REE) data is given on a set of clastic metasediments from the 3800 Ma Isua Supracrustal belt, West Greenland. Each of two units from the same sedimentary sequence has a distinctive REE pattern, but the average of these rocks bears a very strong resemblance to the REE pattern for the North American Shale Composite (NASC), and departs considerably from previous estimates of REE patterns in Archaean sediments. The possibility that the source area for the Isua sediments resembled that of the NASC is regarded as highly unlikely. However, REE patterns like that in the NASC may be produced by sedimentary recycling of material yielding patterns such as are found at Isua. The results lead to the following tentative conclusions: (1) The REE patterns for Isua Seq. B MBG indicate the existence of crustal materials with fractionated REE and negative Eu anomalies at 3800 Ma, (2) The average Seq. B REE pattern resembles that of the North American Shale Composite (NASC), (3) If the Seq. B average is truly representative of its crustal sources, then this early crust could have been extensively differentiated. In this regard, a proper understanding of the NASC pattern, and its relationship to post-Archaean crustal REE reservoirs, is essential, (4) The Isua results may represent a local effect.

  1. Seismic anisotropy of the crystalline crust: What does it tell us?

    USGS Publications Warehouse

    Rabbel, Wolfgang; Mooney, Walter D.

    1996-01-01

    The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.

  2. Continental crust

    USGS Publications Warehouse

    Pakiser, L.C.

    1964-01-01

    The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.

  3. Global lunar crust - Electrical conductivity and thermoelectric origin of remanent magnetism

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    An upper limit is placed on the average crustal conductivity from an investigation of toroidal (V x B) induction in the moon, using ten-minute data intervals of simultaneous lunar orbiting and surface magnetometer data. Crustal conductivity is determined as a function of crust thickness. For an average global crust thickness of about 80 km, the crust surface electrical conductivity is of the order of 1 hundred millionth mho/m. The toroidal-induction results lower the surface-conductivity limit obtained from poloidal-induction results by approximately four orders of magnitude. In addition, a thermoelectric (Seebeck effect) generator model is presented as a magnetic-field source for thermoremanent magnetization of the lunar crust during its solidification and cooling. Magnetic fields from 1000 to 10,000 gammas are calculated for various crater and crustal geometries. Solidified crustal material cooling through the iron Curie temperature in the presence of such ancient lunar fields could have received thermoremanent magnetization consistent with that measured in most returned lunar samples.

  4. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier

    2017-06-01

    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing < 20- 40% interstitial melt develops over a ∼105-yr timescale for basalt fluxes of 0.008 to 0.010 m3 /m2 /yr (∼0.0008 to ∼0.001 km3/yr injection rate) given extension rates at or below the current value of ∼0.01 m/yr (Brothers et al., 2009). These regions of partial melt are a natural consequence of a thermal regime that scales with average surface heat flow in the Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  5. Plume-driven plumbing and crustal formation in Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive upwelling. The observed crustal thickness of up to 46 km implies active fluxing of source material through the melt zone by the mantle plume at up to 3 times the passive rate.

  6. Lithospheric structure of the South China Sea and adjacent regions: Results from potential field modelling

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Fang, Jian; Cui, Ronghua

    2018-02-01

    This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.

  7. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  8. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Lester, M.; Cowley, S. W. H.; Eriksson, A. I.

    2008-08-01

    We use the data set from the magnetometer and electron reflectometer instruments on board the Mars Global Surveyor spacecraft to show that the crustal magnetic fields of Mars affect the location of the magnetic pileup boundary (MPB) and bow shock (BS) globally. We search for crossings of the MPB and BS in the data that were observed over the first 16 months of the mission. To identify the influence of the crustal magnetic fields, all crossings are extrapolated to the terminator plane in order to remove the solar zenith angle (SZA) dependence, and to make it possible to compare crossings independently of location. The MPB crossings that were observed over regions on Mars, which contain strong crustal magnetic fields, are on average located further out than crossings observed over regions with weak crustal fields. This is shown in three separate longitude intervals. We also find that the dayside BS crossings observed over the southern hemisphere of Mars are on average located further out than the BS crossings observed over the northern hemisphere, possibly because of the influence of the crustal fields. We also study the magnetic field strength and its variation at the inside of the MPB and their dependence on the SZA and altitude. We find that the magnitude of the magnetic field in the MPB is closely linked to the altitude of the MPB, with the magnitude increasing as the MPB is observed closer to the planet.

  9. Variations and controls on crustal thermal regimes in Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mather, Ben; McLaren, Sandra; Taylor, David; Roy, Sukanta; Moresi, Louis

    2018-01-01

    The surface heat flow field in Australia has for many years been poorly constrained compared to continental regions elsewhere. 182 recent heat flow determinations and 66 new heat production measurements for Southeastern Australia significantly increase our understanding of local and regional lithospheric thermal regimes and allow for detailed thermal modelling. The new data give a mean surface heat flow for Victoria of 71 ± 15 mW m- 2 which fits within the 61-77 mW m- 2 range reported for Phanerozoic-aged crust globally. These data reveal three new thermally and compositionally distinct heat flow sub-provinces within the previously defined Eastern Heat Flow Province: the Delamerian heat flow sub-province (average surface heat flow 60 ± 9 mW m- 2); the Lachlan heat flow sub-province (average surface heat flow 74 ± 13 mW m- 2); and the Newer Volcanics heat flow sub-province (average surface heat flow 72 ± 16 mW m- 2) which includes extreme values that locally exceed 100 mW m- 2. Inversions of reduced heat flow and crustal differentiation find that the Delamerian sub-province has experienced significant crustal reworking compared to the Lachlan and Newer Volcanics sub-provinces. The latter has experienced volcanism within the last 8 Ma and the degree of variability observed in surface heat flow points (up to 8 mW m- 2 per kilometre laterally) cannot be replicated with steady-state thermal models through this sub-province. In the absence of a strong palaeoclimate signal, aquifer disturbances, or highly enriched granites, we suggest that this high variability arises from localised transient perturbations to the upper crust associated with recent intraplate volcanism. This is supported by a strong spatial correlation of high surface heat flow and known eruption points within the Newer Volcanics heat flow sub-province.

  10. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  11. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng

    2017-05-01

    We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.

  12. High Resolution Analysis of Dyke Tips and Segments, Using Drones

    NASA Astrophysics Data System (ADS)

    Dering, G.; Micklethwaite, S.; Cruden, A. R.

    2016-12-01

    We analyse outstanding exposures of dykes from both coastal (Western Australia) and high altitude glacier-polished (Sierra Nevada, California) outcrops, representing intrusion at shallow upper-crustal and mid-crustal conditions respectively. We covered 10,000 m^2 of outcrop area sampling the ground at a scale of 3-5 mm per pixel. Using Structure-from-Motion photogrammetry from ground-based and UAV photographs lacking GPS camera positions (>500 images per study), we generated and calibrated a 3D geometry of dense point clouds by selectively using 25-30 ground control points measured by high precision GPS (40-90 mm error). Ground control points used in the photogrammetric model building process typically yielded a root mean square error (RMSE) of 5 cm. Half the ground control points were withheld from the model building process and when they were compared against the model they yielded RMSE values only 6-10% higher than the points used for georeferencing, suggesting good internal consistency of the dataset and accuracy relative to the reference frame, at least for the purposes of this study. The structural orientations of the dykes and associated fractures were then extracted digitally using the iterative Random Sample Consensus method (RANSAC) and least-squares plane fitting. Furthermore, fracture intensity relative to dykes was measured along a series of scanlines and the running average and variance calculated. All results were compared against field measurements. Results show fracture intensity increases toward the dykes in the shallow crustal examples (West Australia) but no such fractures exist around the mid-crustal (Californian) dykes. Despite this there is a remarkable uniformity of geometry, and by implication process, between the two dyke sets. In order to extract full value from the big visual data now available to us, the near-future requires dedicated research into software solutions for expert-driven, semi-automatic mapping of geology and structure.

  13. Strain rates, stress markers and earthquake clustering (Invited)

    NASA Astrophysics Data System (ADS)

    Fry, B.; Gerstenberger, M.; Abercrombie, R. E.; Reyners, M.; Eberhart-Phillips, D. M.

    2013-12-01

    The 2010-present Canterbury earthquakes comprise a well-recorded sequence in a relatively low strain-rate shallow crustal region. We present new scientific results to test the hypothesis that: Earthquake sequences in low-strain rate areas experience high stress drop events, low-post seismic relaxation, and accentuated seismic clustering. This hypothesis is based on a physical description of the aftershock process in which the spatial distribution of stress accumulation and stress transfer are controlled by fault strength and orientation. Following large crustal earthquakes, time dependent forecasts are often developed by fitting parameters defined by Omori's aftershock decay law. In high-strain rate areas, simple forecast models utilizing a single p-value fit observed aftershock sequences well. In low-strain rate areas such as Canterbury, assumptions of simple Omori decay may not be sufficient to capture the clustering (sub-sequence) nature exhibited by the punctuated rise in activity following significant child events. In Canterbury, the moment release is more clustered than in more typical Omori sequences. The individual earthquakes in these clusters also exhibit somewhat higher stress drops than in the average crustal sequence in high-strain rate regions, suggesting the earthquakes occur on strong Andersonian-oriented faults, possibly juvenile or well-healed . We use the spectral ratio procedure outlined in (Viegas et al., 2010) to determine corner frequencies and Madariaga stress-drop values for over 800 events in the sequence. Furthermore, we will discuss the relevance of tomographic results of Reyners and Eberhart-Phillips (2013) documenting post-seismic stress-driven fluid processes following the three largest events in the sequence as well as anisotropic patterns in surface wave tomography (Fry et al., 2013). These tomographic studies are both compatible with the hypothesis, providing strong evidence for the presence of widespread and hydrated regional upper crustal cracking parallel to sub-parallel to the dominant transverse failure plane in the sequence. Joint interpretation of the three separate datasets provide a positive first attempt at testing our fundamental hypothesis.

  14. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  15. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.

  16. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.

  17. Relationship Between Earthquake b-Values and Crustal Stresses in a Young Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wu, Yih-Min; Chen, Sean Kuanhsiang; Huang, Ting-Chung; Huang, Hsin-Hua; Chao, Wei-An; Koulakov, Ivan

    2018-02-01

    It has been reported that earthquake b-values decrease linearly with the differential stresses in the continental crust and subduction zones. Here we report a regression-derived relation between earthquake b-values and crustal stresses using the Anderson fault parameter (Aϕ) in a young orogenic belt of Taiwan. This regression relation is well established by using a large and complete earthquake catalog for Taiwan. The data set consists of b-values and Aϕ values derived from relocated earthquakes and focal mechanisms, respectively. Our results show that b-values decrease linearly with the Aϕ values at crustal depths with a high correlation coefficient of -0.9. Thus, b-values could be used as stress indicators for orogenic belts. However, the state of stress is relatively well correlated with the surface geological setting with respect to earthquake b-values in Taiwan. Temporal variations in the b-value could constitute one of the main reasons for the spatial heterogeneity of b-values. We therefore suggest that b-values could be highly sensitive to temporal stress variations.

  18. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin

    USGS Publications Warehouse

    Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S.

    2006-01-01

    The 1000-km-long Darlag-Lanzhou-Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4??km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3??km/s are 0.15??km/s lower than the worldwide average of 6.45??km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4??km/s and only 0.5??km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38??km as the crustal thickness increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino-Korean and Gobi Ala Shan platforms. ?? 2006.

  19. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.

    1984-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  20. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is characterized by primitive mantle-like ɛHf values and very low δ18O values, between 0‰ and -1‰. We conclude that the J-P Desert magmas were assembled from multiple batches of magmas in the shallow crust that had melted and mixed with varying degrees of ancient continental crust of normal δ18O composition and another crustal component that was younger, had undergone considerable hydrothermal alteration, and had ɛNd and ɛHf near 0. The lack of pre-Miocene ages in all analyzed zircons implies thermal resorption of ancient zircons above the zircon saturation temperature, assuming the local crust contained zircon. The source of this hydrothermally altered component is likely related to the hotspot, because low-δ18O magmas occur throughout the hotspot track, despite differences in the local geology. After these diverse magma batches had cooled and formed new zircons, they extensively mixed, forming final giant magma chambers which subsequently erupted. We suggest that this shallow batch-assembly and crustal assimilation is a common feature of large silicic magma systems, made easily resolvable here due to the eruptions' location along the boundary between two extremely distinct types of shallow continental crust.

  1. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are consistent with crystal fractionation processes and do not necessarily require bulk interaction with crustal rocks. Enrichment in d80 but not in 87Sr/86Sr in one suite of evolved lavas suggests that crustal contamination may not be essential to the petrogenesis of those lavas. Other suites of evolved lavas display large variations in 87Sr/86Sr that reflect at least some selective contamination with 87St. Bulk solid/liquid oxygen-isotope fractionation factors (a's) calculated for the evolved lavas from Craters of the Moon National Monument are comparatively large. These a's are dependent upon the nature and proportions of phases removed by crystal fractionation; basaltic lava a's differ from latitic lava a?s in accordance with different phenocryst assemblages in these rocks. Snake River Plain rhyolites are isotopically distinct from both the analyzed crustal xenoliths and olivine tholeiites. Their origin remains poorly understood, but crustal or sub-crustal sources may be viable. In the first case, they must be derived by anatexis of material distinct from the analyzed crustal xenoliths. In the second case, they must be derived from material unlike the source for tholeiites. No cogenetic relation with the tholeiites seems likely on the basis of available data. that might relate to the variation in the chemical petrology of the pluton.

  2. Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1981-01-01

    While the preliminary magnetic anomaly map for the centra midcontinent is only in the hand-drawn stage, it agrees in broad aspects with the preliminary global MAGSAT map provided by NASA. Because of data evaluation and finer scale averaging, there are more detailed features which hold promise for eventual geological/crustal interpretation. Some current analysis is directed at examining whether a map data feature such as an elongated anomaly or trend, which seems parallel to satellite data tracks, is likely of crustal origin or is an artifact of the data set.

  3. Crustal deformation characteristics of Sichuan-Yunnan region in China on the constraint of multi-periods of GPS velocity fields

    NASA Astrophysics Data System (ADS)

    Yue, Caiya; Dang, Yamin; Dai, Huayang; Yang, Qiang; Wang, Xiankai

    2018-04-01

    In order to obtain deformation parameters in each block of Sichuan-Yunnan Region (SYG) in China by stages and establish a dynamic model about the variation of the strain rate fields and the surface expansion in this area, we taken the Global Positioning System (GPS) sites velocity in the region as constrained condition and taken advantage of the block strain calculation model based on spherical surface. We also analyzed the deformation of the active blocks in the whole SYG before and after the Wenchuan earthquake, and analyzed the deformation of active blocks near the epicenter of the Wenchuan earthquake in detail. The results show that, (1) Under the effects of the carving from India plate and the crimping from the potential energy of Tibetan Plateau for a long time, there is a certain periodicity in crustal deformation in SYG. And the period change and the earthquake occurrence have a good agreement. (2) The differences in GPS velocity fields relative Eurasian reference frame shows that the Wenchuan earthquake and the Ya'an earthquake mainly affect the crustal movement in the central and southern part of SYG, and the average velocity difference is about 4-8 mm/a for the Wenchuan earthquake and 2-4 mm/a for the Ya'an earthquake. (3) For the Wenchuan earthquake, the average strain changed from 10 to 20 nanostrian/a before earthquake to 40-50 nanostrian/a after the earthquake, but before and after the Ya'an earthquake, the strain value increased from about 15 nanostrian/a to about 30 nanostrian/a. (4) The Wenchuan earthquake has changed the strain parameter of each active block more or less. Especially, the Longmen block and Chengdu block near the epicenter. The research provides fundamental material for the study of the dynamic mechanism of the push extrusion from the north-east of the India plate and the crimp from Qinghai Tibet Plateau, and it also provides support for the study of crustal stress variation and earthquake prediction in Sichuan Yunnan region.

  4. Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.

    2012-04-01

    Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.

  5. Depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific from PP precursors

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Wölbern, I.; Rümpker, G.

    2009-06-01

    We investigate depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific which serve as examples for a continental and an oceanic region, respectively. The depths are derived from travel-time differences between the PP-phase and its precursors that are reflected at the discontinuities. After accounting for differences in average crustal thickness, we find that the depth of the ‘410’ is rather uniform but larger than expected beneath both regions with a value of approximately 418 km. Signals from the ‘520’ are slightly less pronounced. However, while the average depth of the ‘520’ beneath Asia is about 519 km, we obtain a value of about 531.5 km for the Pacific. Here, the depression of the discontinuities can be explained in view of thermal anomalies in relation to mantle plumes. For Asia, however, the observations seem to require a more complex pattern of thermal anomalies possibly complemented by variations in chemical composition.

  6. Age, compositional, and isotopic evidence for crustal recycling in a Late Archean arc, Beartooth Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooden, J.L.; Mueller, P.A.; Graves, M.A.

    1985-01-01

    Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less

  7. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.

    2013-12-01

    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  8. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  9. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data

    USGS Publications Warehouse

    Zhang, Z.; Bai, Z.; Mooney, W.; Wang, C.; Chen, X.; Wang, E.; Teng, J.; Okaya, N.

    2009-01-01

    We present active-source seismic data recorded along a 300??km-long profile across the Three Gorges area of the western Yangtze platform, central China. From west to east, the profile crosses the Zigui basin, Huangling dome and Jianghan basin. The derived crustal P-wave velocity structure changes significantly across the Tongchenghe fault that lies at the transition from the Huangling dome to the Jianghan basin. West of the Tongchenghe fault, beneath the Zigui basin and the Huangling dome, we observe a ~ 42??km thick crust of relatively low average velocity (6.3-6.4??km/s). In contrast, east of the Tongchenghe fault, beneath the Jianghan basin, the crust is only 30??km thick and has a high average velocity (6.6-6.7??km/s). A west-east variation in crustal composition along the Tongchenghe fault is also inferred. West of the fault, P-wave velocities suggest a felsic composition with an intermediate layer at the base of the crust, whilst, east of the fault, felsic, intermediate, and mafic crustal layers are apparent. Our results suggest that the crust beneath the Jianghan basin has been thinned by rifting, accompanied by intrusion of the lower crust by mafic dikes and sills. The west-to-east division of the crust in the Three Gorges area coincides with first-order geophysical contrasts in gravity, topography, crustal and lithospheric thickness. ?? 2009 Elsevier B.V.

  10. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Tatar, M.; Nasrabadi, A.

    2013-10-01

    Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and has only started recently.

  11. Limitations of quantitative analysis of deep crustal seismic reflection data: Examples from GLIMPCE

    USGS Publications Warehouse

    Lee, Myung W.; Hutchinson, Deborah R.

    1992-01-01

    Amplitude preservation in seismic reflection data can be obtained by a relative true amplitude (RTA) processing technique in which the relative strength of reflection amplitudes is preserved vertically as well as horizontally, after compensating for amplitude distortion by near-surface effects and propagation effects. Quantitative analysis of relative true amplitudes of the Great Lakes International Multidisciplinary Program on Crustal Evolution seismic data is hampered by large uncertainties in estimates of the water bottom reflection coefficient and the vertical amplitude correction and by inadequate noise suppression. Processing techniques such as deconvolution, F-K filtering, and migration significantly change the overall shape of amplitude curves and hence calculation of reflection coefficients and average reflectance. Thus lithological interpretation of deep crustal seismic data based on the absolute value of estimated reflection strength alone is meaningless. The relative strength of individual events, however, is preserved on curves generated at different stages in the processing. We suggest that qualitative comparisons of relative strength, if used carefully, provide a meaningful measure of variations in reflectivity. Simple theoretical models indicate that peg-leg multiples rather than water bottom multiples are the most severe source of noise contamination. These multiples are extremely difficult to remove when the water bottom reflection coefficient is large (>0.6), a condition that exists beneath parts of Lake Superior and most of Lake Huron.

  12. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    NASA Astrophysics Data System (ADS)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is <4.8km thick designated as thin crust, and 60.99% is 4.8-9.8km thick as normal crust. The remaining 18.70% is >9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  13. The growth of continents and some consequences since 1.5 Ga

    NASA Technical Reports Server (NTRS)

    Howell, David G.

    1988-01-01

    The budget of Earth's oceanic sediment masses was discussed in terms of crustal growth and recycling. Based on estimates of the volume of oceanic sediments and the average age of oceanic crust, a continental denudation rate of 1.65 cu km/yr was computed. This crudely balances estimated crustal production rates of about 1 cu km/yr, but the efficiency of sediment loss via subduction, for example, must be considered. It was argued, on the basis of earthquake focal solutions, imagery of subduction zones, and plate kinematic reconstructions that little, if any, sediment was lost in this way. This yields a present day crustal growth rate of about 1 cu km/yr. The volume of continents to 1.5 Ga ago was discussed, assuming constant continental thickness and freeboard, and a constant hydrosphere volume. It was concluded that ocean ridge length was a factor of about 1.75 greater 1.5 Ga ago, but a major uncertainty is the average spreading rate in the past.

  14. Thickening the outer margins of the Tibetan Plateau: The role of crustal shortening

    NASA Astrophysics Data System (ADS)

    Lease, R. O.; Burbank, D. W.

    2012-12-01

    One of the most direct consequences of the collision of two buoyant continents is large-scale crustal thickening that results in the upward and outward growth of high terrain. As the stronger Indian continent has collided with weaker Asia over at least the past 50 Myr, widespread crustal thickening has occurred over an area that is approximately 2.5 million km^2 at present. The resultant Tibetan crust is the thickest observed on Earth today with an average thickness of 65 km and a maximum that may reach 90 km in places. The mechanisms by which Tibetan crust has thickened, however, as well as the timing and distribution of these mechanisms across the plateau, remain debatable. Two of the most popular mechanisms for thickening the crust beneath the margins of the Tibetan Plateau are: 1) pure shear with faulting and folding in the upper crust and horizontal shortening below; and 2) flow and inflation of lower or middle crust without significant shortening of the upper crust. To help discriminate between the relative contributions of these two mechanisms, well-constrained estimates of upper crustal shortening are needed. Here we document the Cenozoic shortening budget across the northeastern Tibetan Plateau margin near 36°N 102.5°E with several 100- to 145-km-long balanced cross sections. Thermochronological and magnetostratigraphic data indicate that modest NNE-SSW shortening began in middle Eocene time, shortly after initial India-Asia collision. Accelerated east-west shortening, however, did not commence until ~35 Myr later. A five-fold acceleration in shortening rates in middle Miocene-to-Recent time accounts for more than half of the total Cenozoic crustal shortening and thickening in this region. Overall, the balanced cross sections indicate 11 ± 2 % east-west shortening since middle Miocene time, and ~9 ± 2 % NNE-SSW shortening between middle Eocene and middle Miocene times. Given the present-day crustal thickness of 56 ± 4 km in northeastern Tibet, crustal restorations that remove Cenozoic shortening suggest that the northeastern Tibetan crust was 45 ± 5 km thick prior to India-Asia continental collision. This pre-collision thickness estimate is equivalent to average continental crustal thicknesses both adjacent to the Tibetan plateau (44 ± 4 km) and globally (41 ± 6 km) and suggests that pure shear alone may account for Cenozoic crustal thickening in northeastern Tibet, obviating the need for lower crustal flow. Furthermore, a growing number of balanced cross sections across the margins of the Tibetan Plateau document Cenozoic shortening sufficient to generate modern crustal thicknesses: in northern Tibet [Yin et al., 2007; 2008a; 2008b], eastern Tibet [Hubbard et al., 2009; 2010], and northeastern Tibet [this work]. Collectively, these similar findings suggest that lower crustal flow is either unnecessary to account for Cenozoic crustal thickening beneath the outer margins of the Tibetan Plateau or, alternatively, has a more restricted role than originally proposed.

  15. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    USGS Publications Warehouse

    Hanks, T.C.

    1977-01-01

    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  16. Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.

    PubMed

    Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S

    2016-02-01

    Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  17. Using Ancient Glacial Diamictites to Track the Compositional Evolution of the Upper Continental Crust

    NASA Astrophysics Data System (ADS)

    Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.; Kaufman, A. J.; Valley, J. W.; Hu, Z.; Gao, S.

    2014-12-01

    V.M. Goldschmidt (1933) first suggested the use of Quaternary glacial till and loess to determine the average composition of the upper continental crust (UCC). We extend this approach back in time through the geochemical study of glacial diamictites from intervals of continental glaciation in the Paleozoic, Neoproterozoic, Paleoproterozoic, and Mesoarchean. The diamictites record fundamental changes in the bulk composition of UCC through time, with the largest change occurring at the end of the Archean. Post-Archean diamictites have progressively lower Eu/Eu* and concentrations of 1st row transition metals (Sc, Cr, V, Ni, Co) and higher Th and U concentrations. δ18O whole-rock values steadily increase through the Precambrian, with average values of 6.0 ± 1.6, 8.3 ± 0.4, 12.3 ± 0.9 per mil for the Mesoarchean, Paleoproterozoic, and Neoproterozoic, respectively. All of these trends are consistent with production of a progressively more evolved UCC, which may reflect changes in the composition of primary crustal melts, as well as a change in the nature of intracrustal differentiation. Subtle increases in Lu/Hf through time imply the continual addition of juvenile crust from an increasingly depleted mantle reservoir, consistent with continuous continental growth rather than an Armstrong-like no-growth model, and suggesting that intracrustal differentiation is unlikely to be the sole driver of the other trends. In addition to these uni-directional trends, Paleoproterozoic diamictites, which are dominated by 2.8 to 2.6 Ga provenance, show unique chemical characteristics (e.g., lowest Nb/Ta and highest La/Lu and Th/Nb). These features may reflect a distinctive geodynamic setting for the Neoarchean period, which was arguably the largest pulse of crustal growth in Earth's history and was also accompanied by widespread cratonization.

  18. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  19. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  20. Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals

    NASA Astrophysics Data System (ADS)

    Johansen, Anne M.; Hoffmann, Michael R.

    2003-07-01

    Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 μg m-3. An additional crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m-3 and averaged 9.8 ± 3.4 ng m-3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter-monsoon and southwest monsoon of 1995.

  1. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  2. A Geophysical Model for the Origin of Volcano Vent Clusters in a Colorado Plateau Volcanic Field

    NASA Astrophysics Data System (ADS)

    Deng, Fanghui; Connor, Charles B.; Malservisi, Rocco; Connor, Laura J.; White, Jeremy T.; Germa, Aurelie; Wetmore, Paul H.

    2017-11-01

    Variation in spatial density of Quaternary volcanic vents, and the occurrence of vent clusters, correlates with boundaries in Proterozoic crust in the Springerville volcanic field (SVF), Arizona, USA. Inverse modeling using 538 gravity measurements shows that vent clusters correlate with gradients in the gravity field due to lateral variation in crustal density. These lateral discontinuities in the crustal density can be explained by boundaries in the North American crust formed during Proterozoic accretion. Spatial density of volcanic vents is low in regions of high-density Proterozoic crust, high in areas of relatively low density Proterozoic crust, and is greatest adjacent to crustal boundaries. Vent alignments parallel these boundaries. We have developed 2-D and 3-D numerical models of magma ascent through the crust to simulate long-term, average magma migration that led to the development of vent clusters in the SVF, assuming that a viscous fluid flow through a porous media is statistically equivalent to magma migration averaged over geological time in the full field scale. The location and flux from the uniform magma source region are boundary conditions of the model. Changes in model diffusivity, associated with changes in the bulk properties of the lithosphere, can simulate preferential magma migration paths and alter estimated magma flux at the surface, implying that large-scale crustal structures, such as inherited tectonic block boundaries, influence magma ascent and clustering of volcanic vents. Probabilistic models of volcanic hazard for distributed volcanic fields can be improved by identifying crustal structures and assessing their impact on volcano distribution with the use of numerical models.

  3. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    NASA Technical Reports Server (NTRS)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  4. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex

    NASA Astrophysics Data System (ADS)

    Tang, Li; Santosh, M.; Tsunogae, Toshiaki; Teng, Xue-Ming

    2016-04-01

    The Fuping, Wutai, and Hengshan Complexes in the North China Craton preserve imprints of widespread late Neoarchean magmatism. Here, we report results from systematic petrology, mineral chemistry, whole-rock major, trace and platinum-group element geochemistry, zircon U-Pb geochronology and Hf-O isotopes from the Yangmuqiao mafic-ultramafic intrusion and coeval tonalite-trondhjemite-granodiorite (TTG) gneiss from the Fuping Complex. The mafic-ultramafic intrusion is composed of pyroxene hornblendites, hornblendites, and minor harzburgites. The salient geochemical features of the mafic-ultramafic intrusion and the Fuping TTG gneiss display subduction-related island arc signature, such as fractionated REE patterns with elevated LREE, enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. The chemistry of the clinopyroxene and chromite in the pyroxene hornblendites shows affinity with Alaskan-type mafic-ultramafic intrusions. Zircons from the pyroxene hornblendite yield weighted mean 207Pb/206Pb age of 2514 ± 15 Ma, and those in the Fuping TTG gneiss show mean age of 2513 ± 13 Ma. Zircon Hf and O isotopic compositions are used as magma source and crustal evolution indicators. Zircon grains in the pyroxene hornblendite display positive εHf(t) values (2.6-6.7), Neoarchean TDM (2570-2723 Ma), and their δ18O values vary from 3.8‰ to 7.0‰ (average 6.2‰). Zircons in the TTG gneiss show εHf(t) values in the range of - 1.8 to 4.9, TDM of 2637-2888 Ma, and δ18O values of 4.1‰-6.7‰ (average of 6.1‰). These results suggest that the parental magma of the late Neoarchean magmatism in the Fuping area was dominantly extracted from the depleted mantle and contaminated to different degrees by crustal components. The pyroxene hornblendites have obviously higher IPGE contents (ΣIPGE = 1.69-2.39 ppb) and lower Pd/Ir ratios (5.97-6.28) than those in the hornblendites (ΣIPGE = 0.56-0.72 ppb, Pd/Ir = 6.48-15.25), suggesting different compatibility of IPGE and PPGE during the fractional crystallization. The study area is located at the western segment of the Fuping Complex and the eastern periphery of the Wutai greenstone belt. We propose that the late Neoarchean arc magmatism recorded by the Yangmuqiao mafic-ultramafic intrusion and the Fuping TTG gneiss is related to the subduction-collision process of the Ordos and the Qianhuai microblocks along the zone of ocean closure represented by the Wutai greenstone belt.

  5. Initial Closure of the Neo-Tethys and Kinematics of the Arabian Crustal Shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, M.; Avouac, J. P.; Hassanzadeh, J.; Kirschvink, J. L.; Bahroudi, A.

    2017-12-01

    Exposed transition from passive margin to foreland basin sedimentation in the High Zagros provides chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. Magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture display that the top of the passive margin Asmari formation has an age of 28 - 29 Ma and is overlain by foreland deposits with a major hiatus. The base of the foreland deposits has an age of ca. 26 Ma in the western Zagros and 21.5 Ma in the eastern Zagros. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24±2 mm/yr since the collision. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27±2 Ma. Hence, the Arabia-Eurasia collision could not be the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. The average rate of shortening across the Zagros is estimated to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate. Palinspastic restoration of structural cross-sections and crustal volume conservation accounts for only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj-Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization.

  6. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    NASA Astrophysics Data System (ADS)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern hemisphere as crustal production fronts spread radially out from the plume center and as the newly created crust cools in the presence of a dynamo with polarity reversals.

  7. Quantifying precambrian crustal extraction: The root is the answer

    USGS Publications Warehouse

    Abbott, D.; Sparks, D.; Herzberg, C.; Mooney, W.; Nikishin, A.; Zhang, Y.-S.

    2000-01-01

    We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49 ?? 6 km and an average equivalent thickness of Proterozoic crust of 48 ?? 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65 ?? 6 km. and the average equivalent thickness of Early Proterozoic crust was 60 ?? 7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling - 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron-rich melt within the lithospheric root may represent some of the iron that is 'missing' from the lower crust. The lower crust within Archean cratons may also have an unexpectedly low iron content because it was extracted from more primitive, undepleted mantle. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Crustal structure beneath northeast India inferred from receiver function modeling

    NASA Astrophysics Data System (ADS)

    Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju

    2016-09-01

    We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.

  9. United States crustal thickness

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.; Schnetzler, C. C.

    1983-01-01

    The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.

  10. The Lunar Crust: Global Structure and Signature of Major Basins

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Lemoine, Frank G.

    1996-01-01

    New lunar gravity and topography data from the Clementine Mission provide a global Bouguer anomaly map corrected for the gravitational attraction of mare fill in mascon basins. Most of the gravity signal remaining after corrections for the attraction of topography and mare fill can be attributed to variations in depth to the lunar Moho and therefore crustal thickness. The large range of global crustal thickness (approx. 20-120 km) is indicative of major spatial variations in melting of the lunar exterior and/or significant impact-related redistribution. The 6l-km average crustal thickness, constrained by a depth-to-Moho measured during the Apollo 12 and 14 missions, is preferentially distributed toward the farside, accounting for much of the offset in center-of-figure from the center-of-mass. While the average farside thickness is 12 km greater than the nearside, the distribution is nonuniform, with dramatic thinning beneath the farside, South Pole-Aitken basin. With the global crustal thickness map as a constraint, regional inversions of gravity and topography resolve the crustal structure of major mascon basins to half wavelengths of 150 km. In order to yield crustal thickness maps with the maximum horizontal resolution permitted by the data, the downward continuation of the Bouguer gravity is stabilized by a three- dimensional, minimum-slope and curvature algorithm. Both mare and non-mare basins are characterized by a central upwarped moho that is surrounded by rings of thickened crust lying mainly within the basin rims. The inferred relief at this density interface suggests a deep structural component to the surficial features of multiring lunar impact basins. For large (greater than 300 km diameter) basins, moho relief appears uncorrelated with diameter, but is negatively correlated with basin age. In several cases, it appears that the multiring structures were out of isostatic equilibrium prior to mare emplacement, suggesting that the lithosphere was strong enough to maintain their state of stress to the present.

  11. The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada

    NASA Astrophysics Data System (ADS)

    Haugaard, Rasmus; Ootes, Luke; Creaser, Robert A.; Konhauser, Kurt O.

    2016-12-01

    Banded iron formations (BIF) have been extensively used as proxies to infer the chemical composition of ancient bulk seawater. However, their proximity to ancient crust suggests that they might also be used to reveal the composition of emergent continental landmass at the time of their deposition. Here we use the combination of geochemistry and Sm-Nd isotopes on a layer-by-layer basis to interpret the relative contributions of hydrothermal, hydrogenous and terrestrial input to one of the oldest documented Superior-type BIF in the world. The ∼2.85 Ga Central Slave Cover Group BIF is deposited within a rift basin related to a continental margin and is found associated with basement gneisses, as well as shoreline and shallow-shelf type facies, such as fuchsitic quartzite and pebble-to-cobble conglomerate, that confirm a near-shore depositional setting for the BIF. The BIF ranges from a pure chemical oxide (magnetite)-silicate (grunerite + actinolite) sediment with low Al2O3 (<1 wt.%) into a mixture of chemical and clastic sediment characterized by higher Al2O3 (⩽10 wt.%) and the occurrence of ferro-hornblende, biotite and garnet. The silica bands have low trace metal content (e.g., Ni), low ∑REE (average of 6 ppm) and a shale-normalized rare earth and yttrium (REY) pattern that is HREE-to-LREE enriched with (Pr/Yb)SN values reaching <0.2. The iron bands are more enriched, with average ∑REE of 26 and with a more uniform and less fractionated REY pattern (average (Pr/Yb)SN of 0.5). During active rifting of the basement, excess of Eu2+ impacted the basin yielding seawater with Eu anomalies [(Eu/Eu∗)SN] as high as 3.85 (average 2.75), larger than similarly-aged BIF. High-resolution geochemistry shows that there is more silica (19.4 wt.% SiO2) in the iron bands than iron (8.7 wt.% Fe2O3) in the silica bands, implying that dissolved Fe2+ came to the BIF site in pulses and that silica likely represents background deposition. Consistently radiogenic εNd(t) values for the iron bands (average +1.7) show that the dissolved REY in the source water during ferric iron precipitation was provided by submarine hydrothermal fluids with relatively uniform 143Nd/144Nd. The silica bands, by contrast, reveal high variation in seawater 143Nd/144Nd as evident from the bimodal εNd(t) distribution with one segment exhibiting negative εNd(t) values averaging -1.1 and another with positive εNd(t) values averaging +2.5. This suggests input of dissolved REY into the upper seawater from weathering of isotopically different crustal components in the source region. Collectively, we speculate that the low REY in the upper seawater and the overall low Ni content implies a highly weathered crustal surface that was unable to contribute a significant dissolved load to the shelf environment.

  12. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, E.J.; Barazangi, M.; Isacks, B.L.

    Topography and heterogeneous crustal structure have major effects on the propagation of regional seismic phases. We are collecting topographical, geological, and geophysical datasets for Eurasia into an information system that can be accessed via Internet connections. Now available are digital topography, satellite imagery, and data on sedimentary basins and crustal structure thicknesses. New datasets for Eurasia include maps of depth to Moho beneath Europe and Scandinavia. We have created regularly spaced grids of the crustal thickness values from these maps that can be used to create profiles of crustal structure. These profiles can be compared by an analyst or anmore » automatic program with the crustal seismic phases received along the propagation path to better understand and predict the path effects on phase amplitudes, a key to estimating magnitudes and yields, and for understanding variations in travel-time delays for phases such as Pn, important for improving regional event locations. The gridded data could also be used to model propagation of crustal phases in three dimensions. Digital elevation models, Satellite imagery, Geographic information systems, Lg Propagation, Moho, Geology, Crustal structure, Topographic relief.« less

  14. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  15. Moho depth across the Trans-European Suture Zone from P- and S-receiver functions

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, Brigitte; Krüger, Frank; Passeq Working Group

    2014-05-01

    The Mohorovičić discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal vP/vS ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30 km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal vP/vS ratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson's ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson's ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6 km for the most pronounced basins in the study area, while thicknesses of less than 4 km are found within the craton, central Germany and most of the Czech Republic.

  16. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    NASA Astrophysics Data System (ADS)

    Zha, Yang; Webb, Spahr C.

    2016-05-01

    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  17. Evaluating Crustal Contamination Effects on the Lithophile Trace Element Budget of Shergottites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Ferdous, J.; Peslier, A. H.

    2017-01-01

    The origin of the incompatible trace element (ITE) enriched compositions of shergottites has been a point of contention for decades [1-2]. Two scenarios have been proposed, the first is that enriched shergottite compositions reflect an ITE-enriched mantle source, whereas in the second, the ITE enrichment reflects crustal contamination of mantle-derived parent magmas. Evidence supporting the first scenario is that the ITE-enriched shergottite compositions are consistent with the outcomes of magma ocean crystallization [3], and that Os-Nd isotope relationships for shergottites cannot be explained by realistic crustal contamination models [4]. In contrast, Cl and S isotopes are consistent with shergottite magmas interacting with Mars crust [5,6], and ITE-enriched olivine-hosted melt inclusions and interstitial glass are found in depleted shergottite Yamato 980459 [7]. These findings indicate that some level of crustal interaction occurred but the question of whether ITE-enrichments in some bulk shergottites reflect crustal contamination remains open. Recently, a Mars crustal breccia meteorite has been found, NWA 7034 and its paired stones, that is our best analogue to an average of Mars ancient crust [8-10]. This allows for better constraints on crustal contamination of shergottite magmas. We modeled magma-crust mixing and assimilation-fractional crystallization (AFC) using ITE-depleted shergottite compositions and bulk NWA 7034 and its clasts as end-members. The results of these models indicate that crustal contamination can only explain the ITE-enriched compositions of some bulk shergottites under unusual circumstances. It is thus likely that the shergottite range of compositions reflects primarily mantle sources.

  18. It's Still Downhill From Tonopah to Las Vegas, but the Crust Doesn't Ride for Free

    NASA Astrophysics Data System (ADS)

    Pettit, M. M.; Schulte-Pelkum, V.; Sheehan, A.

    2008-12-01

    We investigate the crustal thickness in the central Basin and Range province of the western US. There is a gravity anomaly at 37 degrees N latitude at which the gravity increases ~100mgal from North to South over a distance of ~100 km. The majority of recent publications ascribe the gravity signal to a mantle influence based on observations of near constant crustal thickness in the area. However, Moho depth estimates are sparse in the area, and therefore higher gravity due to a thinner crust in the south is still a possible explanation to date. In order to determine Moho depths, we examined teleseismic receiver functions from broadband and short-period stations from 1993 to 2008 located within the region, including stations from the recent Earthscope Transportable Array deployment. We used a total of 11,751 high-quality receiver functions at 80 stations and picked arrival times of the Moho converted phase from backazimuthal and moveout stacks. Moho depths were determined from these arrival times using a fixed velocity model, as well as from forward modeling of moveout curves of the direct conversion as well as multiples. Our results confirm the presence of thinner crust south of 37N latitude. Assuming an average crustal velocity of 6.3 km/s and a Vp/Vs ratio of 1.732, we found an average crustal thickness between 33 and 34 km north of 37N, and roughly 27 km south of 37N. We also found an interesting pattern of thin crust trending NE from the southern tip of Nevada to approximately 38N, 245E. The findings indicate that a least part of the gravity signal is of crustal origin.

  19. Seismicity and active tectonics of the Andes and the origin of the Altiplano

    NASA Technical Reports Server (NTRS)

    Molnar, P.

    1982-01-01

    Large earthquakes and active deformation on the Andes were studied. Earthquakes on the east side of the Andes were generally found to reflect east-west crustal shortening. These earthquakes seem to occur throughout the crust and do not reflect a detachment and low angle thrusting of the sedimentary cover onto the Brazilian shield. Instead they imply deformation of the basement. The rate of shortening is compatible with construction of the Andes by crustal shortening since the late Cretaceous, and the surface geology, at least qualitatively, is considered to reflect this process. Andean margins are considered to be a result of crustal shortening. The crustal shortening in the sub-Andes occurs concurrently with normal faulting at high elevations in parts of the Andes. The normal faulting is associated with the buoyancy of the thick crust. Crustal shortening thickens the crust and work is done against gravity. When the crustal thickness and elevation reach limiting values, the range grows laterally by further thrusting on the margins.

  20. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes

    NASA Astrophysics Data System (ADS)

    El-Isa, Z. H.; Eaton, David W.

    2014-03-01

    Interpretation of the b-value of earthquake frequency-magnitude distributions has received considerable attention in recent decades. This paper provides a comprehensive review of previous investigations of spatial and temporal variations in b-value, including their classification and possible causes. Based on least-squares regression of seismicity data compiled from the NEIC, IRIS and ISC catalogs, we find an average value of 1.02 ± 0.03 for the whole Earth and its two hemispheres, consistent with the general view that in seismically active regions the long-term average value is close to unity. Nevertheless, wide-ranging b-variations (0.3 ≤ b ≤ 2.5) have been reported in the literature. This variability has been interpreted to arise from one or more of the following factors: prevailing stress state, crustal heterogeneity, focal depth, pore pressure, geothermal gradient, tectonic setting, petrological/environmental/geophysical characteristics, clustering of events, incomplete catalog data, and/or method of calculation. Excluding the latter, all of these factors appear to be linked, directly or indirectly, with the effective state of stress. Although time-dependent changes in b-value are well documented, conflicting observations reveal either a precursory increase or decrease in b value before major earthquakes. Our compilation of published analyses suggests that statistically significant b-variations occur globally on various timescales, including annual, monthly and perhaps diurnal. Taken together, our review suggests that b-variations are most plausibly linked with changes in effective stress.

  1. Use and abuse of crustal accretion calculations

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Cole, James C.; Stoeser, Douglas B.; Quick, James E.

    1990-01-01

    Recent attempts to calculate the average growth rate of continental crust for the Late Proterozoic shield of Arabia and Nubia are subject to large geological uncertainties, and widely contrasting conclusions result from dissimilar boundary conditions. The four greatest sources of divergence are (1) the extent of 620-920 Ma arc-terrane crust beneath Phanerozoic cover; (2) the extent of pre-920 Ma continental crust within the arc terranes; (3) the amount of postaccretion magmatic addition and erosion; and (4) the aggregate length and average life span of Late Proterozoic magmatic-arc systems that formed the Arabian-Nubian Shield. Calculations restricted to the relatively well known Arabian segment of the Arabian-Nubian Shield result in average crustal growth rates and arc accretion rates comparable to rates for modern arc systems, but we recognize substantial uncertainty in such results. Critical review of available geochemical, isotopic, and geochronological evidence contradicts the often stated notion that intact, pre-920 Ma crust is widespread in the eastern Arabian Shield. Instead, the arc terranes of the region apparently were "contaminated" with sediments derived, in part, from pre-920 Ma crust. Available geologic and radiometric data indicate that the Arabian-Nubian Shield and its "Pan-African" extensions constitute the greatest known volume of arc-accreted crust on Earth that formed in the period 920-620 Ma. Thus, the region may truly represent a disproportionate share of Earth's crustal growth budget for this time period.

  2. Correlated Geophysical, Geochemical and Volcanological Manifestations of Plume-Ridge Interaction Along the Galápagos Spreading Center, 90.5-98° W

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Detrick, R. S.; Canales, J. P.; Ito, G.; Behn, M.; Blacic, T.; Cushman, B.; Dixon, J.

    2001-12-01

    As the Galápagos plume is approached from the west along the Galápagos Spreading Center there are systematic increases in crustal thickness, and K/Ti and H2O content of recovered lavas. These increases correlate with progressive transitions from axial deep to axial high morphology along with decreases in axial depth, residual mantle Bouguer gravity anomaly (MBA), average swell depth, average lava Mg # (atomic MgO/(MgO+FeO)), and the frequency of isolated axial seamounts. Although K/Ti, H2O and Nb/Zr (likely indicators of plume source enrichment) show step-wise increases across the 95.5° W propagating offset, trends in crustal thickness, axial bathymetry, MBA, swell depth, and seamount frequency generally show either no effect or only local perturbations to regional trends. East of ~92.7° W, sharp increases in K/Ti, Nb/Zr, H2O, and Na8 (Na2O corrected for fractionation to 8 wt % MgO) coincide with the transition to axial high morphology, a rapid shoaling of axial magma chamber (AMC) seismic reflectors, and thinning of seismic layer 2A. Maximum values in K/Ti (>0.4), Nb/Zr (>0.10), H2O (>1.0 wt %), Na8 ( ~3.2) and crustal thickness (7.9 km), and minima in axial depth (<1700 m), Mg # (<40), and Ca8/Al8 (<0.7) all occur between 91.25° W and 92° W, whereas the minimum MBA (-25 mGal) and AMC depth ( ~0.5 sec 2-way travel time) are found near 92.25° W. These general correlations can be modeled by the combined effects of changes in source composition and melt generation processes on the thickness, composition and structure of the oceanic crust. Key elements of this model include: (1) compensation of the swell is partitioned between crustal thickening (2.3 km) between 98° W and 90.5° W [Ito et al., this meeting] and thermal and compositional buoyancy of the mantle [Canales et al., this meeting]; (2) increased melt production near the hotspot is associated with lower mean extents of melting from a larger region of an increasingly hydrous, and other incompatible element-enriched mantle [Cushman et al., this meeting]; and (3) higher magma supply results in stabilization of axial magma chambers at increasingly shallow crustal depths [Blacic et al., this meeting] and the dominance of fissure-fed rather than point-source volcanism. The hotspot-related effect of increased magma supply on axial morphology, AMC depth and volcanic style along this intermediate-spreading ridge is similar to that between slow and faster spreading mid-ocean ridges.

  3. New Marine Heat Flow measurements at the Costa Rica Rift, Panama Basin

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Kolandaivelu, K. P.; Gregory, E. P. M.; Alshafai, R.; Lowell, R. P.; Hobbs, R. W.

    2016-12-01

    We report new heat flow measurements collected along the southern flank of the Costa Rica ridge. This ridge flank has been the site of numerous seismic, heat flow, and ocean drilling experiments and has become an important type location for investigations of off-axis hydrothermal processes. These data were collected as part of an interdisciplinary NERC and NSF-funded collaboration entitled: Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR), to better understand links between crustal evolution, hydrothermal heat loss and the impact of this heat loss and fluid mass discharge on deep ocean circulation. The heat flow measurements are collocated with a newly acquired high-resolution seismic profile collected using a GI-gun source to image the sedimentary and upper crustal section. The profile is tied to ODP Hole 504B and provides robust estimates of the sediment thickness as well as its internal structure. In total five heat flow stations consisting of 67 new heat flow measurements were made, spanning crustal ages between 1.3 and 5.4 Myr. The full spreading rate of 66 mm/yr gives rise to abyssal hill basement relief between 500 and 250 m. Sediment cover is relatively incomplete in this region and varies between 0 and 290 m. The majority of heat flow values fall below half-space cooling models indicating that significant amounts of heat are removed by hydrothermal circulation. Low heat flow values are observed in sediment ponds between abyssal hill relief and high values are generally associated with ridge-ward dipping faults bounding abyssal hills. These faults are likely high permeability pathways where heated fluids are discharging, providing an example where large-scale faulting and block rotation plays a major role in ventilated ridge flank fluid circulation. The heat flow fraction (qobs/qpred) varies between varies between 0.01 and 4.1 and has a mean of 0.3 indicating that on average 70% of the expected heat is advected. The mass flux associated with this heat advection is 5 x 10-6 kg/m2-s assuming temperature discharge on the ridge flank is 10° C above ambient.

  4. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into heat flow values ranging from 90 to 150 mW/m2, if k values of 1.5 to 2.5 W/m°K (respectively) are assumed (the latter is average k value of the crust assumed for other world provinces, such as California). A ~150 mW/m2 heat flow value turns out to be similar to that observed in Tuscany and the Tyrrhenian Sea back-arc basin, as well as to values documented for active rifts and young oceans. Di Stefano et al. (2009) documented P wave velocities around 8 km/sec in the upper mantle of the Alps, suggesting the lack of shallow asthenosphere. Thus high heat flow of the Alps must be produced by radiogenic crust, instead of asthenospheric upwelling. A 600°C isotherm at ~10 km depth implies widespread melting at mid-lower crustal depths, considering the 60 km crustal thickness of the Alps. This is consistent with the very low P-wave velocities observed at 20-40 km depth beneath the chain by Di Stefano et al. (2009). When extrapolated to other orogens of the geological past, the thermal regime of the Alps may explain the extensive occurrence of intrusives exposed in eroded pre-Alpine orogens and cratons. Reference: Di Stefano, R., et al. (2009), J. Geophys. Res., 114, doi:10.1029/2008JB005641.

  5. Regional haze case studies in the southwestern U.S—I. Aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Macias, Edward S.; Zwicker, Judith O.; Ouimette, James R.; Hering, Susanne V.; Friedlander, Sheldon K.; Cahill, Thomas A.; Kuhlmey, Gregory A.; Richards, L. Willard

    Aerosol chemical composition as a function of particle size was determined in the southwestern U.S.A. during four weeks of sampling in June, July and December, 1979 as a part of project VISITA. Samples were collected at two ground stations about 80 km apart near Page (AZ) and in two aircraft flying throughout the region. Several different size separating aerosol samplers and chemical analysis procedures were intercompared and were used in determining the size distribution and elemental composition of the aerosol. Sulfur was shown to be in the form of water soluable sulfate, highly correlated with ammonium ion, and with an average [NH +4]/[SO 2-4] molar ratio of 1.65. During the summer sampling period, three distinct regimes were observed, each with a different aerosol composition. The first, 24 h sampling ending 30 June, was characterized by a higher than average value of light scattering due to particles (b sp) of 24 × 10 -6m-1 and a fine particulate mass ( Mf) of 8.5 μg m -1. The fine particle aerosol was dominated by sulfate and carbon. Aircraft measurements showed the aerosol was homogeneous throughout the region at that time. The second regime, 5 July, had the highest average bsp of 51 × 10 -6m -1 during the sampling period with Mf of 3.2 μgm -3. The fine particle aerosol had nearly equal concentrations of carbon and ammonium sulfate. For all three regimes, enrichment factor analysis indicated fine and coarse particle Cu, Zn, Cl, Br, and Pb and fine particle K were enriched above crustal concentrations relative to Fe, indicating that these elements were present in the aerosol from sources other than wind blown dust. Particle extinction budgets calculated for the three regimes indicated that fine particles contributed most significantly, with carbon and (NH 4) 2SO 4 making the largest contributions. Fine particle crustal elements including Si did not contribute significantly to the extinction budget during this study. The December sampling was characterized by very light fine particle loading with two regimes identified. One regime had higher fine mass and sulfate concentrations while the other had low values for all species measured.

  6. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the center of the LVC. Conversely, the ??18O values of the rhyodacitic rocks suggest that the continental crust in the melt generation zones beneath the LVC has been substantially modified by intrusion of mantle-derived basaltic magmas, with the degree of hybridization ranging on a molar oxygen basis from approximately 60% at distances up to 12 km from the center of the system to 97% directly beneath the focus region. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction-related basaltic magmas. ?? The Author 2008. Published by Oxford University Press. All rights reserved.

  7. Moho map of South America from receiver functions and surface waves

    NASA Astrophysics Data System (ADS)

    Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei

    2010-11-01

    We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.

  8. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  9. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Hong, Dawei; Zhang, Jisheng; Wang, Tao; Wang, Shiguang; Xie, Xilin

    2004-09-01

    Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic-Mesozoic granites in the Central Asian Orogenic Belt have commonly positive ɛNd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high- V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.

  10. Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire Plutonic Series

    NASA Astrophysics Data System (ADS)

    Lathrop, A. S.; Blum, Joel D.; Chamberlain, C. Page

    1996-07-01

    Nd, Sr and O isotope systematics were used to investigate the petrogenesis of two adjacent plutons of the Bethlehem Gneiss (BG) and the Kinsman Quartz Monzonite (KQM), exposed within the Central Maine Terrane (CMT) of New England. Both are Acadian-aged (≈413 Ma) synmetamorphic and syntectonic members of the New Hampshire Plutonic Series (NHPS). Potential source rocks analyzed for this study include Silurian and Devonian metasedimentary rocks of the CMT, and Ordovician metasedimentary rocks and granitic gneisses of the Bronson Hill Anticlinorium (BHA), which border the CMT to the west. The ɛSr(413), ɛNd(413) and δ18O values for the KQM range from 56.3 to 120.0, 2.8 to -6.4, and 7.6‰ to 12.9‰, respectively; values for the BG range from 7.4 to 144.7, 0.6 to -9.3, and 8.3‰ to 11.3‰, respectively; and values for possible source rocks range from 38.1 to 654.2, -10.7 to 5.4, and 6.2‰ to 14.1‰, respectively. Both the BG and KQM have extremely heterogeneous initial isotopic compositions consistent with mixing of multiple crustal source rocks, and neither contains a volumetrically significant (i.e., ≥10%) mantlederived component. Overlapping values of ɛNd(413), ɛSr(413) and δ18O values for both the BG and KQM samples resemble values for metasedimentary host rocks of the CMT and BHA. We observe no systematic correlations between ɛNd and ɛSr values for either the BG or the KQM. The ɛSr and δ18O values for the BG do not form any simple mixing trends, nor is there any direct correlation between the isotopic compositions of contact BG samples and their adjacent host rocks, in contrast to our observations for the KQM (Lathrop et al. 1994). We propose that the KQM and BG magmas were generated through anatexis of metasedimentary rocks from both the BHA and CMT in response to crystal thickening during the Acadian orogeny. Melting may have been initiated within CMT metasediments in response to high heat production in these mid-crustal rocks combined with crustal thickening, whereas melting of BHA rocks with normal crustal heat production, which were located at lower-crustal levels than CMT rocks, is likely to have been driven by crustal thickening alone. Following upward advection of mobile BHA magmas, BHA- and CMT-derived magmas may have mingled during complex Acadian deformation in the CMT, thus accounting for the isotopic similarities we observe between the BG and the KQM.

  11. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less

  12. Crustal displacements due to continental water loading

    USGS Publications Warehouse

    Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallee, D.; Larson, K.M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (??rM) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare ??rM with observed Global Positioning System (GPS) heights (??rO) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the ??rO time series are adjusted by ??rM, their variances are reduced, on average, by an amount equal to the variance of the ??rM. Of the ??rO time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the ??rM. The ??rM time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  13. Zircon oxygen isotopes reveal Ivrea-Verbano Zone source characteristics of the Sesia Valley Caldera

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Quick, J. E.; Sinigoi, S.; de Silva, S. L.

    2013-12-01

    The Sesia Valley, in the Italian Alpine foothills, contains >14 km diameter caldera adjacent to and structurally shallower than the famous Ivrea-Verbano Zone deep crustal section. The caldera and its associated eruptive sequence presents opportunity to explore volcanic magmatism in light of exposed and well characterized source candidates, namely lower crustal gabbros and the mid-crustal metasedimentary Kinzigite formation. Original geochemical characteristics of volcanic units have been obscured by the effects of subsequent hydrothermal alteration. The resistance of the mineral zircon to fluid alteration makes it a prime candidate for the preservation and exploration of these geochemical signals, such as O isotopes. Lower crustal gabbros in the Ivrea-Verbano Zone have broadly monotonic whole-rock δ18O values between +8 and +9‰VSMOW (Sinigoi et al., 1994). Kinzigites preserve a much higher and more heterogeneous δ18O values, typically ranging from +10‰ up to +15‰ (Baker, 1990). Zircons from the caldera-forming rhyolitic eruption units and a pre-caldera rhyodacitic unit were analyzed by ion microprobe at UCLA for in-situ oxygen isotope ratios. External reproducibility of within-mount standard R33 grains range from 0.27 to 0.36‰. Rhyolites from the caldera-forming eruption yield a range of δ18O(zircon) values from 6.3‰ to 8.3‰. This range displays rough correlation with CL activity - CL active grains have lower δ18O(zircon) values while CL dark grains have higher δ18O(zircon) values. This variation may correlate with U contents, which are notoriously low in zircons from Ivrea-Verbano Zone gabbros. We argue that the range in O isotope values suggests zircons are a good fit for magmas influenced by gabbro and Kinzigite sources. However, these zircons do not appear to be inherited directly from either the gabbro or Kinzigite sources as their O isotope signatures are typically intermediate between the two. The pre-caldera rhyodacite sample displays a much broader range of δ18O(zircon) values, from +6 to +10‰. These values, when corrected for melt-zircon isotopic fractionation, are an excellent match for mafic and felsic sources in the Ivrea-Verbano Zone. Thus, volcanic rocks of the Sesia Valley share spatial, temporal, and geochemical affinities for Ivrea-Verbano Zone sources, strengthening the body of evidence that the Sesia Valley Caldera represents the upper crustal portions of a complete crustal section contiguous with these mid- and lower-crustal Alpine exposures. These data demonstrate a difference in extent of hybridization of source signals in the rhyodacite (little homogenization) compared to the caldera-forming eruption (more homogenization). This suggests a record of variation in magmatic processes for precursor and climactic eruptions that is potentially related to the thermal maturation of the volcanic system and warrants additional study. Additional work on trace element concentrations, including Ti thermometry, on these grains will further elucidate these processes and their relationship to known zircon-bearing sources in the mid- to deep-crust of the Ivrea-Verbano Zone.

  14. Along Arc Structural Variation in the Izu-Bonin Arc and its Implications for Crustal Evolution Processes

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.

    2005-12-01

    A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental crust (6. 4 km/s), and a negative correlation between the thickness of the 6.0 - 6.7 km/s block and the average crustal seismic velocity is recognized. In conclusion, the continental-type of the crust efficiently grow at the Quaternary volcanoes along Izu arc, but even at those areas the bulk composition of the entire crustal section shows more mafic than a continental crust due to the uniformly existing high velocity lower crust. A delamination process may be necessary to form a continental crust form the Izu island arc crust

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M H; Nyblade, A A; Pasyanos, M E

    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African andmore » Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.« less

  16. Crustal properties of the northern Scandinavian mountains and Fennoscandian shield from analysis of teleseismic Receiver Functions

    NASA Astrophysics Data System (ADS)

    Mansour, Walid Ben; England, Richard W.; Fishwick, Stewart; Moorkamp, Max

    2018-04-01

    The presence of high mountains along passive margins is not unusual, as shown by their presence in several regions (Scandinavia, Greenland, East US, SW Africa, Brazil, West India and SE Australia). However, the origin of this topography is not well understood. The mountain range between the Scandinavian passive margin and the Fennoscandian shield is a good example. A simple Airy isostatic model would predict a compensating root beneath the mountains but existing seismic measurements of variations in crustal thickness do not provide evidence of a root of sufficient size to produce the necessary compensation. In order to better constrain the physical properties of the crust in northern Scandinavia two broadband seismic networks were deployed between 2007 and 2009 and between 2013 and 2014. A new map of crustal thickness has been produced from P-receiver function analysis of teleseismic data recorded at 31 seismic stations. The map shows an increase in crustal thickness from the Atlantic coast (38.7 +/- 1.8 km) to the Gulf of Bothnia (43.5 +/- 2.4 km). This gradient in thickness demonstrates that the Moho topography does not mirror the variation in surface topography in this region. Thus, classical Airy isostatic models cannot explain how the surface topography is supported. New maps showing variation in Poisson's ratio and Moho sharpness together with forward and inverse modelling provide new information about the contrasting properties of the Fennoscandian shield and crust reworked by the Caledonian orogeny. A sharp Moho transition (R > 1) and low value of Vs (3.5 +/- 0.2 km.s-1) are observed beneath the orogen. The shield is characterised by a gradual transition across the Moho (R < 1) and Vs of (3.8 +/- 0.1 km.s-1) which is more typical of average continental crust. These observations are explained by a Fennoscandian shield underplated with a thick layer of high velocity, high density material. It is proposed that this layer has been removed or reworked beneath the orogen.

  17. Crustal geometry of the northeastern Gulf of Aden passive margin: localization of the deformation inferred from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Tiberi, C.; Leroy, S.; d'Acremont, E.; Bellahsen, N.; Ebinger, C.; Al-Lazki, A.; Pointu, A.

    2007-03-01

    Here we use receiver function analysis to retrieve crustal thickness and crustal composition along the 35-My-old passive margin of the eastern Gulf of Aden. Our aims are to use results from the 3-D seismic array to map crustal stretching across and along the Aden margin in southern Oman. The array recorded local and teleseismic events between 2003 March and 2004 March. Seventy-eight events were used in our joint inversions for Vp/Vs ratio and depth. The major results are: (1) Crustal thickness decreases from the uplifted rift flank of the margin towards the Sheba mid-ocean ridge. We found a crustal thickness of about 35 km beneath the northern rift flank. This value decreases sharply to 26 km beneath the post-rift subsidence zone on the Salalah coastal plain. This 10 km of crustal thinning occurs across a horizontal distance of less than 30 km showing a localization of the crustal thinning below the first known rifted block of the margin. (2) A second rift margin transect located about 50 km to the east shows no thinning from the coast to 50 km onshore. The lack of crustal thickness variation indicates that the maximum crustal stretching could be restricted to offshore regions. (3) The along-strike variations in crustal structure demonstrate the scale and longevity of the regular along-axis rift segmentation. (4) Extension is still observed north of the rifted domain, 70 km onshore from the coast, making the width of margin larger than first expected from geology. (5) The crust has a felsic to normal composition with a probably strong effect of the sedimentary layer on the Vp/Vs ratio (comprised between 1.67 and 1.91).

  18. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    NASA Astrophysics Data System (ADS)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  19. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Hemming, S. R.; Taylor, S. R.; Eriksson, K. A.

    1995-03-01

    Early Proterozoic (1.8-1.7 Ga) metasedimentary rocks in northern New Mexico and southern Colorado, USA, can be divided into turbidite successions (commonly volcanogenic) associated with mafic/felsic metavolcanic successions (e.g., Irving Fm.) and stable shelf quartzite-pelite successions of shallow marine origin (e.g., Hondo Gp.). Metapelites from the turbidite successions reported here have low K2O/Na2O, low Th/U (<3.0), low to moderate Th/Sc (0.1-0.6), and slight negative Eu-anomalies, although regionally, negative Eu-anomalies in such rocks are common. At the time of sedimentation (ca. 1.7-1.8 Ga), ɛNd values were in the range +3 to +7, indistinguishable from associated metavolcanic and plutonic rocks. Similarly, lead isotopic data scatter about a 1.7 Ga reference isochron. Low κ (232Th/238U) values for the Irving Formation are consistent with derivation from crustal sources similar to the southern Colorado/northern New Mexico lead isotope crustal province. These data are further consistent with a volcanic arc related origin. In contrast, stable shelf metapelites have high K2O/Na2O, variable but commonly high Th/U (2.0-7.0), moderate to high Th/Sc (0.5-1.4), and substantial negative Eu-anomalies. Although compositions are rather variable, they are typical of post-Archean shales. Neodymium isotopes are surprisingly radiogenic with ɛNd(1.7 Ga) in the range -0.2 to +4. Lead isotopic data for the least radiogenic samples also are consistent with a dominantly juvenile source and on a 207Pb/204Pb vs. 206Pb/204Pb diagram, data scatter slightly above the 1.7 Ga reference isochron, suggesting minor components of significantly older material. Lead isotopic systematics suggest that a major component of the provenance was derived from the immediately associated metavolcanic-plutonic terranes, consistent with suggestions of a first-cycle origin, but with an Archean component. Isotopic data restrict the Archean component to about 10%, on average, and no more than 25% in any sample. This older crustal component may be derived either by direct erosion of Archean rocks, such as the Wyoming Province, or indirectly through assimilation into Early Proterozoic igneous rocks. Although the stable shelf sedimentary rocks are derived from a provenance with similar ages as the volcanogenic turbidites, the geochemical characteristics of the provenance are significantly different. Accordingly, these data are consistent with especially rapid and widespread crustal growth and evolution in southwestern North America during the period 1.9-1.7 Ga. Several samples from the Hondo Group and Uncompahgre Formation have REE patterns that are rotated to LREE depletion and perhaps HREE enrichment. The change in REEs correlate with Mo, U, and V abundances and Pb isotopic characteristics suggesting sedimentary processes similar to those operating in black shales affected these REE patterns. REE patterns and Th/U ratios of Early Proterozoic volcanogenic turbidites examined in this and other studies differ on average from turbidites found in Archean greenstone belts. Negative Eu-anomalies are common, HREE-depletion is seen but comparatively rare, and Th/U ratios are commonly below 3.0. Accordingly, these data are consistent with models suggesting that the upper crust had a different composition in the Archean.

  20. Teleseismic P-wave Attenuation beneath the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Peng, Y.; Liu, K. H.

    2017-12-01

    Numerous laboratory, theoretical, and observational studies have demonstrated that the teleseismic body-wave attenuation factor (or t*), which is quantified by the travel time over the quality factor Q, can provide robust constraints on the thermal and physical state of the crust and upper mantle, and thus is ideal for investigating crustal and mantle dynamics in tectonically active areas such as the Eastern Tibetan Plateau, where pervasively distributed lower crustal flow has been regarded as a mechanism for its shortening and uplift. For this study, broadband seismic data recorded by 256 stations are used to compute the t* relative to a station in the Sichuan Basin. We have developed a set of procedures to reliably measure the P-wave t* values using the spectral ratio method through manually adjusting the time window and visually determining the quality of the measurements. Anomalously high t* values are found beneath active orogenic zones such as Qinling and Longmenshan, with magnitude of about 0.4 s. The Longmenshan block shows the most significant and spatially-consistent high t* measurements, probably caused by the accumulation of a thick and partially melted lower crustal layer. This high attenuation zone continues toward the south to the Songpan-Ganzi terrane to the south, but with a greatly reduced magnitude, suggesting a thinner low-viscosity lower crustal layer. The observations provided independent constraints on the spatial distribution and thickness of the proposed system of lower crustal flow.

  1. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Our comparisons suggest that large offset border faults that develop very early in rift history create fluid pathways that maintain the initial along-axis segmentation until magma (if available), reaches mid-crustal levels.

  2. Regional difference in small-scale heterogeneities in the crust and upper mantle in Japan derived by the analysis of high-frequency P-wave

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Furumura, T.

    2010-12-01

    In order to understand distribution properties of small-scale heterogeneities in the crust and upper mantle structure, we analyze three-component seismograms recorded by Hi-net in Japan. We examined relative strength of the P-wave in the transverse (T) component and its change as a function of frequency and propagation distances, which is strongly relating to the strength of seismic wave scattering in the lithosphere. We analyzed 53,220 Hi-net record from 310 shallow (h<30km) crustal earthquakes with MJMA =2.0-5.3. The three-component seismograms are firstly applied by band-pass filter with pass band frequency of f=1-2, 2-4, 4-8, 8-16, 16-32 Hz and then the Hilbert transform is used to synthesize envelope of each component. Then, the energy partition (EP) of P wave in the T component relative to total P-wave energy is evaluated around the P wave in 3-sec time window. The estimated EP value is almost constant 0.2 in high-frequencies (8-16 Hz) at shorter distance, while it is 0.07 in low-frequencies (1-2 Hz). We found clearly frequency-change property of EP value. But at larger distance over 150 km, EP values gradually increase with increasing distance. In high-frequencies (8-16, 16-32 Hz), especially EP values asymptotically reach from 0.2 to 0.33, equi-partitioning of P-wave energy into three components. This may because Pn-phase dominates in larger hypocentral distances. In order to examine difference in the EP in each area of Japan which would be relating to the strength of crustal heterogeneities in each area we divided the area of Japan into three regions, fore-arc side of Tohoku, back-arc side of Tohoku and Chugoku-Shikoku area. The difference in EP value in each area is clearly found in the high-frequency (4-8 Hz) band, where larger EP (0.2) was obtained at back-arc side of Tohoku relative to smaller EP (0.1) at fore-arc side of Tohoku and Chugoku-Shikoku. This is consistent with the results of Carcole and Sato (2009) who estimated the strength of crustal heterogeneities based on the multi lapse time-window analysis. In order to clarify the cause of such regional difference of EP, we conduct 3-D FDM simulations using stochastic random media. The model covers a zone 204.8 km by 204.8 km by 64.0 km descretized with 0.1 km in horizontal direction and 0.05 km in vertical direction. The small-scale heterogeneity in the lithosphere is constructed by velocity fluctuation from average velocity. The fluctuation is characterized by von Karman-type ACF with the correlation length a, the rms value e and decay order k. We assume average background velocities of P-wave and S-wave are VP = 5.8 km and VS = 3.36 km, respectively. We employ an explosive point source into the model. The FDM simulations were conducted on the Earth Simulator at JAMSTEC. We conducted a number of FDM simulation using different model parameters of stochastic random media for different e (= 0.03, 0.05, 0.07, 0.09) and fixed a and k (a = 5km, k = 0.5). The simulation results confirm EP value increases linearly with increasing e. We also found that larger EP obtained in the back-arc side of Tohoku can be explained by 4% larger e relative to those of other regions.

  3. Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts - Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Shirey, Steven B.; Hanson, Gilbert N.

    1986-01-01

    Crustal evolution in the Rainy Lake area, Ontario is studied in terms of geochemical characteristics. The Nd isotope data are examined for heterogeneity of the Archean mantle, and the Sm/Nd depletion of the mantle is analyzed. The Nd isotope systematics of individual rock suites is investigated in order to understand the difference between crust and mantle sources; the precursors and petrogenetic processes are discussed. The correlation between SiO2 content and Nd values is considered. Rapid recycling of crustal components, which were previously derived from depleted mantle sources, is suggested based on the similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks.

  4. Crust and Upper Mantle Structure beneath Isparta Angle in SW Turkey from P and S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Kahraman, M.; Turkelli, N.; Özacar, A.; Sandvol, E. A.; Teoman, U.

    2015-12-01

    Isparta Angle (IA) constitutes a triangular shape elevated tectonic domain in SW Turkey which contains units stacked with opposing thrust vergences during Late Cretaceous to Miocene. The region which is located at the junction between Aegean and Cyprus arcs separated by a slab tear is now bounded by Fethiye-Burdur Fault Zone (FBFZ) in the west and Akşehir-Afyon Fault Zones (AAFZ) in the east. In the area, seismicity displays ongoing extension along active grabens oriented at different directions. In the past, many competing geodynamic scenarios had been proposed to explain the complex tectonic evolution of the area. In this study, we used both P and S receiver functions (RFs) to present high resolution crustal and upper mantle images down to 200 km. Moho and upper crustal discontinuities were well resolved by P Rfs; however S RFs were utilized to image lithospheric-asthenospheric boundaries having the benefit of being free of multiple conversions. RFs were calculated from 916 teleseismic earthquakes (Mw ≥ 5.5) recorded by 42 permanent and temporary broadband stations BU-KOERI/NEMC, DEMP/ERD and Isparta Angle Seismic Experiment deployed by collaboration of BU-KOERI and University of Missouri. Totally, 4501 P and 946 S RFs with the cut-off frequencies of ~1.0 Hz and ~0.5 Hz, respectively, were obtained by applying iterative-time domain deconvolution. Crustal thickness and Vp/Vs ratios were calculated by grid search of maximum amplitude of P RFs(Ps,PpPs and PsPs+PpSs) in depth and Vp/Vs domain. Then, we created 2-D P and S migrated cross-sections to observe crustal and lithospheric-asthenospheric discontinuities beneath the region. P RFs indicates that, average crustal thickness and Vp/Vs ratio is ~36 km and 1.78 in the region with small changing values close to the edges. Migrated P RFs cross-sections revealed a sharp change in Moho (Moho offset) on the western boundary that spatially correlates with the FBFZ. We also found a relatively flat Moho in the center and what appears to be imaged northern tip of slab at ~45 km depth. Finally, ~30km crustal thickness released in southeast beneath the Cyprus. On the other hand; preliminary results of S RFs cross-sections present the LAB boundary between ~60 to ~90 km depth range, observed almost beneath all profiles and clear positive phase arrivals right below the LAB depths.

  5. The size distribution of Pacific Seamounts

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1987-11-01

    An analysis of wide-beam, Sea Beam and map-count data in the eastern and southern Pacific confirms the hypothesis that the average number of "ordinary" seamounts with summit heights h ≥ H can be approximated by the exponential frequency-size distribution: v(H) = vo e-βH. The exponential model, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model. The exponential model provides a good first-order description of the summit-height distribution over a very broad spectrum of seamount sizes, from small cones (h < 300 m) to tall composite volcanoes (h > 3500 m). The distribution parameters obtained from 157,000 km of wide-beam profiles in the eastern and southern Pacific Ocean are vo = (5.4 ± 0.65) × 10-9m-2 and β = (3.5 ± 0.21) × 10-3 m-1, yielding an average of 5400 ± 650 seamounts per million square kilometers, of which 170 ± 17 are greater than one kilometer in height. The exponential distribution provides a reference for investigating the populations of not-so-ordinary seamounts, such as those on hotspot swells and near fracture zones, and seamounts in other ocean basins. If we assume that volcano height is determined by a hydraulic head proportional to the source depth of the magma column, then our observations imply an approximately exponential distribution of source depths. For reasonable values of magma and crustal densities, a volcano with the characteristic height β-1 = 285 m has an apparent source depth on the order of the crustal thickness.

  6. Evaluation of six NEHRP B/C crustal amplification models proposed for use in western North America

    USGS Publications Warehouse

    Boore, David; Campbell, Kenneth W.

    2016-01-01

    We evaluate six crustal amplification models based on National Earthquake Hazards Reduction Program (NEHRP) B/C crustal profiles proposed for use in western North America (WNA) and often used in other active crustal regions where crustal properties are unknown. One of the models is based on an interpolation of generic rock velocity profiles previously proposed for WNA and central and eastern North America (CENA), in conjunction with material densities based on an updated velocity–density relationship. A second model is based on the velocity profile used to develop amplification factors for the Next Generation Attenuation (NGA)‐West2 project. A third model is based on a near‐surface velocity profile developed from the NGA‐West2 site database. A fourth model is based on velocity and density profiles originally proposed for use in CENA but recently used to represent crustal properties in California. We propose two alternatives to this latter model that more closely represent WNA crustal properties. We adopt a value of site attenuation (κ0) for each model that is either recommended by the author of the model or proposed by us. Stochastic simulation is used to evaluate the Fourier amplification factors and their impact on response spectra associated with each model. Based on this evaluation, we conclude that among the available models evaluated in this study the NEHRP B/C amplification model of Boore (2016) best represents median crustal amplification in WNA, although the amplification models based on the crustal profiles of Kamai et al. (2013, 2016, unpublished manuscript, see Data and Resources) and Yenier and Atkinson (2015), the latter adjusted to WNA crustal properties, can be used to represent epistemic uncertainty.

  7. b values and ω−γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion

    USGS Publications Warehouse

    Hanks, Thomas C.

    1979-01-01

    In this study the tectonic stress along active crustal fault zones is taken to be of the form , where  is the average tectonic stress at depth y and Δσp(x, y) is a seismologically observable, essentially random function of both fault plane coordinates; the stress differences arising in the course of crustal faulting are derived from Δσp(x, y). Empirically known frequency of occurrence statistics, moment-magnitude relationships, and the constancy of earthquake stress drops may be used to infer that the number of earthquakes N of dimension ≥r is of the form N ∼ 1/r2 and that the spectral composition of Δσp(x, y) is of the form , where  is the two-dimensional Fourier transform of Δσp(x, y) expressed in radial wave number k. The γ = 2 model of the far-field shear wave displacement spectrum is consistent with the spectral composition , provided that the number of contributions to the spectral representation of the radiated field at frequency ƒ goes as (k/k0)2, consistent with the quasi-static frequency of occurrence relation N ∼ 1/r2;k0 is a reference wave number associated with the reciprocal source dimension. Separately, a variety of seismologic observations suggests that the γ = 2 model is the one generally, although certainly not always, applicable to the high-frequency spectral decay of the far-field radiation of earthquakes. In this framework, then, b values near 1, the general validity of the γ = 2 model, and the constancy of earthquake stress drops independent of size are all related to the average spectral composition of. Should one of these change as a result of premonitory effects leading to failure, as has been specifically proposed for b values, it seems likely that one or all of the other characteristics will change as well from their normative values. Irrespective of these associations, the far-field, high-frequency shear radiation for the γ = 2 model in the presence of anelastic attenuation may be interpreted as band-limited, finite duration white noise in acceleration. Its rms value, arms, is given by the expression arms = 0.85[21/2(2π)2/106] (Δσ/ρR)(ƒmax/ƒ0)1/2, where Δσ is the earthquake stress drop, ρ is density, R is hypocentral distance, ƒ0 is the spectral corner frequency, and ƒmax is determined by R and specific attenuation 1/Q. For several reasons, one of which is that it may be estimated in the absence of empirically defined ground motion correlations, arms holds considerable promise as a measure of high-frequency strong ground motion for engineering purposes.

  8. A statistical spatial power spectrum of the Earth's lithospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Thébault, E.; Vervelidou, F.

    2015-05-01

    The magnetic field of the Earth's lithosphere arises from rock magnetization contrasts that were shaped over geological times. The field can be described mathematically in spherical harmonics or with distributions of magnetization. We exploit this dual representation and assume that the lithospheric field is induced by spatially varying susceptibility values within a shell of constant thickness. By introducing a statistical assumption about the power spectrum of the susceptibility, we then derive a statistical expression for the spatial power spectrum of the crustal magnetic field for the spatial scales ranging from 60 to 2500 km. This expression depends on the mean induced magnetization, the thickness of the shell, and a power law exponent for the power spectrum of the susceptibility. We test the relevance of this form with a misfit analysis to the observational NGDC-720 lithospheric magnetic field model power spectrum. This allows us to estimate a mean global apparent induced magnetization value between 0.3 and 0.6 A m-1, a mean magnetic crustal thickness value between 23 and 30 km, and a root mean square for the field value between 190 and 205 nT at 95 per cent. These estimates are in good agreement with independent models of the crustal magnetization and of the seismic crustal thickness. We carry out the same analysis in the continental and oceanic domains separately. We complement the misfit analyses with a Kolmogorov-Smirnov goodness-of-fit test and we conclude that the observed power spectrum can be each time a sample of the statistical one.

  9. Crustal thickness and images of the lithospheric discontinuities in the Gibraltar arc and surrounding areas

    NASA Astrophysics Data System (ADS)

    Mancilla, Flor de Lis; Stich, Daniel; Morales, José; Martín, Rosa; Diaz, Jordi; Pazos, Antonio; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro; Harnafi, Mimoun; Gonzalez-Lodeiro, Francisco

    2015-12-01

    The Gibraltar arc and surrounding areas are a complex tectonic region and its tectonic evolution since Miocene is still under debate. Knowledge of its lithospheric structure will help to understand the mechanisms that produced extension and westward motion of the Alboran domain, simultaneously with NW-SE compression driven by Africa-Europe plates convergence. We perform a P-wave receiver function analysis in which we analyse new data recorded at 83 permanent and temporary seismic broad-band stations located in the South of the Iberian peninsula. These data are stacked and combined with data from a previous study in northern Morocco to build maps of thickness and average vP/vS ratio for the crust, and cross-sections to image the lithospheric discontinuities beneath the Gibraltar arc, the Betic and Rif Ranges and their Iberian and Moroccan forelands. Crustal thickness values show strong lateral variations in the southern Iberia peninsula, ranging from ˜19 to ˜46 km. The Variscan foreland is characterized by a relatively flat Moho at ˜31 km depth, and an average vP/vS ratio of ˜1.72, similar to other Variscan terranes, which may indicate that part of the lower crustal orogenic root was lost. The thickest crust is found at the contact between the Alboran domain and the External Zones of the Betic Range, while crustal thinning is observed southeastern Iberia (down to 19 km) and in the Guadalquivir basin where the thinning at the Iberian paleomargin could be still preserved. In the cross-sections, we see a strong change between the eastern Betics, where the Iberian crust underthrusts and couples to the Alboran crust, and the western Betics, where the underthrusting Iberian crust becomes partially delaminated and enters into the mantle. The structures largely mirror those on the Moroccan side where a similar detachment was observed in northern Morocco. We attribute a relatively shallow strong negative-polarity discontinuity to the lithosphere-asthenosphere boundary. This means relatively thin lithosphere ranging from ˜50 km thickness in southeastern Iberia and northeastern Morocco to ˜90-100 km beneath the western Betics and the Rif, with abrupt changes of ˜30 km under the central Betics and northern Morocco. Our observations support a geodynamic scenario where in western Betics oceanic subduction has developed into ongoing continental subduction/delamination while in eastern Betics this process is inactive.

  10. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  11. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  12. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  13. Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Yuhang; Liu, Mian; Wang, Qingliang; Cui, Duxin

    2018-04-01

    The three-dimensional present-day crustal deformation and strain partitioning in northeastern Tibetan Plateau are analyzed using available GPS and precise leveling data. We used the multi-scale wavelet method to analyze strain rates, and the elastic block model to estimate slip rates on the major faults and internal strain within each block. Our results show that shear strain is strongly localized along major strike-slip faults, as expected in the tectonic extrusion model. However, extrusion ends and transfers to crustal contraction near the eastern margin of the Tibetan Plateau. The strain transfer is abrupt along the Haiyuan Fault and diffusive along the East Kunlun Fault. Crustal contraction is spatially correlated with active uplifting. The present-day strain is concentrated along major fault zones; however, within many terranes bounded by these faults, intra-block strain is detectable. Terranes having high intra-block strain rates also show strong seismicity. On average the Ordos and Sichuan blocks show no intra-block strain, but localized strain on the southwestern corner of the Ordos block indicates tectonic encroachment.

  14. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are interpreted to result from roll-back and break-off of the subducted Neo-Tethyan slab that occurred in the early stage of the India-Asian collision, respectively. The late Oligocene adakitic rocks resulted from the break-off of the subducted Indian continental crust starting at ~ 25 Ma.

  15. Apportionment of sources of fine and coarse particles in four major Australian cities by positive matrix factorisation

    NASA Astrophysics Data System (ADS)

    Chan, Yiu-Chung; Cohen, David D.; Hawas, Olga; Stelcer, Eduard; Simpson, Rod; Denison, Lyn; Wong, Neil; Hodge, Mary; Comino, Eva; Carswell, Stewart

    In this study, 437 days of 6-daily, 24-h samples of PM 2.5, PM 2.5-10 and PM 10 were collected over a 12-month period during 2003-2004 in Melbourne, Sydney, Brisbane and Adelaide. The elemental, ionic and polycyclic aromatic hydrocarbon composition of the particles were determined. Source apportionment was carried out by using the positive matrix factorisation software (PMF2). Eight factors were identified for the fine particle samples including 'motor vehicles', 'industry', 'other combustion sources', 'ammonium sulphates', 'nitrates', 'marine aerosols', 'chloride depleted marine aerosols' and 'crustal/soil dust'. On average combustion sources, secondary nitrates/sulphates and natural origin dust contributed about 46%, 25% and 26% of the mass of the fine particle samples, respectively. 'Crustal/soil dust', 'marine aerosols', 'nitrates' and 'road side dust' were the four factors identified for the coarse particle samples. On average natural origin dust contributed about 76% of the mass of the coarse particle samples. The contributions of the sources to the sample mass basically reflect the emission source characteristics of the sites. Secondary sulphates and nitrates were found to spread out evenly within each city. The average contribution of secondary nitrates to fine particles was found to be rather uniform in different seasons, rather than higher in winter as found in other studies. This could be due to the low humidity conditions in winter in most of the Australian cities which made the partitioning of the particle phase less favourable in the NH 4NO 3 equilibrium system. A linear relationship was found between the average contribution of marine aerosols and the distance of the site from the bay side. Wind erosion was found associated with higher contribution of crustal dust on average and episodes of elevated concentration of coarse particles in spring and summer.

  16. Isotopic constraints on crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The Sm-Nd isotopic data on clastic and chemical sediments are used with the present-day age distribution of continental crustal rocks to estimate the rates of crustal accretion, growth and recycling throughout earth's history. A new method for interpreting Nd model ages on both chemical and clastic sediments is proposed. A general relationship is derived between the mean crustal residence time of material recycled from the crust to the mantle (i.e., sediments), the mean age of the crust, and the crustal growth and recycling rates. This relationship takes into account the fact that the age distribution of material in the continental crust is generally different from the age distribution of material recycled into the mantle. The episodic nature of the present-day age distribution in crustal rocks results in similar episodicity in the accretion and recycling rates. The results suggest that by about 3.8 Ga ago, about 40 percent of the present continental volume was present. Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant value of about 0.1 cu km/a during most of the Phanerozoic. The Nd model age pattern on sediments suggests a fairly high rate of growth during the Phanerozoic.

  17. Crustal seismic anisotropy: A localized perspective from surface waves at the Ruby Mountains Core Complex

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Schmandt, B.; Jiang, C.

    2017-12-01

    The relative importance of potential controls on crustal seismic anisotropy, such as deformational fabrics in polycrystalline crustal rocks and the contemporary state of stress, remain poorly constrained. Recent regional western US lithospheric seismic anisotropy studies have concluded that the distribution of strain in the lower crust is diffuse throughout the Basin and Range (BR) and that deformation in the crust and mantle are largely uncoupled. To further contribute to our understanding of crustal anisotropy we are conducting a detailed local study of seismic anisotropy within the BR using surface waves at the Ruby Mountain Core Complex (RMCC), located in northeast Nevada. The RMCC is one of many distinctive uplifts within the North American cordillera called metamorphic core complexes which consist of rocks exhumed from middle to lower crustal depths adjacent to mylonitic shear zones. The RMCC records exhumation depths up to 30 km indicating an anomalously high degree of extension relative to the BR average. This exhumation, the geologic setting of the RMCC, and the availability of dense broadband data from the Transportable Array (TA) and the Ruby Mountain Seismic Experiment (RMSE) coalesce to form an ideal opportunity to characterize seismic anisotropy as a function of depth beneath RMCC and evaluate the degree to which anisotropy deviates from regional scale properties of the BR. Preliminary azimuthal anisotropy results using Rayleigh waves reveal clear anisotropic signals at periods between 5-40 s, and demonstrate significant rotations of fast orientations relative to prior regional scale results. Moving forward we will focus on quantification of depth-dependent radial anisotropy from inversion of Rayleigh and Love waves. These results will be relevant to identification of the deep crustal distribution of strain associated with RMCC formation and may aid interpretation of controls on crustal anisotropy in other regions.

  18. Improved H-κ Method by Harmonic Analysis on Ps and Crustal Multiples in Receiver Functions with respect to Dipping Moho and Crustal Anisotropy

    NASA Astrophysics Data System (ADS)

    Li, J.; Song, X.; Wang, P.; Zhu, L.

    2017-12-01

    The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.

  19. Origin of the high plateau in the Central Andes, Bolivia, South America

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Hoke, Leonore

    1997-08-01

    The Bolivian Altiplano, in the Central Andes of South America, is part of the second largest high plateau on Earth. It is an elongate region of subdued relief, ˜1.2 × 105 km2 and ˜4 km above sea level, bounded by the Eastern Cordillera and volcanic arc (Western Cordillera). Here the crust is up to ˜75 km thick. We describe the Cenozoic geological evolution of this region, using a revised chronostratigraphy and an analysis of the crustal and lithospheric structure. Crustal shortening and magmatic addition and, locally, sedimentation are the main mechanisms of Cenozoic crustal thickening, leading to nearly 4 km of surface uplift since the Paleocene. Addition of mafic melts appears to be a first-order mechanism of Cenozoic crustal growth, contributing ˜40% of the crustal thickening beneath the volcanic arc. Removal of the basal part of the lithosphere may have caused two episodes of widespread arc and behind-arc mafic volcanism, at ˜23 Ma and 0 - ˜5 Ma, contributing to the surface uplift. The Altiplano originated as a sedimentary basin, several hundred kilometers wide, between the proto-Western Cordillera and a narrow zone of uplift (proto-Eastern Cordillera) farther east. The latter zone formed by inversion of the center of a wide lacustrine or marine Cretaceous - Paleocene basin close to sea-level at ˜45 Ma. A thickness of 2-4 km of Paleogene continental elastics accumulated in the proto-Altiplano basin. Subsequently, in the Oligocene, we estimate that this region and the western margin of the Eastern Cordillera were technically shortened ˜22% (˜65 km), resulting in ˜9 km of average crustal thickening. The Altiplano basin was rejuvenated at ˜25 Ma and subsequently flooded with up to 8 km thickness of detritus eroded from the uplifting Eastern and Western Cordilleras. Between ˜25 and 5 Ma, folding and thrusting in the western margin of the Eastern Cordillera migrated westward into the center of the Altiplano basin, essentially terminating deposition, except in local subbasins, and accommodating ˜13% (˜30 km) of shortening and an estimated ˜7 km of average crustal thickening. Subsequently, there has been strike-slip deformation and limited local thrusting (< 5 km of shortening). Geomorphological and geochronological evidence for 1.5-2 km of surface uplift of this region since the Late Miocene suggests ˜14 km of lower crustal thickening beneath an essentially rigid "lid", and can be explained by ˜100-150 km of underthrusting of the Brazilian shield and adjacent regions beneath the eastern margin of the Central Andes. The present subdued relief in the Altiplano may be a result of ductile flow in the lower crust and sedimentation and erosion in an internal drainage basin.

  20. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.

    PubMed

    Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong

    2014-02-01

    Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.

  1. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism.

    PubMed

    Whittington, Alan G; Hofmeister, Anne M; Nabelek, Peter I

    2009-03-19

    The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation.

  2. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  3. Moho Depth and Bulk Crustal Properties in Northern Quebec and Labrador

    NASA Astrophysics Data System (ADS)

    Vervaet, F.; Darbyshire, F. A.

    2016-12-01

    Northern Quebec and Labrador lie at the heart of the Laurentian landmass and preserve over 3 billion years of continental evolution. In this region the Archean Superior and Nain cratons are surrounded by Paleoproterozoic orogens such as New-Quebec, Trans-Hudson and Torngat, as well as the younger Grenville orogen to the SE. Study of crustal structure in this region provides valuable information on the assembly of the North American continent. We use data from 8 seismic stations installed in summer 2011 as part of the QUiLLE (Quebec-Labrador Lithospheric Experiment) project to investigate crustal structure, using receiver function analysis. The data set covers 5 years (2011-2016) for most of the stations, comprising several hundred events of magnitude ≥5 and epicentral distance 30-90°. After initial data processing and quality control, several tens of events per station were used in an H-κ stacking analysis to estimate Moho depth and bulk crustal properties. Some stations show significant complexity in their receiver functions, leading to inconclusive H-κ results, but the majority show a consistent Moho signal from which crustal parameters are successfully extracted. Crustal thickness varies from 33 to 49 km, with the thickest crust associated with the Trans-Hudson orogen in the Ungava region of northernmost Quebec and the thinnest beneath the central Labrador coast. Vp/Vs ratios (κ) lie in the range 1.71-1.86, with the majority of values consistent with granite-gneiss-tonalite bulk crustal compositions. The receiver functions are combined with surface-wave group velocity data to model the crustal structures in more detail beneath each station, allowing us to investigate crustal layering, Moho complexity and lateral heterogeneity.

  4. Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas

    NASA Astrophysics Data System (ADS)

    Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.

    2016-12-01

    We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.

  5. Crustal Displacements Due to Continental Water Loading

    NASA Technical Reports Server (NTRS)

    vanDam, T.; Wahr, J.; Milly, P. C. D.; Shmakin, A. B.; Blewitt, G.; Lavallee, D.; Larson, K. M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (delta-r(sub M)) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare delta-r(sub M) with observed Global Positioning System (GPS) heights (delta-r(sub O)) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the delta-r(sub O) time series are adjusted by delta-r(sub M), their variances are reduced, on average, by an amount equal to the variance of the delta-r(sub M). Of the delta-r(sub O) time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the delta-r(sub M). The delta-r(sub M) time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  6. Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range

    NASA Astrophysics Data System (ADS)

    Erdman, Monica E.; Hacker, Bradley R.; Zandt, George; Seward, Gareth

    2013-11-01

    Crystal preferred orientations were measured in a suite of rocks from three locations in the Basin and Range using electron-backscatter diffraction. Anisotropic velocities were calculated for all rocks using single-crystal stiffnesses, the Christoffel equation and Voigt-Reuss-Hill averaging. Anisotropic velocities were calculated for all three crustal sections using these values combined with rock proportions as exposed in the field. One suite of rocks previously measured in the laboratory was used as a benchmark to evaluate the accuracy of the calculated velocities. Differences in the seismic anisotropy of the Funeral Mountains, Ruby Mountains and East Humboldt Range sections arise because of differences in mineralogy and strain, with the calc-silicate dominated Ruby Mountains section having higher P-wave speeds and VP/VS ratios because of the reduced quartz content. In all cases, the velocities show either transverse isotropy or nearly so, with a unique slow axis normal to the foliation. Velocity anisotropy can thus be used to infer the flow plane, but not the flow direction in typical crustal rocks. Areas with a subhorizontal foliation have minimal shear wave splitting for vertically propagating waves and are thus good places to measure mantle anisotropy using SKS-splitting.

  7. Structure of the subduction system in southern Peru from seismic array data

    NASA Astrophysics Data System (ADS)

    Phillips, Kristin; Clayton, Robert W.; Davis, Paul; Tavera, Hernando; Guy, Richard; Skinner, Steven; Stubailo, Igor; Audin, Laurence; Aguilar, Victor

    2012-11-01

    The subduction zone in southern Peru is imaged using converted phases from teleseismic P, PP, and PKP waves and Pwave tomography using local and teleseismic events with a linear array of 50 broadband seismic stations spanning 300 km from the coast to near Lake Titicaca. The slab dips at 30° and can be observed to a depth of over 200 km. The Moho is seen as a continuous interface along the profile, and the crustal thickness in the back-arc region (the Altiplano) is 75 km thick, which is sufficient to isostatically support the Andes, as evidenced by the gravity. The shallow crust has zones of negative impedance at a depth of 20 km, which is likely the result of volcanism. At the midcrustal level of 40 km, there is a continuous structure with a positive impedance contrast, which we interpret as the western extent of the Brazilian Craton as it underthrusts to the west.Vp/Vs ratios estimated from receiver function stacks show average values for this region with a few areas of elevated Vp/Vs near the volcanic arc and at a few points in the Altiplano. The results support a model of crustal thickening in which the margin crust is underthrust by the Brazilian Shield.

  8. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the time of emplacement of the islands, with an older plate providing conditions that are more favourable for basaltic underplating.

  9. Crustal thickness and composition beneath the High Lava Plains of Eastern Oregon from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Eagar, K. C.; Fouch, M. J.; James, D. E.; Carlson, R. W.

    2009-12-01

    The nature of the crust beneath the High Lava Plains of eastern Oregon is fundamental for understanding the origins of widespread Cenozoic volcanism in the region. Eruptions of flood basalts in the southern Cascadian back arc peaked ~17-15 Ma, and were followed by distributed bimodal volcanism along two perpendicular migrating tracks; the Snake River Plain and the High Lava Plains. The orientations of eruptive centers have led to several competing hypotheses about their cause, including a deep mantle plume, slab retreat and asthenospheric inflow, lithospheric delamination, and lithospheric extension. The goal of this project is to constrain the nature, geometry, and depth of the Moho across the High Lava Plains, which will shed light on questions regarding crustal influence on melt generation and differentiation and the degree of magmatic underplating. In this study, we analyze teleseismic receiver functions from 118 stations of the High Lava Plains temporary broadband array, 34 nearby EarthScope/USArray stations, and 5 other regional broadband stations to determine bulk crustal features of thickness (H) and Vp/Vs ratio (κ). Applying the H-κ stacking method, we search for the best-fitting solution of timing predictions for direct and multiple P-to-S conversions from the Moho interface. Converting Vp/Vs to Poisson ratio, which is dependent primarily upon rock composition, allows for comparison with other direct geological observations. Preliminary results show that the crust of the High Lava Plains is relatively thin (~31 km) with a very sharp gradient to thicker crust (~42 km) at the western edge of the Owyhee Plateau in southwestern Idaho. This gradient is co-located with the western margin of Precambrian North America and is in the vicinity of the Jordan Craters volcanic center. The sharp topography of the Moho might have been a factor in melt migration beneath this area. West of the High Lava Plains, the crust thickens to ~40 km into the Cascade volcanic arc. We note that these results are consistent with preliminary crustal images from the complementary active source imaging effort of the High Lava Plains project. In contrast to crustal thickening to the east and west, there appears to be no change into the Blue Mountains to the north or the northern Basin and Range to the south. Although not as sharp and well defined as the Moho relief, there is variation in bulk crustal composition between the Owyhee Plateau and the High Lava Plains as defined by Vp/Vs. In contrast to the crust of Precambrian North America and the northern Basin and Range, whose Poisson ratio (~0.26) is comparable to average continental crust (0.27), the High Lava Plains exhibits high values (~0.30) typical of more mafic bulk crustal composition. This result suggests that the crust of the High Lava Plains evolved in a fundamentally different fashion in response to widespread magmatism relative to surrounding terranes. High Poisson ratios support the suggestion of mafic underplating and high, near crustal melting temperatures, possibly explaining the occurrence of rhyolitic volcanism across the High Lava Plains.

  10. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with minor contributions from juvenile material in the back-arc setting.

  11. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

    NASA Astrophysics Data System (ADS)

    Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary

    2016-12-01

    The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (<300 Ma) carbonatites characterized by more positive δ11B values (>-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

  12. Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Monem S.; Hosny, A.; Abou-Aly, N.; Saleh, M.; Rayan, A.

    2013-06-01

    A local geodetic network consisting of eleven benchmarks has been established to study the recent crustal deformation in the Abu-Dabbab area. Seven campaigns of GPS measurements have been collected started from October 2008 and ended in March 2012. The collected data were processed using Bernese version 5.0, and the result values were adjusted to get the more accurate positions of the GPS stations. The magnitudes of horizontal displacements are variable from one epoch to another and in the range of 1-3 (±0.2) mm/yr. Due to the differences in rates of the horizontal displacement; the area is divided into two main blocks. The first one, moves to the east direction of about 3 mm/yr, while the second block, moves to the SW direction of about 6 mm/yr. According to the strain fields that were calculated for the different epochs of measurement, the main force is compression force and is taken the NW-SE to NWW-SEE direction. This force could be because of local and regional tectonic processes affecting on the study area. The maximum values of compression stress are found in the southern central and western part of study area. Estimated accumulation of this strain energy may be considered as an indicator of the possibility of earthquake occurrence. From the seismic tomography study, the 3D Vp and Vp/Vs crustal models indicate high Vp/Vs values forms an elongated anomaly, in the central part of the study area, that extends from a depth of 12 km to about 1-2 km of depth is obtained. By using this crustal model in relocations all seismicity informed that most of the seismicity strongly tend to occur in a cluster manner exactly above the southern part of the study area. Based on the conducted source mechanism study, it is noticed that shallow earthquakes are associated by a high CLVD ratio (up to 40%). Furthermore, initiation of a high level seismic activity, without a large seismic main shock is observed in the Abu-Dabbab area. The distribution of micro-earthquakes tends to align in an ENE-WSW direction marking a zone of activity verse the Red Sea. The nucleation of the seismic activity beneath the southern part of the Abu-Dabbab crust is more consistent with the obtained crustal deformation result by increasing the crustal movement in the south part than the northern part. Then, based on the obtained results of the above mentioned studies; seismic tomography; source mechanisms, and crustal deformation we conclude that these seismic activities that are associated by crustal deformation are owing to some magma activity beneath the crust of the Abu-Dabbab area.

  13. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness <5.2 km (designated as "thin" crust), while 56% of the crustal volume (or 65% of the surface area) is associated with crustal thickness of 5.2-8.6 km thick (designated as "normal" crust). The remaining 39% of the crustal volume (or 26% of the surface area) is associated with crustal thickness >8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that the relatively wide partial melting zones in the upper mantle beneath the fast and intermediately fast ridges might act as "buffer" zones, thus diluting the melt anomalies from the underlying hotspots or regions of mantle heterogeneities. (3) As the crustal age increases and the lithospheric plate thickens, regions of thickened crust start to develop on ocean basins that were originally created at fast and intermediately fast ridges. The integrated crustal volume for fast and intermediately fast ocean crust appears to reach peak values for certain geological periods, such as 40-50 Ma and 70-80 Ma. The newly constructed global models of gravity-derived crustal thickness, combining with geochemical and other constraints, can be used to investigate the processes of oceanic crustal accretion and hotspot-lithosphere interactions.

  14. Passive Seismic Experiment to understand the basement and crustal structure, Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Sinadinovski, Cvetan; Aldamegh, Khalid; Ball, Philip; Janoubi, Emad; Afifi, AbdulKader; Ion, Dumitru; Nayak, Goutam; Borsato, Ron

    2017-04-01

    In 2011, air gun seismic surveys were performed in the Red Sea in conjunction with an offshore survey where portable seismic stations were deployed onshore up to 250 km inland from the shoreline. In total, 30 temporary broadband stations were deployed in the northern Red Sea. The recorded shot data were analyzed in conjunction with earthquake records that occurred during the three-month deployment period. The receiver function data were modeled using an advanced 3D modeling software. Gravity data were modeled as well on five regional profiles to provide additional constraints for the depth-to-basement and depth-to-Moho discontinuity. The passive (earthquakes) and active (air gun) data for both areas were modeled separately and then in a joint scheme. This experiment was unique, where no previous deployment at this scale had been attempted before in Saudi Arabia. The tomography results provide for the first time a detailed insight of the deeper crustal structure in the Red Sea margin. The results reveal a complex geology with a heterogeneous crust and upper mantle. The crustal-mantle discontinuity was picked assuming a Vp velocity of around 8.0 km/s. The Moho discontinuity offshore appears to vary in depth from 17 km to 27 km, increasing to 22 km to 35 km onshore. The average crustal thickness inland is 28 km, whereas the average thickness offshore is 22 km. These 3D images of the Moho show that thinning of the crust was not just coast-parallel as proposed from previous 2D or 1D studies. Such findings can help in better understanding of the rift related processes in the Red Sea

  15. Topographic form of the Coast Ranges of the Cascadia Margin in relation ot coastal uplift rates and plate subduction

    NASA Technical Reports Server (NTRS)

    Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.

    1994-01-01

    The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.

  16. Geochemistry of Snowball Earth glacial tillites from China and North America: implications for the bulk composition of the Neoproterozoic upper crust

    NASA Astrophysics Data System (ADS)

    Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.; Gao, S.; Hu, Z.; Zhou, L.

    2012-12-01

    In order to understand the differentiation of the Earth and growth of continents through time, it is critical to have reliable estimates for the average composition of the continental crust. Attempts to develop average compositional models for the upper continental crust have often relied upon the analysis of sediments and sedimentary rocks, based on the assumption that these provide natural averages of large crustal areas. Shales are among the most frequently used proxies, although some workers have also studied loess. The advantage of loess, especially that which is derived from glacial processes, is that it is typically produced by physical weathering alone and should lack the elemental fractionation produced by chemical weathering. Glacial tillites should also provide this advantage, and in addition, they should lack element fractionation caused by eolian particle sorting that is observed in loess. Here, we present new major and trace element data for glacial tillites from the Neoproterozoic, collected in southern China and the eastern U.S. Samples were collected from tillites of the Marinoan(?) Nantuo and Sturtian Gucheng Formations in Hubei Province, China (n = 21), and the Sturtian Konnarock Formation in the Appalachians of southwestern Virginia (n = 11). Values for the chemical index of alteration (Al2O3/Al2O3+K2O+Na2O+CaO) for these rocks are low, between 60 and 70 for most of the Chinese samples and 53 and 60 for all of the American ones, reflecting derivation from material that has experienced very little chemical weathering. The individual samples from the two localities show remarkable homogeneity, but their average compositions are distinct. The Chinese tillites match more closely the average upper crust composition of Rudnick and Gao (2003) than the Virginia ones, but the former still show a few major differences. Select soluble elements, such as Sr, Tl, and U, are depleted by as great a factor as ten, whereas other soluble elements, such as Li, Rb, and Cs, are either enriched or similar to the upper crustal model. By contrast, the Virginia tillites show major enrichment in the high field strength elements and rare earth elements, and depletion in the first row transition metals associated with mafic minerals (e.g., Ni, Cr, Sc, V). These tillites also show a stronger negative Eu anomaly. The difference between the Chinese and Virginia Neoproterozoic tillites likely reflects the different provenance of the Virginia samples, but in detail, the implications of this observation are unclear. The Virginia tillite chemistry is similar to local Neoproterozoic A-type granites in the Appalachians, but is also similar to the regionally extensive Grenvillian basement. This is an important distinction, as it goes to the question of whether or not the till represents the integration of a large area, as opposed to being primarily locally derived. In the case of the Chinese tillites, published detrital zircon and whole-rock Nd isotopic data suggests the provenance encompassed a large crustal area, strengthening their legitimacy as a proxy for the average upper crust.

  17. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  18. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2002-01-01

    We interpret large-scale subsidence (5–6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ≤7×1019–1×1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5×1017–5×1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies.

  19. Global Admittance Estimates of Elastic and Crustal Thickness of Venus: Results from Top, Hot Spot, and Bottom Loading Models

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Anderson, F. S.

    2005-01-01

    We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.

  20. Strength and Elastic thickness of the lithosphere and implication on ductile crustal flow in Europe

    NASA Astrophysics Data System (ADS)

    Tesauro, M.; Kaban, M. K.; Cloetingh, S. A. P. L.

    2012-04-01

    The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. We present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. We estimated the lithospheric temperature from inversion of a tomography model and we extrapolated the results to the surface using crustal isotherms for different tectonic provinces based on characteristic values of radiogenic heat production. We assumed different rheologies of the upper and lower crust for continental areas, on the base of the geological features distribution. The results obtained allow us to compare for the first time the lithospheric characteristics of the different tectonic areas. The Te estimated from the strength is compared with the Te obtained by flexural loading and spectral studies. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (<1000 m) and very low seismicity. Using high resolution crustal thickness and density data provided by the EuCRUST-07 model we compute for the European continent the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  1. Isostatic Compensation of the Lunar Highlands

    NASA Astrophysics Data System (ADS)

    Sori, Michael M.; James, Peter B.; Johnson, Brandon C.; Soderblom, Jason M.; Solomon, Sean C.; Wieczorek, Mark A.; Zuber, Maria T.

    2018-02-01

    The lunar highlands are isostatically compensated at large horizontal scales, but the specific compensation mechanism has been difficult to identify. With topographic data from the Lunar Orbiter Laser Altimeter and gravity data from the Gravity Recovery and Interior Laboratory, we investigate support of highland topography. Poor correlation between crustal density and elevation shows that Pratt compensation is not important in the highlands. Using spectrally weighted admittance, we compared observed values of geoid-to-topography ratio (GTR) with those predicted by isostatic models. Observed GTRs are 25.8+7.5-5.7 m/km for the nearside highlands and 39.3+5.7-6.2 m/km for the farside highlands. These values are not consistent with flexural compensation of long-wavelength topography or Airy isostasy defined under an assumption of equal mass in crustal columns. Instead, the observed GTR values are consistent with models of Airy compensation in which isostasy is defined under a requirement of equal pressures at equipotential surfaces at depth. The gravity and topography data thus reveal that long-wavelength topography on the Moon is most likely compensated by variations in crustal thickness, implying that highland topography formed early in lunar history before the development of a thick elastic lithosphere.

  2. Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Osterberg, E. C.; Gross, B.; Handley, M.; Wake, C. P.; Yalcin, K.

    2009-12-01

    Trends and sources of lead aerosol pollution in the North Pacific boundary layer from 1970-2001 are investigated using a high-resolution ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Average Pb concentrations in the ice core are enriched 31.8 times above crustal values based on ratios with five crustal reference elements (La, Ce, Pr, Al and Ti), indicating that >90% of the Pb deposited is anthropogenic. Isotopic analyses (208Pb/207Pb and 206Pb/207Pb) confirm that the Pb deposited at Eclipse Icefield is predominantly anthropogenic. Annually averaged Pb concentrations range from 25.6 ng/l to 96.7 ng/l (67.6 ng/l mean) and show no long term trend for the 1970-2001 period, contrary to other ice core records from the North Atlantic and the North Pacific. The stable Pb isotope ratio (208Pb/207Pb and 206Pb/207Pb) field indicates that recent Eclipse Icefield Pb pollution represents a variable mixture of North American, Central Eurasian and Asian (Chinese and Japanese) emissions transported across the Pacific basin, with Chinese coal combustion likely being the primary source. Increasing 208Pb/207Pb and 206Pb/207Pb ratios from the 1970’s through 2001 reflect the progressive East Asian industrialization concurrent with a decrease in Eurasian Pb emissions. We compare Pb isotope results from the Eclipse Icefield to data recently acquired from Denali National Park, where snowpit samples were collected from the Kahiltna Pass region (3048 masl). Pb isotope data from both sites are used to evaluate the relative importance of Asian emissions at similar altitudes yet different latitudes.

  3. Sources and elemental composition of ambient PM(2.5) in three European cities.

    PubMed

    Vallius, M; Janssen, N A H; Heinrich, J; Hoek, G; Ruuskanen, J; Cyrys, J; Van Grieken, R; de Hartog, J J; Kreyling, W G; Pekkanen, J

    2005-01-20

    Source apportionment of urban fine particle mass (PM(2.5)) was performed from data collected during 1998-1999 in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), using principal component analysis (PCA) and multiple linear regression. Six source categories of PM(2.5) were identified in Amsterdam. They were traffic-related particles (30% of the average PM(2.5)), secondary particles (34%), crustal material (7%), oil combustion (11%), industrial and incineration processes (9%), and sea salt (2%). The unidentified PM(2.5) fraction was 7% on the average. In Erfurt, four source categories were extracted with some difficulties in interpretation of source profiles. They were combustion emissions related to traffic (32%), secondary PM (32%), crustal material (21%) and industrial processes (8%). In Erfurt, 3% of PM(2.5) remained unidentified. Air pollution data and source apportionment results from the two Central European cities were compared to previously published results from Helsinki, where about 80% of average PM(2.5) was attributed to transboundary air pollution and particles from traffic and other regional combustion sources. Our results indicate that secondary particles and local combustion processes (mainly traffic) were the most important source categories in all cities; their impact on the average PM(2.5) was almost equal in Amsterdam and Erfurt whereas, in Helsinki, secondary particles made up for as much as half of the total average PM(2.5).

  4. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, Patrick T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered

  5. Chlorine isotope evidence for crustal recycling into the Earth's mantle

    NASA Astrophysics Data System (ADS)

    John, Timm; Layne, Graham D.; Haase, Karsten M.; Barnes, Jaime D.

    2010-09-01

    Subduction of oceanic lithosphere is a key feature of terrestrial plate tectonics. However, the effect of this recycled crustal material on mantle composition is debated. Ocean island basalts (OIB) provide direct insights into the composition of Earth's mantle. The distinct composition of the HIMU (high 238U/ 204Pb)- and EM (enriched mantle)-type OIB mantle sources may be due to either recycling of oceanic crust and sediment into the mantle or metasomatic processes within the mantle. Chlorine derived from seawater or crustal fluids potentially provides a tracer for recycled material. Previously reported δ 37Cl values for mid-ocean ridge basalts (MORB) range from ca. - 3.0 to near 0‰. In contrast to MORB, we find a larger variation in OIB glasses representing HIMU- and EM-type mantle sources based on replicate SIMS analyses with δ 37Cl values ranging from - 1.6 to + 1.1‰ for HIMU-type and - 0.4 to + 2.9‰ for EM-type lavas. These δ 37Cl values correlate positively with 87Sr/ 86Sr ratios for both the HIMU- and EM-type samples. The negative δ 37Cl values of some HIMU-type lavas overlap with those of altered oceanic lithosphere, which is assumed to be present in the HIMU source. The EM lavas have high 87Sr/ 86Sr and primarily positive δ 37Cl values. We hypothesize that subducting sediments may have developed high δ 37Cl values by expelling 37Cl-depleted pore fluids, thus accounting for the positive δ 37Cl values recorded in the EM-type lavas.

  6. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also have relatively uniform ??{lunate}Nd values that range only from -0.8 to + 1.1. This limited variation in neodymium isotopic composition may reflect the characteristics of the mantle sources of the rocks, or it may indicate that somehow similar proportions of crust contaminated the parental melts. The osmium, lead, and neodymium isotopic data for these rocks most closely resemble the mantle sources of certain ocean island basalts (OIB), such as some Hawaiian basalts. Hence, these data are consistent with derivation of primary melts from a mantle source similar to that of some types of hotspot activity. The long-term Re/Os enrichment of this and similar mantle sources, relative to chondritic upper mantle, may reflect 1. (1) incorporation of recycled oceanic crust into the source more than 1 Ga ago, 2. (2) derivation from a mantle plume that originated at the outer core-lower mantle interface, or 3. (3) persistence of primordial stratification of rhenium and osmium in the mantle. ?? 1994.

  7. Fine and ultrafine particles in small cities. A case study in the south of Europe.

    PubMed

    Aranda, A; Díaz-de-Mera, Y; Notario, A; Rodríguez, D; Rodríguez, A

    2015-12-01

    Ultrafine particles, PM2.5 and PM10 mass concentration, NO(x), Ozone, SO2, back-trajectories of air masses and meteorological parameters were studied in a small city over the period February, 2013 to June, 2014. The profiles of PM2.5 and PM10 particles are provided, showing averaged values of 16.6 and 21.6 μg m(-3), respectively. The average number concentration of particles in the range of diameters 5.6-560 nm was 1.2 × 10(4)#/ cm(3) with contributions of 42, 51 and 7% from the nucleation, Aitken, and accumulation modes, respectively. The average number concentration of ultrafine particles was 1.1 × 10(4)#/ cm(3). The results obtained are evidence for some differences in the pollution of ambient air by particles in the studied town in comparison to bigger cities. Nucleation events due to emissions from the city were not observed, and traffic emissions amount to a small contribution to PM2.5 and PM10 particles which are mainly due to crustal origin from the arid surroundings and long-range transport from the Sahara Desert.

  8. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen

    NASA Astrophysics Data System (ADS)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.

    2017-12-01

    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (<15°) southward-dipping interface that soles into a flat-lying mid-crustal detachment. The suture location near the top of the crust coincides closely with the northern limit of the Suwannee terrane reconstructed from its lower Paleozoic shelf strata (Boote and Knapp, 2016). The observed suture geometry implies over 300 km of head-on shortening across a plate boundary structure similar in scale to the Himalayan mid-crustal detachment. While the suture and other structures from the Alleghanian collision are preserved in the upper and mid-crust, the lower crust and mantle lithosphere beneath this region have been significantly modified by later processes. Ps receiver functions, wavefield migration and SsPmp modeling reveal that crustal thickness reaches a maximum of 58 km (beneath high elevations in the Blue Ridge terrane) and decreases to 29-35 km (beneath lower elevations in the Carolina and Suwannee terranes). Given metamorphic estimates of unroofing (Duff and Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  9. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.

  10. Comparison of the Lithospheric Structure Beneath Kenya and Ethiopia From Joint Inversion of Receiver Functions and Rayleigh Wave Dispersion Velocities

    NASA Astrophysics Data System (ADS)

    Dugda, M. T.; Nyblade, A. A.; Julia, J.

    2007-12-01

    Shear-wave velocity structure of the crust and upper mantle beneath Kenya has been investigated using joint inversion of receiver functions, and Rayleigh wave group and phase velocities. Most of the data for this study come from the Kenya broadband seismic experiment, conducted between 2001 and 2002. Shear velocity models obtained from the joint inversion show crustal thicknesses of 37 to 42 km beneath the East African Plateau in Kenya and near the edge of the Kenya Rift, and a crustal thickness of about 30 km beneath the Kenya Rift. These crustal parameters are consistent with crustal thicknesses published previously by different authors. A comparison has been made between the lithosphere under Kenya and other parts of the East African Plateau in Tanzania. A comparison between the lithosphere under Kenya and that under Ethiopia has also been made, specifically between the lithosphere under the Ethiopian Plateau and the Kenya Plateau, and between the lithosphere beneath the Main Ethiopian Rift (MER) and the Kenya (Gregory) Rift. The lithospheric mantle beneath the East African Plateau in Kenya has a maximum shear wave velocity of about 4.6 km/s, similar to the value obtained under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ~75 km. The average velocity of the mantle lithosphere under the East African Plateau in Kenya appears to be similar to the lithosphere under Tanzania away from the East African Rift System. The lithosphere under the Kenya Plateau is not perturbed as compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. The lithosphere under the Kenya Rift is perturbed as compared to the rest of the region but is not as perturbed as that under the Main Ethiopian Rift or the Afar. Though Kenya and Ethiopia have similar uplift, volcanism and rifting at the surface, they have different lithospheric structures at the bottom. The Afar Flood Basalt Volcanism (AFB) may be the cause of this striking difference in the two lithosphere.

  11. Studying the Thermal and Structural Evolution of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammadali

    The focus of this research is to study the thermal and structural evolution of three planetary bodies, Mars, Venus and the asteroid Vesta. The almost uniform spatial distribution of craters on the surfaces of planets makes them excellent candidates to examine the evolution of planets as a whole. By modeling the viscoelastic deformation of craters at the surface and subsurface with the Finite Element Method (FEM), this study investigated the role of lower crustal flow in crater relaxation, and since lower crustal flow is sensitive to the thermal state, it serves as a probe into the thermal evolution of planets. The thermal history of Mars was explored by modeling the evolution of large craters and Quasi-Circular Depressions (QCDs) in the Southern Highlands and Northern Lowlands, respectively. Because of the spatial distribution of craters, this study yielded a thermal map for Mars that is more complete and less biased regionally relative to other studies. The results revealed a higher background heat flux for the Northern Lowlands relative to the Southern Highlands during the most ancient Noachian epoch, which suggests a thermal fingerprint to whatever process that formed the hemispherical crustal dichotomy, the oldest and most prominent geomorphic feature on Mars. Next, the largest crater on the surface of Venus, Mead, also appears to have undergone significant lower crustal flow. Modeling the viscoelastic deformation of Mead puts constraints on the thermal state of our sister planet in the vicinity of the basin. The background heat flux of Venus estimated here is higher than globally average values predicted by previous thermal models. Moreover, this study showed that Venus's crust and mantle seem to be dry relative to those of the Earth. Last, modeling the evolution of two large craters in the south polar region of Vesta (Rheasilvia and Veneneia) showed that the shallow topography and large central peak of these craters are likely the products of a planetary scale impact, and not relaxation. Additionally, the possibility of relaxation of the rotational bulge was tested for the asteroid and showed that True Polar Wander (TPW) is not a likely scenario for Vesta.

  12. Implications for the crustal Architecture in West Antarctica revealed by the means of depth-to-the-bottom of the magnetic source (DBMS) mapping and 3D FEM geothermal heat flux models

    NASA Astrophysics Data System (ADS)

    Dziadek, Ricarda; Gohl, Karsten; Kaul, Norbert

    2017-04-01

    The West Antarctic Rift System (WARS) is one of the largest rift systems in the world, which displays unique coupled relationships between tectonic processes and ice sheet dynamics. Palaeo-ice streams have eroded troughs across the Amundsen Sea Embayment (ASE) that today route warm ocean deep water to the West Antarctic Ice Sheet (WAIS) grounding zone and reinforce dynamic ice sheet thinning. Rift basins, which cut across West Antarctica's landward-sloping shelves, promote ice sheet instability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 m.y. to reach long-term thermal equilibrium. The GHF in this region is, especially on small scales, poorly constrained and suspected to be heterogeneous as a reflection of the distribution of tectonic and volcanic activity along the complex branching geometry of the WARS, which reflects its multi-stage history and structural inheritance. We investigate the crustal architecture and the possible effects of rifting history from the WARS on the ASE ice sheet dynamics, by the use of depth-to-the-bottom of the magnetic source (DBMS) estimates. These are based on airborne-magnetic anomaly data and provide an additional insight into the deeper crustal properties. With the DBMS estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM models in 2D and 3D. On balance, and by comparison to global values, we find average GHF of 90 mWm-2 with spatial variations due to crustal heterogeneities and volcanic activities. This estimate is 30% more than commonly used in ice sheet models in the ASE region.

  13. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  14. Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Allenby, R. J.; Frey, H. V.

    1979-01-01

    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.

  15. Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust

    NASA Astrophysics Data System (ADS)

    Agius, Matthew R.; Lebedev, Sergei

    2014-12-01

    Geophysical and geological data suggest that Tibetan middle crust is a partially molten, mechanically weak layer, but it is debated whether this low-viscosity layer is present beneath the entire plateau, what its properties are, how it deforms, and what role it has played in the plateau's evolution. Broad-band seismic surface waves yield resolution in the entire depth range of the Tibetan crust and can be used to constrain its shear-wave velocity structure (indicative of crustal composition, temperature and partial melting) and radial anisotropy (indicative of the patterns of deformation). We measured Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 7-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds of interstation measurements, made with cross-correlation and waveform-inversion methods. Shear-velocity profiles were then determined by extensive series of non-linear inversions of the data, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy. Shear wave speeds within the Tibetan middle crust are anomalously low and, also, show strong lateral variations across the plateau. The lowest mid-crustal shear speeds are found in the north and west of the plateau (˜3.1-3.2 km s-1), within a pronounced low-velocity zone. In southeastern Tibet, crustal shear wave speeds increase gradually towards southeast, whereas in the north, the change across the Kunlun Fault is relatively sharp. The lateral variations of shear speeds within the crust are indicative of those in temperature. A mid-crustal temperature of 800 °C, reported previously, can account for the low shear velocities across Lhasa. In the north, the temperature is higher and exceeds the solidus, resulting in partial melting that we estimate at 3-6 per cent. Strong radial anisotropy is required by the data in western-central Tibet (>5 per cent) but not in northeastern Tibet. The amplitude of radial anisotropy in the crust does not correlate with isotropic-average shear speed (and, by inference, with crustal rock viscosity) or with surface elevation. Instead, radial anisotropy is related to the deformation pattern and is the strongest in regions experiencing extension (crustal flattening), as noted previously. The growth of Tibet by the addition of Indian crustal rocks into its crust from the south is reflected in the higher crustal seismic velocities (and, thus, lower temperatures) in the southern compared to northern parts of the plateau (more recently added rocks having had less time to undergo radioactive heating within the thickened Tibetan crust). Gravity-driven flattening-the basic cause of extension and normal faulting in the southern, western and central Tibet-is evidenced by pervasive radial anisotropy in the middle crust beneath the regions undergoing extension; the overall eastward flow of the crust is directed by the boundaries and motions of the lithospheric blocks that surround Tibet.

  16. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.

  17. Analysis of Large-Scale Resurfacing Processes on Mercury: Mapping the Derain (H-10) Quadrangle

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Ostrach, L. R.; Fassett, C. I.

    2018-05-01

    The Derain (H-10) Quadrangle of Mercury contains a large region of "average" crustal materials, with minimal smooth plains and basin ejecta, allowing the relative contribution of volcanic and impact processes to be assessed through geologic mapping.

  18. Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Brain, D. A.

    2012-12-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.

  19. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  20. The geophysical character of southern Alaska - Implications for crustal evolution

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth was caused by the addition of mafic magmas at intermediate to deep crustal levels.

  1. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  2. Preliminary Results of Crustal Structure beneath the Wabash Valley Seismic Zone Using Teleseismic Receiver Functions and Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Aziz Zanjani, A.; Hu, S.; Liu, Y.; Herrmann, R. B.; Conder, J. A.

    2015-12-01

    As part of a on-going EarthScope FlexArray project, we deployed 45 broadband seismographs in a 300-km-long linear profile across the Wabash Valley Seismic Zone (WVSZ). Here we present preliminary results of crustal structure beneath WVSZ based on teleseismic receiver functions and ambient noise tomography. We combined waveform data of the temporary stations in 2014 with those of permanent seismic stations and the transportable array stations in our study area since 2011. We found 656 teleseismic events with clear P-wave signals and obtained 2657 good-quality receiver functions of 84 stations using a time-domain iterative deconvolution method. We estimated crustal thickness and Vp/Vs ratio beneath each station using the H-κ stacking method. A high-resolution crustal structural image along the linear profile was obtained using the Common-Conversion-Point (CCP) stacking method. We also measured Rayleigh-wave phase and group velocities from 5 to 50 s by cross-correlating ambient noises between stations and did joint-inversion of receiver functions and surface wave dispersions for S-velocity structures beneath selected stations. The results show that the average crustal thickness in the region is 47 km with a gentle increase of crustal thickness from southeast to northwest. A mid-crustal interface is identified in the CCP image that also deepens from 15 km in the southeastern end to >20 km in the northwest. The CCP image shows that the low-velocity sedimentary layer along the profile is broad and is thickest (~10 km) near the center of the Wabash Valley. Beneath the center of the Valley there is a 40-km-wide positive velocity discontinuity at a depth of 40 km in the lower crust that might be the top of a rift pillow in this failed continental rift. Further results using 3D joint inversion and CCP migration will be presented at the meeting.

  3. Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Gasparon, M.; Hilton, D. R.; Varne, R.

    1994-08-01

    Helium isotope data have been obtained on well-characterised olivine and clinopyroxene phenocrysts and xenocrysts from thirteen volcanic centres located between central Sumatra and Sumbawa in the Sunda arc of Indonesia. Olivine crystals in mantle xenoliths (Iherzolite) from Bukit Telor basalts are primitive (Mg# = 90), and their He-3/He-4 value (R/R(sub A) = 8.8) indicates that the Sumatran mantle wedge is MORB-like in helium isotope composition. All other samples have lower He-3/He-4 ratios ranging from 8.5R(sub A) to 4.5R(sub A), with most (thirteen out of eighteen) following a trend of more radiogenic He-3/He-4 values with decreasing Mg#. The only exceptions to this trend are phenocrysts from Batur, Agung and Kerinci, which have MORB-like He-3/He-4 values but relatively low Mg# (Mg# = 70-71), and two highly inclusion-rich clinopyroxenes which have He-3/He-4 values lower than other samples of similar Mg#. The results indicate that crustal contamination unrelated to subduction in the Sunda arc is clearly recorded in the He-3/He-4 characteristics of mafic phenocrysts of subaerial volcanics, and that addition of radiogenic helium is related to low-pressure differentiation processes affecting the melts prior to eruption. These conclusions may have widespread applicability and indicate that helium isotope variations can act as an extremely sensitive tracer of upper crustal contamination.

  4. Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Morgan, John W.; Hanski, Eero J.; Smolkin, Valery F.

    1997-08-01

    The Re-Os isotopic systematics of various ferropicritic flows and sills of the Pechenga Complex, Russia, have been examined. During crystallization about 1.98 Ga ago, many of these bodies became highly differentiated. In addition, some of the larger igneous units are associated with major NiCu ore deposits. The melts that produced these rocks have been termed ferropicritic because of their high FeO and MgO contents. They are also enriched in light rare earth elements (LREEs), TiO 2, Zr, and many other incompatible trace elements. Previous studies have concluded that the ferropicrites were most likely derived from an Fe-rich mantle plume that had a complex history of long-term LREE depletion (initial ɛNd = + 1.4), but that also experienced a LREE enrichment event within 200 Ma of the generation of the rocks. Whole rock samples believed to be most representative of primary melt compositions indicate that initial melt concentrations of rhenium and osmium were approximately 1.1 ppb and 0.5 ppb, respectively. The high primary melt concentrations presumably made the osmium contained in the melts relatively immune to the effects of crustal contamination. Nonetheless, all ore-bearing intrusions examined show osmium isotopic evidence for crustal contamination. For example, the initial γOs for some primary magmatic sulfides from the Pilgujärvi intrusion average +46. Other ore-bearing intrusions, such as the Kammikivi sill, appear to have been similarly contaminated by crustal osmium during the injection of magma, with initial yo, values as high as +251. The seemingly high levels of crustal osmium may be attributed to the rapidly diminishing concentrations of osmium in the melts as the larger bodies differentiated, combined with localized in situ assimilation of the metasedimentary rocks that comprise the country rocks. The Re-Os systematics of some whole rock samples of both mineralized and sulfide-poor intrusions were affected by post-magmatic events, especially the greenschist grade metamorphism that impacted the rocks between about 1.7 and 1.8 Ga ago. The metamorphic effects are reflected in the recrystallization of many of the primary sulfides. As a consequence of this open-system behavior in many whole rock samples, the primary igneous Re-Os systematics of these rocks are best examined via analysis of magmatic phases such as chromite, olivine, clinopyroxene, and primary sulfides. Chromite and ilmenite+sulfide separates from two sulfide-poor lava flows, the Lammas and Keskitunturi, have characteristically low 187Re/ 188Os ( < l), and because of the limited age correction, precisely define the initial γOs of these systems to be +6.0±0.7. Because of the identical initial compositions of the two, spatially distinct lava flows, and the fact that these flows were extruded onto only slightly older volcanic rocks, we conclude that the +6.0 value reflects the composition of the mantle source and not minor crustal contamination. Although 187Os-enriched, plume-derived systems are common during the Phanerozoic, this is the earliest known evidence for the existence of long-term, Re-enriched mantle reservoirs. The most commonly invoked model to explain 187Os enrichments in Phanerozoic systems, oceanic crustal recycling, in this instance requires that very large proportions of oceanic crust were recycled into the mantle source and that the event was likely very ancient. Other options, such as core-mantle interaction and a stratified mantle, are also discussed.

  5. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  6. Estimating gravity changes caused by crustal strain: application to the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yin, Zhi; Xu, Caijun

    2017-08-01

    Temporal gravimetry is an efficient tool for monitoring mass transfers, but distinguishing the contribution of each process to the measured signals is challenging. Few effective methods have been developed to estimate the changes in gravity caused by crustal strain for large-scale geophysical problems. To fill this research gap, we proposed a formula that describes a negative linear correlation between changes in gravity and crustal dilatational strain. Surface observations of gravity changes and dilatational strains were simulated using PSGRN/PSCMP, which is a numerical code used to calculate the surface response to fault dislocations, and the accuracy of the formula was quantitatively verified. Four parameters are required for this formula: the crustal dilatational strain, the crustal density, the Moho depth, and a coefficient that characterizes the degree of crust-mantle coupling. To illustrate the application of this new method to a natural case study, including specifying the values of the necessary parameters, the crustal strain-caused gravity changes (CSGCs) were calculated at 1° × 1° grid nodes over the Tibetan Plateau (TP). The CSGC model shows that most of the crust of the TP is undergoing extension, which generates negative gravity signals. The magnitude of the Tibetan CSGC model is approximately 0.2 μGal yr-1, which is similar to the results obtained from numerical modelling of the crustal tectonics of the Taiwanese Orogen. To evaluate the reliability of the Tibetan CSGC model, the uncertainties in the crustal dilatational strain, crustal density, Moho depth, and crust-mantle coupling factor were evaluated and then used to estimate the CSGC uncertainty by applying the error propagation law. The CSGC model was used to analyse the mass transfers of the TP. The results suggest that a significant mass accumulation process may be occurring beneath the crust of the northern TP.

  7. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  8. Triggered reverse fault and earthquake due to crustal unloading, northwest Transverse Ranges, California.

    USGS Publications Warehouse

    Yerkes, R.F.; Ellsworth, W.L.; Tinsley, J.C.

    1983-01-01

    A reverse-right-oblique surface rupture, associated with a ML 2.5 earthquake, formed in a diatomite quarry near Lompoc, California, in the northwesternmost Transverse Ranges on April 7, 1981. The 575-m-long narrow zone of ruptures formed in clay interbeds in diatomite and diatomaceous shale of the Neogene Monterey Formation. The ruptures parallel bedding, dip 39o-59oS, and trend about N84oE on the north limb of an open symmetrical syncline. Maximum net slip was 25 cm; maximum reverse dip slip was 23 cm, maximum right-lateral strike slip was about 9 cm, and average net slip was about 12 cm. The seismic moment of the earthquake is estimated at 1 to 2 X 1018 dyne/cm and the static stress drop at about 3 bar. The removal of an average of about 44 m of diatomite resulted in an average load reduction of about 5 bar, which decreased the normal stress by about 3.5 bar and increased the shear stress on the tilted bedding plane by about 2 bar. The April 7, 1981, event was a very shallow bedding-plane rupture, apparently triggered by crustal unloading. -Authors

  9. Reconstruction of the pre-breakup crustal thickness in Australia/Antarctica

    NASA Astrophysics Data System (ADS)

    Goncharov, A.

    2003-04-01

    Some 140 million years ago, Australia and Antarctica were parts of a single continent Gondwana. Before it broke into parts there was a process of extensive crustal extension. Thinning of the crust during this process was accompanied by deposition of vast amounts of sedimentary rocks along Australia’s Southern Margin, where the total sediment thickness locally (e.g., Ceduna Sub-basin) reaches 15 km. These sedimentary rocks may have been involved in oil and gas formation. Knowledge of the pre-breakup crustal thickness in Australia/Antarctica is important because it provides additional constraints for plate tectonic reconstructions of the two continents and ultimately leads to a more accurate assessment of the petroleum potential of Australia’s Southern Margin. Most reliable estimates of crustal thickness come from refraction seismic measurements which define the depth to the Moho boundary, where seismic velocity increases to 8 km/s or more. Such measurements were used in this research for Australia. Unlike Australia, Antarctica has poor coverage of seismic measurements of crustal thickness. For Antarctica, seismic measurements were supplemented by values predicted by the regression between seismically defined crustal thickness and upwardly continued gravity. Upward continuation emphasizes the effects of variations in crustal thickness in the total gravity signal. After compilation and computation of crustal thickness was completed, data points located on Australian continent were reconstructed to their pre-breakup position. The most up-to-date finite rotation parameters defining the movement of Australia relative to Antarctica were used in this process. To ensure that pre-breakup extension and thinning of the crust (during the 140 to 95 Ma time interval) were accounted for, points with crustal thickness values less than 30 km on both Australian and Antarctic margins were excluded from subsequent gridding. Crust thinner than 30 km was taken to have been affected by pre-breakup extension. The resultant reconstructed pre-extensional crustal thickness may have existed in this part of Gondwana prior to the pre-breakup extension, assuming that geological processes on both continents (excluding margins) have not affected it significantly since then. Crustal thickness along the zone of subsequent Australia/Antarctica separation is clearly reduced and its width varies substantially. Thin crust is generally weaker than thick crust, so it is not surprising that the continents broke apart along this zone. A distinct zone of thick crust, which spans across Australia/Antarctica from the Eastern Highlands in Australia to the Transantarctic Mountains, is another obvious feature on the map of pre-extensional crustal thickness. This may explain why the break-up of the continents between Tasmania and Northern Victoria Land occurred as the last stage of the separation process. Thick crust in this region essentially served as a lock: only after this lock was broken did final separation occur. Clearly, thickest sediment has accumulated where the width of the zone of pre-extensional thin crust was minimal in the Ceduna Sub-basin. This may be due to the higher rate of subsidence in the zone with the steepest slope on the Moho. Rheology of the crust and sediment supply were also among the contributing factors; relative contributions of these factors will be studied in more detail in the future. Sedimentation in the Otway, Sorell, Bass and Gippsland basins to the north and west of Tasmania, unlike other basins on the Southern Margin, commenced in a thick crust environment: all four are located within the Eastern Highlands - Transantarctic Mountains zone. Although, crustal thickness immediately underneath the basins is not much different from the western part of the Margin, clearly there are two prominent (up to 45 km) Moho lows to the north and south of them. Onset of pre-breakup crustal extension within this zone was probably different from the western part of the Southern Margin: thicker crust is harder to break. Also, thicker crust generally means higher heat flow. These differences may have affected both the style of crustal extension and hydrocarbon maturation in deposited sediments. Non-uniform pre-extensional crustal thickness along Australian Southern and conjugate Antarctic margins, as well as implied differences in heat flow distribution, must be taken into consideration in modelling crustal extension and the formation of sedimentary basins.

  10. Distribution of mercury in molluscs, seawaters and coastal sediments of Tarut Island, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed; El-Sorogy, Abdelbaset; Al-Kahtany, Khaled

    2016-12-01

    In order to assess the distribution of mercury along the Tarut coast, Arabian Gulf, Thirty eight (38) sediment samples, twenty six (26) seawater samples, and forty (40) Mollusca specimens were collected from the Tarut coast. The concentrations of Mercury in the sediments of the studied area (average = 0.55 μg/g) are generally high comparing to the reported values from the Gulf of Oman, Red Sea, and the Gulf of Finland. The concentrations of Hg exceeded the wet threshold safety values (median effect concentration (MEC), and probable effect concentration (PEC) indicating possible Hg contamination. According to the Swedish Environmental Protection Agency (SEPA), thirty four (34) samples occur in class 4 and four (4) samples occur in class 5, which means that the sediments of the Tarut Island are largely contaminated with Hg. Enrichment factor (EF) results (average = 1.76) suggested that, the coastal sediments of the Tarut Island are considered to entirely originate from the crustal materials or natural processes. The studied sediments show lower values (Igeo<0) indicating that the sediments are unpolluted. These sediments according to contamination factor (Cf) are considered contaminated with Hg (1 < CF < 3). The Hg concentration in water samples (average = 30 μg/g) considered high. Comparison with Hg contents in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf suggested that the studied samples have higher concentrations of Hg. The suggested natural sources of Hg in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources are the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents exceeded in the study area and in Al Jubail industrial city to the north.

  11. A non-zircon Hf isotope record in Archean black shales from the Pilbara craton confirms changing crustal dynamics ca. 3 Ga ago.

    PubMed

    Nebel-Jacobsen, Yona; Nebel, Oliver; Wille, Martin; Cawood, Peter A

    2018-01-17

    Plate tectonics and associated subduction are unique to the Earth. Studies of Archean rocks show significant changes in composition and structural style around 3.0 to 2.5 Ga that are related to changing tectonic regime, possibly associated with the onset of subduction. Whole rock Hf isotope systematics of black shales from the Australian Pilbara craton, selected to exclude detrital zircon components, are employed to evaluate the evolution of the Archean crust. This approach avoids limitations of Hf-in-zircon analyses, which only provide input from rocks of sufficient Zr-concentration, and therefore usually represent domains that already underwent a degree of differentiation. In this study, we demonstrate the applicability of this method through analysis of shales that range in age from 3.5 to 2.8 Ga, and serve as representatives of their crustal sources through time. Their Hf isotopic compositions show a trend from strongly positive εHf initial values for the oldest samples, to strongly negative values for the younger samples, indicating a shift from juvenile to differentiated material. These results confirm a significant change in the character of the source region of the black shales by 3 Ga, consistent with models invoking a change in global dynamics from crustal growth towards crustal reworking around this time.

  12. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include some near-coastal areas with thick sediment cover and several larger orogenic belts. Some remaining discrepancies, such as in backarc basins, may result from variations in the deeper uppermost mantle and remain unchanged in CRUST1.0 but will likely be modified in LITHO1.0. CRUST1.0 is available for download.

  13. Mercury's lithospheric thickness and crustal density, as inferred from MESSENGER observations

    NASA Astrophysics Data System (ADS)

    James, P. B.; Mazarico, E.; Genova, A.; Smith, D. E.; Neumann, G. A.; Solomon, S. C.

    2015-12-01

    The gravity field and topography of Mercury measured by the MESSENGER spacecraft have provided insights into the thickness of the planet's elastic lithosphere, Te. We localized the HgM006 free-air gravity anomaly and gtmes_125v03 shape datasets to search for theoretical elastic thickness solutions that best fit a variety of localized coherence spectra between Bouguer gravity anomaly and topography. We adopted a crustal density of ρcrust =2700 kg m-3 for the Bouguer gravity correction, but density uncertainty did not markedly affect the elastic thickness estimates. A best-fit solution in the northern smooth plains (NSP) gives an elastic thickness of Te =30-60 km at the time of formation of topography for a range of ratios of top to bottom loading from 1 to 5. For a mechanical lithosphere with a thickness of ~2Te and a temperature of 1600 °C at the base, this solution is consistent with a geothermal gradient of 9-18 K km-1. A similar coherence analysis exterior to the NSP produces an elastic thickness estimate of Te =20-50 km, albeit with a poorer fit. Coherence in the northern hemisphere as a whole does not approach zero at any wavelength, because of the presence of variations in crustal thickness that are unassociated with elastic loading. The ratios and correlations of gravity and topography at intermediate wavelengths (harmonic degree l between 30 and 50) also constrain regional crustal densities. We localized gravity and topography with a moving Slepian taper and calculated regionally averaged crustal densities with the approximation ρcrust=Zl/(2πG), where Zl is the localized admittance and G is the gravitational constant. The only regional density estimates greater than 2000 kg m-3 for l=30 correspond to the NSP. Density estimates outside of the NSP were unreasonably low, even for highly porous crust. We attribute these low densities to the confounding effects of crustal thickness variations and Kaula filtering of the gravity dataset at the highest harmonic degrees, both of which tend to introduce a downward bias to crustal density estimation. An alternative analysis—which corrected for crustal thickness variability and was restricted to regions with gravity/topography coherence greater than 0.6—yielded an aggregate crustal density of ρcrust=2602 ± 470 kg m-3 for Mercury's high northern latitudes.

  14. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.

    2011-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc is covered with thick sediments with the age of Oligocene and that half graben structures are much identified between the Oligocene arc and the current volcanic front. This may suggest that the Oligocene arc in current fore-arc basin is cut off from the current volcanic arc. Therefore, the Oligocene arc in the fore-arc may still keep structural characteristics inside the body since Oligocene age, which are before cutting off from the current volcanic front.

  15. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  16. GPS Time Series and Geodynamic Implications for the Hellenic Arc Area, Greece

    NASA Astrophysics Data System (ADS)

    Hollenstein, Ch.; Heller, O.; Geiger, A.; Kahle, H.-G.; Veis, G.

    The quantification of crustal deformation and its temporal behavior is an important contribution to earthquake hazard assessment. With GPS measurements, especially from continuous operating stations, pre-, co-, post- and interseismic movements can be recorded and monitored. We present results of a continuous GPS network which has been operated in the Hellenic Arc area, Greece, since 1995. In order to obtain coordinate time series of high precision which are representative for crustal deformation, a main goal was to eliminate effects which are not of tectonic origin. By applying different steps of improvement, non-tectonic irregularities were reduced significantly, and the precision could be improved by an average of 40%. The improved time series are used to study the crustal movements in space and time. They serve as a base for the estimation of velocities and for the visualization of the movements in terms of trajectories. Special attention is given to large earthquakes (M>6), which occurred near GPS sites during the measuring time span.

  17. Use of MAGSAT anomaly data for crustal structure and mineral resources in the US Midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1981-01-01

    The analysis and preliminary interpretation of investigator-B MAGSAT data are addressed. The data processing included: (1) removal of spurious data points; (2) statistical smoothing along individual data tracks, to reduce the effect of geomagnetic transient disturbances; (3) comparison of data profiles spatially coincident in track location but acquired at different times; (4) reduction of data by weighted averaging to a grid with 1 deg xl deg latitude/longitude spacing, and with elevations interpolated and weighted to a common datum of 400 km; (5) wavelength filtering; and (6) reduction of the anomaly map to the magnetic pole. Agreement was found between a magnitude data anomaly map and a reduce-to-the-pole map supporting the general assumption that, on a large scale (long wavelength), it is induced crustal magnetization which is responsible for major anamalies. Anomalous features are identified and explanations are suggested with regard to crustal structure, petrologic characteristics, and Curie temperature isotherms.

  18. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    NASA Astrophysics Data System (ADS)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  19. Determining Crustal Structure beneath the New Madrid Seismic Zone and Adjacent Areas: Application of a Reverberation-removal Filter

    NASA Astrophysics Data System (ADS)

    Liu, L.; Gao, S. S.; Liu, K. H.

    2015-12-01

    The New Madrid Seismic Zone (NMSZ) and some of the adjacent areas are covered by a low-velocity sedimentary sequence, giving rise to strong reverberations in the P-to-S receiver functions (RFs) and making it difficult to reliably determine crustal thickness and Poisson's ratio using the conventional H-k stacking technique. Here we apply a newly developed technique (Yu et al., 2015; doi: 10.1002/2014JB011610) to effectively remove or reduce the reverberations from the sedimentary layer to obtain more reliable results. Stacking of a total of 38528 radial RFs recorded by 343 stations in the study area shows systematic spatial variations in crustal thickness (H), Vp/Vs ratio and amplitude (R; relative to the direction P) of the converted Moho phases. Our results indicate that the upper Mississippi Embayment (ME), a broad southwest-plunging trough with the thickest sedimentary layer in the study area, is characterized by a thin crustal thickness (~32 km), while adjacent areas have relatively thicker crust (>40 km). This area also possesses relatively large Vp/Vs (>1.85) values, suggesting possible intrusion of mantle-derived mafic rocks. Most part of the Ozark Uplift is characterized by relatively small Vp/Vs (<1.79) values which indicate an overall felsic crust. In contrast to the NMSZ which is part of the Reelfoot rift, the southern Illinois Basin, which is an intracontinental sag basin, is characterized by a crust of about 45 km which is a few km thicker than the surrounding areas, and a normal Vp/Vs, suggesting sharp differences in crustal structure between rift and sag basins.

  20. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production

    NASA Astrophysics Data System (ADS)

    Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.

    2017-12-01

    We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.

  1. Geodynamic models for the post-orogenic exhumation of the lower crust

    NASA Astrophysics Data System (ADS)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.

    2015-12-01

    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the dripping instability but the crustal rocks are buried deeper because of the downward forcing of the sinking ocean plate. We suggest that the first set of model results are comparable to the peak pressure calculations from the high pressure rocks of the Afyon Zone in western Turkey with a significant offset (175°C) in temperature values.

  2. Lu-Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana

    NASA Astrophysics Data System (ADS)

    Foster, David A.; Mueller, Paul A.; Heatherington, Ann; Gifford, Jennifer N.; Kalakay, Thomas J.

    2012-06-01

    Lu-Hf systematics of magmatic zircons from quartz diorite and granodiorite plutons of the Late Cretaceous Pioneer batholith, Montana, indicate involvement of distinctly different crustal sources in the petrogensis of individual components of the batholith. Plutons of the eastern Pioneer batholith contain magmatic zircons with initial ɛHf values of - 28 to - 34 that crystallized in magmas likely derived from dominantly Archean and earliest Paleoproterozoic crust. Contemporaneous granodiorite in the western Pioneer batholith contains magmatic zircons with initial ɛHf values ranging from - 9 to - 33, but dominated by values between - 18 and - 22, which suggest a mixture of Paleoproterozoic and possible Mesoproterozoic sources. These data suggest that distinct segments of crust juxtaposed and produced during formation of the Great Falls tectonic zone (1.78-1.86 Ga) and the Belt basin (~ 1.43-1.47 Ga) contributed to magmatic compositions in the batholith and that these contributions are recorded in the magmatic zircons. The contrasting ɛHf distributions between eastern and western components of the Pioneer batholith suggest that an important crustal and/or lithospheric boundary underlies the Pioneer batholith. The Hf-isotopic results also suggest that the high P-wave velocity lower crust of the northern Rocky Mountains did not form in a single event.

  3. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  4. More on Magnetic Spectra from Correlated Crustal Sources on Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    2005-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields has been re-examined, modified and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. These observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we found fields from a core of radius 3512 plus or minus 64 km, in accord with the 3480 km seismologic radius, and a crust represented by a shell of random dipolar sources at radius 6367 plus or minus 14 km, just beneath the 6371.0 km mean radius. For Mars we found only a field from a crust represented in same way, but 46 plus or minus 10 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 plus or minus 3.2 times stronger than Earth's. It is remarkable that the same simple theoretical form should fairly fit crustal magnetic spectra for both worlds and return crustal-source depth estimates of plausible magnitude. Evidently, the idea of an ensemble of compact, quasi-independent, magnetized regions within these planetary crusts has some merit. Yet such estimates, at best a kind of average, depend upon both the observational spectrum fitted and the physical basis of the theoretical spectrum.

  5. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  6. 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data — Application to the Alborz Mountains (Iran) and South Caspian Basin region

    NASA Astrophysics Data System (ADS)

    Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Ebrahimzadeh Ardestani, Vahid

    2013-02-01

    We present a 3D algorithm to obtain the density structure of the lithosphere from joint inversion of free air gravity, geoid and topography data based on a Bayesian approach with Gaussian probability density functions. The algorithm delivers the crustal and lithospheric thicknesses and the average crustal density. Stabilization of the inversion process may be obtained through parameter damping and smoothing as well as use of a priori information like crustal thicknesses from seismic profiles. The algorithm is applied to synthetic models in order to demonstrate its usefulness. A real data application is presented for the area of northern Iran (with the Alborz Mountains as main target) and the South Caspian Basin. The resulting model shows an important crustal root (up to 55 km) under the Alborz Mountains and a thin crust (ca. 30 km) under the southernmost South Caspian Basin thickening northward to the Apsheron-Balkan Sill to 45 km. Central and NW Iran is underlain by a thin lithosphere (ca. 90-100 km). The lithosphere thickens under the South Caspian Basin until the Apsheron-Balkan Sill where it reaches more than 240 km. Under the stable Turan platform, we find a lithospheric thickness of 160-180 km.

  7. Crustal structure, geophysical models and contemporary tectonism of the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Braile, L. W.; Morgan, P.

    1979-01-01

    A regional analysis of the crust and upper mantle of the Colorado Plateau is presented, using existing geophysical and geological data combined with new surface wave dispersion and groundwater geothermometry data; the tectonic implications of these models are also investigated. Surface wave and seismic refraction data indicate that the crust of the interior of the Colorado Plateau is 44 + or - 3 km thick, and its crustal structure is typical of stable continental areas. Pn velocities, however, appear to be lower (7.8 km/s) than would be expected in a stable region, while silica geothermometry indicates that the average heat flow for the plateau is 55 mW per sq m (1.3 HFU).

  8. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the restricted range in isotopic compositions of most rhyolitic and granitic rocks of the Permo-Carboniferous province of Europe and elsewhere. Sheet labelled "XRF standard analyses" reports replicate analyses normalized to 100 obtained by XRF on international standards analyzed along with our samples. Sheet labelled "XRF replicate sample analyses" reports replicate XRF analyses on two samples of our data set. ICP-MS analyses from Acme Analytical Laboratories Ltd. are shown for comparison. Sheet labelled "ICP-MS analyses" reports replicate analyses of trace elements on standard SO18, its official value and replicate analyses of two our samples provided by Acme Analytical Laboratories Ltd. Sheet labelled "kinzigite". Major and trace elements of amphibolite-facies paragneiss samples of the Kinzigite Formation from the roof of the Mafic Complex. In bold data by ICP-MS, other data by XRF. For Ba, Rb and Sr XRF data were included in the average estimate to increase the statistics. The last column reports the average data of amphibolite-facies rocks from the Kinzigite Formation from Schnetger (1994). Sheet labelled "PBB paragneiss". Data for granulite-facies paragneiss samples in the septa of the paragneiss bearing belt (PBB). XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). The last column reports the average data of granulite-facies rocks from Val Strona (stronalite) from Schnetger (1994). Sheet labelled "PBB charnockite". Data for charnockitic rocks included in paragneiss septa. XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). Sheet labelled "computed crustal assimilant". Reports the average compositions of paragneiss in amphibolite and granulite facies from this work and from Schnetger (1994). The bulk composition of the septa is computed as 70% paragneiss and 30% charnockite, as roughly estimated in the field. The partially depleted assimilant is computed as a 50/50 mixture of amphibolite- and granulite facies rocks. Sheet labelled "anatectic products" includes leucosomes at the roof of the Mafic Complex, anatectic granites from this work and from the Atesina Volcanic district (Rottura et al., 1998). In bold data by ICP-MS, other data by XRF. Sheet labelled "Valle Mosso granite" reports the whole rock compositions of granitic rocks of the pluton, distinguishing samples from upper and lower granite. XRF data for Ba, Rb and Sr were included in the average estimate to increase the statistics. The last column reports the bulk composition of the pluton, estimated as 70% lower and 30% upper granite. Sheet labelled "Rhyolite" reports whole rock and average compositions of rhyolite. Sheet labelled "UMC gabbro" reports whole rock compositions of gabbros from the upper Mafic Complex. Samples are grouped as pertaining to the "Upper Zone" and "Main Gabbro" according the subdivision of Rivalenti et al. (1975). Gt gabbro = garnet-bearing gabbro. In bold data by ICP-MS, other data by XRF. For Ba and Sr XRF data were included in the average estimate to increase the statistics. Sheet labelled "computed average UMC" reports the whole composition of upper Mafic complex, estimated as 30% Upper Zone and 70% Main Gabbro. Sheet labelled "mafic rocks in middle crust" reports the whole rock compositions from the mafic pod PST262, intruded at the boundary between Ivrea Zone and Serie dei Laghi at 287 ± 5 Ma (Klötzli et al., 2014) and mafic dikes and an enclave intruded in the lower Valle Mosso granite. Sheet labelled "mafic volcanic rocks" reports the whole rock compositions of basaltic andesite and andesite from the Sesia Magmatic System. The average composition is computed excluding altered samples and XRF data for trace elements. Sr and Nd isotope data from this work and previous publications. Sheet labelled "compositions for modelling" reports a summary of the average compositions of the components used for the computations. Sheet labelled "Kd used for AFC and FC modelling" reports the Kd values and percent of mineral phases used in the AFC and FC computations (from Claeson and Meurer, 2004; Rollinson, 1993; Green et al., 2000; Namur et al., 2011). Sheet labelled "trace elements modelling" reports the results of AFC, bulk mixing and FC computations on trace elements. The enclosed figure illustrates the bulk mixing lines between Campore and average crust or anatectic granite respectively. Mixing required getting the composition of andesitic basalt with average crust and anatectic granite varies from 33 to 63% respectively (see text for consequences). The AFC path from Campore to andesitic basalts overlaps the bulk mixing lines. The shape of the mixing line between residual and anatectic melt results in the poor sensibility of Nd to the addition of anatectic melt to the residual one (εNd remains within the field of mafic rocks up to 80% addition of anatectic melt). Sheet labelled "major elements modelling" reports the results of mass balance computations on major-elements based on bulk mixing and XL-FRAC (Stormer and Nicholls, 1978). Sheet labelled "EC-RAXFC modelling" reports input data and results obtained by EC-RAXFC code (Bohrson and Spera, 2007) to simulate the energy constrained AFC from Campore to andesitic basalt. Liquidus temperature and specific heat of magma and assimilant (tlm, tla, cpm, cpa) as well as heat of crystallization and fusion (hm, ha) were obtained by Rhyolite-Melts code (Gualda et al., 2012) at P = 6 kbar (intermediate pressure between the roof and the deepest rocks of the Mafic Complex; Demarchi et al., 1998), assuming QFM + 2, and H2O content = 0.5 for Campore and = 1.0 for assimilant (intermediate between kinzigite and stronalite from Schnetger, 1994). Initial temperature of assimilant (tlo) was assumed equal to the solidus temperature (ts), which results around 850° from the experimental melting of natural metapelite (Vielzeuf and Holloway, 1988). Non-linear melting functions were chosen within the range of values suggested by Bohrson and Spera (2007). Recharge magma (R) was set = 0 because the homogeneity of the Upper Mafic Complex is best explained if each new mafic pulse is injected at the new neutral buoyancy level, above a dense and partially depleted restite, and may be treated as a single pulse. X was set = 1 assuming that all anatectic melt enters the mafic magma. Different simulations were run using alternatively bulk partition coefficients of Sr and Nd for the assimilant (Da) reported for "standard" upper crust by Bohrson and Spera (2001; 1.5 and 0.25, respectively), Da estimated from our data set (2.15 and 2.6, respectively) and intermediate values. For the mafic magma, the bulk D values (Dm) of 0.77 for Sr and 0.34 for Nd result from the Kd and percent of mineral phases used in the AFC computation. Lat-long grid for samples reported in OS tables.

  9. Dust fallout in Kuwait city: deposition and characterization.

    PubMed

    Al-Awadhi, Jasem M; Alshuaibi, Arafat A

    2013-09-01

    Dust fallouts in Kuwait city was monitored on monthly basis during the period from March 2011 to February 2012 at 10 locations. The results of this study reveal that: (1) monthly dust deposition rates ranged from 0.002 to 0.32 kg/m(2) with average deposition rate of 0.053 kg/m(2) and annual average deposition rate of 0.59 kg/m(2), ranking the first out of 56 dust deposition rates observed throughout the world; (2) on average, about 55.9% of the settled dust have fine to very fine sand fraction sizes, while silt and clay comprise an average of 37.4 and 1.4% of the total sample, respectively; (3) the concentrations for Zn and Mo out of 15 other elements analyzed from the dust were up to 11 times higher than their soil background values in Kuwait, while Pb and Ni were about seven times higher; (4) Mo, Ni, Pb and Zn show maximum enrichment relative to the upper continental crustal component (Mn); (5) Sr, Zr and Zn show highest concretions among all collected samples; and (6) quartz and calcite were the dominant minerals in the dust samples. The distribution of the heavy metals in dust seems to be controlled mainly by the land uses and the volume of traffic emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Noble Gas Signatures in Antrim Shale Gas in the Michigan Basin - Assessing Compositional Variability and Transport Processes

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.; Bouvier, L.

    2014-12-01

    Recent studies in the Michigan Basin looked at the atmospheric and terrigenic noble gas signatures of deep brines to place constraints on the past thermal history of the basin and to assess the extent of vertical transport processes within this sedimentary system. In this contribution, we present noble gas data of shale gas samples from the Antrim shale formation in the Michigan Basin. The Antrim shale was one of the first economic shale-gas plays in the U.S. and has been actively developed since the 1980's. This study pioneers the use of noble gases in subsurface shale gas in the Michigan Basin to clarify the nature of vertical transport processes within the sedimentary sequence and to assess potential variability of noble gas signatures in shales. Antrim Shale gas samples were analyzed for all stable noble gases (He, Ne, Ar, Kr, Xe) from samples collected at depths between 300 and 500m. Preliminary results show R/Ra values (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) varying from 0.022 to 0.21. Although most samples fall within typical crustal R/Ra range values (~0.02-0.05), a few samples point to the presence of a mantle He component with higher R/Ra ratios. Samples with higher R/Ra values also display higher 20Ne/22Ne ratios, up to 10.4, and further point to the presence of mantle 20Ne. The presence of crustally produced nucleogenic 21Ne and radiogenic 40Ar is also apparent with 21Ne/22Ne ratios up to 0.033 and 40Ar/36Ar ratios up to 312. The presence of crustally produced 4He, 21Ne and 40Ar is not spatially homogeneous within the Antrim shale. Areas of higher crustal 4He production appear distinct to those of crustally produced 21Ne and 40Ar and are possibly related the presence of different production levels within the shale with varying concentrations of parent elements.

  11. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan

    2017-04-01

    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.

  12. Thermal implications of metamorphism in greenstone belts and the hot asthenosphere-thick continental lithoshere paradox

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1986-01-01

    From considerations of secular cooling of the Earth and the slow decay of radiogenic heat sources in the Earth with time, the conclusion that global heat loss must have been higher in the Archean than at present seems inescapable. The mechanism by which this additional heat was lost and the implications of higher heat low for crustal temperatures are fundamental unknowns in our current understanding of Archean tectonics and geological processes. Higher heat loss implies that the average global geothermal gradient was higher in the Archean than at present, and the restriction of ultramafic komatiites to the Archean and other considerations suggests that the average temperature of the mantle was several hundred degrees hotter during the Archean than today. In contrast, there is little petrologic evidence that the conditions of metamorphism or crustal thickness (including maximum crustal thickness under mountains) were different in archean continental crust from the Phanerozoic record. Additionally, Archean ages have recently been determined for inclusions in diamonds from Cretaceous kimeberlites in South Africa, indicating temperatures of 900 to 1300 at depths of 150 to 215 km (45 to 65 kbar) in the Archean mantle, again implying relatively low geothermal gradients at least locally in the Archean. The thermal implications of metamorphism are examined, with special reference to greenstone belts, and a new thermal model of the continental lithosphere is suggested which is consistent with thick continental lithosphere and high asthenosphere temperatures in the Archean.

  13. Seismic wide-angle constraints on the crust of the southern Urals

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Gallart, J.; PéRez-Estaún, A.; Diaz, J.; Kashubin, S.; Mechie, J.; Wenzel, F.; Knapp, J.

    2000-06-01

    A wide-angle seismic reflection/refraction data set was acquired during spring 1995 across the southern Urals to characterize the lithosphere beneath this Paleozoic orogen. The wide-angle reflectivity features a strong frequency dependence. While the lower crustal reflectivity is in the range of 6-15 Hz, the PmP is characterized by frequencies below 6 Hz. After detailed frequency filtering, the seismic phases constrain a new average P wave velocity crustal model that consists of an upper layer of 5.0-6.0 km/s, which correlates with the surface geology; 5-7 km depths at which the velocities increase to 6.2-6.3 km/s; 10-30 km depths at which, on average, the crust is characterized by velocities of 6.6 km/s; and finally, the lower crust, from 30-35 km down to the Moho, which has velocities ranging from 6.8 to 7.4 km/s. Two different S wave velocity models, one for the N-S and one for the E-W, were derived from the analysis of the horizontal component recordings. Crustal sections of Poisson's ratio and anisotropy were calculated from the velocity models. The Poisson's ratio increases in the lower crust at both sides of the root zone. A localized 2-3% anisotropy zone is imaged within the lower crust beneath the terranes east of the root. This feature is supported by time differences in the SmS phase and by the particle motion diagrams, which reveal two polarized directions of motion. Velocities are higher in the central part of the orogen than for the Siberian and eastern plates. These seismic recordings support a 50-56 km crustal thickness beneath the central part of the orogen in contrast to Moho depths of ≈ 45 km documented at the edges of the transect. The lateral variation of the PmP phase in frequency content and in waveform can be taken as evidence of different genetic origins of the Moho in the southern Urals.

  14. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    NASA Astrophysics Data System (ADS)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  15. Using a Genetic Algorithm to Model Broadband Regional Waveforms for Crustal Structure in the Western United States

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John

    1999-01-01

    In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.

  16. Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Brain, David A.

    2013-06-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.

  17. Pb-Sr-Nd-O isotopic characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin accretion during the Late Cretaceous of southern California

    USGS Publications Warehouse

    Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively contaminated magmatic arc. The Peninsular Ranges batholith magmatic arc was initially an oceanic arc built on Panthalassan lithosphere that eventually evolved into a continental margin magmatic arc collision zone, eventually overriding North American cratonic lithosphere. Our Pb-Sr-Nd data further suggest that the western arc rocks represent a nearshore or inboard oceanic arc, as they exhibit isotopic signatures that are more enriched than typical mid-ocean-ridge basalt (MORB). Isotopic signatures from the central zone are transitional and indicate that enriched crustal magma sources were becoming involved in the northern Peninsular Ranges batholith magmatic plumbing. As the oceanic arc–continental margin collision progressed, a mixture of oceanic mantle and continental magmatic sources transpired. Magmatic production in the northern Peninsular Ranges batholith moved eastward and continued to tap enriched crustal magmatic sources. Similar modeling has been previously proposed for two other western margin magmatic arcs, the Sierra Nevada batholith of central California and the Idaho batholith.Calculated initial Nd signatures at ca. 100 Ma for Permian–Jurassic and Proterozoic basement rocks from the nearby San Gabriel Mountains and possible source areas along the southwestern Laurentian margin of southern California, southwestern Arizona, and northern Sonora strongly suggest their involvement with deep crustal magma mixing beneath the eastern zones of the Peninsular Ranges batholith, as well as farther east in continental lithospheric zones.Last, several samples from the allochthonous, easternmost upper-plate zone, which are considerably younger (ca. 84 Ma) than any of the rocks from the northern Peninsular Ranges batholith proper, have even more enriched average Sri, 206Pbi, 208Pbi, and εNdisignatures of 0.7079, 19.344, 38.881, and −6.6, respectively, indicative of the most-evolved magma sources in the northern Peninsular Ranges batholith and similar to radioisotopic values for rocks from the nearby Transverse Ranges, suggesting a genetic connection between the two.

  18. Internal Dynamics and Crustal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The objective of this work is to improve understanding of the internal structure, crustal evolution, and thermal history of Mars by combining geophysical data analysis of topography, gravity and magnetics with results from analytical and computational modeling. Accomplishments thus far in this investigation include: (1) development of a new crustal thickness model that incorporates constraints from Mars meteorites, corrections for polar cap masses and other surface loads, Pratt isostasy, and core flattening; (2) determination of a refined estimate of crustal thickness of Mars from geoid/topography ratios (GTRs); (3) derivation of a preliminary estimate of the k(sub 2) gravitational Love number and a preliminary estimate of possible dissipation within Mars consistent with this value; and (4) an integrative analysis of the sequence of evolution of early Mars. During the remainder of this investigation we will: (1) extend models of degree-1 mantle convection from 2-D to 3-D; (2) investigate potential causal relationships and effects of major impacts on mantle plume formation, with primary application to Mars; (3) develop exploratory models to assess the convective stability of various Martian core states as relevant to the history of dynamo action; and (4) develop models of long-wavelength relaxation of crustal thickness anomalies to potentially explain the degree-1 structure of the Martian crust.

  19. The construction of sparse models of Mars' crustal magnetic field

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly; Bloxham, Jeremy

    2017-04-01

    The crustal magnetic field of Mars is a key constraint on Martian geophysical history, especially the timing of the dynamo shutoff. Maps of the crustal magnetic field of Mars show wide variations in the intensity of magnetization, with most of the Northern hemisphere only weakly magnetized. Previous methods of analysis tend to favor smooth solutions for the crustal magnetic field of Mars, making use of techniques such as L2 norms. Here we utilize inversion methods designed for sparse models, to see how much of the surface area of Mars must be magnetized in order to fit available spacecraft magnetic field data. We solve for the crustal magnetic field at 10,000 individual magnetic pixels on the surface of Mars. We employ an L1 regularization, and solve for models where each magnetic pixel is identically zero, unless required otherwise by the data. We find solutions with an adequate fit to the data with over 90% sparsity (90% of magnetic pixels having a field value of exactly 0). We contrast these solutions with L2-based solutions, as well as an elastic net model (combination of L1 and L2). We find our sparse solutions look dramatically different from previous models in the literature, but still give a physically reasonable history of the dynamo (shutting off around 4.1 Ga).

  20. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  1. Constraining Sources of Subducted and Recycled Carbon Along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.; Rodriguez, B.; Plank, T. A.

    2014-12-01

    From sediment subduction rates and C contents at ODP/DSDP sites 765 and 211, we estimate the rate of C subduction along ~2000 km of the East Sunda Arc to be ~0.4 Tg C yr-1, representing a significant source of subducted volatiles [1]. However volatile recycling efficiency and the provenance of recycled volatiles in this region remain poorly understood. With new δ13C measurements of both carbonate and organic carbon from sites 211 and 765, we present the most detailed study yet of the spatial variability of subducted C and recycled CO2 provenance along the strike of the arc. Furthermore we demonstrate the importance of oceanic crustal carbonate as a C source in a subduction zone that is otherwise carbonate starved. Carbonate content throughout the sediment column decreases dramatically between site 765, approximately 250 km from the Australian continental margin, and site 211, approximately 300 km southwest of the trench and outboard of the Sunda Strait between Sumatra and Java. Continental and shelf carbonate input from the Australian margin dominates shallow deposits at site 765, but underlying pelagic sediments are thought to contribute the majority of inorganic C to the arc. The paucity of carbonate in sediments at site 211 suggests that along this segment essentially all carbonate subducted is derived from altered ocean crust, presenting an opportunity to study the effects of crustal carbonate input. While previous C provenance studies relied on globally-averaged δ13C values for organic and inorganic C in subducted sediments, we present new estimates based on measured δ13CVPDB of carbonate (average of ~2‰ in subducted sediments) and organic carbon (-22.5 to -23‰ average) along with previously published efflux data [2]. These estimates suggest that the arc-averaged ratio of carbonate to organic C subducted along the East Sunda Arc is nearly identical to the inorganic to organic C ratio represented in volcanic and hydrothermal CO2 output, suggesting that differential devolatilization of carbonate and organic C is limited. Our calculated CO2 recycling efficiency of 10 to 20% - which does not include fore-arc outgassing - agrees with geochemical models predicting up to 80% of subducted C may be carried into the deep mantle [3]. [1] Hilton et al., 2002; [2] Halldórsson et al., 2013; [3] Cook-Kollars et al., 2014

  2. Australian Seismological Reference Model (AuSREM): crustal component

    NASA Astrophysics Data System (ADS)

    Salmon, M.; Kennett, B. L. N.; Saygin, E.

    2013-01-01

    Although Australia has been the subject of a wide range of seismological studies, these have concentrated on specific features of the continent at crustal scales and on the broad scale features in the mantle. The Australian Seismological Reference Model (AuSREM) is designed to bring together the existing information, and provide a synthesis in the form of a 3-D model that can provide the basis for future refinement from more detailed studies. Extensive studies in the last few decades provide good coverage for much of the continent, and the crustal model builds on the various data sources to produce a representative model that captures the major features of the continental structure and provides a basis for a broad range of further studies. The model is grid based with a 0.5° sampling in latitude and longitude, and is designed to be fully interpolable, so that properties can be extracted at any point. The crustal structure is built from five-layer representations of refraction and receiver function studies and tomographic information. The AuSREM crustal model is available at 1 km intervals. The crustal component makes use of prior compilations of sediment thicknesses, with cross checks against recent reflection profiling, and provides P and S wavespeed distributions through the crust. The primary information for P wavespeed comes from refraction profiles, for S wavespeed from receiver function studies. We are also able to use the results of ambient noise tomography to link the point observations into national coverage. Density values are derived using results from gravity interpretations with an empirical relation between P wavespeed and density. AuSREM is able to build on a new map of depth to Moho, which has been created using all available information including Moho picks from over 12 000 km of full crustal profiling across the continent. The crustal component of AuSREM provides a representative model that should be useful for modelling of seismic wave propagation and calculation of crustal corrections for tomography. Other applications include gravity studies and dynamic topography at the continental scale.

  3. Asymmetric Crustal Accretion Across the Carlsberg Ridge (NW Indian Ocean) since the Paleocene

    NASA Astrophysics Data System (ADS)

    Chaubey, A.; Kamesh Raju, K.; Bhattacharya, G.; Dyment, J.; Royer, J.

    2006-12-01

    We present magnetic isochron map in conjunction with satellite derived free-air gravity anomaly image of the Carlsberg Ridge to understand crustal accretion across the ridge since its inception. Well-lineated and high- amplitude magnetic anomalies C1n through C2An and C20n through C28ny have been identified across the present- and paleo-Carlsberg Ridge respectively. Average full spreading rates of ~32 km/my for the past 4.18 Ma and ~46-260 km/my during C20n-C28ny respectively have been estimated based on model studies. Analysis of magnetic anomalies reveals that crustal accretion of SW flank of the Carlsberg Ridge was greater by ~5-20% as compared to its conjugate NE flank for the last 4 Myr. Whereas, accretion due to paleo- Carlsberg Ridge, in general, was ~20% consistently greater at NE flank (now known as the Arabian Basin) compared to its conjugate SW flank (now known as the Eastern Somali Basin) during 63 43 Ma. An instance of exception to this general scenario is observed during magnetic chron 24n.1y-23n.2o period (52.4-51.7 Ma) when accretion on the SW flank of the ridge was ~10% greater as compared to its conjugate part. These results indicate that crustal accretion across the Carlsberg Ridge was substantially asymmetric and represent both small- and large-scale crustal asymmetries for the past 63 Myr (C28n). Small-scale asymmetries vary between individual spreading corridors, whereas, large-scale asymmetries represented by consistent excess accretion on one of the two separating plates from the Late Paleocene to Middle Eocene. We propose that small-scale asymmetry resulted from discrete spreading-center jumps in the inner rift valley floor; whereas, spreading ridge propagation, which dominated pre-C20n spreading history of the Carlsberg Ridge, caused large-scale asymmetric crustal accretion. Asymmetric crustal accretion across mid-ocean ridge systems is common phenomena in the geologic past but processes that lead to asymmetry are not well resolved. The results of this study and other available results of the region suggest that stress variations at plate boundaries such as those active during the initial stages of the Indo-Eurasia collision as probable cause for the asymmetric crustal accretion across the Carlsberg Ridge.

  4. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.

    2015-12-01

    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  5. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.

  6. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to detectable changes in bulk composition of lithophile elements, but the fractionation is relatively subtle, and sensitive to the efficiency of reaccretion.

  7. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.

  8. Crustal thickness of Antarctica estimated using data from gravimetric satellites

    NASA Astrophysics Data System (ADS)

    Llubes, Muriel; Seoane, Lucia; Bruinsma, Sean; Rémy, Frédérique

    2018-04-01

    Computing a better crustal thickness model is still a necessary improvement in Antarctica. In this remote continent where almost all the bedrock is covered by the ice sheet, seismic investigations do not reach a sufficient spatial resolution for geological and geophysical purposes. Here, we present a global map of Antarctic crustal thickness computed from space gravity observations. The DIR5 gravity field model, built from GOCE and GRACE gravimetric data, is inverted with the Parker-Oldenburg iterative algorithm. The BEDMAP products are used to estimate the gravity effect of the ice and the rocky surface. Our result is compared to crustal thickness calculated from seismological studies and the CRUST1.0 and AN1 models. Although the CRUST1.0 model shows a very good agreement with ours, its spatial resolution is larger than the one we obtain with gravimetric data. Finally, we compute a model in which the crust-mantle density contrast is adjusted to fit the Moho depth from the CRUST1.0 model. In East Antarctica, the resulting density contrast clearly shows higher values than in West Antarctica.

  9. Average composition of the tonalite-trondhjemite-granodiorite association: Possibilities of application

    NASA Astrophysics Data System (ADS)

    Chekulaev, V. P.; Glebovitsky, V. A.

    2017-01-01

    The possibilities of using the average compositions of tonalite-trondhjemite-granodiorite association rocks (TTG), which make up a significant part of the Archaean continental crust, have been examined. The results of the TTG average compositions obtained by other researchers and the authors' data of the average compositions of TTG from the Baltic and Ukrainian shields and the entire Archaean crust are given. It is shown that the average compositions of the Archaean TTG of continental large crustal fragments (cratons or provinces) practically do not bear any information on their sources or conditions of their formation. The possibility of obtaining of such information by means of analysis of the average compositions of TTG, composing smaller fragments of the crust, exemplified by rocks of the Karelian subprovinces of the Baltic Shield has been demonstrated.

  10. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  11. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    USGS Publications Warehouse

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more readily identifiable crustal fingerprint. The same processes that were involved here-mafic magma influx, hybridization, and remelting of hybridized crust-are likely to be typical of arc settings. ?? 1994.

  12. Gravity anomalies and associated tectonic features over the Indian Peninsular Shield and adjoining ocean basins

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Arora, K.; Tiwari, V. M.

    2004-02-01

    A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8-9 km with crustal layers of densities 2650 and 2870 kg/m 3 representing an oceanic crust.

  13. Are U-Series Disequilibria Transparent to Crustal Processing of Magma? A Case Study at Bezymianny and Klyuchevskoy Volcanoes, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Kayzar, T. M.; Nelson, B. K.; Bachmann, O.; Portnyagin, M.; Ponomareva, V.

    2010-12-01

    Disequilibria in the short-lived uranium-series isotopic system can provide timescales of magma production, modification and transport in all tectonic settings. In volcanic arcs, the field has converged on the concept that (238U/230Th) and (226Ra/230Th) activities greater than one are a result of fluid fluxing from the slab to mantle wedge, and that the preservation of (226Ra/230Th) disequilibria requires rapid transport of melts from the mantle wedge to the surface (226Ra returns to equilibrium with 230Th in ~8000 years). The need for rapid transport coupled with the incompatibility of U-series elements suggest that U-series fractionation is not measurably affected by crustal processes. However, some well-studied arc systems, including the very productive Central Kamchatka Depression (CKD) of the Kamchatkan volcanic arc, show U-series data that are in conflict with this commonly accepted model. Our study focuses on two neighboring volcanic systems, Bezymianny and Klyuchevskoy volcanoes in the CKD. Separated by ~10km, these two systems are thought to share the same mantle source. Klyuchevskoy has primitive compositions (51-56 wt%) while Bezymianny erupts more differentiated andesites (57-63 wt% SiO2); therefore, by examining the U-series signals in these two systems it is possible to decouple a primary signal from one having undergone crustal processing. We record whole rock (238U/230Th) values for Bezymianny ranging from 0.94 to 0.96 in modern eruptive products, while (226Ra/230Th) are >1. We also observe a similar signal in older (212-6791BP) tephra deposits from Klyuchevskoy, measuring (238U/230Th) of 0.92-0.99 (unpublished data, collaborative research with the KALMAR project). (238U/230Th) <1 in arcs have mostly been reported from areas of thick continental crust (Andes; Sigmarsson et al. 1998, Garrison et al. 2006, Jicha et al. 2007) or from an arc where phases such as garnet and/or Al-rich clinopyroxene can retain a high U/Th in the crystalline residue (Jicha et al. 2009). Bezymianny and Klyuchevskoy have low Sr/Y (15.5-19.9), which precludes a significant influence of garnet in generating the observed Th-excess in the CKD. We investigate the possibility of shallow crustal processes such as fractional crystallization, and/or assimilation of local bulk rock or partial melts to fractionate U, Th, and Ra from one another. In particular, we focus on minor mineral phases, such as apatite and magnetite, which are present during early stages of differentiation (andesites) and may fractionate U from Th. We measure U and Th content in these phases in-situ by LA-ICP-MS to obtain average mineral-melt partitioning for each sample with U-series data. Using such average partition coefficients allows us to take into account variations in parameters such as temperature, pressure, and oxygen fugacity that may vary from sample to sample. This mineral trace element data is supported by bulk rock geochemistry and Pb isotope data to evaluate the effects of crustal processing on the U-series system during magma transport and storage.

  14. LITHOPROBE East onshore-offshore seismic refraction survey -constraints on interpretation of reflection data in the Newfoundland Appalachians

    USGS Publications Warehouse

    Marillier, F.; Hall, J.; Hughes, S.; Louden, K.; Reid, I.; Roberts, B.; Clowes, R.; Cote, T.; Fowler, J.; Guest, S.; Lu, H.; Luetgert, J.; Quinlan, G.; Spencer, C.; Wright, J.

    1994-01-01

    Combined onshore-offshore seismic refraction/ wide-angle reflection data have been acquired across Newfoundland, eastern Canada, to investigate the structural architecture of the northern Appalachians, particularly of distinct crustal zones recognized from earlier LITHOPROBE vertical incidence studies. A western crustal unit, correlated with the Grenville province of the Laurentian plate margin thins from 44 to 40 km and a portion of the lower crust becomes highly reflective with velocities of 7.2 km/s. In central Newfoundland, beneath the central mobile belt, the crust thins to 35 km or less and is marked by average continental velocities, not exceeding 7.0 km/s in the lower crust. Further east, in a crustal unit underlying the Avalon zone and associated with the Gondwanan plate margin, the crust is 40 km thick, and has velocities of 6.8 km/s in the lower crust. Explanations for the thin crust beneath the central mobile belt include (1) post-orogenic isostatic readjustment associated with a density in the mantle which is lower beneath this part of the orogen than beneath the margin, (2) mechanical thinning at the base of the crust during orogenic collapse perhaps caused by delamination, and (3) transformation by phase change of a gabbroic lower crust to eclogite which seismologically would be difficult to distinguish from mantle. Except for a single profile in western Newfoundland, velocities in the crust are of typical continental affinity with lower-crustal velocities less than 7.0 km/s. This indicates that there was no significant magmatic underplating under the Newfoundland Appalachians during Mesozoic rifting of the Atlantic Ocean as proposed elsewhere for the New England Appalachians. A mid-crustal velocity discontinuity observed in the Newfoundland region does not coincide with any consistent reflection pattern on vertical incidence profiles. However, we suggest that localized velocity heterogeneities at mid-crustal depths correspond to organized vertical incidence reflections. ?? 1994.

  15. Crustal parameters in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Banda, E.

    1988-06-01

    The structure of the crust in the Iberian Peninsula has been investigated for the last 15 years by Spanish and Portuguese groups in close collaboration with other European institutions. The first experiments were carried out in Portugal (Mueller et al., 1973) with the aim of investigating the crustal structure of the Hercynian belt in the southwest corner of the Iberian peninsula. Other experiments have been subsequently realized to study different aspects of the crust in various regions of Portugal. In Spain the main effort has been focused in Alpine areas, with the first experiments in the Alboran Sea and the Betic Cordilleras (Working Group for Deep Seismic Sounding in Spain, 1974-1975, 1977; Working Group for Deep Seismic Sounding in the Alboran Sea, 1974-1975, 1978). Follow-up experiments until 1981 completed the work in the Betic Cordillera. Extensive experiments were carried out in the Pyrenees in 1978. Further surveys covered the Balearic Islands in 1976, the Valencia Trough in 1976 and 1983, and the Celtiberian Chain (or Iberic system) in 1981. The Hercynian belt has only been studied in detail in the northwest corner of Spain in 1982, with smaller studies in the central Iberian Massif in 1976 and 1986. Mostaanpour (1984) has compiled some crustal parameters (crustal thickness, average crustal velocity and Pn velocity) for western Europe. Meanwhile, more complete data are available for the Iberian Peninsula. The results presented here were derived from a large number of seismic refraction experiments which have been carried out mostly along or close to coastal areas of the Iberian Peninsula. Offshore explosions of various sizes were used as the energy source in most cases, in addition to some quarry blasts. Unfortunately this leaves most of the inner part of the Iberian Peninsula unsurveyed. Our purpose is to summarize some of the crustal parameters obtained so far and to detail the appropriate literature for the interested reader.

  16. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called CRW Model) as follows: for Type B and Type C subduction earthquakes, if the seawater average depth on the vertical up side of the rupture area is less than a tenth of the hypocenter depth, then take the approximation that the seawater above the continental plate is replaced by the upper crustal material of the continental plate. The formula of quantitative calculating the crustal GPE change is also provided for this model. Finally, for 16 September 2015 Mw 8.3 Illapel Chile earthquake, we apply CRW Model and obtain the following results: the crustal GPE change is equal to 1.8 × 1019 J, and the hanging wall vertical moving-up height is 1.9 m with respect to the footwall. We believe this paper might be the first report on the quantitative solution of the crustal GPE change for this subduction earthquake; our results and related method will be helpful in research into the earthquakes in Peru-Chile subduction zone and the Andean orogeny. In short, this study expounds a new method for quantitative determining the crustal GPE change caused by subduction earthquakes, which is different from other existing methods.

  17. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  18. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field

    USGS Publications Warehouse

    Hildreth, W.; Halliday, A.N.; Christiansen, R.L.

    1991-01-01

    Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors

  19. Probing the edge of the West African Craton: A first seismic glimpse from Niger

    NASA Astrophysics Data System (ADS)

    Di Leo, Jeanette F.; Wookey, James; Kendall, J.-Michael; Selby, Neil D.

    2015-03-01

    Constraints on crustal and mantle structure of the Eastern part of the West African Craton have to date been scarce. Here we present results of P receiver function and SK(K)S wave splitting analyses of data recorded at International Monitoring System array TORD in SW Niger. Despite lacking in lateral coverage, our measurements sharply constrain crustal thickness (˜41 km), VP/VS ratio (1.69 ± 0.03), mantle transition zone (MTZ) thickness (˜247 km), and a midlithospheric discontinuity at ˜67 km depth. Splitting delay times are low with an average of 0.63 ± 0.01 s. Fast directions follow the regional surface geological trend with an average of 57 ± 1°. We suggest that splitting is due to fossil anisotropic fabrics in the crust and lithosphere, incurred during the Paleoproterozoic Eburnean Orogeny, with possible contributions from the later Pan-African Orogeny and present-day mantle flow. The MTZ appears to be unperturbed, despite the proximity of the sampled region to the deep cratonic root.

  20. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  1. Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms

    NASA Astrophysics Data System (ADS)

    Tomfohrde, D. A.; Nowack, R. L.

    Receiver function analysis is used to determine local crustal structure beneath Taiwan. We have performed preliminary data processing and polarization analysis for the selection of stations and events and to increase overall data quality. Receiver function analysis is then applied to data from the Taiwan Seismic Network to obtain radial and transverse receiver functions. Due to the limited azimuthal coverage, only the radial receiver functions are analyzed in terms of horizontally layered crustal structure for each station. In order to improve convergence of the receiver function inversion, frequency-band inversion (FBI) is implemented, in which an iterative inversion procedure with sequentially higher low-pass corner frequencies is used to stabilize the waveform inversion. Frequency-band inversion is applied to receiver functions at six stations of the Taiwan Seismic Network. Initial 20-layer crustal models are inverted for using prior tomographic results for the initial models. The resulting 20-1ayer models are then simplified to 4 to 5 layer models and input into an alternating depth and velocity frequency-band inversion. For the six stations investigated, the resulting simplified models provide an average estimate of 38 km for the Moho thickness surrounding the Central Range of Taiwan. Also, the individual station estimates compare well with the recent tomographic model of and the refraction results of Rau and Wu (1995) and the refraction results of Ma and Song (1997).

  2. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (Principal Investigator)

    1981-01-01

    A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.

  3. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  4. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  5. STRUCTURES OF THE VELA PULSAR AND THE GLITCH CRISIS FROM THE BRUECKNER THEORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, A.; Dong, J. M.; Wang, J. B.

    Detailed structures of the Vela pulsar (PSR B0833-45, with a period of 89.33 ms) are predicted by adopting a recently constructed unified treatment of all parts of neutron stars: the outer crust, the inner crust, and the core based on modern microscopic Brueckner–Hartree–Fock calculations. Taking a pulsar mass in the range from 1.0 to 2.0 M{sub ⊙}, we calculate the central density, the core/crust radii, the core/crustal mass, the core/crustal thickness, the moment of inertia, and the crustal moment of inertia. Among them, the crustal moment of inertia could be effectively constrained from the accumulated glitch observations, which has been a great debate recently, knownmore » as the “glitch crisis.” Namely, superfluid neutrons contained in the inner crust, which are regarded as the origin of the glitch in the standard two-component model, could be largely entrained in the nuclei lattices, and then there may not be enough superfluid neutrons (∼4/5 less than the previous value) to trigger the large glitches (Δν/ν{sub 0} ∼ 10{sup −6}) in the Vela pulsar. By confronting the glitch observations with the theoretical calculations for the crustal moment of inertia, we find that despite some recent opposition to the crisis argument, the glitch crisis is still present, which means that besides the crustal superfluid neutrons, core neutrons might be necessary for explaining the large glitches of the Vela pulsar.« less

  6. Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study

    PubMed Central

    Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751

  7. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  8. Geochemical and petrological indicators of volcanic behavior: Merapi volcano, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Deegan, F. M.; Jolis, E. M.; Chadwick, J.; Blythe, L. S.; Freda, C.; Hilton, D. R.; Schwarzkopf, L. M.; Gertisser, R.; Zimmer, M.

    2011-12-01

    Gunung Merapi, one of Indonesia's most active volcanoes, is characterized by long periods of dome growth and intermittent explosive pyroclastic events. Merapi currently degasses continuously through high-T fumaroles (>200°C), and erupts crystal-rich basaltic-andesite that contains a large range of igneous and calc-silicate crustal inclusions. To evaluate mechanisms that trigger explosive eruptions, we sampled lavas, inclusions (xenoliths), and gas from active fumaroles. Additionally, we established a time-integrated experiment reaction series mimicking crustal assimilation at Merapi under magmatic conditions. Merapi lava contains abundant plagioclase crystals which show complex zoning and vary in anorthite (An) content between 40 and 95 mol% across resorption surfaces. A negative correlation between An mol% and other indicators of magmatic fractionation, such as MgO and FeO, has been observed. Moreover, Sr isotope analyses of discrete zones in plagioclase yields 87Sr/86Sr values that notably exceed those of the host lavas. Zones with the highest An content also tend to show the highest radiogenic Sr values, consistent with a Ca-rich, high-87Sr/86Sr crustal contaminant. Abundant metamorphosed limestone xenoliths contain compositionally identical feldspar to the high-An population in the lavas, demonstrating that magma-crust interaction is a significant process at Merapi. Carbon isotope ratios of fumarole CO2 sampled during quiescent degassing periods form a baseline of δ13C2001-2008 = -4.1%. The notable exceptions are the 2006 values, obtained immediately after the eruption and the 6.4 magnitude Yogyakarta earthquake, which show elevated δ13C values up to -2.4%. Notably, the rise in δ13C values coincided with an increase in eruptive intensity and volcano seismicity by a factor of 3 to 5 for several weeks after the earthquake. This is consistent with addition of a late-stage, crustal volatile component added to purely mantle and slab-derived volatile sources. This observation argues for extensive and ongoing magma-crust interaction beneath the volcano, especially during eruptive and/or seismic events. Our high P-T experiments show that interaction between Merapi magma and limestone can rapidly liberate crustal CO2 on a timescale of only seconds to minutes. We therefore expect vigorous CO2 bubble nucleation and growth on a scale of perhaps hours to days in nature. Late volatile input could therefore accelerate or trigger explosive eruptions independently of magmatic recharge and fractionation by sudden over-pressurization of the upper parts of the magma system. Such an event would provide shallow seismic warning signals immediately prior to an erratic, CO2-driven, eruption crisis. Thus we conclude that crust-mantle interaction processes have serious implications for eruptive behavior, volatile emission, and hazard management at Merapi and similar systems elsewhere.

  9. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling

    NASA Astrophysics Data System (ADS)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick

    2016-04-01

    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are < 1.5 and increase significantly southwards, where they were estimated to be > 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal faulting and serpentinization of the mantle. In agreement with this observation, Vp values of the mantle are lower than those expected for a non-altered mantle (i.e. ~8 km/s) supporting mantle serpentinization. The outcome of this study reveals the complexity of the crustal structure of the Porcupine Basin and demonstrates the importance and value of this type of analysis in understanding rift systems. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  10. Characteristics and sensitivity analysis of multiple-time-resolved source patterns of PM2.5 with real time data using Multilinear Engine 2

    NASA Astrophysics Data System (ADS)

    Peng, Xing; Shi, Guo-Liang; Gao, Jian; Liu, Jia-Yuan; HuangFu, Yan-Qi; Ma, Tong; Wang, Hai-Ting; Zhang, Yue-Chong; Wang, Han; Li, Hui; Ivey, Cesunica E.; Feng, Yin-Chang

    2016-08-01

    With real time resolved data of Particulate matter (PM) and chemical species, understanding the source patterns and chemical characteristics is critical to establish controlling of PM. In this work, PM2.5 and chemical species were measured by corresponding online instruments with 1-h time resolution in Beijing. Multilinear Engine 2 (ME2) model was applied to explore the sources, and four sources (vehicle emission, crustal dust, secondary formation and coal combustion) were identified. To investigate the sensitivity of time resolution on the source contributions and chemical characteristics, ME2 was conducted with four time resolution runs (1-h, 2-h, 4-h, and 8-h). Crustal dust and coal combustion display large variation in the four time resolutions runs, with their contributions ranging from 6.7 to 10.4 μg m-3 and from 6.4 to 12.2 μg m-3, respectively. The contributions of vehicle emission and secondary formation range from 7.5 to 10.5 and from 14.7 to 16.7 μg m-3, respectively. The sensitivity analyses were conducted by principal component analysis-plot (PCA-plot), coefficient of divergence (CD), average absolute error (AAE) and correlation coefficients. For the four time resolution runs, the source contributions and profiles of crustal dust and coal combustion were more unstable than other source categories, possibly due to the lack of key markers of crustal dust and coal combustion (e.g. Si, Al). On the other hand, vehicle emission and crustal dust were more sensitive to time series of source contributions at different time resolutions. Findings in this study can improve our knowledge of source contributions and chemical characteristics at different time solutions.

  11. Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: Implications for thermal regime beneath the Indian shield

    NASA Astrophysics Data System (ADS)

    Podugu, Nagaraju; Ray, Labani; Singh, S. P.; Roy, Sukanta

    2017-07-01

    Heat flow and heat production data sets constrain the crustal thermal structure in the 2.5-3.5 Ga Bundelkhand craton, the oldest cratonic core in northern Indian shield, for the first time and allow comparisons with the southern Indian shield. Temperature measurements carried out in 10 boreholes at five sites in the craton, combined with systematic thermal conductivity measurements on major rock types, yield low heat flow in the range of 32-41 mW m-2, which is distinct from the generally high heat flow reported from other parts of the northern Indian shield. Radioelemental measurements on 243 samples of drill cores and outcrops reveal both large variability and high average heat production for the Neo-Archaean to Palaeo-Proterozoic granites (4.0 ± 2.1 (SD) μW m-3) relative to the Meso-Archaean tonalite-trondhjemite-granodiorite (TTG) gneisses (2.0 ± 1.0 (SD) μW m-3). On the basis of new heat flow and heat production data sets combined with available geological and geophysical information, a set of steady state, heat flow-crustal heat production models representative of varying crustal scenarios in the craton are envisaged. Mantle heat flow and Moho temperatures are found to be in the range of 12-22 mW m-2 and 290-420°C, respectively, not much different from those reported for the similar age Dharwar craton in southern India. This study reveals similar mantle thermal regimes across the northern and southern parts of the Indian shield, in spite of varying surface heat flow regimes, implying that much of the intraprovince and interprovince variations in the Indian shield are explained by variations in upper crustal heat production.

  12. Receiver function studies of crustal structure, composition, and evolution beneath the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Almadani, Sattam Abdulkareem

    The dissertation utilizes a set of sophisticated computer programs developed at the Geophysics group at Missouri S&T to characterize crustal properties beneath the Afar Depression in Ethiopia where extensional tectonics dominates. In this study, measurements of crustal thickness (H), crustal mean V p/Vs [which is related to Poisson's ratio (sigma)], and the sharpness of the Moho (R) were determined using teleseismic data from 18 broadband seismic sensors that we deployed along a profile of 250 km long with a station spacing of ˜ 10 km. The stations had been recording continuously for an entire year from December 2009 until December 2010. The measurements were determined by stacking P-to-S converted waves (PmS) and their multiples (PPmS and PSmS). Results suggest that the average crustal thickness beneath the Afar Depression is about 28.56+/-0.28 km and the crust is characterized by large Vp/Vs of 1.93+/-0.017 and smaller-than-normal overall stacking amplitude of the P-to-S converted phases beneath most stations. Our results suggest that the crust beneath the entire study area is significantly thinned and extensively intruded by mafic dikes, representing a transitional stage between continental and ocean crust. The Tendaho Graben has the thinnest and most mafic crust, which is also supported by the observation of gravity data which suggest that the active magmatic areas are characterized by higher gravity anomalies while the thicker crusts have smaller and negative anomalies. Thus, the crust beneath the center of the Tendaho Graben is likely to be oceanic-type, and becomes progressively more continental away from the center.

  13. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in bothmore » domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less

  14. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility, ii) core-rim or oscillatory zoning is observed for [Li] in many high T zircons, iii) CL zoning and low Ca+Fe, U+Th and U/Th imply little radiation damage. Values of δ7Li become erratic at [Li] < ~5 ppm and low values are not interpreted. We suggest that small amounts of non-ionic substitution could be significant for small [Li], whereas interstitial substitution dominates at > ~5 ppm. Li content and isotopic compositions of TTG zircons suggest genesis from mantle-like material, as suggested by δ18O(Zrc) (5.5 ± 0.4‰, King et al., 1998). Sanukitoids are commonly thought to be derived from the melting of peridotite metasomatized by seawater-like slab-dehydration fluids, (supported by the high δ7Li(Zrc)), followed by extensive fractional crystallization, explaining the high sanukitoid [Li]. [Li] and δ7Li thus reflect petrogenetic processes. The Jack Hills detrital zircons are consistent with crustal sources including TTG, sanukitoid and sediment-contaminated granitoid magmas.

  15. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.

    2011-01-01

    The region offshore Eastern Java represents one of the few places where the early stage of oceanic plateau subduction is occurring. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia. The presence of the abnormal bathymetric features entering the trench has a strong effect on the evolution of the subduction system, and causes additional challenges on the assessment of geohazard risks. We present integrated results of a refraction/wide-angle reflection tomography, gravity modelling, and multichannel reflection seismic imaging using data acquired in 2006 south of Java near 113°E. The composite structural model reveals the previously unresolved deep geometry of the oceanic plateau and the subduction zone. The oceanic plateau crust is on average 15 km thick and covers an area of about 100 000 km2. Within our profile the Roo Rise crustal thickness ranges between 18 and 12 km. The upper oceanic crust shows high degree of fracturing, suggesting heavy faulting. The forearc crust has an average thickness of 14 km, with a sharp increase to 33 km towards Java, as revealed by gravity modelling. The complex geometry of the backstop suggests two possible models for the structural formation within this segment of the margin: either accumulation of the Roo Rise crustal fragments above the backstop or alternatively uplift of the backstop caused by basal accumulation of crustal fragments. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favours the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw= 7.8 tsunamogenic event.

  16. Coesite-Diamond Assemblage in Ultrahigh Pressure Crustal and Mantle rocks: Evidence for Carbon Recycling

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.

    2010-12-01

    Coesite, a high-pressure polymorph of silica, was first discovered as part of a coesite-eclogite assemblage (coesite, garnet, omphacite) in equilibrium with diamond as diamond inclusion (DI) in Siberian diamond placers (Sobolev et al., 1976, Dokl. Akad. Nauk SSSR, 230: 1442). In recent years, coesite has become a key mineral coexisting with diamond both in kimberlite (DIs) and in UHP metamorphic rocks of the Kokchetav massif, Kazakhstan (diamondiferous gneisses and calcsilicate rocks). In the UHPM rocks of Kokchetav massif, coesite was first detected as inclusions in zircon associated with diamonds (Sobolev et al., 1991, Dokl. Akad. Nauk SSSR, 321: 184), as a result of the initial studies that had identified diamonds as inclusions in garnets and zircons (Sobolev, Shatsky, 1990, Nature, 343: 742). Garnet and omphacitic clinopyroxene are the principal primary minerals associated with coesite and diamond in UHP mantle and crustal rocks. Their compositions plot distinctly within the eclogitic compositional field and substantiate the existence of coesite presence as DIs in eclogitic (E-type) diamonds, as well as sometimes in xenoliths of diamondiferous eclogites (Shatsky et al., 2008, Lithos, 105:289). One of the major significant features of these eclogitic minerals in both UHPM and kimberlitic mantle occurrences is the K2O contents of the clinopyroxenes, reaching 1.6 wt.%, with Na2O and MnO in Ca-Mg-Fe garnets reaching 0.3 and 6.0 wt.%, respectively. Stable isotope data for C in diamonds and O in garnet, pyroxene and coesite have resulted in establishing a very wide range for these isotopes most typical for crustal conditions - i.e., atypical of mantle values. This is clearly shown for coesite DIs (Schulze et al., 2003, Nature, 428:68), garnets from diamondiferous eclogite xenoliths from Siberian kimberlites (Spetsius et al., 2008, Eur. J. Min., 20:375), garnets and clinopyroxenes from UHP calcsilicate diamondiferous rocks of the Kokchetav massif (Sobolev et al., in press, Contr. Min. Petr.). This extensive wide range in δ13C (PDB) for coesite-bearing diamonds, from -28 to +1.5 ‰, along with common crustal δ18O (SMOW) values from the principal rock-forming minerals (garnet and clinopyroxene) and accessory mineral (coesite), is typical for diamondiferous mantle eclogites, crustal UHPM rocks, and DIs. The petrogenetic evidences from all these rocks and minerals are indicative of major subduction of crustal protoliths (Ringwood, 1972, EPSL, 14:233), including the recycling of crustal carbon into diamonds in mantle eclogites, first speculated on by V.S. Sobolev and N.V. Sobolev (1980, Dokl. Akad. Nauk SSSR, 249: 1217).

  17. Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes

    NASA Astrophysics Data System (ADS)

    Whalen, Joseph B.; Wodicka, Natasha; Taylor, Bruce E.; Jackson, Garth D.

    2010-06-01

    Large volume, plutonic belts, such as the ˜ 221,000 km 2, ca. 1.865-1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd-O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island. The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ 18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. ɛ Nd 1.85 Ga signatures (- 12 to - 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (- 2 to - 7) are more radiogenic than those within Archean domains in central (- 8 to - 15) and southern (- 5 to - 19) Baffin Island. The isotopic transect is interpreted as 'imaging' an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb) CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of mantle-derived magmas. The CB is best interpreted as a post-accretion batholith resulting from large-scale lithospheric mantle delamination followed by the upwelling of hot asthenospheric mantle leading to voluminous crustal partial melting. Contributors to crustal instability which may have facilitated such delamination included: (a) a collage of recently assembled small cratons underlain by hot, weak lithosphere with mantle-depth structural breaks within this segment of the Trans-Hudson Orogen; (b) the gabbro-eclogite phase transformation, and (c) a greatly thickened crustal section (> 60 km), as evidenced by adakitic granites.

  18. Increased degassing from the Southern Central American Volcanic Arc in response to crustal stress change following the 2012 Nicoya earthquake?

    NASA Astrophysics Data System (ADS)

    de Moor, M. J.; Kern, C.; Fischer, T. P.; Avard, G.; Aiuppa, A.; Protti, M.; Muller, C.; Alvarez, J.; Saballos, J. A.; Galle, B.

    2016-12-01

    The aim of this work is to provide an updated assessment of SO2 and CO2 fluxes from the Southern Central America Volcanic Arc (SCAVA) for the period 2015-2016. We present over 300 new ground-based remote sensing sulfur dioxide flux measurements (DOAS traverses) conducted at 10 volcanoes in Costa Rica and Nicaragua, representing the most comprehensive assessment of volcanic gas flux at SCAVA to date. The data were filtered to exclude measurements directly associated with eruptive activity. The SO2 flux from this 500km section of arc is thus conservatively estimated at 4622 ± 1586 tons/day (unfiltered average of the data yields 6114 ± 1956 tons/day SO2). Our best estimate is about double that of any previous estimations (data from 1972-2013). We attribute this increase in part to our more complete assessment of the arc, as previous studies considered fluxes from only 5 to 7 of the SCAVA volcanoes. Additionally,a greater number of SCAVA volcanoes have had eruptions in 2015-2016 than in any two-year period since 1980. A possible explanation for increased degassing and volcanic activity is a change in crustal stress regime following the 2012 Nicoya earthquake (Mw = 7.8). GPS data show that the SCAVA has experienced a dramatic change from compression to extension, potentially opening conduits for volatiles and magmas to rise from the mantle and lower crustal regions. The dominant contributors to volcanic degassing at SCAVA are Masaya and Turrialba volcanoes, which show average passive degassing SO2 fluxes of 1984 ± 890 T/d and 1672 ± 925 T/d respectively during 2015-2016. High-quality MultiGAS time series datasets for both of these volcanoes provide robust measurements of CO2/SO2 values associated with SO2 flux measurement at these volcanoes. Based on these data we estimate the CO2 flux from Masaya at 5487 ± 1800 T/d and from Turrialba at 4873 ± 2053 T/d. Combining our arc SO2 flux data with gas composition data for the other volcanoes as well as estimations of available diffuse CO2 degassing we estimate the total CO2 flux from the arc at 13544 ± 6037 T/d (1.12 x 1011 mol/yr). Our estimation of volcanic CO2 outgassing is approximately equal to estimates of C input into the SCAVA subduction zone.

  19. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Hassanzadeh, Jamshid; Kirschvink, Joseph L.; Bahroudi, Abbas

    2017-11-01

    We study the transition from passive margin to foreland basin sedimentation now exposed in the High Zagros belt to provide chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. We performed magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture which expose the oldest preserved foreland deposits: the Shalamzar section in the west and the Dehmoord section in the east. The top of the passive margin Asmari formation has an age of 28-29 Ma in the High Zagros and is overlain by foreland deposits with a major basal unconformity representing 7 Myr of hiatus. The base of the foreland deposits has an age of 21.5 Ma at Dehmoord and ca. 26 Ma at Shalamzar. The sedimentation rate increased from 30 m/Myr in the passive margin to 247 m/Myr in the foreland. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24 ± 2 mm/yr over the last 27 Ma. The time evolution of sediment accumulation in the Zagros foreland follows the prediction from a flexural model, as the foreland is thrust beneath the orogenic wedge and loaded by the wedge and basin fill. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27 ± 2 Ma. Hence, the Arabia-Eurasia collision was probably not the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. We conclude the average rate of shortening across the Zagros to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate. Palinspastic restoration of structural cross-sections and crustal volume conservation comprise only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj-Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization.

  20. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF volatiles, mantle-derived magmas at continental subduction zone can act as important triggers for liberation of carbon stored in crustal carbonate rocks, which has the potential to be a complement to volatile recycling mechanism at subduction zones. Variations in He-Nd-Sr isotopes of magmas and volatiles from different types of plate boundaries suggest higher amounts of recycled materials for mantle wedge enrichment of continental subduction zone relative to that of oceanic subduction zone.

  1. Glacial isostatic crustal uplift in southern Victoria Land, Antarctica, from geologic and geodetic records

    NASA Astrophysics Data System (ADS)

    Konfal, S.; Wilson, T.; Bevis, M. G.; Kendrick, E. C.; Hall, B. L.

    2011-12-01

    Geologic records and geodetic measurements of glacial isostatic crustal motions are presented from the southern Victoria Land region of Antarctica. In much of the world, key records used for mapping and modeling glacial isostatic crustal motions come from raised paleoshorelines and beaches of ice-marginal lakes and seas. While such records are scarce in Antarctica, preserved paleoshorelines are present in the southern Victoria Land region of Antarctica. Light detection and ranging (LiDAR) data coverages of these features were acquired during the 2001-2002 austral summer field season by NASA's Airborne Topographic Mapper (ATM) system, resulting in 2 meter horizontal resolution digital elevation models (DEMs). This study utilizes these DEM data to derive crustal tilt values from observed changes in elevation along the length of the shorelines. Radiocarbon age data are correlated with the associated degree of shoreline tilt to derive a rate of crustal deformation since deglaciation. Modern rates of glacial isostatic crustal motion are derived from GPS stations in the same region. Campaign station occupation began in 1996-1997 under the TAMDEF (Transantarctic Mountain DEFormation Network) project, and continuous GPS data collected began in 1999 and continues under the ANET/POLENET (Antarctica Polar Earth Observing Network) project, enabling analysis of decadal scale time series. Integrated gradient curves from paleoshoreline records and GPS crustal velocities show exponential form and indicate tilting down to the east. Eastward tilt may be the result of substantial loss of East Antarctic ice, a collapsing forebulge linked to ice centers in the Ross Sea region or in interior West Antarctica, or differences in earth response due to laterally varying earth structure. Modeling of these new data, along with comparison of tilt directions to centers of ice mass loss, provide tests of these scenarios and yield new insights into earth models and ice history.

  2. Crustal structure of an intraplate thrust belt: The Iberian Chain revealed by wide-angle seismic, magnetotelluric soundings and gravity data

    NASA Astrophysics Data System (ADS)

    Seillé, Hoël; Salas, Ramon; Pous, Jaume; Guimerà, Joan; Gallart, Josep; Torne, Montserrat; Romero-Ruiz, Ivan; Diaz, Jordi; Ruiz, Mario; Carbonell, Ramon; Mas, Ramón

    2015-11-01

    The Iberian Chain is a Cenozoic intraplate thrust belt located within the Iberian plate. Unlike other belts in the Iberia Peninsula, the scarcity of geophysical studies in this area results in a number of unknowns about its crustal structure. The Iberian Chain crust was investigated by means of a NE-SW refraction/wide-angle reflection seismic transect and two magnetotelluric profiles across the chain, oriented along the same direction. The seismic profile was designed to sample the crust by means of three shots designed to obtain a reversed profile. The resulting velocity-depth model shows a moderate thickening of the crust toward the central part of the profile, where crustal thickness reaches values above 40 km, thinning toward de SW Tajo and NE Ebro foreland basins. The crustal thickening is concentrated in the upper crust. The seismic results are in overall agreement with regional trends of Bouguer gravity anomaly and the main features of the seismic model were reproduced by gravity modeling. The magnetotelluric data consist of 39 sites grouped into two profiles, with periods ranging from 0.01 s to 1000 s. Dimensionality analyses show significant 3D effects in the resistivity structure and therefore we carried out a joint 3D inversion of the full impedance tensor and magnetic transfer functions. The Mesozoic and Cenozoic basins along the Chain are well characterized by shallow high conductive zones and low velocities. Elongated conductors reaching mid-crustal depths evidence the presence of major faults dominating the crustal structure. The results from the interpretation of these complementary geophysical data sets provided the first images of the crustal structure of the Iberian Chain. They are consistent with a Cenozoic shortening responsible of the upper crust thickening as well as of the uplift of the Iberian Chain and the generation of its present day topography.

  3. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Sun, Ya; Liu, Jianxin; Zhou, Keping; Chen, Bo; Guo, Rongwen

    2015-07-01

    The convergence of India and Eurasia and the obstruction from the rigid Sichuan Basin cause the Longmenshan (LMS) to have the steepest topographic gradient at the eastern margin of the Tibetan Plateau. However, the mechanisms of surface uplift are still controversial. In this paper, we estimate the crustal structure and deformation under the LMS and its surroundings by analyzing a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration. We apply a comprehensive splitting measurement technique on Ps conversion phase at the Moho (Moho Ps splitting) to calculate crustal anisotropy from azimuthal variations of receiver functions. Our results show that most of the seismic stations beneath the LMS area exhibit significant seismic anisotropy with the splitting time of 0.22-0.94 s and a fast polarization direction of NW-SE, while less or even no crustal anisotropy has been observed under the Sichuan Basin. Comparing the fast polarization directions of Moho Ps splitting with the indicators of lithospheric deformation (such as shear wave splitting, absolute plate motion, and global positioning system) imply a consistent tendency of deformation between the lower crust and upper mantle, but decoupling deformation in the crust beneath the LMS area. We further compare Moho Ps splitting time to that estimated from previous SKS splitting, indicating that crustal anisotropy is an important source of the SKS splitting time in this study area. In addition, a thick crust (>50 km) with high Vp/Vs values (1.74-1.86) is also observed using the H-κ stacking method. These seismic observations are consistent with the scenario that the LMS area has been built by the lower crustal flow. Combined with the seismic reflection/refraction profile and geology studies, we further suggest that the lower crustal flow may extrude upward into the upper crust along the steeply dipping strike faults under the LMS area, resulting in the surface uplift of the LMS.

  4. Thinning Factors and Crustal Thicknesses at the Propagating Tip of Sea-floor Spreading in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.

    2007-12-01

    Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.

  5. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident with the abrupt transition in crustal composition and ridge morphology. Therefore these results confirm a previous prediction that the changing interaction between the arc and back-arc magmatic systems is responsible for the abrupt change in crustal properties along the ELSC. I further investigate the crustal structure along and across the ELSC using seafloor compliance. Compliance measurements are inverted for local crustal shear velocity structure as well as sediment thickness at 30 OBS locations using a Monte Carlo method. Sediment increases asymmetrically with seafloor age, with much a higher rate to the east of the ridge. Along the ELSC, upper crustal velocities increase from south to north as the ridge migrates away from the volcanic arc front, consistent with a less porous upper crust with possibly less subduction input. Furthermore, average upper crust shear velocities for crust produced at past ELSC when it was near the volcanic arc are considerably slower than crust produced at present day northern ELSC. I show that the implications of previous active seismic studies in the axial ELSC can be extended much farther off-axis and back in time. I also address a challenge of ocean bottom seismology and develop a new method for determining OBS horizontal orientations using multi-component ambient noise correlation. I demonstrate that the OBS orientations can be robustly estimated through maximizing the correlation between the diagonal and cross terms of the noise correlation function. This method is applied to the ELSC OBS experiment dataset and the obtained orientations are consistent with results from a conventional teleseismic method. The new method is promising for a wide range of applications.

  6. Effect of Varying Crustal Thickness on CHAMP Geopotential Data

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Kis, Karoly I.; vonFrese, Ralph R. B.; Korhonen, Juha V.; Wittmann, Geza; Kim, Hyung Rae; Potts, Larmie V.

    2003-01-01

    Tn determine the effect of crustal thickness variation on satellite-altitude geopotential anomalies we compared two regions of Europe with vastly different values, South and Central Finland and the Pannonian Basin. In our study regions, crustal thickness exceeds 44 km in Finland and is less than 26 km in the Pannonian Basin. Heat-flow data indicate that the thinner and more active crust of the Pannonian Basin has a value nearly three times that of the Finnish Svecofennian Province. An ovoid positive CHAMP gravity anomaly (-4 mGal) is quasi-coincidental with the CHAMP magnetic anomaly traverses the Pannonian Basin while ground based gravity mapping in Hungary shows that the free-air gravity anomalies across the Pannonian Basin are near 0 to +20 mGal with shorter wavelength anomalies from +40 to less than +60 mGal and some 0 to greater than -20 mGal. Larger anomalies are detected in the mountainous areas. The minor value anomalies can indicate the isostatic equilibrium for Hungary (the central part of the Pannonian Basin). Gravity data over Finland bear overprint of de-glaciation. CHAMP gravity data indicates a west-east positive gradient of less than 4 mGal across South and Central Finland. CHAMP magnetic data (400 km) reveal elongated semi-circular negative anomalies for both regions with South-Central Finland having larger amplitude (less than -6 nT) than that over the Pannonian Basin, Hungary (less than -5 nT). In the latter subducted oceanic lithosphere has been proposed as the anomalous body.

  7. Effect of Varying Crustal Thickness on CHAMP Geopotential Data

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Kis, K. I.; vonFrese, R. R. B.; Korhonen, J. V.; Wittmann, G.; Kim, H. R.; Potts, L. V.

    2003-01-01

    To determine the effect of crustal thickness variation on satellite-altitude geopotential anomalies we compared two regions of Europe with vastly different values, Central/Southern Finland and the Pannonian Basin. Crustal thickness exceeds 62 km in Finland and is less than 26 km in the Pannonian Basin. Heat-flow maps indicate that the thinner and more active crust of the Pannonian Basin has a value nearly three times that of the Finnish Svecofennian Province. Ground based gravity mapping in Hungary shows that the free-air gravity anomalies across the Pannonian Basin are near 0 to +20 mGal with shorter wavelength anomalies from +40 to less than +60 mGal and some 0 to greater than -20 mGal. Larger anomalies are detected in the mountainous areas. The minor value anomalies can indicate the isostatic equilibrium for Hungary (the central part of the Pannonian Basin). Gravity data over Finland are complicated by de-glaciation. CHAMP gravity data (400 km) indicates a west-east positive gradient of greater than 4 mGal across Central/Southern Finland and an ovoid positive anomaly (approximately 4 mGal) quasi-coincidental with the magnetic anomaly traversing the Pannonian Basin. CHAMP magnetic data (425 km) reveal elongated semicircular negative anomalies for both regions with South-Central Finland having larger amplitude (less than -6 nT) than that over the Pannonian Basin, Hungary (less than -5 nT). In both regions subducted oceanic lithosphere has been proposed as the anomalous body.

  8. A tentative 2D thermal model of central India across the Narmada-Son Lineament (NSL)

    NASA Astrophysics Data System (ADS)

    Rai, S. N.; Thiagarajan, S.

    2006-12-01

    This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan-Pulgaon and Ujjan-Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north-south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m 2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha-Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ˜23 mW/m 2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.

  9. Hydrothermal circulation at the Cleft-Vance overlapping spreading center: Results of a magnetometric resistivity survey

    USGS Publications Warehouse

    Evans, R.L.; Webb, S.C.; Jegen, M.; Sananikone, K.

    1998-01-01

    We report on a magnetometric resistivity sounding carried out in the overlapping spreading center between the Cleft and Vance segments of the Juan de Fuca Ridge. The data collected reveal a strong three dimensionality in the crustal electrical resistivity structure on wavelengths of a few kilometers. Areas of reduced crustal electrical resistivities, with values approaching that of seawater, are seen beneath the neovolcanic zones of both active spreading centers. We interpret these reduced resistivities as evidence of active hydrothermal circulation within the uppermost 1 km of hot, young oceanic crust.

  10. Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone

    NASA Astrophysics Data System (ADS)

    Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu

    2005-11-01

    The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.

  11. Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Daly, E.; Keir, D.; Ebinger, C. J.; Stuart, G. W.; Bastow, I. D.; Ayele, A.

    2008-03-01

    In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P-wave velocity model of the mid-crust and present the first 3-D Vp/Vs model of the region. Our models show high P-wave velocities (6.5 km s-1) beneath the axis of the rift at a depth of 12-25 km. The presence of high Vp/Vs ratios (1.81-1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp/Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ~1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.

  12. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin

    NASA Astrophysics Data System (ADS)

    Potter, Ross W. K.; Head, James W.; Guo, Dijun; Liu, Jianzhong; Xiao, Long

    2018-05-01

    The 492 km-diameter Apollo impact basin post-dates, and is located at the inner edge of, the ∼2240 km-diameter South Pole-Aitken (SPA) basin, providing an opportunity to assess the SPA substructure and lateral heterogeneity. Gravity Recovery and Interior Laboratory gravity data suggest an average crustal thickness on the floor of SPA of ∼20 km and within the Apollo basin of ∼5 km, yet remote sensing data reveal no conclusive evidence for the presence of exposed mantle material. We use the iSALE shock physics code to model the formation of the Apollo basin and find that the observational data are best fit by the impact of a 40 km diameter body traveling at 15 km/s into 20-40 km thick crustal material. These results strongly suggest that the Apollo impact occurred on ejecta deposits and collapsed crustal material of the SPA basin and could help place constraints on the location, size and geometry of the SPA transient cavity. The peak ring in the interior of Apollo basin is plausibly interpreted to be composed of inwardly collapsed lower crustal material that experienced peak shock pressures in excess of 35 GPa, consistent with remote sensing observations that suggest shocked plagioclase. Proposed robotic and/or human missions to SPA and Apollo would present an excellent opportunity to test the predictions of this work and address many scientific questions about SPA basin evolution and structure.

  13. Constraints on the structure of the crust and lithosphere beneath the Azores Islands from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2018-05-01

    The Azores Archipelago is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, resting on both sides of the ridge. Various methods including seismic reflection, gravity and passive seismic imaging have previously been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 and 30 km, but until now models of the more fine-scale crustal structure have been lacking. Pending questions include the thickness of the volcanic edifice beneath the islands and whether crustal intrusions or even underplating can be observed beneath any island. In this study, we use data from nine seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. Our results indicate that the base of the volcanic edifice is located approximately 1 to 4 km depth beneath the different islands and that the crust-mantle boundary has an average depth of ˜17 km. There is strong evidence for magmatic underplating beneath the island of São Jorge, and indications that the underplating is also present beneath São Miguel and possibly Santa Maria. Additionally, the seismological lithosphere-asthenosphere boundary, defined as a seismic velocity drop in the uppermost mantle, seems to deepen with increasing distance from the MAR. It has a depth of ˜45 km beneath the islands close to the MAR, compared to depths >70 km beneath the more distal islands.

  14. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago.

    PubMed

    Bindeman, I N; Zakharov, D O; Palandri, J; Greber, N D; Dauphas, N; Retallack, G J; Hofmann, A; Lackey, J S; Bekker, A

    2018-05-01

    The history of the growth of continental crust is uncertain, and several different models that involve a gradual, decelerating, or stepwise process have been proposed 1-4 . Even more uncertain is the timing and the secular trend of the emergence of most landmasses above the sea (subaerial landmasses), with estimates ranging from about one billion to three billion years ago 5-7 . The area of emerged crust influences global climate feedbacks and the supply of nutrients to the oceans 8 , and therefore connects Earth's crustal evolution to surface environmental conditions 9-11 . Here we use the triple-oxygen-isotope composition of shales from all continents, spanning 3.7 billion years, to provide constraints on the emergence of continents over time. Our measurements show a stepwise total decrease of 0.08 per mille in the average triple-oxygen-isotope value of shales across the Archaean-Proterozoic boundary. We suggest that our data are best explained by a shift in the nature of water-rock interactions, from near-coastal in the Archaean era to predominantly continental in the Proterozoic, accompanied by a decrease in average surface temperatures. We propose that this shift may have coincided with the onset of a modern hydrological cycle owing to the rapid emergence of continental crust with near-modern average elevation and aerial extent roughly 2.5 billion years ago.

  15. Hf-Nd Isotopic Correlation in the Deccan Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Saha, A.; Basu, A. R.; Barling, J.; Anbar, A. D.; Hooper, P. R.

    2001-12-01

    Hafnium isotopes along with other isotopic and geochemical characteristics, including incompatible trace elements, of several of the lower formations of the Deccan Flood Basalt Province were analyzed to characterize petrogenesis of different tholeiitic lava suites, especially with respect to potential mantle and crustal sources. The rare earth elements of the different formations (from top to bottom- Mahabaleshwar, Ambenali, Bushe, Khandala and Neral) all show an LREE-enriched signature, concentrations varying between 30 to 60 times chondrite for La. (La/Lu)n values range from 4.1 to above 8 with the exception of Ambenali, which has a less LREE-enriched signature with (La/Lu)n values ranging between 3.6 to 5.3. Hafnium isotopic data of the lower formations of the Deccan show initial \\epsilonHf(T) values covering a range from -3 to -28. 176Lu/177Hf varies between 0.20 to 0.70. f(Lu/Hf) varies within a narrow range, between -0.90 to -0.97 while f(Sm/Nd) ranges from -0.84 to -0.86. Bushe gives the lowest range of \\epsilonHf(T) from -21 to -28 with the corresponding \\epsilonNd(T) varying between -4.0 and -16.9, while Khandala for almost the same range of neodymium isotopic values has \\epsilonHf(T) between -11 and -15. The \\epsilonHf(T) values of Neral is in between those of Khandala and Bushe, around -19. Ambenali, has the narrowest range with \\epsilonHf(T) of -3 and \\epsilonNd(T) between 3 and 5. The Ambenali suite reflects the least contaminated of the Deccan suite of lavas as analyzed here and previously confirmed by other isotopic studies. In Hf-Nd isotope correlation plot, the lower Deccan formations of Neral, Khandala and Bushe define individual subparallel arrays that are shallower than the oceanic basalt array and the overall terrestrial array, including the crustal array, although the bulk of the lower formation data fall within the crustal array of Vervoort et al (1999). From these subparallel Hf-Nd arrays, it is evident that the other end-members contributing to the Ambenali-type source magmas are distinctly different for each of these lava suites, and can be characterized by their \\epsilonHf(T) values as mentioned above. Although these end-members are discernible in \\epsilonNd vs \\epsilonSr plot (e.g., Peng et al, 1994) of previous studies, our new Hf-isotopic data provide clear evidence of major contributions from the ancient Indian continental crustal reservoirs in the petrogenesis of the lower lava formations of the Deccan Flood Basalt Province.

  16. Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy

    NASA Astrophysics Data System (ADS)

    Spada, M.; Bianchi, I.; Kissling, E.; Agostinetti, N. Piana; Wiemer, S.

    2013-08-01

    The accurate definition of 3-D crustal structures and, in primis, the Moho depth, are the most important requirement for seismological, geophysical and geodynamic modelling in complex tectonic regions. In such areas, like the Mediterranean region, various active and passive seismic experiments are performed, locally reveal information on Moho depth, average and gradient crustal Vp velocity and average Vp/Vs velocity ratios. Until now, the most reliable information on crustal structures stems from controlled-source seismology experiments. In most parts of the Alpine region, a relatively large number of controlled-source seismology information are available though the overall coverage in the central Mediterranean area is still sparse due to high costs of such experiments. Thus, results from other seismic methodologies, such as local earthquake tomography, receiver functions and ambient noise tomography can be used to complement the controlled-source seismology information to increase coverage and thus the quality of 3-D crustal models. In this paper, we introduce a methodology to directly combine controlled-source seismology and receiver functions information relying on the strengths of each method and in relation to quantitative uncertainty estimates for all data to derive a well resolved Moho map for Italy. To obtain a homogeneous elaboration of controlled-source seismology and receiver functions results, we introduce a new classification/weighting scheme based on uncertainty assessment for receiver functions data. In order to tune the receiver functions information quality, we compare local receiver functions Moho depths and uncertainties with a recently derived well-resolved local earthquake tomography-derived Moho map and with controlled-source seismology information. We find an excellent correlation in the Moho information obtained by these three methodologies in Italy. In the final step, we interpolate the controlled-source seismology and receiver functions information to derive the map of Moho topography in Italy and surrounding regions. Our results show high-frequency undulation in the Moho topography of three different Moho interfaces, the European, the Adriatic-Ionian, and the Liguria-Corsica-Sardinia-Tyrrhenia, reflecting the complexity of geodynamical evolution.

  17. Earthquake-induced gravitational potential energy change in the active Taiwan orogenic belt

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Hsu, Shu-Kun

    2005-07-01

    The Philippine Sea Plate is converging against the Eurasian Plate near Taiwan at a velocity of 7-8 cm yr-1 this has caused the Taiwan orogenesis and induced abundant earthquakes. In this study we examine the corresponding change of gravitational potential energy (ΔGPE) using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from 1995 July to 2003 December. Our results show that the variation of the crustal ΔGPE strongly correlates with the different stages of the orogenesis. Except for the western Okinawa Trough and southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal ΔGPE. In contrast, the lithospheric ΔGPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal ΔGPE and the lithospheric ΔGPE during the observation period are 1.03 × 1017 J and -1.15 × 1017 J, respectively. The average rate of the whole ΔGPE in the Taiwan region is very intense and equal to -2.07 × 1010 W, corresponding to about 1 per cent of the global GPE loss induced by earthquakes.

  18. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  19. Effects of variation in solar conditions and crustal sources' orientation on the Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y.; Brain, D. A.

    2013-12-01

    Strong crustal magnetic sources on the surface of Mars directly interact with the solar magnetic field and plasma, resulting a very dynamic environment near the planet. Effects of the orientation of these remnant magnetic sources with respect to the sun and variation of the solar conditions on the Martian plasma interaction have been investigated in a previous paper. In this previous study, magnetic topology maps obtained from ~7 years of Mars Global Surveyor (MGS) directional electron observations (obtained by Dave Brain) were compared with the topology maps obtained from a set of BATS-R-US MHD simulations for Mars. One conclusion from this study was that although the MHD model is consistent with the data and provides insight about the global magnetic field topology variation with changing crustal field orientation and solar parameters, detailed investigation of local effects is difficult due to MGS orbital bias. Moreover, proper comparison of the observations with the model requires more careful data selection rather than using 7 years time averages. In this paper, we readdress the study to tackle the problems of our previous work by performing more detailed data analysis and present the results of the updated model-data comparison.

  20. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wang, Qiang; Zhang, Chunfu; Wyman, Derek A.; Dan, Wei; Xia, Xiao-Ping; Chen, Hong-Yi; Zhao, Zhen-Hua

    2017-09-01

    To better understand the compositional diversity of plutonic complexes and crustal growth of the Central Asian Orogenic Belt (CAOB), we conducted an integrated study of the Ertaibei pluton, which obtained geochronological, petrological, geochemical, and isotopic (including whole rock Sr-Nd, in situ zircon Hf-O) data. The pluton (ca. 300 Ma) is composed of granodiorites that contain mafic microgranular enclaves (MMEs), dolerite dikes, and granite dikes containing quartz-tourmaline orbicules. The dolerite dikes were possibly generated by melting of an asthenospheric mantle source, with discrete assimilation of lower crustal components in the MASH (melting, assimilation, storage, and homogenization) zone. The MMEs originated from hybridization between mantle and crust-derived magmas, which spanned a range of melting depths (˜25-30 km) in the MASH zone and were episodically tapped. Melting of the basaltic lower crust in the core of the MASH zone generated magmas to form the granodiorites. The granite dikes originated from melting of an arc-derived volcanogenic sedimentary source with a minor underplated basaltic source in the roof of the MASH zone (˜25 km). The compositional diversity reflects both the magma sources and the degree of maturation of the MASH zone. Although having mantle-like radiogenic isotope compositions, the Ertaibei and other postcollisional granitoids show high zircon δ18O values (mostly between +6 and +9‰), indicating a negligible contribution to the CAOB crustal growth during the postcollisional period.

  1. Coarse particle speciation at selected locations in the rural continental United States

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Pitchford, Marc L.; McDade, Charles; Ashbaugh, Lowell L.

    A few short-term special studies at National Parks have shown that coarse mass (CM) (2.5- 10μm) may not be just crustal minerals but may consist of a substantial amount ( ≈40-50%) of carbonaceous material and inorganic salts such as calcium nitrate and sodium nitrate. To more fully investigate the composition of coarse particles, a program of coarse particle sampling and speciation analysis at nine of the Interagency Monitoring of Protected Visual Environments (IMPROVE) sites was initiated 19 March 2003 and operated through the year 2004. Only the data for 2004 are reported here. Sites were selected to be representative of the continental United States and were operated according to IMPROVE protocol analytical procedures. Crustal minerals (soil) are the single largest contributor to CM at all but one monitoring location. The average fractional contributions range from a high of 76% at Grand Canyon National Park to a low of 34% at Mount Rainier National Park. The second largest contributor to CM is organic mass, which on an average annual fractional basis is highest at Mount Rainier at 59%. At Great Smoky Mountains National Park, organic mass contributes 40% on average, while at four sites organic mass concentrations contribute between 20% and 30% of the CM. Nitrates are on average the third largest contributor to CM concentrations. The highest fractional contributions of nitrates to CM are at Brigantine National Wildlife Refuge, Great Smoky Mountains, and San Gorgonio wilderness area at 10-12%. Sulfates contribute less than about 5% at all sites.

  2. Seismotectonics of the May 19, 2011 Simav- Kutahya Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Komec Mutlu, Ahu

    2014-05-01

    Aftershock sequence of May 19, 2011 Simav earthquake (Mw = 5.8) is relocated with a new 1-D seismic velocity model and focal mechanisms of largest aftershocks are determined. The May 19, 2011 Simav-Kutahya earthquake is occured in the most seismically active region of western Turkey. During six months after the mainshock, more than 5000 earthquakes are recorded and aftershocks followed over a period of almost two years. In this study, more than 7600 aftershocks occured between years 2011 and 2012 with magnitudes greater than 1.8 relocated. Waveform data is collected by 13 three component seismic stations from three different networks (Kandilli Observatory and Earthquake Research Institute (NEMC-National Earthquake Monitoring Center), Prime Ministry Disaster and Emergency Management Presidency, Department of Earthquake and Canakkale Onsekiz Mart University Geophysics Department). These seismic stations are deployed closer than 80 km epicentral distance in the Simav-Kutahya. Average crustal velocity and average crustal thickness for the region are computed as 5.68 km/sn and 37.6 km, respectively. The source mechanism of fifty aftershocks with magnitudes greater than 4.0 are derived from first motion P phases. Analysis of focal mechanisms indicate mainly normal fault motions with oblique slip.

  3. Estimating crustal thickness using SsPmp in regions covered by low-velocity sediments: Imaging the Moho beneath the Southeastern Suture of the Appalachian Margin Experiment (SESAME) array, SE Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Parker, E. Horry, Jr.; Hawman, Robert B.; Fischer, Karen M.; Wagner, Lara S.

    2016-09-01

    Deconvolved waveforms for two earthquakes (Mw: 6.0 and 5.8) show clear postcritical SsPmp arrivals for broadband stations deployed across the coastal plain of Georgia, allowing mapping of crustal thickness in spite of strong reverberations generated by low-velocity sediments. Precritical SsPmp arrivals are also identified. For a basement in which velocity increases linearly with depth, a bootstrapped grid search suggests an average basement velocity of 6.5 ± 0.1 km/s and basement thickness of 29.8 ± 2.0 km. Corresponding normal-incidence Moho two-way times (including sediments) are 10.6 ± 0.6 s, consistent with times for events interpreted as Moho reflections on coincident active-source reflection profiles. Modeling of an underplated mafic layer (Vp = 7.2-7.4 km/s) using travel time constraints from SsPmp data and vertical-incidence Moho reflection times yields a total basement thickness of 30-35 km and average basement velocity of 6.35-6.65 km/s for an underplate thickness of 0-15 km.

  4. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived Neoproterozoic granites provided the heat source and ore-forming material for the Sn mineralization. Furthermore, the low oxygen fugacity of these Neoproterozoic granites also favoured the Sn mineralization.

  5. Seismic receiver function interpretation: Ps splitting or anisotropic underplating?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Park, J. J.

    2016-12-01

    Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear-wave splitting of Moho P-to-s converted phases in receiver functions has often been used to infer crustal anisotropy. In addition to estimating birefringence directly, the harmonic variations of Moho Ps phases in delay times can be used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may localize at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is well constrained by intra-crust Ps conversions at high frequencies using harmonic decomposition of multiple-taper correlation receiver functions. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. Our results of ARU and KIP show that the harmonic behavior of Moho Ps phases can be explained by a uniformly anisotropic crust model at lower cut-off frequencies, but higher-resolution RF-signals reveal a thin, highly anisotropic layer at the base of the crust. Station LSA tells a similar story with a twist: a modest Ps birefringence is revealed at high frequencies to stem from multiple thin (5-10-km) layers of localized anisotropy within the middle crust, but no strongly-sheared basal layer is inferred. We suggest that the harmonic variation of Moho Ps phases should always be investigated as a result of anisotropic layering using RFs with frequency content above 1Hz, rather than simply reporting averaged anisotropy of the whole crust.

  6. Seismic Waveform Tomography of the Iranian Region

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Priestley, K.; Jackson, J.

    2001-05-01

    Surprisingly little is known about the detailed velocity structure of Iran, despite the region's importance in the tectonics of the Middle East. Previous studies have concentrated mainly on fundamental mode surface wave dispersion measurements along isolated paths (e.g.~Asudeh, 1982; Cong & Mitchell, 1998; Ritzwoller et.~al, 1998), and the propagation characteristics of crust and upper mantle body waves (e.g. Hearn & Ni 1994; Rodgers et.~al 1997). We use the partitioned waveform inversion method of Nolet (1990) on several hundred regional waveforms crossing the Iranian region to produce a 3-D seismic velocity map for the crust and upper mantle of the area. The method consists of using long period seismograms from earthquakes with well determined focal mechanisms and depths to constrain 1-D path-averaged shear wave models along regional paths. The constraints imposed on the 1-D models by the seismograms are then combined with independent constraints from other methods (e.g.~Moho depths from reciever function analysis etc.), to solve for the 3-D seismic velocity structure of the region. A dense coverage of fundamental mode rayleigh waves at a period of 100~s ensures good resolution of lithospheric scale structure. We also use 20~s period fundamental mode rayleigh waves and some Pnl wavetrains to make estimates of crustal thickness variations and average crustal velocities. A few deeper events give us some coverage of higher mode rayleigh waves and mantle S waves, which sample to the base of the upper mantle. Our crustal thickness estimates range from 45~km in the southern Zagros mountains, to 40~km in central Iran and 35~km towards the north of the region. We also find inconsistencies between the 1-D models required to fit the vertical and the tranverse seismograms, indicating the presence of anisotropy.

  7. Toward Assessing the Causes of Volcanic Diversity in the Cascades Arc

    NASA Astrophysics Data System (ADS)

    Till, C. B.; Kent, A. J.; Abers, G. A.; Pitcher, B.; Janiszewski, H. A.; Schmandt, B.

    2017-12-01

    A fundamental unanswered question in subduction system science is the cause of the observed diversity in volcanic arc style at an arc-segment to whole-arc scale. Specifically, we have yet to distinguish the predominant mantle and crustal processes responsible for the diversity of arc volcanic phenomenon, including the presence of central volcanoes vs. dispersed volcanism; episodicity in volcanic fluxes in time and space; variations in magma chemistry; and differences in the extent of magmatic focusing. Here we present a thought experiment using currently available data to estimate the relative role of crustal magmatic processes in producing the observed variations in Cascades arc volcanism. A compilation of available major element compositions of Quaternary arc volcanism and estimates of eruptive volumes are used to examine variations in the composition of arc magmas along strike. We then calculate the Quaternary volcanic heat flux into the crust, assuming steady state, required to produce the observed distribution of compositions via crystallization of mantle-derived primitive magmas vs. crustal melting using experiment constraints on possible liquid lines of descent and crustal melting scenarios. For pure crystallization, heat input into the crust scales with silica content, with dacitic to rhyolite compositions producing significantly greater latent heat relative to basalts to andesites. In contrast, the heat required to melt lower crustal amphibolite decreases with increasing silica and is likely provided by the latent heat of crystallization. Thus we develop maximum and minimum estimates for heat added to the crust at a given SiO2 range. When volumes are considered, we find that the average Quaternary volcanic heat flux at latitudes south of South Sister to be more than twice that to the north. Distributed mafic volcanism produces only a quarter to half the heat flux calculated for the main edifices at a given latitude because of their lesser eruptive volumes and quantities of evolved magma. When we compare our Quaternary heat flux calculations to a variety of geophysical observations, we find that regions of calculated higher volcanic heat flux coincide with regions of significantly lower crustal seismic wave speeds beneath and behind the arc, as well as with regions of significantly higher heat flow.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadge, G.

    Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in termsmore » of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.« less

  9. A multidisciplinary study on the crustal architecture and tectonic evolution of the Biligiri Rangan Block, southern India: Implications for Neoarchean plate tectonics

    NASA Astrophysics Data System (ADS)

    Raveendran Thankamoni, Ratheesh Kumar

    2017-04-01

    Southern India is comprised of a collage of crustal blocks ranging in age from Archean to Neoproterozoic. Previous studies considered the Archean high-grade granulite terrain to the north of the Southern Granuilte Terrain (SGT) of southern India as the part of the Dharwar Craton and hence subdivided this craton into western, central and eastern provinces. This contribution presents my detailed examinations on the least studied Central Dharwar Province, comprising the Biligiri Rangan (BR) - Male Mahadeshwara (MM) Hills domain composed predominantly of charnockites. One of my recent study (Ratheesh-Kumar et al., 2016) for the first time provided necessary evidence for Neoarchean subduction-accretion-collision tectonic evolution of this domain as a separate crustal block which has been named as Biligiri Rangan Block (BRB) by using a multidisciplinary approach involving field investigation, petrography, mineral chemistry, thermodynamic modeling of metamorphic P-T evolution, and LA-ICPMS U-Pb and Lu-Hf analyses of zircons on representative rocks together with regional-scale crustal thickness model derived using isostatic gravimetric geophysical method. The important findings of this study are: (1) The BRB preserves the vestiges of a Mesoarchean primitive continental crust as indicated by the age (ca. 3207) and positive ɛHf value (+2.7) of quartzofeldspathic gneiss occurred in the central part of the block (2) The charnockites and associated mafic granulites and granites provide ages between ca. 2650 Ma and ca. 2498 Ma with large negative ɛHf values are suggestive of Neoarchean charnockitization and crustal remelting (3) New geochemical data of charnockites and mafic granulites from BRB are consistent with arc magmatic rocks generated through oceanic plate subduction (4) Delineation of a suture zone along the Kollegal structural lineament bounding the BRB and the Western Dharwar Craton surmised from the occurrences of quartzite-iron formation intercalations and also mafic-ultramafic lenses along this lineament with their evolution through a clockwise prograde and retrograde metamorphism in a subduction zone setting at a high-pressure of 18-19 kbar and temperature of ˜840°C (5) Spatial variation of crustal thickness data reveal high crustal thickness in the Biligiri Rangan and the Nilgiri Blocks, and are attributed to a more competently thickened crust resulted by the subduction and collision processes. Based on these results, this study proposes a new tectonic model for the evolution of the BRB that envisages eastward subduction of the Western Dharwar oceanic crust beneath the BRB along the Kollegal suture zone resulted in the arc magmatism during the Neoarchean. The relevance of this study relies on the fact that the proposed evolutionary model revises the existing debates on the tectonic framework and evolution of the Archean terranes of southern India.

  10. High-resolution receiver function imaging reveals Colorado Plateau lithospheric architecture and mantle-supported topography

    USGS Publications Warehouse

    Domingo, Dorothy L.; R. Aster,; S. Grand,; J Ni,; W.S. Baldridge,; David C. Wilson USGS,

    2010-01-01

    After maintaining elevations near sea level for over 500 million years, the Colorado Plateau (CP) has a present average elevation of 2 km. We compute new receiver function images from the first dense seismic transect to cross the plateau that reveal a central CP crustal thickness of 42–50 km thinning to 30–35 km at the CP margins. Isostatic calculations show that only approximately 20% of central CP elevations can be explained by thickened crust alone, with the CP edges requiring nearly total mantle compensation. We calculate an uplift budget showing that CP buoyancy arises from a combination of crustal thickening, heating and alteration of the lithospheric root, dynamic support from mantle upwelling, and significant buoyant edge effects produced by small-scale convecting asthenosphere at its margins.

  11. One year study of PM2.5 in Xinxiang city, North China: Seasonal characteristics, climate impact and source.

    PubMed

    Feng, Jinglan; Yu, Hao; Mi, Kai; Su, Xianfa; Li, Yi; Li, Qilu; Sun, Jianhui

    2018-06-15

    This study was conducted in order to explore the seasonal characteristics, climate impact and source of PM 2.5 in Xinxiang, China. Daily PM 2.5 samples were collected at urban site from January to December in 2015. Average PM 2.5 concentration was 100.6 ± 65.8 μg m -3 in Xinxiang, which was several times higher than China Ambient Air Quality Standards (GB3095-2012). Secondary inorganic aerosols (SIA) constituted 70% of the total ionic concentrations. The average concentration of SO 4 2- was 6.4 ± 12.0 μg m -3 , which ranked the highest among the water-soluble ions analyzed. Seasonal variations of PM 2.5 and its major chemical components were significant, most of them with high values in winter and the lowest values in summer, especially with heavier PM 2.5 events (more than 200 μg/m 3 ) in December. SIA and OC on polluted days were 2.1-2.3 times higher than those of on clean days. It was estimated that Fe, Li, Na, Mg, Al, K, Ca and Sr were emitted from crustal sources and Pb, Cr, Ni, Cu, Zn, As, Cd and V were emitted from anthropogenic emissions using the EF values. Analysis using the tracer and PCA/MLR revealed that vehicle exhausts were the most important source of PM 2.5 , which contributed 26.9% of PM 2.5 over the whole study period. This study provides detailed composition data and first comprehensive analysis of PM 2.5 in Xinxiang during a whole year. Copyright © 2018. Published by Elsevier Inc.

  12. The high field strength element budget of atmospheric aerosols (puy de Dôme, France)

    NASA Astrophysics Data System (ADS)

    Vlastelic, Ivan; Suchorski, Krzysztof; Sellegri, Karine; Colomb, Aurélie; Nauret, François; Bouvier, Laetitia; Piro, Jean-Luc

    2015-10-01

    High field strength elements (HFSE), including Zr, Hf, Nb, Ta and Ti have low solubility in aqueous fluids and partition into dense and resistant minerals. HFSE proved useful in studying terrestrial weathering and sediment transport, but little is known about their behavior during atmospheric processes, which play an important role in global sedimentary cycles. The atmospheric budget of HFSE is evaluated from the sequential dissolution of aerosol samples collected between 2011 and 2014 at puy de Dôme (1465 m elevation, French Massif Central). Aerosols were sampled during nighttime, while the site is generally located above the planetary boundary layer. Systematic, partial recovery of HFSE during gentle dissolution of aerosols indicates that resistant minerals are ubiquitous in air samples. Total dissolution of aerosols in pressure vessels reveals that Zr and Hf occur on average in sub-crustal abundance, which is consistent with the sampling site being dominantly influenced by oceanic air masses depleted in zircons. Conversely, zircon excess occasionally occurs in continental air masses, in particular those originating from northern Africa. Overall, the Hf/Nd ratio, a proxy for zircon fractionation, varies from 0.26 to 3.94 times the Upper Continental Crust (UCC) value, encompassing the range of worldwide loess. This wide compositional range is consistent with (1) the occurrence of coarse zircons (10-30 μm) in dust source, with possible local enrichments relative to bulk UCC in residual wind-winnowed soils, and (2) gravitational settling of coarse zircons during long-distance (>ca. 1000 km) transport. Niobium and Ta are systematically more abundant (by a mean factor of ∼3) in puy de Dôme aerosols than expected from average crustal or soil concentrations. The volume-weighted average Nb/Ta ratio of 15.5 ± 2.6 (1σ) is also higher than in bulk UCC (11.4-13.3). The positive Nb-Ta anomaly of free troposphere aerosols unlikely reflects a net Nb-Ta enrichment but might result from loss of more water-soluble elements during weathering of aerosols in clouds. Depletion in Zr-Hf (coarse zircons settling) and Nb-Ta enrichment (cloud processing) might occur during large-scale transport of mineral dust over ocean basins, which could explain the peculiar HFSE distribution in some Hawaiian soils showing inputs of Asian dust.

  13. [Determination of trace metals in atmospheric dry deposition with a heavy matrix of PUF by inductively coupled plasma mass spectroscopy after microwave digestion].

    PubMed

    Pan, Yue-peng; Wang, Yue-si; Yang, Yong-jie; Wu, Dan; Xin, Jin-yuan; Fan, Wen-yan

    2010-03-01

    Interest in atmospheric dry deposition results mostly from concerns about the effects of the deposited trace elements entering waterbody, soil and vegetation as well as their subsequent health effects. A microwave assisted digestion method followed by inductively coupled plasma mass spectrometric (MAD-ICP/MS) analysis was developed to determine the concentrations of a large number of trace metals in atmospheric dry deposition samples with a heavy matrix of polyurethane foam (PUF). A combination of HNO3-H2O2-HF was used for digestion. The experimental protocol for the microwave assisted digestion was established using two different SRMs (GBW 07401, Soil and GBW 08401, Coal fly ash). Subsequently, blanks and limits of detection for total trace metal concentrations were determined for PUF filter which was used for dry deposition sampling. Finally, the optimized digestion method was applied to real world atmospheric dry deposition samples collected at 10 sites in Jingjinji area in winter from Dec. 2007 to Feb. 2008. The results showed that the area-averaged total mass fluxes ranged between 85 and 912 mg x (m2 x d)(-1), and fluxes of most elements were highest at Baoding and lowest at Xinglong. In addition, the elemental fluxes in urban areas of Beijing, Tianjin and Tangshan were measured to be higher than that in suburb and rural sites. The average fluxes of crust elements (A1, Fe, Mn, K, Na, Ca and Mg) were one to three orders of magnitude higher than anthropogenic elements (Cu, Pb, Cr, Ni, V, Zn and Ba), varying from 151 to 16034 microg x (m2 x d)(-1) versus 14 to 243 microg x (m2 x d)(-1). Zinc was the most abundant heavy metal and calcium the highest of the crust elements while the elements Mo, Co, Cd, As and Be deposited less or even could not be detected. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EF) calculated relative to the average crustal composition. The EF values of all elements except Pb and Zn were below 10, suggesting that local soil and/or dust generally dominate in the dry deposition flux.

  14. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  15. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.

  16. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  17. Variations in the crustal structure beneath western Turkey

    NASA Astrophysics Data System (ADS)

    Saunders, Paul; Priestley, Keith; Taymaz, Tuncay

    1998-08-01

    We use teleseismic receiver functions to investigate the crustal structure at two locations in western Turkey using seismic data recorded on small arrays of temporary broad-band seismographs. The results from these analyses are compared with receiver function results from the GDSN station ANTO on the Anatolian Plateau in central Turkey. The crust is ~ 30 km thick in the region of western Turkey where active normal faulting reveals present-day extension in the upper crust and alkali-basaltic volcanism reveals recent extension within the subcrustal lithosphere The crust is ~ 34 km thick further east where crustal extension is still evident but less pronounced. In the Anatolian Plateau, which is not currently extending, the crust is ~ 38 km thick. The level of extension estimated from these measurements of crustal thickness implies a β -factor of ~ 1.2. This value agrees with the amount of extension estimated in the upper crust from the integrated seismic strain rate (β -factor of ~ 1.3), from surface faulting(β -factor of ~ 1.25) and from the amount of extension in the subcrustal lithosphere estimated from the volcanism (β -factor < 2), all indicating that the extension is approximately uniformly distributed vertically throughout the lithosphere. The Moho transition in this region appears to thin slightly as the degree of extension increases westwards.

  18. 3D crustal model of the US and Canada East Coast rifted margin

    NASA Astrophysics Data System (ADS)

    Dowla, N.; Bird, D. E.; Murphy, M. A.

    2017-12-01

    We integrate seismic reflection and refraction data with gravity and magnetic data to generate a continent-scale 3D crustal model of the US and Canada East Coast, extending north from the Straits of Florida to Newfoundland, and east from the Appalachian Mountains to the Central Atlantic Ocean. The model includes five layers separated by four horizons: sea surface, topography, crystalline basement, and Moho. We tested magnetic depth-to-source techniques to improve the basement morphology, from published sources, beneath the continental Triassic rift basins and outboard to the Jurassic ocean floor. A laterally varying density grid was then produced for the resultant sedimentary rock layer thickness based on an exponential decay function that approximates sedimentary compaction. Using constant density values for the remaining layers, we calculated an isostatically compensated Moho. The following structural inversion results of the Moho, controlled by seismic refraction depths, advances our understanding of rift-to-drift crustal geometries, and provides a regional context for additional studies.

  19. The leading edge of basement logging science: The detailed in situ volcanic architecture, crustal construction processes, vacancy for water, minerals, and microbes, and beyond

    NASA Astrophysics Data System (ADS)

    Tominaga, M.

    2010-12-01

    Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.

  20. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Mao, Ya-Jing; Qin, Ke-Zhang; Tang, Dong-Mei; Feng, Hong-Ye; Xue, Sheng-Chao

    2016-11-01

    The Huangshannan mafic-ultramafic intrusion is a Permian Ni-Cu sulfide-bearing intrusion in the southern margin of the Central Asian Orogenic Belt. The intrusion consists of an ultramafic unit, which is composed of lherzolite and olivine websterite, and a mafic unit, which is composed of olivine gabbronorite, gabbronorite and leuco-gabbronorite. This intrusion was formed by two separate pulses of magma: a more primitive magma for the early ultramafic unit and a more evolved magma for the late mafic unit. U-Pb isotope geochronology of zircon from the mafic unit yields an age of 278 ± 2 Ma. According to its olivine and Cr-rich spinel compositions, the estimated parental magma of lherzolite for the Huangshannan intrusion has 12.4 wt.% MgO, indicating picritic affinity. Fractional crystallization modeling results and the presence of rounded sulfide inclusions in an olivine crystal (Fo 86.7) indicate that sulfide immiscibility was achieved at the beginning of olivine fractionation. Co-magmatic zircon crystals from gabbronorite have a δ18O value close to 6.5‰, which is 1.2‰ higher than the typical mantle value and suggests significant crustal contamination (∼20%). The positive εHf(t) values of co-magmatic zircon (which vary from +9.2 to +15.3) and positive whole rock εNd(t) values (which vary from +4.7 to +7.8) also indicate that the parental magma was derived from a depleted mantle source and contaminated by 5-20% juvenile arc crust and then by ∼5% upper crustal materials. However, modeling results of sulfur content at sulfide saturation reveal that such a large amount of crustal contamination is not sufficient to trigger sulfide saturation in the parental magma, which strongly suggests that external sulfur addition, probably during contamination, has played a critical role in causing sulfide immiscibility. Furthermore, the arc magmatism geochemical signatures of the Huangshannan intrusion, such as significant Nb and Ta depletion relative to La and low Ca contents in olivine, are interpreted as the result of slab-derived fluid modification during previous subduction. We speculate that the contamination of juvenile arc crust may have occurred in the lower crust because of picritic magma underplating and that partial melting in the mantle was triggered by the impingement of a mantle plume or lithosphere delamination in a post-subduction environment.

  1. Complex N-S variations in Moho depth and Vp/Vs ratio beneath the western Tibetan Plateau as revealed by receiver function analysis

    NASA Astrophysics Data System (ADS)

    Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping

    2018-04-01

    We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.

  2. Using Earthquake Location and Coda Attenuation Analysis to Explore Shallow Structures Above the Socorro Magma Body, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, J. P.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is a thin, sill-like intrusion with a top at 19 km depth covering approximately 3400 km2 within the Rio Grande Rift. InSAR studies show crustal uplift patterns linked to SMB inflation with deformation rates of 2.5 mm/yr in the area of maximum uplift with some peripheral subsidence. Our understanding of the emplacement history and shallow structure above the SMB is limited. We use a large seismic deployment to explore seismicity and crustal attenuation in the SMB region, focusing on the area of highest observed uplift to investigate the possible existence of fluid/magma in the upper crust. We would expect to see shallower earthquakes and/or higher attenuation if high heat flow, fluid or magma is present in the upper crust. Over 800 short period vertical component geophones situated above the northern portion of the SMB were deployed for two weeks in 2015. This data is combined with other broadband and short period seismic stations to detect and locate earthquakes as well as to estimate seismic attenuation. We use phase arrivals from the full dataset to relocate a set of 33 local/regional earthquakes recorded during the deployment. We also measure amplitude decay after the S-wave arrival to estimate coda attenuation caused by scattering of seismic waves and anelastic processes. Coda attenuation is estimated using the single backscatter method described by Aki and Chouet (1975), filtering the seismograms at 6, 9 and 12 Hz center frequencies. Earthquakes occurred at 2-13 km depth during the deployment, but no spatial patterns linked with the high uplift region were observed over this short duration. Attenuation results for this deployment suggest Q ranging in values of 130 to 2000, averaging around Q of 290, comparable to Q estimates of other studies of the western US. With our dense station coverage, we explore attenuation over smaller scales, and find higher attenuation for stations in the area of maximum uplift relative to stations outside of the maximum uplift, which could indicate upper crustal heterogeneities with shallow process above the magma body in this area.

  3. Radiogenic Ingrowth of 40CA from Decay of 40K Provides a Powerful Tracer for Understanding the Origins of Felsic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.; Simon, Justin I.; Depaolo, Donald J.; Bachmann, Olivier

    2013-01-01

    Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth's mantle (?Ca=0). Thus, values of ?Cai > 1 indicate a significant crustal contribution to a magma. Values of ?Cai (<1) indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT). The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ?Ca values of 4 and 7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT (?Cai 0.3) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10- 75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ?Cai indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt. New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of ?Cai from 0 to 3. In these samples ?Cai is generally correlated with ?Sri and is broadly negatively correlated with ?Ndi. However, for granites with similar ?Ndi at a given general location ?Cai can vary significantly (1 to 2 epsilon units). In rocks where low ?Ndi could also be due to melting from enriched reservoirs in the mantle lithosphere, the combination of high ?Cai with low ?Ndi clearly identifies crustal melts.

  4. Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.

    NASA Astrophysics Data System (ADS)

    Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.

    2017-12-01

    The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.

  5. Crustal and mantle structure of the greater Jan Mayen-East Greenland region (NE Atlantic) from combined 3D structural, S-wave velocity, and gravity modeling

    NASA Astrophysics Data System (ADS)

    Tan, P.; Sippel, J.; Scheck-Wenderoth, M.; Meeßen, C.; Breivik, A. J.

    2016-12-01

    The study area is located between the Jan Mayen Ridge and the east coast of Greenland. It has a complex geological setting with the ultraslow Kolbeinsey and Mohn's spreading ridges, the anomalously shallow Eggvin Bank, the Jan Mayen Microcontinent (JMMC), and the tectonically active West Jan Mayen Fracture Zone (WJMFZ). In this study, we present the results of forward 3D structural, S-wave velocity, and gravity modeling which provide new insights into the deep crust and mantle structure and the wide-ranging influence of the Iceland Plume. The crustal parts of the presented 3D structural model are mainly constrained by local seismic refraction and reflection data. Accordingly, greatest crustal thicknesses (24 km) are observed on the northern boundary of the JMMC, while the average crustal thickness is 8.5 km and 4 km in the Kolbeinsey and Mohn's Ridge, respectively. The densities of the crustal parts are from previous studies. Additionally, the mantle density is derived from S-wave velocity data (between 50 and 250 km depth), while densities of the lithospheric mantle between the Moho and 50 km are calculated assuming isostatic equilibrium at 250 km depth. This is used as a starting density model which is further developed to obtain a reasonable fit between the calculated and measured (free-air) gravity fields. The observed S-wave tomographic data and the gravity modeling prove that the Iceland plume anomaly in the asthenosphere affects the lithospheric thickness and temperature, from the strongly influenced Middle Kolbeinsey Ridge, to the less affected North Kolbeinsey Ridge (Eggvin Bank), and to the little impacted Mohn's Ridge. Thus, the age-temperature relations of the different mid-ocean ridges of the study area are perturbed to different degrees controlled by the distance from the Iceland Plume. Furthermore, we find that the upper 50 km of lithospheric mantle are thermally affected by the plume only in the southwestern parts of the study area.

  6. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  7. Viscoelastic-cycle model of interseismic deformation in the northwestern United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.

    2010-01-01

    We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.

  8. Variations in Crustal Structure, Lithospheric Flexural Strength, and Isostatic Compensation Mechanisms of Mars

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, J.; Zuber, M. T.

    2014-12-01

    We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon, Valles Marineris, and Isidis Planitia; reduced values for the Ascraeus, Arsis, and Pavonis Mons; and smallest values for the Alba and Elysium Mons. Our models also suggest that there could be significant sub-surface loading underneath the Olympus, Ascraeus, Arsia, and Pavonis Mons, and Isidis Planitia.

  9. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    NASA Astrophysics Data System (ADS)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  10. The major tectonic boundaries of the Northern Red Sea rift, Egypt derived from geophysical data analysis

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Pamukçu, Oya; Brimich, Ladislav

    2017-09-01

    In the present study, we have attempted to map the plate boundary between Arabia and Africa at the Northern Red Sea rift region including the Suez rift, Gulf of Aqaba-Dead Sea transform and southeastern Mediterranean region by using gravity data analysis. In the boundary analysis method which was used; low-pass filtered gravity anomalies of the Northern Red Sea rift region were computed. Different crustal types and thicknesses, sediment thicknesses and different heat flow anomalies were evaluated. According to the results, there are six subzones (crustal blocks) separated from each other by tectonic plate boundaries and/or lineaments. It seems that these tectonic boundaries reveal complex structural lineaments, which are mostly influenced by a predominant set of NNW-SSE to NW-SE trending lineaments bordering the Red Sea and Suez rift regions. On the other side, the E-W and N-S to NNE-SSW trended lineaments bordering the South-eastern Mediterranean, Northern Sinai and Aqaba-Dead Sea transform regions, respectively. The analysis of the low pass filtered Bouguer anomaly maps reveals that the positive regional anomaly over both the Red Sea rift and South-eastern Mediterranean basin subzones are considered to be caused by the high density of the oceanic crust and/or the anomalous upper mantle structures beneath these regions whereas, the broad medium anomalies along the western half of Central Sinai with the Suez rift and the Eastern Desert subzones are attributed to low-density sediments of the Suez rift and/or the thick upper continental crustal thickness below these zones. There are observable negative anomalies over the Northern Arabia subzone, particularly in the areas covered by Cenozoic volcanics. These negative anomalies may be attributed to both the low densities of the surface volcanics and/or to a very thick upper continental crust. On the contrary, the negative anomaly which belongs to the Gulf of Aqaba-Dead Sea transform zone is due to crustal thickening (with limited heat flow values) below this region. Additionally in this study, the crustal thinning was investigated with heat flow, magnetic and free air gravity anomalies in the Northern Red Sea rift region. In fact, the crustal thinning of the study area was also proportional to the regions of observable high heat flow values. Finally, our results were found to be well correlated with the topography, free air, aeromagnetic and heat flow dataset profiles crossing most of the study area.

  11. Lithospheric buoyancy and continental intraplate stresses

    USGS Publications Warehouse

    Zoback, M.L.; Mooney, W.D.

    2003-01-01

    Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed gravitational potential energy by taking a vertical integral over the computed lithosphere density. Our computed values suggest that the thick roots beneath cratons lead to strong negative potential energy differences relative to surrounding regions, and hence exert compressive stresses superimposed on the intraplate stresses derived from plate boundary forces. Forces related to this lithosphere structure thus may explain the dominance of reverse-faulting earthquakes in cratons. Areas of high elevation and a thin mantle lid (e.g., western U.S. Basin and Range, East African rift, and Baikal rift) are predicted to be in extension, consistent with the observed stress regime in these areas.

  12. A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya

    USGS Publications Warehouse

    Mukherjee, P.K.; Purohit, K.K.; Saini, N.K.; Khanna, P.P.; Rathi, M.S.; Grosz, A.E.

    2007-01-01

    This study models geochemical and adjunct geologic data to define provinces that are favorable for radioactive-mineral exploration. A multi-element bed-sediment geochemical survey of streams was carried out in the headwaters region of the Ganga River in northern India. Overall median values for uranium and thorium (3.6 and 13.8 ppm; maxima of 4.8 and 19.0 ppm and minima of 3.1 and 12.3 ppm respectively) exceed average upper crustal abundances (2.8 and 10.7 ppm) for these radioactive elements. Anomalously high values reach up to 8.3 and 30.1 ppm in thrust zone rocks, and 11.4 and 22.5 ppm in porphyroids. At their maxima, these abundances are nearly four- and three-fold (respectively) enriched in comparison to average crustal abundances for these rock types. Deformed, metamorphosed and sheared rocks are characteristic of the main central thrust zone (MCTZ). These intensively mylonitized rocks override and juxtapose porphyritic (PH) and proterozoic metasedimentary rock sequences (PMS) to the south. Granitoid rocks, the major protoliths for mylonites, as well as metamorphosed rocks in the MCT zone are naturally enriched in radioelements; high values associated with sheared and mylonitized zones are coincident with reports of radioelement mineralization and with anomalous radon concentrations in soils. The radioelement abundance as well as REE abundance shows a northward enrichment trend consistent with increasing grade of metamorphism indicating deformation-induced remobilization of these elements. U and Th illustrate good correlation with REEs but not with Zr. This implies that zircon is not a principal carrier of U and Th within the granitoid-dominant thrust zone and that other radioelement-rich secondary minerals are present in considerable amounts. Thus, the relatively flat, less fractionated, HREE trend is also not entirely controlled by zircon. The spatial correlation of geologic boundary zones (faults, sheared zones) with geochemical and with geophysical (Rn) anomalies infers ore mineralization by hydrothermal processes generated during multiple episodes of deformation and thrusting. The geologic setting of the anomalies also suggests that crystalline rocks (MCT Zone) along the nearly 2500 km length of the LesserHimalayan belt, where in the vicinity of thrust and fault zones, have potential for radioelement mineralization. Zones of higher concentrations of radioelements delineated by this study and locations of anomalous radon discharge determined by other investigations may indicate a potential health hazard over the long term. However, the low human population density precludes direct manifestation of health effects attributable to chronic exposure to these radioelements; however, the magnitude of natural concentrations suggests the need for more detailed studies and monitoring. Copyright ?? 2007 by The Geochemical Society of Japan.

  13. TopoGreenland: crustal structure in central-eastern Greenland along a new refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans; Field Team TopoGreenland

    2013-04-01

    We present the seismic structure in the interior of Greenland based on the first measurements by the seismic refraction/wide angle reflection method. Previous seismic surveys have only been carried out offshore and near the coast of Greenland, where the crustal structure is affected by oceanic break-up and may not be representative of the interior of the island. Acquisition of geophysical data in onshore Greenland is logistically complicated by the presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The EW-trending profile extends 310 km inland from the approximate edge of the stable ice cap near Scoresby Sund across the center of the ice cap. The planned extension of the profile by use of OBSs and air gun shooting in Scoresbysund Fjord to the east coast of Greenland was unfortunately canceled, because navigation was prevented by ice drift. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Two-dimensional velocity model based on tomographic inversion and forward ray tracing modeling shows a decrease of crustal thickness from 47 km below the center of Greenland in the western part to 40 km in the eastern part of the profile. Earlier studies show that crustal thickness further decreases eastward to ca. 30 km below the fjord system, but details of the changes are unknown. Relatively high lower crustal velocities (Vp 6.8 - 7.3) in the western part of the TopoGreenland profile may indicate past collision tectonics or may be related or to the passage of the Iceland mantle plume. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland, which have average elevation above 1500 m with peak elevations of more than 3.5 km close to Scoresby Sund in Eastern Greenland, is unknown. Our new results on the crustal structure provide data for assessment of the isostatic balance of the crust in Greenland, as well as for insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region.

  14. Crustal structure of the Churchill-Superior boundary zone between 80 and 98 deg W longitude from Magsat anomaly maps and stacked passes

    NASA Technical Reports Server (NTRS)

    Hall, D. H.; Millar, T. W.; Noble, I. A.

    1985-01-01

    A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.

  15. Source and movement of helium in the eastern Morongo groundwater Basin: The influence of regional tectonics on crustal and mantle helium fluxes

    USGS Publications Warehouse

    Kulongoski, J.T.; Hilton, David R.; Izbicki, J.A.

    2005-01-01

    We assess the role of fracturing and seismicity on fluid-driven mass transport of helium using groundwaters from the eastern Morongo Basin (EMB), California, USA. The EMB, located ???200 km east of Los Angeles, lies within a tectonically active region known as the Eastern California Shear Zone that exhibits both strike-slip and extensional deformation. Helium concentrations from 27 groundwaters range from 0.97 to 253.7 ?? 10-7 cm3 STP g-1 H2O, with corresponding 3He/4He ratios falling between 1.0 and 0.26 RA (where RA is the 3He/4He ratio of air). All groundwaters had helium isotope ratios significantly higher than the crustal production value of ???0.02 RA. Dissolved helium concentrations were resolved into components associated with solubility equilibration, air entrainment, in situ production within the aquifer, and extraneous fluxes (both crustal and mantle derived). All samples contained a mantle helium-3 (3Hem) flux in the range of 4.5 to 1351 ?? 10-14 cm3 STP 3He cm-2 yr-1 and a crustal flux (J0) between 0.03 and 300 ?? 10-7 cm3 STP 4He cm-2 yr-1. Groundwaters from the eastern part of the basin contained significantly higher 3Hem and deep crustal helium-4 (4Hedc) concentrations than other areas, suggesting a localized source for these components. 4Hedc and 3Hem are strongly correlated, and are associated with faults in the basin. A shallow thermal anomaly in a >3,000 m deep graben in the eastern basin suggests upflow of fluids through active faults associated with extensional tectonics. Regional tectonics appears to drive large scale crustal fluid transport, whereas episodic hydrofracturing provides an effective mechanism for mantle-crust volatile transport identified by variability in the magnitude of degassing fluxes (3Hem and J0) across the basin. Copyright ?? 2005 Elsevier Ltd.

  16. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Loukkola, Kati; Korhonen, Christina H.; Aurela, Minna; Mäkelä, Timo; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Kousa, Anu; Maenhaut, Willy

    During April 1996-June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996-May 1997. The average PM 2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m 3, and the PM 2.3-15 (coarse particle) concentrations were 12.8 and about 5 μg/m 3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50-60%. The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site. Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site. Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM 2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na +, Cl - and Mg 2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.

  17. Tectonic control of erosion in the southern Central Andes

    NASA Astrophysics Data System (ADS)

    Val, Pedro; Venerdini, Agostina L.; Ouimet, William; Alvarado, Patricia; Hoke, Gregory D.

    2018-01-01

    Landscape evolution modeling and global compilations of exhumation data indicate that a wetter climate, mainly through orographic rainfall, can govern the spatial distribution of erosion rates and crustal strain across an orogenic wedge. However, detecting this link is not straightforward since these relationships can be modulated by tectonic forcing and/or obscured by heavy-tailed frequencies of catchment discharge. This study combines new and published along-strike average rates of catchment erosion constrained by 10Be and river-gauge data in the Central Andes between 28°S and 36°S. These data reveal a nearly identical latitudinal pattern in erosion rates on both sides of the range, reaching a maximum of 0.27 mm/a near 34°S. Collectively, data on topographic and fluvial relief, variability of rainfall and discharge, and crustal seismicity suggest that the along-strike pattern of erosion rates in the southern Central Andes is largely independent of climate, but closely relates to the N-S distribution of shallow crustal seismicity and diachronous surface uplift. The consistently high erosion rates on either side of the orogen near 34°S imply that climate plays a secondary role in the mass flux through an orogenic wedge where the perturbation to base level is similar on both sides.

  18. Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gallart, Josep; Carbonell, Ramon

    2016-04-01

    The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera arising from more recent deployments. We have now included also the sparse results in the region previously published, with the aim of checking the consistency of the results, hence giving more strength to the retained features. Combining the Moho depth values coming from controlled source and natural seismicity experiments has finally allowed us to build up a high quality grid of the region at crustal scale, which is completed in the non-sampled areas by the wide-scale CRUST1.0 model. The final picture evidences the geodynamic diversity of the area, including crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and a probable delamination process beneath the Gibraltar Arc. Crustal thicknesses range from values around 15 km in continental margins (Cantabrian margin and Valencia Trough) to depths exceeding 50 km beneath the Pyrenees and the Rif Cordillera. A new 3D model of those variations is presented here to illustrate and summarize such large variations

  19. European Scientific Notes. Volume 37, Numbers 10/11.

    DTIC Science & Technology

    1983-11-01

    percent decrease in the intensity of space-geodetic methods for monitoring solar radiation reachipg the earth’s local crustal deformations. surface, the...1983) - and solids. The average power available 35-nm range at the Comitato Nazionale and the predicted high efficiency of Energia Nucleare laboratory in...the David W. Taylor Naval gated for transmittance. These measure- Ship Research and Development Center, ments are important for solar energy Bethesda

  20. Preliminary study of lateral variation in crustal structure of Northeast China from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Chen, Youlin; Liu, Ruifeng; Huang, Zhibin; Sun, Li

    2011-02-01

    We conducted comprehensive receiver function analyses for a large amount of high-quality broadband teleseismic waveforms data recorded at 19 China National Digital Seismic Network (CNDSN) stations deployed in Northeast China. An advanced H- κ domain search method was adopted to accurately estimate the crustal thickness and ν P/ ν S ratio. The crust has an average thickness of about 34.4 km. The thinnest crust occurs in the central region of Northeast China, while the thickest crust is beneath the Yanshan belt. The ν P/ ν S ratio is relatively uniform with an average of about 1.733. The highest ν P/ ν S ratio is found beneath the Changbaishan, likely associated with its volcanic activities. We found significant lateral heterogeneity beneath three stations CN2, MDJ, and MIH located along the Suolon suture from the back-zimuthal dependence of Moho depth. The velocity modeling from receiver functions indicated complicated Earth structure beneath these stations with large crust-mantle transition zone, noticeable velocity jump in upper mantle, and low velocity zone in middle crust. Dipping velocity interface in the crust with strike approximately parallel to the Suolon suture and down-dip to the south or southeast might explain the observed lateral heterogeneity.

  1. Lunar highland rock types: Their implications for impact-induced fractionation

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    Lunar rocks may be classified into three major groups: (1) coarse-grained igneous rocks, (2) fine-grained igneous rocks, and (3) breccias. Group 1 is interpreted as primitive lunar crustal rocks that display various degrees of crushing and/or annealing. Group 2 is interpreted as volcanic rocks. Group 3 is interpreted as resulting from impacts on the lunar surface and is subdivided on the basis of matrix textures into fragmental breccias, crystalline breccias that have been annealed, and crystalline breccias with igneous matrices. A synthesis of the data concerning lunar highlands polymict breccias compels the prediction that the breccias should have homogeneous matrices from rock to rock within regions of the highlands of limited size where impact mixing has been efficient and extensive. But the returned breccias, even from one landing site, display a wide range in composition. This incompatibility between prediction and observation is a paradox that may be resolved by a process that acts after impact mixing to cause a differentiation of the breccia compositions. Partial melting of the local average crustal composition (as modeled by the average soil composition for each site) and separation of melt and residue in ejecta and/or fall-back blankets are compatible with the reviewed data and may resolve the paradox.

  2. Tectonics and crustal structure of the Saurashtra peninsula: based on Gravity and Magnetic data

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Singh, A.; Singh, U. K.

    2016-12-01

    The Saurashtra peninsula is located at the North Western margin of the Indian shield which occurs as a horst block between the rifts namely as Kachchh, Cambay and Narmada. It is important because of occurrence of moderate earthquake and presence of mesozoic sediments below the Deccan trap. The maps of bouguer gravity anomaly and the total intensity magnetic anomalies of Saurashtra have delineated six circular gravity highs of magnitudes 40-60 mGal and 800-1000 nT respectively. In order to understand the location, structure and depth of the source body, methods like continuous wavelet transform (CWT), Euler deconvolution and power spectrum analysis have been implemented in the potential field data. The CWT and Euler deconvolution give 16-18 km average depth of volcanic plug in Junagadh and Rajula region. From the power spectrum analysis, it is found that average Moho depth in the Saurashtra is about 36-38 km. Keeping the constraints obtained from geophysical studies like borehole, deep seismic survey, receiver function analysis and geological information, combined gravity and magnetic modeling have been performed. Detailed crustal structure of the Saurashtra region has been delineated along two profiles which pass from prominent geological features Junagadh and Rajula volcanic plugs respectively.

  3. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu

    2018-04-01

    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally <3.0 wt%) and compatible trace elements (e.g., Cr = 38-61 ppm). They yield high Sr/Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to -0.1 and 5.7‰-6.5‰, respectively, suggesting that they represent high-K calc-alkaline to shoshonitic adakitic magmas that were sourced from subduction-modified juvenile lower crust. Observations of the newly identified diorite porphyry and previously reported MME suggest that input of such dioritic magma into the upper crustal porphyry magma chamber would have contributed not only the necessary metals (e.g., Cu and Au), sulfur, but also H2O to the system, thus aiding in the generation of the giant Pulang porphyry Cu-Au deposit.

  4. Proterozoic crustal boundary in the southern part of the Illinois Basin

    USGS Publications Warehouse

    Heigold, P.C.; Kolata, Dennis R.

    1993-01-01

    Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity. ?? 1993.

  5. Compositional changes in the UCC through time revealed by tungsten isotopes

    NASA Astrophysics Data System (ADS)

    Mundl, A.; Walker, R. J.; Reimink, J. R.; Rudnick, R. L.; Gaschnig, R. M.

    2017-12-01

    During periods of glaciation, ice scrapes off large areas of Earth's surface. The resulting sediments, termed glacial diamictites, are typically little affected by chemical alteration during their accumulation and lithification. The fine-grained matrix of a diamictite can therefore provide important information about the average composition of a portion of the upper continental crust (UCC) preceding the time of its deposition. Major and trace element studies of diamictites have reported compositional changes in the UCC through Earth's history, documenting changes in its average lithology. Short-lived radiogenic isotope systems are useful tools to further study crustal evolution via diamictites, as small-scale 182W (182Hf → 182W, t½ = 8.9 Ma) and 142Nd (146Nd → 142Nd, t½= 103 Ma) anomalies may reflect mantle or crustal processes that occurred very early in Earth history. We have investigated 182W/184W ratios in thirteen glacial diamictite composites from four different continents. These rocks were deposited during the Archean (3.0 Ga), Proterozoic (2.4, 2.3, 2.2, 0.6 Ga) and Paleozoic (0.3 Ga) in South Africa, as well as during the Proterozoic (2.4, 0.7, 0.6 Ga) in North America, and the Paleozoic (0.3 Ga) in South America. Individual glacial diamictites sample multiple crustal sources, so the isotopic compositions of the diamictites are more representative of the UCC at the time of deposition, than the komatiites and early Archean supracrustal rocks, which have been the focus of most prior studies. Tungsten isotope compositions reveal well-resolved deficits in 182W/184W of as much as 14 ppm in three of the four Archean samples from South Africa. By contrast, there are no clearly resolved deficits in Paleoproterozoic diamictites from the same area, although results for multiple analyses of the same samples suggest that a small deficit of 6 ppm may be present. No anomalies are present in younger diamictites. The Archean diamictites provide additional evidence for considerable heterogeneity in 182W in Archean crustal rocks, consistent with prior studies of individual rock units. The lack of anomalies in younger diamictites suggests that the isotopically heterogeneous nature of 182W in the Archean crust had disappeared by the beginning of the Proterozoic, as with 142Nd. Reasons for the transition remain unclear.

  6. Post-Laramide Epiorogeny through Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.; Mahan, K. H.; Farmer, G.

    2011-12-01

    The most perplexing part of the Cordilleran orogen in the western U.S. has been the Cenozoic uplift of broad regions with insufficient crustal shortening to produce the change in elevation following retreat of the Western Interior Seaway. These regions (most notably the High Plains, Wyoming craton, and Colorado Plateau) generally also have heat flow values comparable to much of the tectonically inactive (and low) parts of the U.S. Explanations have included dynamic effects, erosion of mantle lithosphere, cryptic crustal thickening, and hydration of the mantle lithosphere. We suggest that an alternative worthy of investigation is the hypothesis that a garnet-rich lower crust throughout the region was hydrated, producing increased buoyancy capable of driving uplift. A profile from Canada to southernmost Wyoming contains coincident increases in lower crustal hydration, decreases in lower crustal wavespeed, and increases in elevation. Xenoliths from near the Canadian border in Montana are pristine and lack hydrous alteration. Similar xenoliths from the lower crust at the 50 Ma Homestead kimberlite in central Montana have been altered such that garnet+feldspar is partially replaced by a chlorite-calcite-albite assemblage that may have occurred under high-pressure conditions, reducing the rock density from 3.19 Mg/m3 to 3.05 Mg/m3. Farther south, lower crustal hornblende granulite xenoliths from Quaternary volcanic rocks in the Leucite Hills lack garnet and exhibit evidence for hydration reactions, some of which are late Archean. Along the same general trend, the DeepProbe seismic profile yielded a ~20 km thick lower crustal layer with wavespeeds decreasing from 7.7 km/s in Canada to ~7.2 km/s in central Wyoming to <7.0 km/s in southern Wyoming (Gorman et al., 2002). If this variation coincides with a 5-10% decrease in density of this layer, 1-2 km of topography should be produced, comparable to the ~1.5 km difference observed. Evidence for late-stage deep crustal hydration has also been described from xenoliths in the Four Corners region of the Colorado Plateau (Broadhurst, 1986; Selverstone et al., 1999). The presence of a partially hydrated high-wavespeed layer at the base of the crust could complicate attempts to define the Moho using receiver functions, a problem encountered in several areas in Wyoming and the Colorado Plateau.The timing of the observed lower crustal hydration is unknown, but if related to Cenozoic uplift this implies that fluids were added in Late Cretaceous to Early Tertiary, potentially via dehydration of shallowly subducting oceanic lithosphere. If correct, this idea requires some means of passing significant amounts of fluid to the lower crust through the lithospheric mantle.

  7. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    USGS Publications Warehouse

    Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.

    1985-01-01

    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea. ?? 1985.

  8. Crustal structure and tectonic history of the Kermadec arc inferred from MANGO seismic refraction profiles

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Kopp, H.; Sutherland, R.; Henrys, S.; Watts, A. B.; Timm, C.; Scherwath, M.; Grevemeyer, I.; de Ronde, C. E. J.

    2016-12-01

    We have analyzed three wide-angle seismic reflection and refraction profiles and applied spectral averaging techniques to regional grids of bathymetry and free-air gravity anomaly to place the first regional constraints on the crustal structure of the Kermadec arc. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure, across which, 1) the remnant Lau-Colville and active Kermadec arc ridges narrow by >50%; 2) the backarc and forearc deepen by 1 km, and 3) the active volcanic arc is deflected west into the deepest known backarc basin. We use residual bathymetric anomalies to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110±20 km) and strike ( 005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7-7.3 km s-1. Lower crustal velocities are similar to the northern Kermadec forearc, but there is no seismic or gravimetric evidence for an extinct arc ridge within the forearc. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. The northern Kermadec/Tonga arc preserves a substrate of the Eocene arc, the southern Kermadec forearc preserves Mesozoic forearc rocks accreted at the Gondwana margin, and the central Kermadec arc may have fomed in the Kupe Abyssal Plain. The oldest arc related rocks recovered north and south of the CKD are 52 Ma and 16.7 Ma respectively, and plate tectonic reconstruction suggest the Eocene arc was originally conjoined with the Three Kings Ridge. The separation of these ridges during the early Oligocene likely formed the CKD. In contrast to previous interpretations, we suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin, and along-strike variations in the duration of arc volcanism.

  9. A new model of lunar crust: asymmetry in crustal composition and evolution

    NASA Astrophysics Data System (ADS)

    Arai, Tomoko; Takeda, Hiroshi; Yamaguchi, Akira; Ohtake, Makiko

    2008-04-01

    Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive eNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust. Thus, the observed surface composition of the feldspathic highland terrane (FHT) represents the combined results of magma ocean crystallization, post-magma-ocean magmatism and resurfacing by basin formation. The Mg/(Mg+Fe) ratios, rock types, and mineral compositions of the FHT and the South Pole-Aitken basin Terrane (SPAT) obtained from the KAGUYA mission, coupled with further mineralogical and isotopic studies of lunar meteorites, will facilitate an assessment of the feasibility of the proposed crust model and improve understanding of lunar crustal genesis and evolution.

  10. Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area

    NASA Astrophysics Data System (ADS)

    Dipova, Nihat; Cangir, Bülent

    2017-09-01

    Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.

  11. Present-day heat flow model of Mars

    PubMed Central

    Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-01-01

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic. PMID:28367996

  12. Osmium isotope and highly siderophile element systematics of the lunar crust

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.

    2010-01-01

    Coupled 187Os/ 188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g - 1 Os, 1.5 ± 0.6 pg g - 1 Ir, 6.8 ± 2.7 pg g - 1 Ru, 16 ± 15 pg g - 1 Pt, 33 ± 30 pg g - 1 Pd and 0.29 ± 0.10 pg g - 1 Re (˜ 0.00002 × CI) and Re/Os ratios that were modestly elevated ( 187Re/ 188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (˜ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios ( D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.

  13. Osmium isotope and highly siderophile element systematics of the lunar crust

    USGS Publications Warehouse

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. ?? 2009 Elsevier B.V. All rights reserved.

  14. Amphibole Fractional Crystallization and Delamination in Arc Roots: Implications for the `Missing' Nb Reservoir in the Earth

    NASA Astrophysics Data System (ADS)

    Galster, F.; Chatterjee, R. N.; Stockli, D. F.

    2017-12-01

    Most geologic processes should not fractionate Nb from Ta but Earth's major silicate reservoirs have subchondritic Nb/Ta values. Nb/Ta of >10000 basalts and basaltic andesites from different tectonic settings (GEOROC) cluster around 16, indistinguishable from upper mantle values. In contrast, Nb/Ta in more evolved arc volcanics have progressively lower values, reaching continental crust estimates, and correlate negatively with SiO2 (see figure) and positively with TiO2 and MgO. This global trend suggests that differentiation processes in magmatic arcs could explain bulk crustal Nb/Ta estimates. Understanding processes that govern fractionation of Nb from Ta in arcs can provide key insights on continental crust formation and help identify Earth's `missing' Nb reservoir. Ti-rich phases (rutile, titanite and ilmenite) have DNb/DTa <1, and therefore, their fractionation from mafic to intermediate liquids cannot explain the observed trend. Instead, fractionation of biotite and amphibole could lower Nb/Ta values in the evolved liquid. Lack of correlation between Nb/Ta and K2O in global volcanic rocks implies that biotite plays a minor role in fractionating Nb from Ta during differentiation. Experimental petrology and evidence from exposed arc sections indicate that amphibole fractionation and delamination of island arc roots can explain the andesitic composition of bulk continental crust. Experimental studies have shown that amphibole Mg# correlate with DNb/DTa and amphibole could effectively fractionate Nb from Ta. Preliminary data from lower to middle crustal amphiboles from preserved arcs show sub- to super-chondritic Nb/Ta up to >60. This suggests that delamination of amphibole-rich cumulates can be a viable mechanism for the preferential removal of Nb from the continental crust. Future examination of Nb/Ta ratios in lower crustal amphiboles from various preserved arcs will provide improved constraints on the Nb-Ta paradox of the silicate Earth.

  15. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-10-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  16. Lead-isotopic evidence for distinct source of granite and for distinct basement in the northern Appalachians, Maine.

    USGS Publications Warehouse

    Ayuso, R.A.

    1986-01-01

    Lead-isotopic compositions of feldspars in high-level Devonian granitic plutons across the northern Appalachians were measured. The presence of three fundamentally different sources of granites was indicated by three distinct lead-isotope groups. Plutons in the coastal lithotectonic block are the most radiogenic (206Pb/204Pb) 18.25-19.25; 207Pb/204Pb 15.59-15.67; 208Pb/204Pb 38.00-38.60); plutons in northern Maine are the least radiogenic (206Pb/204Pb 18.00-18.50; 207Pb/204Pb 15.51-15.55; 208Pb/204Pb 37.80-38.38). Intermediate lead-isotope values characterize the plutons in central Maine. All plutons show relatively radiogenic lead values for their ages and suggest the imprint of continental crustal sources, particularly in the coastal block. These plutons were formed in different crustal fragments in a continental environment, that were juxtaposed after emplacement of the granites.-L.C.H.

  17. The Generation of Continents through Subduction Zone Processing of Large Igneous Provinces: A Case Study from the Central American Subduction Zone

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Rychert, C.

    2013-12-01

    Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.

  18. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  19. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

    USGS Publications Warehouse

    Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.

    2008-01-01

    We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.

  20. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  1. Generation and Reworking of Archaean and Hadean Crust

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C.; Kemp, T.; Storey, C.; Dhuime, B.

    2008-12-01

    Combined Hf and O isotopes in well-dated zircons are increasingly used to investigate the age of the crustal source rocks of detrital and inherited zircons. O isotopes are used to screen out samples that may have a sediment contribution in the parental magma, since sediments yield hybrid model ages that are difficult to interpret. Mafic and granitic rocks also have different Lu/Hf ratios, and so in principle the Hf isotope ratios of zircons can be used to investigate the broad composition of the average crust. The unradiogenic Hf isotope compositions of the Jack Hills zircons from Western Australia indicate the existence of enriched (crustal) reservoirs by at least 4.3 Ga (Y. Amelin et al., 1998, Nature v. 399, p. 252- 255; T. M. Harrison et al., 2005, Science, v. 310, p. 1947-1950). We report in situ Hf isotope analyses of the Jack Hills zircons in which the Pb isotope age information is measured concurrently with the Hf isotope data. The simple data arrays provide clear evidence for Earth differentiation at 4.5 Ga, with the production of both continental crust-like material and a mafic crustal reservoir with higher Lu/Hf. The continued resampling of this reservoir over at least 1.5 Ga argues for a substantial stabilised volume of mafic crust, and, in tandem with oxygen isotope data, the existence of Hadean continents. Zircons remain poor windows into the upper mantle. We therefore investigate Nd isotopes in well-dated titanites; they have closure temperatures for Pb in the range 600-750oC and they can retain cores with distinct age and REE chemistry to subsequent rim overgrowths. Nd isotopes offer a complementary approach to Hf in zircon that can be used to construct the both depleted mantle evolution and crustal growth curves.

  2. Geologic evolution of the Akna Montes-Atropos Tessera region, Venus

    NASA Astrophysics Data System (ADS)

    Marinangeli, Lucia; Gilmore, Martha S.

    2000-05-01

    The investigated area comprises an arcuate mountain belt, Akna Montes, in Western Ishtar Terra, associated with an outboard plateau, Atropos Tessera, to the west and a volcanic plateau, Lakshmi Planum, to the east. Eight geologic units have been recognized on the basis of their geomorphic and structural characteristics as they appear on Magellan radar images. Our stratigraphic analysis shows that the geological evolution of the study area can be explained by four main steps: (1) formation of the older substrata of Atropos Tessera and Lakshmi, (2) extensive plains emplacement, (3) an orogenic phase including the formation of Akna Montes, and (4) local emplacement of younger plains. The tectonic evolution shows a deformational sequence characterized by contraction, shear, and topographic relaxation. This sequence is interpreted to be a consequence of the variation of crustal stresses and crustal thickening during orogenic events as observed for terrestrial high plateaus associated with a mountain belt (i.e., Himalaya and Tibet, Andes and Altiplano). In order to estimate the amount of crustal shortening associated with the Akna Montes, we considered two end-members for structural style of the mountain belt: a symmetric fold model and fault-bend fold model. The models are theoretical because terrestrial orogenic belts are often formed by a combination of different compressional structures. However, symmetric and fault-bend faults represent the minimum and maximum crustal shortening, respectively, and thus they do place bounds on the amount of strain recorded by Akna Montes. The first model yields a shortening value less than 1%, whereas a range of 17-34% is derived for the second model. The large difference between these values underscores the importance of fold geometries for estimating strain and to place constraints on geodynamic models for mountain belt formation. On the basis of our study we think that a combination of mantle downwelling and horizontal convergence may provide a good explanation of the geology and tectonics we observed in the Akna Montes-Atropos Tessera region.

  3. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    USGS Publications Warehouse

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.

  4. Nitrogen Recycling in the Atmosphere - Crust - Mantle Systems: Evidence From Secular Variation of Crustal N Abundances and δ 15N Values, Archean to Present

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Kerrich, R.

    2001-12-01

    The origin and evolution of nitrogen in the Earth's major reservoirs of atmosphere, crust, and mantle is controversial. The initial mantle acquired a δ 15N of -m 25‰ corresponding to enstatite chondrite as found in rare diamonds, and the secondary atmosphere from late accretion of volatile-rich C1 carbonaceous chondrites was +30 to +43‰ . Most diamonds and mid-ocean ridge basalts (MORBs) are -m 5‰ , and the present atmosphere 0‰ , requiring shifts of +20‰ and -m 30 to -m 43‰ in these two reservoirs. The present mass of N in the mantle and atmosphere are estimated at 3.5 x 1019 kg and 3.8 x 1018 kg, respectively. Initial atmospheric δ 15N could have been shifted to lower values by degassing of 15N depleted N from the mantle. However, the mantle would remain more depleted than is observed. The crustal record shows that shifts of both atmosphere and mantle could have occurred by recycling. Sedimentary rocks, and crustal hydrothermal systems that proxy for bulk crust, both show systematic trends over 2.7 Ga from the Archean (δ 15N = 15.0 +/- 1.8‰ ; 16.5 +/- 3.3‰ ); through Paleoproterozoic (δ 15N = 9.7 +/- 1.0‰ ; 9.5 +/- 2.4‰ ); to the Phanerozoic (δ 15N = 3.5 +/- 1.0‰ ; 3.0 +/- 1.2‰ ). Crustal N content has increased in parallel from 84 +/- 67 ppm, through 266 +/- 195 ppm, to 1550 +/- 1135 ppm in the Phanerozoic. These trends are consistent with progressive sequestering of atmospheric N2 into sediments, recycling of 15N enriched continental crust into the mantle, and degassing of 15N depleted from the mantle N into the atmosphere.

  5. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition which is likely due to basaltic magma that underplated the lower crust. Our data combined with evidence of the regional geology enable us to conclude that the Gorny Altai and Altai-Mongolian terranes possibly have similar tectonic natures, but represent two separate accretionary systems before Devonian collision. The accretion and amalgamation processes resulted in the Paleozoic granitoid magmatism and caused the two terranes to merge as a composite tectonic domain at the Siberian continental margin.

  6. Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Bekker, A.; Zakharov, D. O.

    2016-03-01

    We present stable isotope and chemical data for 206 Precambrian bulk shale and tillite samples that were collected mostly from drillholes on all continents and span the age range from 0.5 to 3.5 Ga with a dense coverage for 2.5-2.2 Ga time interval when Earth experienced four Snowball Earth glaciations and the irreversible rise in atmospheric O2. We observe significant, downward shift of several ‰ and a smaller range of δ18 O values (7 to 9‰) in shales that are associated with the Paleoproterozoic and, potentially, Neoproterozoic glaciations. The Paleoproterozoic samples consist of more than 50% mica minerals and have equal or higher chemical index of alteration than overlying and underlying formations and thus underwent equal or greater degrees of chemical weathering. Their pervasively low δ18 O and δD (down to - 85 ‰) values provide strong evidence of alteration and diagenesis in contact with ultra-low δ18 O glacial meltwaters in lacustrine, deltaic or periglacial lake (sikussak-type) environments associated with the Paleoproterozoic glaciations. The δDsilicate values for the rest of Precambrian shales range from -75 to - 50 ‰ and are comparable to those for Phanerozoic and Archean shales. Likewise, these samples have similar ranges in δ13Corg values (-23 to - 33 ‰ PDB) and Corg content (0.0 to 10 wt%) to Phanerozoic shales. Precambrian shales have a large range of δ18 O values comparable to that of the Phanerozoic shales in each age group and formation, suggesting similar variability in the provenance and intensity of chemical weathering, except for the earliest 3.3-3.5 Ga Archean shales, which have consistently lower δ18 O values. Moreover, Paleoproterozoic shales that bracket in age the Great Oxidation Event (GOE) overlap in δ18 O values. Absence of a step-wise increase in δ18 O and δD values suggests that despite the first-order change in the composition of the atmosphere, weathering cycle was not dramatically affected by the GOE at ∼2.4-2.3 Ga. Shales do not show comparable δ18 O rise in the early Phanerozoic as is observed in the coeval δ18 O trends for cherts and carbonates. There is however a sharp increase in the average δ18 O value from the Early Archean to the Late Archean followed by a progressively decelerating increase into the Phanerozoic. This decelerating increase with time likely reflects declining contribution of mantle-extracted, normal-δ18 O crust and lends support to crustal maturation and increasing 18O sequestration into the crust and recycling of high-δ18 O (and 87Sr/86Sr) sedimentary rocks. This secular increase in the δ18 O composition of the continental crust could have also had a mild effect on seawater δ18 O composition.

  7. Moho geometry along a north-south passive seismic transect through Central Australia

    NASA Astrophysics Data System (ADS)

    Sippl, Christian

    2016-04-01

    Receiver functions from a temporary deployment of 25 broadband stations along a north-south transect through Central Australia are used to retrieve crustal and uppermost mantle structural constraints from a combination of different methods. Using H-K stacking as well as receiver function inversion, overall thick crust with significant thickness variation along the profile (40 to ≥ 55 km) is found. Bulk crustal vp/vs values are largely in the felsic to intermediate range, with the southernmost stations on the Gawler Craton exhibiting higher values in excess of 1.8. A common conversion point (CCP) stacking profile shows three major discontinuities of the crust-mantle boundary: (1) a two-sided Moho downwarp beneath the Musgrave Province, which has previously been associated with the Neoproterozoic to early Cambrian Petermann Orogeny, (2) a Moho offset along the Redbank Shear Zone further north attributed to the Middle to Late Paleozoic Alice Springs Orogeny, and (3) another Moho offset further north, located at the boundary between the Davenport and Warramunga Provinces, which has not been imaged before. In all cases, the difference in crustal thickness between the two sides of the offset is > 8-10 km. Unlike the two southern Moho offsets, the northernmost one does not coincide with a prominent gravity anomaly. Its location and the absence of known reactivation events in the region make it likely that it belongs to a Proterozoic suture zone that marks a previously unknown block boundary within the North Australian Craton.

  8. Basement structures over Rio Grande Rise from gravity inversion

    NASA Astrophysics Data System (ADS)

    Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa

    2017-04-01

    The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.

  9. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie

    2013-07-01

    Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.

  10. The mineralogical and chronological evidences of subducted continent material in deep mantle: diamond, zircon and rutile separated from the Horoman peridotite of Japan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, J.; Nida, K.; Yamamoto, S.; Lin, Y.; Li, Q.; Tian, M.; Kon, Y.; Komiya, T.; Maruyama, S.

    2017-12-01

    The Horoman peridotite complex is an Alpine-type orogenic lherzolite massif of upper-mantle in the Hidaka metamorphic belt, Hokkaido, Japan. The peridotite complex is composed of dunite, harzburgite, spinel lherzolite and plagioclase lherzolite, exhibits a conspicuous layered structure, which is a product of a Cretaceous to early Paleogene arc-trench system formed by westward subduction of an oceanic plate between the paleo-Eurasian and paleo-North American Plates. Various combinations of diamond, corundum, moissanite, zircon, monazite, rutile, and kyanite have been separated from spinel harzburgite (700 kg) and lherzolite (500 kg), respectively. The carbon isotopes analyses of diamond grains by Nano-SIMS yielded significant light carbon isotopes feature as δ13 CPDB values ranging from -29.2 ‰ to -17.2 ‰, with an average of -22.8±0.32 ‰. Zircon grains occur as sub-angular to round in morphological characteristics, similar to zircons of crustal sedimentary rocks. Many zircons contain small inclusions, comprise of quartz, apatite, rutile and muscovite. The U-Pb age of zircon grains analyzed using LA-ICP-MS and SIMS gave a wide age range, from the Jurassic to Archean (ca 159 - 3131 Ma). In the zircon age histogram, four age groups were identified; the age peaks are 2385 Ma, 1890 Ma, 1618 Ma and 1212 Ma, respectively. On the other hand, U-Pb ages of rutile grains analyzed using SIMS gave a peak of 370 Ma in age histogram. The mineralogical and chronological evidences of numerous crustal minerals in peridotite of Horoman suggest that the ancient continent material was subducted in deep mantle and recycled through the upper mantle by multicycle subduction processes.

  11. Optical properties of aerosols at Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.

    Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.

  12. Summary of the GK15 ground‐motion prediction equation for horizontal PGA and 5% damped PSA from shallow crustal continental earthquakes

    USGS Publications Warehouse

    Graizer, Vladimir;; Kalkan, Erol

    2016-01-01

    We present a revised ground‐motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration (PGA) and 5% damped pseudospectral acceleration (PSA) response ordinates of the horizontal component of randomly oriented ground motions to be used for seismic‐hazard analyses and engineering applications. This GMPE is derived from the expanded Next Generation Attenuation (NGA)‐West 1 database (see Data and Resources; Chiou et al., 2008). The revised model includes an anelastic attenuation term as a function of quality factor (Q0) to capture regional differences in far‐source (beyond 150 km) attenuation, and a new frequency‐dependent sedimentary‐basin scaling term as a function of depth to the 1.5  km/s shear‐wave velocity isosurface to improve ground‐motion predictions at sites located on deep sedimentary basins. The new Graizer–Kalkan 2015 (GK15) model, developed to be simple, is applicable for the western United States and other similar shallow crustal continental regions in active tectonic environments for earthquakes with moment magnitudes (M) 5.0–8.0, distances 0–250 km, average shear‐wave velocities in the upper 30 m (VS30) 200–1300  m/s, and spectral periods (T) 0.01–5 s. Our aleatory variability model captures interevent (between‐event) variability, which decreases with magnitude and increases with distance. The mixed‐effect residuals analysis reveals that the GK15 has no trend with respect to the independent predictor parameters. Compared to our 2007–2009 GMPE, the PGA values are very similar, whereas spectral ordinates predicted are larger at T<0.2  s and they are smaller at longer periods.

  13. The gravity field of the Red Sea and East Africa

    NASA Astrophysics Data System (ADS)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust terminates abruptly at about 20 km off the coastline, followed by an oceanic crust of early Miocene age that was produced in pull-apart basins. By contrast, the eastern side of the Red Sea trough offshore Saudi Arabia is floored by stretched continental crust that extends far into the sea. Seafloor spreading and the generation of oceanic crust in organized spreading centres are limited to the median troughs off Sudan and the northern part of Ethiopia and commenced approx. 5 m.y. BP. They are absent in the northern Red Sea, where crustal fracturing occurs only in pull-apart basins of Dead Sea-Aqaba orientation distributed in en-echelon pattern.

  14. Atmospherically transported elements and deposition in the Southeastern United States: Local or transoceanic?

    USGS Publications Warehouse

    Holmes, C.W.; Miller, R.

    2004-01-01

    Saharan dust is persistently transported and deposited in ecosystems of the western Atlantic Ocean. This dust is an aggregate of clay and quartz particles cemented with Fe oxides. Samples collected and analyzed from Mali (central Africa), the Azores, the Caribbean and the Eastern United States document the levels of minor and trace metals in the dust. Metal loadings, particularly the toxic elements - Hg and As, are significantly higher than average crustal rocks. Over the past decade, the focus has been to understand the cycling of Hg in south Florida, but As has received very little attention. Arsenic in the sediment deposited in the past decade in south Florida averages 14 mg/kg and appears to be correlated with Al, a proxy for dust. The largest available aerosol data set containing As is the IMPROVE (Interagency Monitoring of Protected Visual Environments) data set. The average concentrations in aerosols collected during this program range from 17 mg/kg in the Virgin Islands to 79 mg/kg at Chassahowitzka, Florida. At Chassahowitzka, most of the As appears to be associated with organic C. If it is assumed that the concentrations in Mali dust and in the aerosols in the Virgin Islands are indicative of soil dust, then the higher values at Chassahowitzka may be derived from local or regional sources. A simple calculation indicates that African dust supplies about 25% of the As deposited from aerosols in the southeastern United States. Comparison of the average yearly As concentrations measured in the Virgin Islands and Everglades shows a negative relationship with the North Atlantic Oscillation (NAO). This relationship demonstrates the influence of climate on the transport and deposition of aerosols to the southeastern United States.

  15. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.

    2016-10-01

    Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern extension zone of the Hart deposit, respectively. Critically, the extent of contamination, as revealed by multiple S and Fe isotope systematics, is greatest within the deposit and decreases away from it within the komatiite flow. This pattern points to a local source of crustal contamination for the mantle-derived komatiitic melt and a low degree of homogenization between the mineralization and the surrounding lava flow. Coupled S and Fe isotope patterns like those identified at the Hart deposit may provide a useful tool for assessing the potential of a komatiitic sequence to host Ni-Cu-(PGE).

  16. An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven

    1996-01-01

    Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature.

  17. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    USGS Publications Warehouse

    Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.

    2011-01-01

    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American Geophysical Union.

  18. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance

    NASA Technical Reports Server (NTRS)

    Taylor, Stuart Ross; Rudnick, Roberta L.; Mclennan, Scott M.; Eriksson, Kenneth A.

    1986-01-01

    REE data on metasedimentary rocks from two different types of high-grade Archean terrains are presented and analyzed. The value of REEs as indicators of crustal evolution is explained; the three geologic settings (in North America, Southern Africa, and Australia) from which the samples were obtained are described; and the data are presented in extensive tables and graphs and discussed in terms of metamorphic effects, the role of accessory phases, provenance, and tectonic implications (recycling, the previous extent of high-grade terrains, and a model of Archean crustal growth). The diversity of REE patterns in shallow-shelf metasediments is attributed to local provenance, while the Eu-depleted post-Archean patterns are associated with K-rich plutons from small, stable early Archean terrains.

  19. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    NASA Astrophysics Data System (ADS)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  20. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    NASA Technical Reports Server (NTRS)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    1988-01-01

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  1. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.

    1997-04-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.

  2. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.

  3. Crustal structure of central Syria: The intracontinental Palmyride mountain belt

    NASA Astrophysics Data System (ADS)

    Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.

    1992-07-01

    Along a 450-km transect across central Syria seismic reflection data, borehole information, potential field data and surface geologic mapping have been combined to examine the crustal structure of the northern Arabian platform beneath Syria. The transect is surrounded by the major plate boundaries of the Middle East, including the Dead Sea transform fault system along the Levantine margin to the west, the Bitlis suture and East Anatolian fault to the north, and the Zagros collisional belt to the northeast and east. Three main tectonic provinces of the northern Arabian platform in Syria are crossed by this transect from south to north: the Rutbah uplift, the Palmyra fold-thrust belt, and the Aleppo plateau. The Rutbah uplift in southern Syria is a broad, domal basement-cored structure with a thick Phanerozoic (mostly Paleozoic) cover of 6-7 km. Isopachs based on well and seismic reflection data indicate that this region was an early Paleozoic depocenter. The Palmyra fold-thrust belt, the northeastern arm of the Syrian Arc, is a northeast-southwest-trending intracontinental mountain belt that acts as a mobile tectonic zone between the relatively stable Rutbah uplift to the south and the less stable Aleppo plateau to the north. Short-wavelength en-echelon folds characterized by relatively steep, faulted southeast flanks dominate in the southwest, most strongly deformed segment of the belt, while a complex system of deeply rooted faults and broad folds characterize the northeastern region, described in this study. The Aleppo plateau lies immediately north of the Palmyride belt, with a combined Paleozoic and Mesozoic sedimentary section that averages 4-5 km in thickness. Although this region appears relatively undeformed on seismic reflection data when compared to Palmyride deformation, a system of near-vertical, probable strike-slip faults crosscut the region in a dominantly northeasterly direction. Gravity and magnetic modeling constrains the deep crustal structure along the transect. The crustal thickness is estimated to be approximately 38 km. Interpretation of the gravity data indicates two different crustal blocks beneath the Rutbah uplift and the Aleppo plateau, and the presence of a crustal-penetrating, high-density body beneath the northeast Palmyrides. The two distinct crustal blocks suggest that they were accreted possibly along a suture zone and/or a major strike-slip fault zone located approximately in the present-day position of the Palmyrides. The age of the accretion is estimated to be Proterozoic or Early Cambrian, based on the observation of a pervasive reflection (interpreted as the Middle Cambrian Burj limestone) in the Rutbah uplift and in the Aleppo plateau and by analogy with the well-mapped Proterozoic sutures of the Arabian shield to the south.

  4. Continental Evolution Involving Subduction Underplating and Synchronous Foreland Thrusting: Evidence from the Trans-Alaska Crustal Transect

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.

    2010-12-01

    We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle angle (a few degrees from 0 to 400 km from the trench), and this thickened package inhibits arc volcanism.

  5. Magnetic anomalies on Io and their relationship to the spatial distribution of volcanic centers

    NASA Astrophysics Data System (ADS)

    Knicely, J.; Everett, M. E.; Sparks, D. W.

    2014-12-01

    The analysis of terrestrial magnetic anomalies has long proved useful for constraining crustal structure and dynamics. Here, we study Jupiter's moon, Io, using magnetics. We conduct forward modeling to make predictions of the crustal magnetic anomaly distribution on Io. Io is the most volcanic body in the solar system due to tidal heating from its Laplace resonance with Europa and Ganymede, causing extensive sulfur and silicate volcanism. We assume the magnetic susceptibility, which controls the measured magnetic signal, is controlled by temperature. Continuous overturn of the crust controls the vertical temperature profile, and local volcanic centers give the lateral temperature structure. As non-magnetic sulfur volcanism occurs at cool temperatures beneath the Curie point, it should not greatly affect the planetary magnetism and consequently is ignored in this paper. We assume that the average crustal temperatures are determined by a model of continuous burial by newly erupted material (O'Reilly and Davies 1981, Geophysical Research Letters), which put the Curie isotherm at great depth. We use a cylindrically symmetric model of the thermal evolution of the crust around an isolated volcanic center to obtain the local deviations in the thickness of the magnetizable layer. The crustal rocks are presumed to be mafic or ultramafic in composition, based on their spectral signatures, the temperature of the silicate volcanic eruptions, and their rheology as inferred from flow structures. Analysis of the 1997 Pillan eruption suggests a composition similar to lunar mare basalt or komatiite. The magnetic and thermal properties of lunar mare basalt have been well studied since the Apollo missions. Unaltered terrestrial ultramafics have been studied sufficiently to constrain their properties. A common technique of discretizing the magnetized material into prisms and summing the magnetic field of each prism as per Blakely (1995) was used to obtain an estimate of the crustal magnetic anomalies of Io as they would be measured by a satellite. The mapping is displayed as zonal bands so that a Cartesian geometry may be used. Early results indicated an accuracy better than 2 nT is required to detect the magnetic anomalies generated by volcanic activity.

  6. Late Cretaceous - recent lithosphere scale evolution of Turkey: linking the crustal surface evolution to the structure of the mantle

    NASA Astrophysics Data System (ADS)

    Bartol, J.; Govers, R. M. A.; Wortel, M. J. R.

    2015-12-01

    Central Anatolia (Central Turkey) possesses all the characteristics of a plateau. It experienced a period of rapid and substantial uplift (late Miocene, ˜8 Ma) while significant crustal shortening did not occur. Similar to other plateaus, the presence of volcanic ash and tuff within the sediments suggest that uplift was preceded by widespread volcanism (˜14-9Ma). The lithospheric context of these events is, however, unknown. For the Eastern Anatolian plateau, similar events have been attributed to southward retread followed by slab break-off of the northern Neotethys slab. Recent tomographic results indicate that this northern Neotethys slab extended beneath both the Eastern and Central Anatolian plateau prior to late Miocene delamination and possibly even beneath western Anatolia prior to the Eocene (?). We propose a new lithospheric scenario for the regional evolution for the Aegean-Anatolia-Near East region that combines a recent compilation of surface geology data with the structure of the upper mantle imaged with tomography. In our new scenario for the evolution of the Aegean-Anatolia-Near East region, a single continuous subduction zone south of the Pontides (Izmir - Ankara - Erzincan crustal suture zone) accommodated the Africa - Eurasia convergence until the end of the late Cretaceous. In the Late Cretaceous - Eocene the northern Neotethys Ocean closed followed by Anatolide - Taurides (south) and Pontides (north) continental collision along the Izmir - Ankara - Erzincan crustal suture zone. While the trench jumped to the south of Anatolide - Taurides terrane, subduction continued beneath the Izmir-Ankara-Erzincan suture where the northern Neotethys slab continued to sink into the deeper mantle. In the early Miocene (˜20-15Ma), the northern Neotethys slab started to retreat southward towards the trench, resulting in delamination of the lithospheric mantle. The last part of (early Miocene - recent) our scenario is testable. We use a coupled thermal-flexural model of the lithosphere. Model results show that delamination can explain the average present-day long-wavelength topography of the Central Anatolian plateau. For the Eastern Anatolian plateau, delamination explains half the present-day elevation: the other half resulted from crustal thickening.

  7. Testing The Magmatic Underplating Hypothesis: An Example From The Uk and Ireland

    NASA Astrophysics Data System (ADS)

    Al-Kindi, S.; White, N.; Sinha, M.; England, R.

    Magmatic underplating associated with mantle plume activity is an important mech- anism for driving regional surface uplift and denudation of large portion of the continents. Here we present quantitative and predictive models linking the surface- measured uplift and denudation with deep crustal structure across the British Isles. The crustal model was derived from re-interpreting the 1982 wide-angle Caledonian Suture Seismic Project and it's Irish extension (CSSP&ICSSP) data sets. A joint CSSP/ICSSP velocity model was obtained for the first time by inverting for six main travel-time phases comprising more than 3000 picks having picking uncertainty ranges of 50-100 ms and average of 82 ms with best picks for first breaks at close offsets. Two indepen- dent tomographic codes namely RAYINVR (Zelt and Smith, 1992) and Jive3D (Ho- bro, 2000) were used to model the picked travel-times adopting 'interpreter-guided' and 'pure tomographic' approaches, respectively. The codes represent natural end- member approaches to travel-time tomography where the former seeks an irregular grid, minimum-parameter velocity model, whereas the later seeks minimum-structure velocity model. The final outcome of the two methods are remarkably similar which has greatly boosted confidence in the interpretation. Complementary resolution and uncertainty tests were preformed. The most striking feature of the outcome of the inversion processes is the emergence of a discrete high-velocity (7.0-7.5 km/s) intermediate layer above the Moho. The top interface of this layer is sampled by lower crustal reflections, whereas the layer velocity is sampled by refracted rays. The base of the layer is bounded by the Moho interface roughly at 33 km, constrained by upper mantle diving rays. Some Moho reflections were observed on some record sections, but the majority are believed to be masked by the early arriving, highly-reflective coda generated by resonance of seismic waves within the intermediate layer. The layer has maximum thickness of 8 + 1.6 km roughly half-way across the East Irish Sea and thins out towards the edges. The minimum width of this layer is well constrained by the strong lower crustal reflections to be approximately 550 km. The maximum width, could extend outside the ray coverage of this experiment with maximum layer thickness of 2 km at the edge of the model. This is roughly of the thickness of the smallest resolvable structure 1 at a depth of 30 km using a 5 Hz signal. Filtered gravity data was used to model a density model derived by converting the final preferred velocity model using an appropriate P-wave velocity-to-density conversion. The profile is characterised by a high positive gravity anomaly of about 30 mGal over the East Irish Sea. An excess of denser material in the lower crust (+0.20 Mgm-3) was essential to account for this gravity high, which is consistent with the wide-angle velocity model. Synthetic denudation values were calculated along the 2D crustal model assuming Airly isostasy for different elastic thickness, and were compared to real estimates pro- vided by Rowely, 1998. The two data sets show good correlation within the uncertain- ties of the estimates, which has encouraged futher analysis. An attempt at extending the two-dimensional results into the third dimension was carried out based on a sta- tistical correlation of 800 pairs of modelled underplating thickness values and 150 km high-pass gravity samples along the 2D line. The analysis has shown a high posi- tive correlation with R2=0.72 with a significant linear regression at the 95% confident level. This relationship was then computed to predict underplate thickness from the filtered gravity map and then compared with the available denudation maps. This anal- ysis has highlighted specific areas where underplating is postulated to derive surface uplift. 2

  8. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng

    2016-09-01

    This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an extensional environment. A comparison of early Paleozoic magmatic events and Hf isotopic model ages between the northern SZM and the JM indicates that these two massifs have similar histories of Mesoproterozoic and early Paleozoic crustal accretion and reworking, although the SZM contains much older crustal materials than the JM.

  9. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    NASA Astrophysics Data System (ADS)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  10. Building a risk-targeted regional seismic hazard model for South-East Asia

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Nyst, M.; Seyhan, E.

    2015-12-01

    The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.

  11. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  12. A Geochemical Comparison of the Northern Peninsular Ranges Batholith in Southern California and the Coastal Batholith in Southern Peru

    NASA Astrophysics Data System (ADS)

    Clausen, B. L.; Martínez Ardila, A. M.; Morton, D. M.

    2010-12-01

    An extensive geochemical data set from the northern Peninsular Ranges Batholith (PRB) in southern California is compared and contrasted with the Arequipa segment of the Peruvian Coastal Batholith, including new granitoid samples recently collected near Ica (14°S, 76°W). The data include major and trace elements and Sr isotope ratios. This is part of an on-going study of subduction-related magmatism to refine a petrogenetic model of crust formation at plate boundaries, with a particular interest in the role of magma mixing. Research in the northern PRB suggests that continental crust is formed in several cycles: (1) mantle melting to give mafic volcanics and gabbroic intrusives, (2) basalt/gabbro melting to give felsic granitoids uncontaminated by continental crust and having low initial 87Sr/86Sr (Sri) values less than 0.704, and (3) crustal melting to give high Sri values greater than 0.704. Geochemical evidence was used to determine the extent of mixing between mafic and felsic magma that produced rocks of intermediate SiO2 composition. These differentiation cycles formed a west to east chronologic sequence and yielded granitoids of gabbro, tonalite, and granodiorite composition. Using principal component analysis on the northern PRB granitoids, the four factors affecting geochemical composition were categorized as differentiation, crustal contamination, depth of magma source, and conditions that yield a range from calcic to more alkaline granitoids. A similar major and trace element analysis is being done for a classic result of subduction in the Peruvian Coastal Batholith. The Peruvian samples recently collected include granitoids of the upper Cretaceous Coastal Batholith, as well as the associated volcanics of Cretaceous and Jurassic age. The Coastal Batholith samples include a range of granitoids from the early gabbros and from the four batholithic super-units (from west to east: Linga, Pampahuasi, Tiabaya, and Incahuasi) containing a combination of diorite, tonalite, monzonite, and granodiorite. In addition, samples were taken from the adjacent Precambrian basement and Paleozoic San Nicolas batholith in order to estimate the local geochemistry for continental crust contamination and to compare with published crustal averages. For this part of the Coastal Batholith, gabbroic plutons that formed during extension have little contamination from continental crust; the time-separated super-units form distinct assemblages; some of the super-units went through several differentiation cycles; parts of the Linga super-unit have low Sri ratios below 0.704; and magma mixing played an important role. The Coastal Batholith of western Peru (similar to the eastern PRB) has an intermediate calc-alkaline composition, in comparison to batholiths in Chile (similar to the western PRB) that are more calcic and those in eastern Peru (similar to the Sierra Nevadas) that are more alkaline.

  13. New constraints on the crustal structure beneath northern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Park, J. J.

    2009-12-01

    We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern Apennines, and that a delamination or vertical "drip" of detached lithosphere would fit the observations well.

  14. Ca Isotopes Fingerprinting the Earliest Crustal Evolution

    NASA Astrophysics Data System (ADS)

    Kreissig, K.; Elliott, T. R.

    2001-12-01

    The mechanisms of continent formation remain unclear and can be explained in two contrasting ways, using either a steady state crustal growth model involving massive crustal recycling or continuous crustal growth models. Recent developments in mass spectrometry manifest in the new Finnigan-Triton allow Ca isotopic measurements precise enough to use the K-Ca isotope system to address the problem of early Archaean crustal evolution. Due to a strong fractionation of 40K and 40Ca during continent formation and a non-linear growth of 40Ca, Archaean continental crust should show radiogenic initial Ca isotopic composition if large volumes of it have already been existed 3.6 Ga ago. Simple 15-step calculations predict a difference in 40Ca /44Ca of 9 epsilon units at 3.6 Ga between the two crustal growth models. To test this, as well as to study the earliest crust formation processes, plagioclase separates from Archaean provinces reflecting the initial Ca isotopic composition and a range of different whole rock samples have been analysed. Preliminary data for ~ 3.6 Ga old TTGs from Zimbabwe show 40Ca /44Ca indistinguishable from the mantle. This is in agreement with rather chondritic initial Sr and Nd data and might reflect a short residence time of the juvenile mafic oceanic crust before partial melting forming the first continental crust. In contrast, the first results for 3.65 Ga old samples from the Itsaq Gneiss Complex of southern West Greenland yield a more evolved radiogenic Ca signature. This can be interpreted in two different ways. Either as partial melting of juvenile mafic crust shortly after its formation but incorporating already existing crust as also suggested by the existence of older inherited zircons in these rocks and negative ɛ Hf values. Partial melting of mafic oceanic crust long after its formation so that 40K and 40Ca had time to evolve would be an alternative explanation. Importantly, there is no evidence so far for high growth and recycling rates prior to 3.6 Ga as required by the most extreme 'big bang' model.

  15. A Pair of Puzzles in EarthScope TA-Derived Crustal Structure

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.

    2009-12-01

    I present a Bayesian inversion for crustal thickness (H) and bulk crustal Vp/Vs velocity ratio (K) using EARS (Crotwell and Owens, 2005) H-K stacks of receiver function amplitudes in the region covered to-date by EarthScope’s Transportable Array (TA). Confidence intervals from optimal interpolation (OI) of site estimates and χ2 statistics of gravity model fits are used to calculate likelihood ratios in H-K parameter space; these in turn are used to re-weight the H-K amplitude stacks. Importantly, this approach does not “force” parameter estimates to match an a priori expectation but rather discriminates between more- and less-likely stack amplitude maxima. Estimates depend on (possibly erroneous) values at nearby sites, so the approach is applied iteratively over all sites in the region of interest. Regressed gravity modeling parameters and semivariograms used for OI evolve with the estimates. For example, Moho density contrast Δρmoho changes from 90 to 235+ kg m-3 after ˜fifteen iterations, while the TA-scale RMS residual of the gravity model (combining the Moho and bulk-K crustal contributions with a thermal model derived from surface heat flow data) drops from 56 to <24 mGal. The estimates of crustal thickness variations are geodynamically intriguing, providing new evidence for dynamical effects of Sierra Nevada cumulate delamination in California and crustal magmatic addition in the continental interior. Two results are (arguably) somewhat surprising. First, the gravity residual (after subtracting the gravity model described above) is dominated by a buoyancy anomaly in the sublithospheric mantle beneath Nevada and southeast California, correlative with the elevation anomaly previously identified by Lowry et al (2000) and interpreted as asymmetric expression of a Yellowstone plume swell. The asymmetry is so pronounced however that it would require virtually all swell buoyancy NW of the hotspot track has been either shifted SE of the track by rapid asthenospheric flow or entrained into Cascadia subduction and removed. Alternatively, the anomaly may reflect some other process (e.g., if surface gravity and elevation over mantle drips postulated beneath the southern Sierra Nevada range and central Nevada are dominated by hot upwelling return flow). Second, bulk crustal Vp/Vs ratio K is remarkably correlated with lithospheric thermal variations (enough so that estimates of crustal coefficient of thermal expansion α, relating the heat-flow derived geotherm model to gravity, drop from 2.6×10-5 to 1.1×10-5 from the first to 15th iterations). Laboratory measurements of crustal rocks suggest ∂ρ/∂K has a temperature dependence, but the sign is opposite that implied by this analysis (e.g., -8×104 for measurements on plagioclase versus +23×104 from the gravity regression). If reasons for correlation of K and geothermal temperature can be understood, it may help to improve thermal modeling. I will examine several possible explanations.

  16. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.

    2013-07-01

    Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere-asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N-S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ˜190 km along the Himalayan front that reduces to ˜155 km under the southern part of the Ganga and the Vindhyan basins increasing to ˜175 km south of the Satpura Mobile belt, reducing to ˜155-140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ˜120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT). The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ˜37-38 km under the EDC, increasing to ˜40-45 km under the SGT and ˜40-42 km under the northern part of the Ganga basin with a bulge up to ˜36 km under its southern part. Reduced lithospheric and crustal thicknesses under the Vindhyan and the Ganga basins are attributed to the lithospheric flexure of the Indian plate due to Himalaya. Crustal bulge due to lithospheric flexure is well reflected in isostatic Moho based on flexural model of average effective elastic thickness of ˜40 km. Lithospheric flexure causes high heat flow that is aided by large crustal scale fault system of mobile belts and their extensions northwards in this section, which may be responsible for lower crustal bulk density in the northern part. A low density and high thermal regime in north India north of the SMB compared to south India, however does not conform to the high S-wave velocity in the northern part and thus it is attributed to changes in composition between the northern and the southern parts indicating a reworked lithosphere. Some of the long wavelength gravity anomalies along the east and the west coasts of India are attributed to the intrusives that caused the breakup of India from Antarctica, and Africa, Madagascar and Seychelles along the east and the west coasts of India, respectively.

  17. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France)

    NASA Astrophysics Data System (ADS)

    Angrand, P.; Ford, M.; Watts, A. B.

    2017-12-01

    We study the effects of the inherited Aptian to Cenomanian rift on crustal rheology and evolution of the Late Cretaceous to Neogene flexural Aquitaine foreland basin, northern Pyrenees. We use surface and subsurface geological data to define the crustal geometry and the post-rift thermal subsidence, and Bouguer gravity anomalies and flexural modeling to study the lateral variation of the elastic thickness, flexure of the European plate and controlling loads. The Aquitaine foreland can be divided along-strike into three sectors. The eastern foreland is un-rifted and is associated with a simple flexural subsidence. The central sector is affected by crustal stretching and the observed foreland base is modeled by combining topographic and buried loads, with post-rift thermal subsidence. In the western sector the foreland basin geometry is mainly controlled by post-rift thermal subsidence. These three sectors are separated by major lineaments, which affect both crustal and foreland geometry. These lineaments seem to be part of a larger structural pattern that includes the Toulouse and Pamplona Faults. The European foreland shows lateral variations in flexural behavior: the relative role of surface and sub-surface (i.e., buried) loading varies along-strike and the elastic thickness values decrease from the north-east to the south-west where the plate is the most stretched. We suggest that foreland basins are influenced by the thermal state of the underlying lithosphere if it was initiated soon after rifting and that thermal cooling can contribute significantly to subsidence.

  18. Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer

    USGS Publications Warehouse

    Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.

    1988-01-01

    At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.

  19. Isotopic constraints on the formation of carbonates during low-temperature hydrothermal oceanic crust alteration

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Antonelli, M. A.; Ramos, D. S.; Bender, M. L.; Schrag, D. P.; DePaolo, D. J.; Higgins, J. A.

    2016-12-01

    Low temperature (<100°C) water-rock reactions in oceanic crust have a potentially large influence on seawater chemical compositions and atmospheric pCO2. Quantification of the conditions (e.g., temperature) of oceanic crust alteration is needed to evaluate its importance for global silicate weathering fluxes. The isotopic and chemical compositions of secondary carbonates in oceanic crust reflect the temperature and chemistry of the circulating fluid and thus are used to reconstruct past conditions of crustal alteration. For example, temperatures are calculated via carbonate δ18O thermometry using measured δ18Ocarb vs. assumed δ18Ofluid. δ18Ofluid is usually assumed to be the seawater value at the time of carbonate formation. We present measured clumped-isotope temperatures (Tclump) and δ18O, δ13C, δ44Ca, and 87Sr/86Sr values of Jurassic carbonates from altered oceanic crust (ODP Site 801). Tclump measured at Caltech ranges from 24-51°C. Calculated δ18Ofluid (based on Tclump and δ18Ocarb) ranges from -0.4‰ (±0.4, 1σ) to -3.5‰ (±0.6). Higher temperatures correlate with lower δ18Ofluid (R2 = 0.75). This suggests that at elevated temperatures, δ18Ofluid was modified away from seawater values, likely via the preferential incorporation of 18O vs. 16O into secondary minerals relative to water. This indicates that δ18Ofluid values of circulating fluids are not necessarily identical to seawater δ18O. Tclump measurements are being replicated at Harvard for further verification. Carbonates with δ13C indicating a seawater C source (δ13C > 0‰) have average δ44Ca (relative to modern seawater) of -0.84‰ (±0.08). This is indistinguishable from igneous rock δ44Ca and suggests that carbonate Ca is derived from igneous Ca released during crustal alteration. Carbonates with δ13C indicating an organic C source (δ13C < -2.5‰) have lower δ44Cacarb (< -1‰). Carbonate 87Sr/86Sr ranges from 0.70742 to 0.70656. Based on the seawater 87Sr/86Sr curve, this range requires the release of low 87Sr/86Sr strontium from igneous rocks (87Sr/86Sr ≈ 0.7025) during alteration. Together these results support the presence of substantial water-rock interactions and fluid modification during alteration and carbonate precipitation. They will be discussed in the context of models of fluid flow coupled to alteration reaction kinetics.

  20. Simultaneous Determination of Average Thickness and P-wave Speed of the Crust by Virtual Deep Seismic Sounding (VDSS)

    NASA Astrophysics Data System (ADS)

    Kang, D.; Yu, C.; Ning, J.; TAO, K.; Chen, W. P.

    2014-12-01

    Using teleseismic S-waves, VDSS treats the SV-to-P conversion under the free surface (on the station-side) as a virtual source to generate strong, post-critical reflection off the Moho (SsPmp phase). With just a single, good-quality earthquake, arrival-time difference between SsPmp and the direct S-phase (TSsPmp-Ss) can effectively determine the crustal thickness (H) near the receiver. However, there is a strong trade-off between H and P-wave speed (Vp) in the crust. Here we extend VDSS to constrain both H and Vp by taking advantage of the variation in ray-parameters, or incident angles, as a function of epicentral distance. Note that in conventional receiver functions, information contained in data of different ray-parameters is usually lost, because stacking over move-out corrected data is required to get a clear signal. At a given station, we collect data from many events, each with a different ray-parameter of the direct S-phase (ps­). For each event, we 1) estimate the source wavelet of the direct S-wave through particle motion analysis; 2) deconvolve this wavelet from the vertical- and radial-component seismograms (Yu et al., GJI, 2013); and then 3) determine TSsPmp-Ss through waveform modeling. Finally, we analyze data pairs (ps2, T2SsPmp-Ss) to find the best-fitting values of H and Vp. Synthetic tests verify the robustness of the method even with 15% of white noise. Moreover, we applied the method to public domain data from Forrest (FORT), located in the Eucla basin of western Australia. Based on 30 earthquakes from a narrow back-azimuth range (105±15°) but with ps changing from 0.1221 to 0.1349 s/km, we estimate that near FORT, H and Vp are about 44±2 km and 6.67±0.35 km/s, respectively. This crustal thickness is consistent with previous reports - a surprisingly high value for a region where the elevation is less than 200 m. Together with the high Vp, our results imply that the crust has a dense, mafic component.

  1. The granite problem as exposed in the southern Snake Range, Nevada

    USGS Publications Warehouse

    Lee, D.E.; Christiansen, E.H.

    1983-01-01

    A geochemically and mineralogically diverse group of granitoids is present within an area of 900 km2 in the southern Snake Range of eastern Nevada. The granitoids exposed range in age from Jurassic through Cretaceous to Oligocene and include two calcic intrusions, two different types of two-mica granites, and aplites. The younger intrusions appear to have been emplaced at progressively more shallow depths. All of these granitoid types are represented elsewhere in the eastern Great Basin, but the southern Snake Range is distinguished by the grouping of all these types within a relatively small area. The Jurassic calcic pluton of the Snake Creek-Williams Canyon area displays large and systematic chemical and mineralogical zonation over a horizontal distance of five km. Although major element variations in the pluton compare closely with Daly's average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent, trace element (Rb, Sr, Ba) variations show that the zonation is the result of in situ fractional crystallization, with the formation of relatively mafic cumulates on at least one wall of the magma chamber. Models of trace element and isotopic data indicate that relatively little assimilation took place at the level of crystallization. Nonetheless, an initial 87Sr/86Sr value of 0.7071 and ??18O values of 10.2 to 12.2 permil suggest a lower crustal magma that was contaminated by upper crustal clastic sedimentary rocks before crystallization. The involvement of mantle-derived magmas in its genesis is difficult to rule out. Two other Jurassic plutons show isotopic and chemical similarities to the Snake Creek-Williams Canyon pluton. Cretaceous granites from eastern Nevada that contain phenocrystic muscovite are strongly peraluminous, and have high initial Sr-isotope ratios and other features characteristic of S-type granitoids. They were probably derived from Proterozoic metasediments and granite gneisses that comprise the middle crust of this region. Another group of granitoids (including the Tertiary aplites) show chemical, mineralogic, and isotopic characteristics intermediate between the first two groups and may have been derived by contamination of magmas from the lower crust by the midcrustal metasediments. ?? 1983 Springer-Verlag.

  2. LITHO1.0: An Updated Crust and Lithosphere Model of the Earth

    DTIC Science & Technology

    2010-09-01

    wc arc uncertain what causes the remainder of the discrepancy. The measurement discrepancies are much smaller than the signal in the data, and the...short-period group velocity data measured with a new technique which are sensitive to lid properties as well as crustal thickness and average...most progress was made on surface-wave measurements . We use a cluster analysis technique to measure surface-wave group velocity from lOmHz to 40mHz

  3. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  4. Crustal shear-wave splitting from local earthquakes in the Hengill triple junction, southwest Iceland

    USGS Publications Warehouse

    Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.

    1996-01-01

    The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.

  5. NGA-West 2 Equations for predicting PGA, PGV, and 5%-Damped PSA for shallow crustal earthquakes

    USGS Publications Warehouse

    Boore, David M.; Stewart, Jon P.; Seyhan, Emel; Atkinson, Gail M.

    2013-01-01

    We provide ground-motion prediction equations for computing medians and standard deviations of average horizontal component intensity measures (IMs) for shallow crustal earthquakes in active tectonic regions. The equations were derived from a global database with M 3.0–7.9 events. We derived equations for the primary M- and distance-dependence of the IMs after fixing the VS30-based nonlinear site term from a parallel NGA-West 2 study. We then evaluated additional effects using mixed effects residuals analysis, which revealed no trends with source depth over the M range of interest, indistinct Class 1 and 2 event IMs, and basin depth effects that increase and decrease long-period IMs for depths larger and smaller, respectively, than means from regional VS30-depth relations. Our aleatory variability model captures decreasing between-event variability with M, as well as within-event variability that increases or decreases with M depending on period, increases with distance, and decreases for soft sites.

  6. The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates

    NASA Astrophysics Data System (ADS)

    Gleeson, S. A.; Smith, M. P.

    2009-10-01

    We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide-apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10 -3 and δ 37Cl values from -3.1‰ to -1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu-Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10 -3 and δ 37Cl values from -5.6‰ to -1.3‰. Finally, the Cu-Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10 -3 and δ 37Cl values that range from -2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰. The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide-apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ 37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ 37Cl values would be significantly larger. The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.

  7. Rayleigh-wave tomography of the Ontong-Java Plateau

    NASA Astrophysics Data System (ADS)

    Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan

    2000-02-01

    The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.

  8. Thermal/optical methods for elemental carbon quantification in soils and urban dusts: equivalence of different analysis protocols.

    PubMed

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.

  9. Elemental Analysis and Radionuclides Monitoring of Beach Black Sand at North of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Abdallah; Fayez-Hassan, M.; Mansour, N. A.; Mubarak, Fawzia; Ahmed, Talaat Salah; Hassanin, W. F.

    2017-12-01

    A study was carried out on the concentrations of elements presented in beach black sand samples collected from North of Nile Delta along Mediterranean Coast using instrumental neutron activation analysis (INAA) as an effective analysis technique, especially for monitoring elements. The Egyptian Research Reactor-2 (ETRR-2) as a facility was used for the samples irradiation in the thermal mode of a neutron flux 3 × 1011 n/cm2 s. Natural radioactive elements, rare element and heavy elements as U, Th, La, Lu, Sm, Ce, Nd, Eu, Gd, Sc, Tb, Yb, As, Br, Na, Sb, Ba, Co, Cr, Fe, Hg, Hf, Sr, Ta, Zn and Zr were determined with concentrations average values 16.3, 78.8, 195.4, 3.3, 31.3, 445.1, 223, 7.2, 8.5, 97.1, 3.6, 31.1, 6.1, 24.5, 27,236.8, 1.42, 1327.7, 81.1, 1814.3, 263,735, 0.1, 237.3, 878.7, 20.8, 671.1 and 6225.9 (mg/kg), respectively. The experimental data results were analyzed to evidence any correlations of these elements as well as to know the geological formation in the study area. The elements concentrations in the black sand samples were found higher than the world average crustal soil values except for As and Sb. Results were compared with similar beach black sand in previous studies. The enrichment factor (EF) and geoaccumulation index (I geo) for heavy elements were presented to evaluate the contamination rate. We can summarize that exposure for natural radionuclides (U and Th) in this area were still within the acceptable limits due to little time of exposure. Therefore, the black sands from North of Nile Delta are not recommended for use in building constructions due to high radioactive doses.

  10. Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.

  11. Seismic velocities - density relationship for the Earth's crust: effects of chemical compositions, amount of water, and implications on gravity and topography

    NASA Astrophysics Data System (ADS)

    Guerri, Mattia; Cammarano, Fabio

    2014-05-01

    Seismic velocities - density relationship for the Earth's crust: effects of chemical compositions, amount of water, and implications on gravity and topography Mattia Guerri and Fabio Cammarano Department of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, Denmark. A good knowledge of the Earth's crust is not only important to understand its formation and dynamics, but also essential to infer mantle seismic structure, dynamic topography and location of seismic events. Global and local crustal models available (Bassin et al., 2000; Nataf & Ricard, 1996; Molinari & Morelli, 2011) are based on VP-density empirical relationships that do not fully exploit our knowledge on mineral phases forming crustal rocks and their compositions. We assess the effects of various average crustal chemical compositions on the conversion from seismic velocities to density, also testing the influence of water. We consider mineralogies at thermodynamic equilibrium and reference mineral assemblages at given P-T conditions to account for metastability. Stable mineral phases at equilibrium have been computed with the revised Holland and Powell (2002) EOS and thermodynamic database implemented in PerpleX (Connolly 2005). We have computed models of physical properties for the crust following two approaches, i) calculation of seismic velocities and density by assuming the same layers structure of the model CRUST 2.0 (Bassin et al., 2000) and a 3-D thermal structure based on heat-flow measurements; ii) interpretation of the Vp model reported in CRUST 2.0 to obtain density and shear wave velocity for the crustal layers, using the Vp-density relations obtained with the thermodynamic modeling. The obtained density models and CRUST 2.0 one have been used to calculate isostatic topography and gravity field. Our main results consist in, i) phase transitions have a strong effect on the physical properties of crustal rocks, in particular on seismic velocities; ii) models based on different crustal chemical compositions show strong variations on both seismic properties and density; iii) the amount of water is a main factor in determining the physical properties of crustal rocks, drastically changing the phase stability in the mineralogical assemblages; iii) the differences between the various density models that we obtained, and the variations between them and CRUST2.0, translate into strong effects for the calculated isostatic topography and gravity field. Our approach, dealing directly with chemical compositions, is suitable to quantitatively investigate compositional heterogeneity in the Earth's crust. References - Bassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. Geophys. Un., 81, F897. - Nataf, H. & Ricard, Y., 1996. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth planet. Inter., 95(1-2), 101-122. - Molinari, I. & Morelli, A., 2011. Epcrust: a reference crustal model for the European Plate, Gepohys. J. Int., 185, 352-364. - Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236:524-541.

  12. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas generated by the superposition of high hotspot-derived thermal fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby increasing meteoric water transport to depth and generating conditions for regional scale hydrothermal alteration of the crust. The intricacies of deformation rate and style, and the resulting crustal permeability-depth relations along the hotspot track, offer a qualitative explanation for low-δ18O magmas being pervasive in the CSRP, but restricted to post-caldera and late stage ignimbrites in the eastern SRP centers. This model has significant implications for the evolution of SRP-Y systems, as the thermal inputs required to drive both hydrothermal alteration and crustal melting complicate production of long-lived shallow crustal magma chambers. In addition, this model adds to a growing data set (e.g. Tangbai-Dabie-Sulu province, British Tertiary Igneous Province, etc.) demonstrating low-δ18O magmas can be generated in conjunction with regional scale hydrothermal alteration of the crust, and that this process has occurred throughout the geologic past where extensional tectonics and high thermal fluxes are superimposed.

  13. Modelling of terrain-induced advective flow in Tibet: Implications for assessment of crustal heat flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochstein, M.P.; Yang Zhongke

    1992-01-01

    In steep terrain the effect of advective flow can be significant, as it can distort the temperature field in the upper brittle crust. The effect was studied by modeling advective flow across a large valley system in Tibet which is associated with several geothermal hot spring systems, the Yanbajing Valley. It was found that, in this setting, all near-surface temperature gradients are significantly disturbed, attaining values differing by up to half an order of magnitude from those resulting from conductive heat transfer. Allowing for advective effects, it was found that the crustal heat flux within the Himalayan Geothermal Belt liesmore » within the range of 60 to 90 mW/m{sup 2} in the Lhasa-Yanbajing area.« less

  14. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high compared to N-MORB mantle source estimates (72-134 ppm) based upon CO2/Nb ratios [2, 3]; however, they are in good agreement with those from submarine glasses on adjacent segments from the Reykjanes and Kolbeinsey ridges [4,5]. Significantly, the model-derived δ13C estimate is close to the mean Icelandic geothermal value, implying that fluids closely resemble source values, i.e. they likely represent the exsolved component. Integrating the estimated source CO2 content with magma production values of 0.079 km3/yr [6] yields a CO2 flux of ~1.2 x 1011 mol CO2 yr-1for Iceland, representing ~ 5.4 % of the total carbon ridge flux of 2.2 x 1012 mol CO2 yr-1 [7]. Thus, the average CO2 flux estimate for Iceland is ~2.2 x 108 mol CO2 yr-1km-1 strike of ridge axis, which compares to an overall ridge flux (including Iceland) of ~2.9 x 107 mol CO2 yr-1km-1. This difference highlights both heterogeneity in source volatile contents and magma production rates as important controls for determining mantle CO2 fluxes. [1] Poreda et al., 1992 [2] Saal et al., 2002. [3] Shaw et al., 2010. [4] de Leeuw, 2007 [5] Macpherson et al., 2005. [6] Thordarson et al., 2007 [7] Marty et al., 1998.

  15. Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data

    NASA Astrophysics Data System (ADS)

    Pamukçu, Oya Ankaya; Akçığ, Zafer; Demirbaş, Şevket; Zor, Ekrem

    2007-12-01

    The tectonic regime of Eastern Anatolia is determined by the Arabia-Eurasia continent-continent collision. Several dynamic models have been proposed to characterize the collision zone and its geodynamic structure. In this study, change in crustal thickness has been investigated using gravity, magnetic and topographic data of the region. In the first stage, two-dimensional low-pass filter and upward analytical continuation techniques were applied to the Bouguer gravity data of the region to investigate the behavior of the regional gravity anomalies. Next the moving window power spectrum method was used, and changes in the probable structural depths from 38 to 52 km were determined. The changes in crustal thickness where free air gravity and magnetic data have inversely correlated and the type of the anomaly resources were investigated applying the Euler deconvolution method to Bouguer gravity data. The obtained depth values are consistent with the results obtained using the power spectrum method. It was determined that the types of anomaly resources are different in the west and east of the 40° E longitude. Finally, using the obtained findings from this study and seismic velocity models proposed for this region by previous studies, a probable two-dimensional crust model was constituted.

  16. The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles.

    PubMed

    Gardiner, Nicholas J; Kirkland, Christopher L; Van Kranendonk, Martin J

    2016-12-07

    Hf isotope ratios measured in igneous zircon are controlled by magmatic source, which may be linked to tectonic setting. Over the 200-500 Myr periodicity of the supercontinent cycle - the principal geological phenomenon controlling prevailing global tectonic style - juvenile Hf signals, i.e. most radiogenic, are typically measured in zircon from granites formed in arc settings (crustal growth), and evolved zircon Hf signals in granites formed in continent-collision settings (crustal reworking). Interrogations of Hf datasets for excursions related to Earth events commonly use the median value, however this may be equivocal due to magma mixing. The most juvenile part of the Hf signal is less influenced by crustal in-mixing, and arguably a more sensitive archive of Earth's geodynamic state. We analyze the global Hf dataset for this juvenile signal, statistically correlating supercontinent amalgamation intervals with evolved Hf episodes, and breakup leading to re-assembly with juvenile Hf episodes. The juvenile Hf signal is more sensitive to Pangaea and Rodinia assembly, its amplitude increasing with successive cycles to a maximum with Gondwana assembly which may reflect enhanced subduction-erosion. We demonstrate that the juvenile Hf signal carries important information on prevailing global magmatic style, and thus tectonic processes.

  17. The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas J.; Kirkland, Christopher L.; van Kranendonk, Martin J.

    2016-12-01

    Hf isotope ratios measured in igneous zircon are controlled by magmatic source, which may be linked to tectonic setting. Over the 200-500 Myr periodicity of the supercontinent cycle - the principal geological phenomenon controlling prevailing global tectonic style - juvenile Hf signals, i.e. most radiogenic, are typically measured in zircon from granites formed in arc settings (crustal growth), and evolved zircon Hf signals in granites formed in continent-collision settings (crustal reworking). Interrogations of Hf datasets for excursions related to Earth events commonly use the median value, however this may be equivocal due to magma mixing. The most juvenile part of the Hf signal is less influenced by crustal in-mixing, and arguably a more sensitive archive of Earth’s geodynamic state. We analyze the global Hf dataset for this juvenile signal, statistically correlating supercontinent amalgamation intervals with evolved Hf episodes, and breakup leading to re-assembly with juvenile Hf episodes. The juvenile Hf signal is more sensitive to Pangaea and Rodinia assembly, its amplitude increasing with successive cycles to a maximum with Gondwana assembly which may reflect enhanced subduction-erosion. We demonstrate that the juvenile Hf signal carries important information on prevailing global magmatic style, and thus tectonic processes.

  18. Magnetic anomalies in east Pacific using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A. (Principal Investigator)

    1983-01-01

    Methods for solving problems encountered in separating the core field from the crustal field are summarized as well as those methods developed for inverting total magnetic field data to obtain source functions for oceanic areas. Accounting for magnetization contrasts and the magnetization values measured in rocks of marine origin are also discussed.

  19. Space technology in the discovery and development of mineral and energy resources

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.

    1977-01-01

    Space technology, applied to the discovery and extraction of mineral and energy resources, is summarized. Orbital remote sensing for geological purposes has been widely applied through the use of LANDSAT satellites. These techniques also have been of value for protection against environmental hazards and for a better understanding of crustal structure.

  20. [Analysis of X-ray fluorescence spectroscopy and plasma mass spectrometry of the Guidong granite body and its implications to granite evolution].

    PubMed

    Li, Hong-Wei; Chen, Guo-Neng; Peng, Zhuo-Lun

    2013-07-01

    The Guidong composite granite body (CGB) located in the north Guangdong Province consists of numerous rock bodies formed respectively in the early and late Jurassic and early Cretaceous. Analysis of the granites of different period with X-ray fluorescence spectroscopy and plasma mass spectrometry indicates: (1) From the top of a granite body downwards, the felsic components of rock decrease, while the mafic and sigmaREE, LREE/HREE, (La/Yb)N, as well as delta Eu value increase, suggesting the material differentiation in the in-situ melting of crustal rocks and crystallisation of magma; (2) From old to young of the different period granite-massifs in the Guidong CGB, the felsic compositions totally decrease, and the mafic components, sigmaEE, LREE/HREE, (La/Yb)N, and delta Eu value increase as well, implying multiple crustal melting (remelting) events in the Mesozoic in this area; and (3) Primitive mantle-normalized spider diagram for trace elements of Guidong CGB suggests high maturity of the crust involved in the in-situ melting.

  1. Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis

    NASA Astrophysics Data System (ADS)

    Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi

    2015-07-01

    New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.

  2. Mid-to-Lower-level Plutonic Rocks From Crust of the Southern Mariana Forearc: Implications for Growth of Continental Crust

    NASA Astrophysics Data System (ADS)

    Fryer, P.; Reagan, M.

    2006-12-01

    Tonalitic plutonic rocks dredged from the southern Mariana forearc are similar in terms of major element composition to tonalitic plutonic rocks of the Tanzawa Mountains on the Izu Peninsula of Japan. The tonalites of the Tanzawa Mountains have been interpreted to represent mid-lower crustal plutonic rocks that make up the 6.0 to 6.3 km/s layer identified in seismic velocity profiles of the Izu arc at 32°N. The tonalities of the southern Mariana forearc may be analogous to the Tanzawa tonalities in terms of lithology and presumably seismic velocities, but have distinctive trace element and isotopic compositions. The exposure of these rocks on the southern Mariana forearc in a location where it is narrower by up to 80 km than elsewhere along its strike indicates a truncation of the arc lithosphere by tectonic erosion in the southern Mariana forearc. If tectonic processes in the forearc have exposed silicic plutonic rock of the arc lithosphere within 150 km of the volcanic front, then the structure of the Mariana arc and forearc is likely similar to that of the Izu arc, where seismic velocity structure suggests 25% of the arc/forearc lithosphere is comprised of a mid-crustal level tonalitic plutonic complex. The trace element and Sr isotopic compositions of the tonalities dredged from the Mariana forearc links them to a suprasubduction-zone environment. The Pb isotopic compositions, however, are consistent with crystallization ages that may be as old as Cretaceous. The compositions of these tonalites differ markedly from those of silicic volcanic rocks that have erupted throughout the history of the IBM arc and suggest that they represent a minor component of the arc. Nevertheless, the presence of Cretaceous tonalites in the Mariana forearc suggests that a portion of its crust may predate subduction initiation. The presence of silicic mid-to-lower crustal level plutonics beneath the Mariana arc as well as Eocene rhyolites on Saipan indicate that average major element composition of the arc crust may be comparable with average continental crust. This is consistent with estimates of the average composition of the Izu arc crust from seismic velocity studies and petrologic studies of exposures of the Izu arc crust in southern Japan's Izu peninsula. These data imply that the island arc that developed along the entire margin of the Philippine Sea plate may have had a generally similar structure and composition. Most components of the IBM arc crust, however, have relatively flat rare-earth patterns and low rare-earth concentrations compared with average continental crust. The averaged composition of the IBM crust, as a whole, differs markedly from that suggested by studies of the velocity structure of the central Aleutian arc. If the continental crust was generated in oceanic island arc settings throughout the history of the Earth, then its sources were significantly more enriched in LREE than the sources for the Cenozoic IBM arcs.

  3. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    USGS Publications Warehouse

    Hannah, J.L.; Stein, H.J.

    1986-01-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield ??18O values less than 10.4???, with most values between 9.3 and 10.4???. An average magmatic value of about 8.5??? is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock ??18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low ??18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx. ?? 1986 Springer-Verlag.

  4. Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses

    NASA Astrophysics Data System (ADS)

    Albert, Capucine; Farina, Federico; Lana, Cristiano; Stevens, Gary; Storey, Craig; Gerdes, Axel; Dopico, Carmen Martínez

    2016-12-01

    In this study we present U-Pb and Hf isotope data combined with O isotopes in zircon from Neoarchean granitoids and gneisses of the southern São Francisco craton in Brazil. The basement rocks record three distinct magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2750-2680 Ma). The three sampled metamorphic complexes (Bação, Bonfim and Belo Horizonte) have distinct εHf vs. time arrays, indicating that they grew as separate terranes. Paleoarchean crust is identified as a source which has been incorporated into younger magmatic rocks via melting and mixing with younger juvenile material, assimilation and/or source contamination processes. The continental crust in the southern São Francisco craton underwent a change in magmatic composition from medium- to high-K granitoids in the latest stages, indicating a progressive HFSE enrichment of the sources that underwent anatexis in the different stages and possibly shallowing of the melting depth. Oxygen isotope data shows a secular trend towards high δ18O (up to 7.79‰) indicating the involvement of metasediments in the petrogenesis of the high potassium granitoids during the Mamona event. In addition, low δ18O values (down to 2.50‰) throughout the Meso- and Neoarchean emphasize the importance of meteoritic fluids in intra-crustal magmatism. We used hafnium isotope modelling from a compilation of detrital zircon compositions to constrain crustal growth rates and geodynamics from 3.50 to 2.65 Ga. The modelling points to a change in geodynamic process in the southern São Francisco craton at 2.9 Ga, from a regime dominated by net crustal growth in the Paleoarchean to a Neoarchean regime marked by crustal reworking. The reworking processes account for the wide variety of granitoid magmatism and are attributed to the onset of continental collision.

  5. Characteristics of Mini-Magnetospheres Formed by Paleo-Magnetic Fields of Mars

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Krymskii, A. M.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.; Barashyan, K. K.

    2003-01-01

    The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.

  6. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  7. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.

  8. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    NASA Astrophysics Data System (ADS)

    Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  9. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  10. The Sr, Nd and O isotopic studies of the 1991 1995 eruption at Unzen, Japan

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Hwa; Nakada, Setsuya; Shieh, Yuch-Ning; DePaolo, Donald J.

    1999-04-01

    The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50-80% of residual magma ( F) and about 30-70% assimilated crustal material ( A) relative to the original magma. Concerning the 1991-1995 eruption, it is estimated that the magma formed as the result of mixing of about 50-60% crustal material and about 55-65% of residual magma. An alternative magma eruption model for the 1991-1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991-1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831-834], that suggested the ɛNd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.

  11. Western US Seismic Observations Viewed Through Lead Isotope Maps

    NASA Astrophysics Data System (ADS)

    Bouchet, R. A.; Blichert-Toft, J.; Levander, A.; Reid, M. R.; Albarede, F.

    2013-12-01

    To shed light on the nature and history of the different geological units identified by the seismic models that have come from USArray in the western US, we compiled literature Pb isotope compositions of ores (n=1200), K-feldspars from granites (n=400), and felsic plutonic rocks (n=1300), data that for most part were not in the NAVDAT database. We complemented this compilation by analyzing the Pb isotope compositions of K-feldspars (76) and whole-rocks (6) of felsic xenoliths and felsic plutonic rocks from the Colorado Plateau (CP). The raw Pb isotope abundances for the complete data set were converted into three independent, geologically informative parameters in the form of the model age T (time of last U/Pb fractionation) and the two chemical ratios 238U/204Pb (μ) and 232Th/238U (κ). These parameters were then imaged on isotopic maps of the western US using 0.5°×0.5° grid-cell averaging for μ and κ and a 0.5°×0.5° grid-cell maximum after removing the 2.5% highest values (outliers) for T. Comparing these chemical maps to seismic maps of tomographic anomalies [1] and Moho and LAB depths determined from receiver functions [2] leads to the following observations: (i) Pb model ages: they match geological ages mostly where the continental mantle is cold and the Moho is deep. Elsewhere, Pb model ages are younger than geological ages. We interpret this feature as the chronological expression of a delayed cooling of deep crustal layers below the closure temperature (˜550-700°C) of Pb in K-feldspar, the major host of this element in the crust [3] or of age resetting by orogenic activity. (ii) While U/Pb (μ) does not vary systematically with other geochemical or seismic data, high Th/U (κ) values are usually observed where Vp/Vs is also high, as in the Snake River basin and central Colorado. High kappa values also form a 'ridge' trending south from northwestern Utah through the Basin and Range into the Mojave-Yavapai block. High-κ areas may reflect the presence of deep-seated rocks exhumed as a result of regional extension or collapse. They may also reveal the presence of channels of flowing crust originating either beneath the CP and spreading north, or along the track of the Yellowstone hotspot track and spreading south [4]. [1] Schmandt, B., and E. Humphreys (2010), Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle, Earth Planet. Sci. Lett., 297, 435-445. [2] Levander, A., and M.S. Miller (2012), Evolutionary aspects of the lithosphere discontinuity structure in the western U.S., G-cubed, 13, 1-22. [3] Cherniak, D.J. (1995), Diffusion of lead in plagioclase and K-feldspar: an investigation using Rutherford Backscattering and Resonant Nuclear Reaction Analysis, Contrib. Mineral. Petrol., 120, 358-371. [4] Yuan, H., K. Dueker, and J. Stachnik (2010), Crustal structure and thickness along the Yellowstone hot spot track: evidence for lower crustal outflow from beneath the eastern Snake River Plain, G-cubed, 11, 1-14.

  12. A global magnetic anomaly map. [obtained from POGO satellite data

    NASA Technical Reports Server (NTRS)

    Regan, R. D.; Davis, W. M.; Cain, J. C.

    1974-01-01

    A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.

  13. The evolution of a calc-alkaline basic to silicic magma system: Geochemical and Rb-Sr, Sm-Nd, and 18O /16O isotopic evidence from the Late Hercynian Atesina-Cima d'Asta volcano-plutonic complex, northern Italy

    NASA Astrophysics Data System (ADS)

    Barth, Susanne; Oberli, Felix; Meier, Martin; Blattner, Peter; Bargossi, Giuseppe M.; Di Battistini, Gianfranco

    1993-09-01

    Geochemical and Sr-Nd-O isotopic data presented for basaltic andesitic to rhyolitic and for quartz noritic to monzogranitic rock suites from the Late Hercynian calc-alkaline Atesina volcanic complex (AVC) and the Cima d'Asta pluton (CAP), Southern Alps (northern Italy), provide information on both the primary magmatic processes and the effects of (mainly Triassic) hydrothermal overprint. Fluid infiltration led to mobilization of major and trace elements (K 2O, Na 2O, CaO, Rb, Sr, and Ba), opensystem behavior in total-rock Rb-Sr, and shift in δ18O to elevated values (total rock up to 16.6%. and volcanic matrix up to 17.8%.). Oxygen isotopic disequilibrium between quartz-feldspar pairs suggests water-rock interaction at medium/low temperatures. The δ18O values of quartz, the REE characterized by regular LREE enrichment/HREE depletion, and the Sm-Nd isotopic signatures, however, remained virtually unaffected by secondary processes. The initial ɛNd values (at 270 Ma) of the AVC and CAP magmatites are restricted to overlapping ranges of -3.6 to -6.5 and of -2.7 to -6.5, respectively, indicating significant crustal contribution; these values and associated T DM model ages of 1.1-1.6 Ga agree well with those of typical South Alpine lower crustal magmatites. The AVC and CAP rocks do not follow the "normal" trend of increasingly crustal Nd isotopic signatures with progressive degree of magma evolution expected for a single-stage AFC-type process, but instead display an inversion of this relationship. Geochemical and isotopic constraints favor a model of a large-scale MASH-type melting and mixing zone at or near the base of the continental crust. Distinct elemental enrichment/depletion and REE crossover patterns displayed by high-silica as compared to less silicic AVC rhyolites suggest subsequent magma evolution within a shallow-level compositionally zoned chamber.

  14. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    NASA Astrophysics Data System (ADS)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late Paleoproterozoic and Mesozoic related to magmatic underplating. The integrated analyses of lithological, geochemical and age data for a suite of deep-seated xenoliths show that the lower crust in the Nangaoya area is temporally and compositionally zoned. The upper part of the lower crust mainly comprises Neoarchean to Paleoproterozoic intermediate-felsic rocks with intercalated hornblendites, the majority of which record 1950 and 1850 Ma metamorphism; the middle part is dominated by a Paleoproterozoic and Mesozoic intermediate garnet-bearing granulite-facies hybrid layer; and the lowermost crust is represented by a Mesozoic mafic granulite layer, which was significantly modified by episodic magmatic underplating. Such a modification induced by crust-mantle interaction can result in Mesozoic ages and more mafic components for xenolith granulites, and thus is an effective mechanism to explain the differences between exposed and xenolithic granulites.

  15. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane

    NASA Astrophysics Data System (ADS)

    Montefalco de Lira Santos, Lauro Cézar; Dantas, Elton Luiz; Cawood, Peter A.; José dos Santos, Edilton; Fuck, Reinhardt A.

    2017-11-01

    Pre-Brasiliano rocks in the Borborema Province (NE Brazil) are concentrated in basement blocks, such as the Alto Moxotó Terrane. Petrographic, geochemical, and U-Pb and Sm-Nd isotopic data from two basement metagranitic suites within the terrane provide evidence for Neoarchean (2.6 Ga) and Paleoproterozoic (2.1 Ga) subduction-related events. The Riacho das Lajes Suite is made of medium to coarse-grained hornblende and biotite-bearing metatonalites and metamonzogranites. Whole-rock geochemical data indicate that these rocks represent calcic, magnesian and meta-to peraluminous magmas, and have unequivocal affinities with high-Al low-REE tonalite-trondhjemite-granodiorites (TTG). Zircon U-Pb data from two samples of this suite indicate that they were emplaced at 2.6 Ga, which is the first discovered Archean crust in the central portion of the province. The suite has Neoarchean depleted mantle model ages (TDM) and slightly negative to positive εNd(t), indicating slight crustal contamination. The overall geochemical and isotopic data indicate a Neoarchean intraoceanic setting for genesis of the Riacho das Lajes magma via melting of basaltic oceanic crust submitted to high-pressure eclogite facies conditions. On the other hand, the Floresta Suite comprise metaigneous rocks, which are mostly tonalitic and granodioritic in composition. Geochemical data indicate that this suite shares similarities with calcic to calc-alkalic magmas with magnesian and metaluminous to slightly peraluminous characteristics. Other geochemical features include anomolous Ni, V and Cr contents, as well as high large-ion litophile elements (LILE) values. The suite yields U-Pb zircon ages of approximately 2.1 Ga, Archean to Paleoproterozoic TDM ages, and negative to positive εNd(t) values, suggesting both new crust formation and reworking of Archean crust, in addition to mantle metasomatism, reflecting mixed sources. The most likely tectonic setting for the Floresta Suite magmas involved crustal thickening by terrane accretion, coeval to slab break off. Our results provide new insights on proto-Western Gondwana crustal evolution.

  16. Isotopically-diverse rhyolites coeval with the Columbia River Basalts Large Igneous Province: evidence for widespread mantle-plume driven hydrothermal alteration and remelting of the crust

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Stern, R. A.; Fisher, C. M.

    2014-12-01

    The formation of the most recent flood basalt province on Earth, the Columbia River Flood Basalts (CRBs) of the northwestern USA, was accompanied by eruptions of several thousand km3 of rhyolite in a short time window from 16.7 to 15 Ma. These rhyolites span from low (+1‰) to high (+11‰) in δ18O values as recorded by major phenocrysts, and alteration-resistant zircons within each rhyolite commonly display diversity of up to 6‰ δ18O, indicative of batch assembly prior to eruption. Significant variation in ɛHf also exists in zircons, ranging from -39 to 0 in rhyolites erupted through the North American cratonic crust, and from -1 to +9 in rhyolites erupted through accreted oceanic terranes to the east of the Sr87/86Sr = 0.706 line. This isotopic diversity cannot be accounted for by fractionation of a CRB-like parent magma, demonstrating that the syn-CRB rhyolites must have been derived from melting of the crust. Abundant low-δ18Omelt values among syn-CRB rhyolites further constrains this crustal melting to shallow depths of 5-10 km, due to the shallow depths of the necessary hydrothermal alteration of the protolith. By contrast, high-δ18O rhyolites must have been formed by remelting of sedimentary or metasedimentary rocks. Low-δ18O rhyolites are also most common in the vicinity of the crustal suture between the thick lithosphere of the Archean craton and the thin lithosphere of the accreted terranes. Thermomechanical modeling suggests that this contrast concentrates crustal heating and deformation, creating pathways for meteoric water to penetrate the crust and cause extensive hydrothermal alteration less than 1 Ma before those same rocks remelt to form low-δ18O rhyolites. Finally, we suggest that this extensive crustal hydrothermal alteration and melting may be typical of continental flood basalt provinces world wide, and particularly when there is syn-volcanic extension.

  17. Assessment of Heavy Metal Contamination in Marine Sediments of East Coast of Tamil Nadu Affected by Different Pollution Sources.

    PubMed

    Harikrishnan, N; Ravisankar, R; Chandrasekaran, A; Suresh Gandhi, M; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2017-08-15

    The aim of this study was to determine the concentration of heavy metals in the sediments of Periyakalapet to Parangipettai coast, east coast of Tamil Nadu, by using energy-dispersive X-ray fluorescence (EDXRF) technique. The average heavy metal concentrations in the sediment samples were found in the order Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>Cd>Cu. The average heavy metal concentrations were below the world crustal average. The degree of contamination by heavy metals was evaluated using pollution indices. The results of pollution indices revealed that titanium (Ti) and cadmium (Cd) were significantly enriched in sediments. Pearson correlation analysis was performed among heavy metal concentrations to know the existing relationship between them. Multivariate statistical technique was employed to identify the heavy metal pollution sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. How the growth and freeboard of continents may relate to geometric and kinematic parameters of mid-ocean spreading ridges

    USGS Publications Warehouse

    Howell, D.G.

    1989-01-01

    If the volume of continents has been growing since 4 Ga then the area of the ocean basins must have been shrinking. Therefore, by inferring a constant continental freeboard, in addition to constant continental crustal thicknesses and seawater volume, it is possible to calculate the necessary combinations of increased ridge lengths and spreading rates required to displace the seawater in the larger oceans of the past in order to maintain the constant freeboard. A reasonable choice from the various possibilities is that at 4 Ga ago, the ridge length and spreading rates were ca. 2.5 times greater than the averages of these parameters during the past 200 Ma. By 2.5 Ga ago the ridge length and spreading rate decreased to about 1.8 times the recent average and by 1 Ga ago these features became reduced to approximately 1.4 times recent averages. ?? 1989.

  19. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in the UM within the initial 500 Myr, as a result of early formation of CC, which supports other evidence in favor of the presence of Hadean continental crust. Therefore, a chondritic Th/U ratio (4 ± 0.2) in the UM until 2 Gyr appears rather unlikely. We find that the κ conundrum - the observation that measured Th/U ratios and those deduced from 208Pb-206Pb isotope systematics differ - is a natural outcome of an open system evolution in which preferential recycling of U for the past 2 Gyr has played a dominant role. Overall, our simulations strongly favor exponential crustal growth, starting in the early Hadean, the transient preservation of compositionally distinct mantle reservoirs over billion year time periods, and a generally less incompatible element depleted, but non-primitive composition of the lower mantle.

  20. Regional Heat Flow Map and the Continental Thermal Isostasy Understanding of México

    NASA Astrophysics Data System (ADS)

    Espinoza-Ojeda, O. M.; Harris, R. N.

    2014-12-01

    The first heat flow values made in Mexico were reported by Von Herzen [Science, 1963] for the marine environment and Smith [EPSL, 1974] for the continent. Since that time the number of measurements has increased greatly but are mostly from oil and gas exploration and in and around geothermal areas. We have compiled published values of conductive heat flow for Mexico and the Gulf of California to generate a new regional heat flow map consisting of 261 values. In addition to those original values, published heat flow sources include, Lee and Henyey [JGR, 1975], Lawver and Williams [JGR, 1979] Smith et al. [JGR, 1979], Lachenbruch et al. [JGR, 1985], and Ziagos et al. [JGR, 1985]. Although the geographic distribution is uneven, heat flow data are present in each of the eight main tectonic provinces. Our new compilation indicates relatively high regional heat flow averages in the Gulf Extensional Province (n=114, 92±22 mW/m2) and Mexican Basin and Range (n=21, 82±20 mW/m2) and are consistent with geologic estimates of extension. Lower regional averages are found in the Baja California Microplate (n=91, 75±19 mW/m2), the Sierra Madre Occidental (n=9, 75±12 mW/m2), the Sierra Madre Oriental (n=4, 68±15 mW/m2) and Mesa Central (n=X 77±23 mW/m2). In contrast low and variable heat flow value characterize the forearc region of the Middle America Trench (n=6, 35±16 mW/m2). A higher mean heat flow is associated with the Trans-Mexican Volcanic Belt (n=6, 78±26 mW/m2). Continental elevation results from a combination of buoyancy (i.e. compositional and thermal) and geodynamic forces. We combine these regional heat flow values with estimates of crustal thickness and density for each tectonic province and compute the thermal and compositional buoyancy following the approach of Hasterok and Chapman [JGR, 2007a,b]. We find that within uncertainties most provinces lie near the theoretical isostatic relationship with the exception of the Mesa Central and Sierra Madre del Sur that are anomalously below and above the theoretical relationship, respectively.

  1. Crustal Thickness and Magnetization beneath Crisium and Moscoviense Lunar Impact Basins

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.

    2016-12-01

    The recent NASA GRAIL mission allowed to derive a high-resolution model of the Moon's crustal thickness. It revealed that the Mare Crisium and Moscoviense large impact basins have the thinnest (< 7-8 km) crust of the Moon. On the other hand, significative magnetic field anomalies were measured over these basins by Lunar Prospector and Kaguya magnetometers. The Crisium lunar impact basin shows two localized intense ( 10 nT at 30 km of altitude) magnetic field anomalies located nearby its North and South borders, while Moscoviense shows a relatively-intense ( 4-5 nT at 30 km) central magnetic field anomaly. In details, these two anomalies are exactly located where the thinnest (<1-3 km) crust within the basins is predicted by the crustal thickness models. In this study we investigate this apparent anti-correlation by modeling the sources of these potential field data using several forward approaches in 2D and 3D. The parameters of the crustal source models are constrained by density and magnetization measurements on APOLLO samples, and by standard values for the lunar mantle and crust. Several possible models will be shown for the two basins. Preliminary results suggest that, beneath the thin Mare basalt layer seen at the floor of both basins, a magnetized layer with laterally-varying thickness is required. This layer may correspond to an impact melt sheet. We here exclude the hypothesis that a part of the lunar upper mantle could be magnetized beneath these basins (perhaps due to post-impact processes?), largely reducing the range of possible depths for the magnetic sources.

  2. Intrusive rocks of the Wadi Hamad Area, North Eastern Desert, Egypt: Change of magma composition with maturity of Neoproterozoic continental island arc and the role of collisional plutonism in the differentiation of arc crust

    NASA Astrophysics Data System (ADS)

    Basta, Fawzy F.; Maurice, Ayman E.; Bakhit, Bottros R.; Azer, Mokhles K.; El-Sobky, Atef F.

    2017-09-01

    The igneous rocks of the Wadi Hamad area are exposed in the northernmost segment of the Arabian-Nubian Shield (ANS). These rocks represent part of crustal section of Neoproterozoic continental island arc which is intruded by late to post-collisional alkali feldspar granites. The subduction-related intrusives comprise earlier gabbro-diorites and later granodiorites-granites. Subduction setting of these intrusives is indicated by medium- to high-K calc-alkaline affinity, Ta-Nb troughs on the spider diagrams and pyroxene and biotite compositions similar to those crystallized from arc magmas. The collisional alkali feldspar granites have high-K highly fractionated calc-alkaline nature and their spider diagrams almost devoid of Ta-Nb troughs. The earlier subduction gabbro-diorites have lower alkalis, LREE, Nb, Zr and Hf values compared with the later subduction granodiorites-granites, which display more LILE-enriched spider diagrams with shallower Ta-Nb troughs, reflecting variation of magma composition with arc evolution. The later subduction granitoids were generated by lower degree of partial melting of mantle wedge and contain higher arc crustal component compared with the earlier subduction gabbro-diorites. The highly silicic alkali feldspar granites represent extensively evolved melts derived from partial melting of intermediate arc crustal sources during the collisional stage. Re-melting of arc crustal sources during the collisional stage results in geochemical differentiation of the continental arc crust and the silicic collisional plutonism drives the composition of its upper part towards that of mature continental crust.

  3. Earthquake-induced gravitational potential energy change at convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2004-12-01

    The coseismic displacement induced by earthquakes will change the gravitational potential energy (GPE). Okamoto and Tanimoto (2002) have shown that the gain of {Δ GPE} corresponds to the compressional stress regime while the loss of {Δ GPE} corresponds to the extensional stress regime. Here we show an example at a convergent plate boundary near Taiwan. The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the active Taiwan orogeny and induced abundant earthquakes. We have examined the corresponding change of gravitational potential energy by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. The results show that the variation of the crustal Δ GPE strongly correlates with the different stage of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal Δ GPE. In contrast, the lithospheric Δ GPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal Δ GPE and the lithospheric Δ GPE during the observation period are 1.03×1017 joules and -1.15×1017 joules, respectively. The average rate of the whole Δ GPE in the Taiwan region is very intense and equal to -2.07×1010 watts, corresponding to about one percent of the global Δ GPE loss induced by earthquakes.

  4. Temporal–Spatial Surface Seasonal Mass Changes and Vertical Crustal Deformation in South China Block from GPS and GRACE Measurements

    PubMed Central

    He, Meilin; Shen, Wenbin; Chen, Ruizhi; Ding, Hao; Guo, Guangyi

    2017-01-01

    The solid Earth deforms elastically in response to variations of surface atmosphere, hydrology, and ice/glacier mass loads. Continuous geodetic observations by Global Positioning System (CGPS) stations and Gravity Recovery and Climate Experiment (GRACE) record such deformations to estimate seasonal and secular mass changes. In this paper, we present the seasonal variation of the surface mass changes and the crustal vertical deformation in the South China Block (SCB) identified by GPS and GRACE observations with records spanning from 1999 to 2016. We used 33 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs) in SCB. The average weighted root-mean-square (WRMS) reduction is 38% when we subtract GRACE-modeled vertical displacements from GPS time series. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution in and around the South China Block. The correlation between GRACE and GPS time series is analyzed which provides a reference for further improvement of the seasonal variation of CGPS time series. The results of the GRACE observations inversion are the surface deformations caused by the surface mass change load at a rate of about −0.4 to −0.8 mm/year, which is used to improve the long-term trend of non-tectonic loads of the GPS vertical velocity field to further explain the crustal tectonic movement in the SCB and surroundings. PMID:29301236

  5. Time resolved aerosol monitoring in the urban centre of Soweto

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Annegarn, H. J.; Piketh, S. J.

    1998-03-01

    A programme of aerosol sampling was conducted from 1982 to 1984 in the urban area of Soweto, Johannesburg, South Africa. The particulate matter (aerodynamic diameter <15 μm) was collected using a two hours time resolution single stage streaker sampler and elemental concentrations were resolved via Particle Induced X-ray Emission (PIXE) analysis. Samples have been selected for analysis from an aerosol sample archive to establish base-line atmospheric conditions that existed in Soweto prior to large scale electrification, and to establish source apportionment of crustal elements between coal smoke and traffic induced road dust, based on chemical elemental measurements. A novel technique is demonstrated for processing PIXE-derived time sequence elemental concentration vectors. Slowly varying background components have been extracted from sulphur and crustal aerosol components, using alternatively two digital filters: a moving minimum, and a moving average. The residuals of the crustal elements, assigned to locally generated aerosol components, were modelled using surrogate tracers: sulphur as a surrogate for coal smoke; and Pb as a surrogate for traffic activity. Results from this source apportionment revealed coal emissions contributed between 40% and 50% of the aerosol mineral matter, while 18-22% originated from road dust. Background aerosol, characteristic of the regional winter aerosol burden over the South African Highveld, was between 12% and 21%. Minor contributors identified included a manganese smelter, located 30 km from the sampling site, and informal trash burning, as the source of intermittent heavy metals (Cu, Zn). Elemental source profiles derived for these various sources are presented.

  6. Crustal structure of the basin in the Southwest Subbasin, South China Sea

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Li, J.; Ding, W.; Zhang, J.; Ruan, A.; Niu, X.; Yin, J.

    2016-12-01

    Using two-dimensional seismic tomography, we reported a detailed P-wave velocity model of the basin area and the northern margin in the southwest SWSB. We used two OBS profiles (OBS973-1 and OBS973-3), and 12 OBSs were involved into forward modeling and inversion. The whole profile is approximately 311-km-long. The average thickness of the crust beneath the basin is 5.33 km, and the Moho interface is about 10-12 km. No High Velocity Bodies (HVBs) are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. It is suggested that the basin area is a typical oceanic crust. Combined with other refraction profiles in the SWSB, the thickness of crust became thinner from the east to the west, indicating a decreasing magma supply. Besides, the continental block shows asymmetric crustal thickness: the southern margin represents thicker crust than the northern margin, which may be related to the large scale of detachment fault systems developed in the southern margin. Revealed from the multi-channel seismic (MCS) profile, the profile here shows asymmetric structural characteristics between the north and south section of the spreading center, which may be controlled by detachment faults. The initial rifting is likely to occur in the south of our study area.KEY WORDS crustal structure; South China Sea; Southwest Sub-basin Extinct spreading center, Asymmetric extension; Thinned crust

  7. Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.

    2017-12-01

    To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.

  8. Enhanced methane emission during carbonaceous sediment-basalt interactions as a mechanism for mass extinction

    NASA Astrophysics Data System (ADS)

    Kubo, A. I.; Day, J. M.; Ryabov, V. V.; Taylor, L. A.

    2016-12-01

    Precise dating techniques have established the contemporaneous eruption of the Siberian Traps at the beginning of the Permian faunal mass extinction at 248 ± 2 Ma. Within a relatively limited time-period ( 1 Ma), the Siberian Traps expelled approximately ninety percent of its total volume ( 1.5 Mkm3), each episode of volcanism adding substantial amounts of CO2, CH4, and SO2 to the atmosphere. The Permian-Triassic Boundary shows average organic carbon isotope excursions of -6.4 ± 4.4‰ (253 Ma), from a long-term average δ13Corg of -25‰. Retallack and Jahren [2008; Journal of Geology] suggested that eruption into C-rich sediments and resulting methane degassing would satisfy necessary conditions to cause such large, variable perturbations in the carbon isotope record. To test this hypothesis, we measured C isotope variations in upper crustal sediments and metalliferous basalts from the Khungtukun and Dzhatul Intrusions, of the Siberian Traps. We find that δ13C values for Siberian coal and sandstones are restricted at -23 to -25‰, with similar values measured in the metalliferous basalts. Anticipated thermogenic methane from disassociation of these sources would be considerably lighter and consistent with low δ13C isotopic values. We further test this mechanism by employing a zero dimensional energy balance model to examine three key parameters: eruption duration, amounts of CO2 and CH4 emission, and the frequency of eruptions. Greater methane emissions than previously estimated due to carbonaceous sediment-basalt interactions have a sustained temperature effect due to high global warming potential (GWP), between 28 and 36 over 100 years compared to the CO2 reference value. Our model predicts that a quick succession of massive effusive eruptions would cause a sustained and substantial temperature effect consistent with estimated equatorial levels of 40°C during the Permian-Triassic Boundary. This mechanism could explain the deficit between the amount of volatiles necessary to cause a runaway greenhouse effect and the estimated emission of flood basalts.

  9. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume

    2018-03-01

    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  10. Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth, W.L.; Koyanagi, R.Y.

    1977-11-10

    Teleseismic P wave arrival times recorded by a dense network of seismograph stations located on Kilauea volcano, Hawaii, are inverted to determine lateral variation in crust and upper mantle structure to a depth of 70 km. The crustal structure is dominated by relatively high velocities within the central summit complex and along the two radial rift zones compared with the nonrift flank of the volcano. Both the mean crustal velocity contrast between summit and nonrift flank and the distribution of velocities agree well with results from crustal refraction studies. Comparison of the velocity structure with Bouguer gravity anomalies over themore » volcano through a simple physical model also gives excellent agreement. Mantle structure appears to be more homogeneous than crustal structure. The root mean square velocity variation for the mantle averages only 1.5%, whereas variation within the crust exceeds 4%. The summit of Kilauea is underlain by normal velocity (8.1 km/s) material within the uppermost mantle (12--25 km), suggesting that large magma storage reservoirs are not present at this level and that the passageways from deeper sources must be quite narrow. No evidence is found for substantial volumes of partially molten rock (5%) within the mantle to depths of at least 40 km. Below about 30 km, low-velocity zones (1--2%) underlie the summits of Kilauea and nearby Mauna Loa and extend south of Kilauea into a broad offshore zone. Correlation of volcanic tremor source locations and persistent zones of mantle earthquakes with low-velocity mantle between 27.5- and 42.5-km depth suggests that a laterally extensive conduit system feeds magma to the volcanic summits from sources either at comparable depth or deeper within the mantle. The center of contemporary magmatic production and/or upwelling from deeper in the mantle appears to extend well to the south of the active volcanic summits, suggesting that the Hawaiian Island chain is actively extending to the southeast.« less

  11. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.

    2015-12-01

    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  12. Sanukitoids Record the Onset of Widespread Neoarchean Supracrustal Recycling

    NASA Astrophysics Data System (ADS)

    Bjorkman, K. E.; Kemp, A. I.; Lu, Y. J.; McCuaig, T. C.; Hollings, P. N.

    2016-12-01

    The sudden appearance of sanukitoid magmatism marks a chemical and isotopic turning point in the late Archean. Petrogenetic models call for mixing between primitive and evolved sources to account for their enrichment in both compatible and incompatible elements. TTG melts and the mantle wedge are the most commonly cited end members, but previous study of oxygen isotopes hinted at a supracrustal contribution. Clarifying the nature of endmembers may illuminate the significance of this shift for crustal growth and geodynamics. Heavy oxygen isotope signatures in zircons from 15 sanukitoid intrusions across 4 terranes in the southwestern Superior Craton of Canada (average δ18Ozrc=6.6‰, extending to 7.4‰) unequivocally fingerprint a supracrustal contribution to the host magmas. This contrasts with the mantle-like oxygen of pre-collisional TTG magmatism. Hafnium isotopes measured in the same zircon domains are less radiogenic than the estimated Superior mantle at 2.7 Ga, with ɛHf ranging from +1.5 to +4.1. Hf-O isotope mixing models require <50% local Archean sediment (δ18OWR=10.6‰, ɛHf 1.5±1) addition to mantle peridotite. Within-sample isotope homogeneity indicates a well-mixed magma during zircon crystallisation. A correlation in ɛHf to local crust implies local sediment input or additional contamination by crustal assimilation. As the terranes are roughly parallel to the Kenoran Orogeny, the local Hf signature is unlikely to be derived from subducted sediments. Rather these data permit (i) extensive mixing of sediment melts with the mantle wedge followed by crustal assimilation, registering the onset of widespread erosion and subduction of sediments, or (ii) assimilation of local supracrustal rocks at depth, and by implication, late crustal overturn. These results are incongruent with the current paradigm for late Archaean magmatism, which links sanukitoid generation to extensive TTG metasomatism of the mantle. Sanukitoid emplacement thus records a critical change in the character of the crust, lithosphere and tectonic regime during the evolution of Archean cratons.

  13. The complex magnetic field configuration of the Martian magnetotail as observed by MAVEN

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.; Luhmann, Janet; Curry, Shannon; Espley, Jared R.; Gruesbeck, Jacob; Xu, Shaosui; Mitchell, David; Soobiah, Yasir; Connerney, John E. P.; Dong, Chuanfei; Harada, Yuki; Ruhunusiri, Suranga; Halekas, Jasper; Hara, Takuya; Ma, Yingjuan; Brain, David; Jakosky, Bruce

    2017-10-01

    The Martian magnetosphere forms as the solar wind directly interacts with the planet’s upper atmosphere. During this interaction, the Sun’s interplanetary magnetic field (IMF) drapes around the planet and local crustal magnetic fields, creating a magnetosphere configuration that has attributes of both an induced magnetosphere like that of Venus, and a complex, small-scale magnetosphere like the Moon. In addition to the closed crustal fields and draped IMF at Mars, open magnetic fields are created when magnetic reconnection occurs between the planetary fields and the IMF. These various field topologies present a complex magnetotail structure that we are now able to explore using a combination of MAVEN observations and magnetohydrodynamic (MHD) simulations. Preliminary MHD results have suggested that the Martian magnetotail includes a dual-lobe component, composed of open crustal fields, enveloped by an induced comet-like tail. These simulated open-field lobes are twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane. This rotation depends on the east-west component of the IMF. We utilize MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements collected over two Earth years to analyze the tail magnetic field configuration as a function of IMF direction. Cross-tail views of the average measured magnetic field components directed toward and away from the planet are compared for a variety of solar wind parameters. We find that, in agreement with simulation results, the east-west IMF component strongly affects the magnetotail structure, twisting its sunward-antisunward polarity patterns in response to changing IMF orientation. Through a data-model comparison we are able to infer that regions of open magnetic fields in the tail are likely reconnected crustal fields. Futhermore, these open fields in the tail may contribute to atmospheric escape to space. From this investigation we are able to confirm that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars’ magnetosphere as we have understood it thus far.

  14. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  15. Heat Flow and Magnetization in the Oceanic Lithosphere. Ph.D. ThesisSemiannual Report, Nov. 1987 - Apr. 1988

    NASA Technical Reports Server (NTRS)

    Hayling, Kjell Lennart

    1988-01-01

    Two aspects of the processing and interpretation of satellite measurements of the geomagnetic field are described. One deals with the extraction of the part of the geomagnetic field that originates from sources in the earth's atmosphere. The other investigates the possibility of using the thermal state of the oceanic lithosphere to further constrain modelling and interpretation of magnetic anomalies. It is shown that some of the magnetic signal in crustal anomaly maps can be an artifact of the mathematical algorithms that have been used to separate the crustal field from the observed data. Strong magnetic anomalies can be distorted but are probably real, but weak magnetic anomalies can arise from leakage of power from short wavelengths, and will also appear in anomaly maps as repetitions of the strong crustal anomaly. The distortion and the ghost anomalies follow the magnetic dip lines in a way that is similar to actual MAGSAT anomaly fields. This phenomenon will also affect the lower degree spherical harmonic terms in the power spectrum of the crustal field. A model of the magnetic properties of the oceanic crust that has been derived from direct measurements of the rock magnetic properties of oceanic rocks is presented. The average intensity of magnetization in the oceanic crust is not strong enough to explain magnetic anomalies observed over oceanic areas. This is the case for both near surface observations (ship and aeromagnetic data) and satellite altitude observations. It is shown that magnetic sources in the part of the upper mantle that is situated above the Curie isotherm, if sufficiently strong, can produce satellite magnetic anomalies that are comparable to MAGSAT data. The method developed for the study of depth to the Curie isotherm and magnetic anomalies can also be used in inverse modelling of satellite magnetic anomalies when the model is to be adjusted with an annihilator.

  16. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X. M.

    2012-04-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  17. Fluorine, fluorite, and fluorspar in central Colorado

    USGS Publications Warehouse

    Wallace, Alan R.

    2010-01-01

    Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks related to the Pikes Peak batholith had a mean fluorine content of 1,700 ppm, and primary magmatic fluorite and fluorite-bearing pegmatites are common throughout that igneous mass. Fluorine was deposited in many types of economic mineral deposits in central Colorado, and it currently is a significant trace element in some thermal springs. In the fluorspar deposits, fluorine contents were as high as 37 percent. Some fluorine-rich porphyry systems, such as Jamestown, had fluorine values that ranged from 200 ppm to nearly 37 percent fluorine, and veins in other deposits contained hydrothermal fluorite, although it was not ubiquitous. For the 495 samples from non-fluorspar mining districts (and excluding Jamestown), however, the median fluorine content was 990 ppm. This is above the crustal average but still relatively modest compared to the fluorspar deposits, and it indicates that the majority of the mineralizing systems in central Colorado did not deposit large amounts of fluorine. Nevertheless, the fluorine- and fluorite-rich mineral deposits could be used as guides for the evaluation and discovery of related but concealed porphyry and epithermal base- and precious-metal deposits. The Cenozoic geologic history of central Colorado included multiple periods during which fluorine-bearing rocks and mineral deposits were exposed, weathered, and eroded. This protracted history has released fluorine into soils and regoliths, and modern rainfall and snowmelt interact with these substrates to add fluorine to the hydrosphere. This study did not evaluate the fluorine contents of water or make any predictions about what areas might be major sources for dissolved fluorine. However, the abundant data that are available on fluorine in surface water and ground water can be coupled with the results of this study to provide additional insight into natural sources of fluorine in domestic drinking water.

  18. Crustal Magnetization Model of Maud Rise in the Southwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; vanFrese, Ralph R. B.; Golynsky, Alexander V.; Taylor, Patrick T.; Kim, Jeong Woo

    2004-01-01

    We modeled the crustal magnetization for the Maud Rise in the south-west Indian Ocean off the coast of East Antarctica using magnetic observations from the Oersted satellite and near-surface surveys complied by the Antarctic Digital Magnetic Anomaly Project (ADMAP). A new inversion modeling scheme of the multi-altitude anomaly fields suggests that the magnetic effects due to crustal thickness variations and remanence involving the normal polarity Cretaceous Quiet Zone (KQZ) become increasingly dominant with altitude. The magnetic crustal thickness effects were modeled in the Oersted data using crustal thickness variations derived from satellite altitude gravity data. Remanent magnetization modeling of the residual Oersted and near-surface magnetic anomalies supports extending the KQZ eastwards to the Astrid Ridge. The remaining near-surface anomalies involve crustal features with relatively high frequency effects that are strongly attenuated at satellite altitudes. The crustal modeling can be extended by the satellite magnetic anomalies across the Indian Ocean Ridge for insight on the crustal properties of the conjugate Agulhas Plateau. The modeling supports the Jurassic reconstruction of Gondwana when the African Limpopo-Zambezi and East Antarctic Princess Astrid coasts were connected as part of a relatively demagnetized crustal block.

  19. Evidence for Terrane Accretion, Localized Rifting and Magmatism from the Crustal Velocity Structure of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2017-12-01

    The crustal structure in the Southeastern United States records a rich tectonic history, including multiple terrane accretion events, the formation of the supercontinent Pangea, widespread magmatism from the Central Atlantic Magmatic Province (CAMP), and crustal thinning before the breakup of Pangea. We use wide-angle refraction seismic data from Lines 1 and 2 of the SUGAR (SUwannee suture and GeorgiA Rift basin) seismic experiment to constrain crustal structure in order to better understand these tectonic events. The 320 and 420 km lines extend from the northwest to the southeast, crossing the Mesozoic rift basins that record crustal thinning prior to the breakup of Pangea and multiple potential suture zones between accreted terranes. We model crustal P-wave velocity structure with reflection/refraction tomography based on refractions through the sediments, crust and mantle and reflections from the base of the sediments, within the crust and the Moho. To the north on Line 2, we observe high Vp and Vs within the Inner Piedmont and Carolina accreted terranes underlain by a low velocity zone at 5 km depth. These observations are consistent with metamorphosed terranes accreting onto the Laurentian margin along a low velocity region that represents meta-sedimentary rocks and/or an Appalachian detachment. Additionally, differences in the basin structure, lower crustal velocities, and crustal thickness between Lines 1 and 2 reflect varying extension and magmatism between the two Mesozoic rift segments. Line 1 has thicker and more laterally extensive syn-rift sediments and a more pronounced region of crustal thinning. In contrast, syn-rift sediments along Line 2 are thinner and limited to a couple of smaller basins, and the crust of Line 2 gradually thins towards the coast. The thinned crust beneath Line 1 is characterized by high velocities of >7.0 km/s, which we interpret as mafic intrusions related to rifting or CAMP; in contrast, no evidence of elevated lower crustal velocities is observed on Line 2. Because intrusions into the lower crust increase both lower crustal velocities and crustal thickness, the correspondence of high lower crustal velocities with regions of greater crustal thinning suggests that extension and magmatism were more localized than one would infer based only on variations in crustal thickness.

  20. New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Sun, W.

    2002-12-01

    The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly recycled in oceanic sediments (short residence time) resulting in a smaller affect on Re-Os budgets, but creating areas of extreme Re heterogeneity in the upper mantle. Refs: 1. Bennett, Norman and Garcia, EPSL 2000. 2. Sun et al. (in press, Chemical Geology) 3. Sun et al. (submitted). 4. Peucker-Ehrenbrink and Jahn, G3, 2001.

  1. Preliminary isostatic gravity map of the Grouse Creek and east part of the Jackpot 30 by 60 quadrangles, Box Elder County, Utah, and Cassia County, Idaho

    USGS Publications Warehouse

    Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.

    2013-01-01

    A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.

  2. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages

    USGS Publications Warehouse

    Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.

    2003-01-01

    New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.

  3. The role of lithospheric stress in the support of the Tharsis rise

    NASA Technical Reports Server (NTRS)

    Willemann, R. J.; Turcotte, D. L.

    1982-01-01

    It is hypothesized that the Tharsis rise can be approximated as an axisymmetrical igneous construct. Linear theory for the deflection of planetary lithospheres is used to demonstrate that the lithospheric stresses required partially to support the construct are reasonable and consistent with the observed radial grabens around Tharsis. The computed thickness of the elastic lithosphere is between 110 and 260 km, depending of the values assumed for crustal thickness and crustal density. The computed thickness of the Tharsis load ranges from 40 to 70 km. Since in this model the height of the geoid is not specified a priori, the agreement between the observed and computed geoid is evidence for the validity of the model. The tectonics of the Tharsis region are briefly reviewed, and it is contended that all observations are consistent with the loading model.

  4. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  5. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7.8 to -16.7) and granite (-16.6 to -6.7). Together with the Hf depleted model ages and crustal model ages, we infer that the magma sources involved both juvenile depleted mantle and reworked Mesoproterozoic, Paleoproterozoic and Neoarchean components. The mid Neoproterozoic intraplate magmatism is considered to be a response to mantle upwelling in an aborted rift setting.

  6. Geophysical constraints on the compensation mechanism of the Galápagos swell

    NASA Astrophysics Data System (ADS)

    Canales, J.; Ito, G.; Detrick, R. S.; Sinton, J. M.

    2001-12-01

    We use geophysical observations such as bathymetry, gravity, and seismic crustal thickness to understand the origin of the Galápagos swell. Wide-angle refraction and multichannel reflection seismic data show that the crust along the Galápagos Spreading Center (GSC) between 97.5° W and 91° W thickens by 2.3 km as the Galápagos plume is approached from the west [Ito et al., this meeting]. Axial depth along the GSC shoals by 1800 m, 60% of which is due to dynamic topography and changes in axial morphology. The remaining 700 m correspond to the amplitude of the Galápagos bathymetric swell, 75% of which is explained by crustal thickening. The eastward shoaling of the swell and increase in crustal thickness along the GSC is accompained by a progressive decrease in mantle Bouguer gravity anomaly (MBA). Assuming a constant crustal thickness model, the MBA reaches a minimum value of -70 mGal near 91.25° W. After correcting for changes in crustal thickness, however, the gravity anomaly shows a minimum of -25 mGal near 92.2° W, the area where the GSC is intersected by the Wolf-Darwin volcanic lineament. We attribute the remaining 25% of swell bathymetry and 35% of gravity anomaly to an eastward reduction of mantle density above an effective compensation depth, constrained to be 50-200 km. Simple melting calculations assuming passive mantle upwelling predict that the observed crustal thickenning is consistent with a small eastward increase in mantle temperature of 15-25 ° C. This thermal anomaly produces an eastward decrease in mantle density due to thermal expansion and the subsequent along-axis variation in melt depletion. For preferred mantle compensation depths of 50-150 km the thermal effects can explain 40 to 70% of the mantle density anomaly required by the geophysical observations. Therefore, our results require the existence of compositionally-buoyant mantle beneath the GCS near the Galápagos plume. We will discuss plausible origins for the mantle anomaly such as depleted mantle by the upwelling plume, melt retention, or a mantle source enriched in incompatible elements and volatiles [Cushman et al., this meeting], and their implications for melting beneath the Galápagos plume-ridge system.

  7. Geometry of a large-scale low-angle mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2015-04-01

    Young orogens, such as the Alps, mainly expose the upper part of the continental crust and it is not possible to follow large-scale thrusts (e.g. the Glarus Thrust) to great depth in order to study their changing rheological behavior. This knowledge, however, is crucial for determining the overall kinematic and dynamic response during collision, as middle to lower crustal rocks represent the major part of the total crustal section. Information from deeper parts of the continental crust can only be obtained directly by investigating regions where these levels are now exhumed. The Musgrave Ranges in Central Australia is a very well exposed, semi-desert area, in which numerous large-scale shear zones developed during the Petermann Orogeny around 550 Ma. The most prominent structure is the ˜400 km long E-W trending Woodroffe Thrust, which placed ˜1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a generally south-dipping thrust plane with a top-to-north shear sense. Geothermobarometric calculations on the associated mylonites established that the structure developed under mid-crustal conditions (500-650°C, 0.8-1 GPa). Regional P/T variations in the direction of thrusting are small, but show trends consistent with the south-dipping orientation of the thrust plane, which predicts deeper levels and a higher metamorphic grade in the south than in the north. They imply a very low gradient of only around 3°C/km for a distance of some 30 km in the movement direction of the thrust. Combined with a geothermal gradient on the order of 20°C/km, calculated from four separate P/T estimates from the hanging wall and footwall, this regional gradient indicates that the Woodroffe Thrust was originally shallow-dipping at an average angle of only around 9°. This suggests that upper crustal brittle thrusts do not necessarily steepen into the middle to lower crust, but can define very shallow-dipping, large-scale planar features, with dimensions in the order of hundreds of kilometres. Such a geometry would require the rocks to be weak, but field observations (e.g. large volumes of syn-tectonic pseudotachylyte) argue for strong behaviour, involving alternating fast (seismic) fracturing and slow (aseismic) creep.

  8. Investigating the magnitude of lower crustal flow and impact on surface deformation patterns in Tibet using 3-D geodynamic models

    NASA Astrophysics Data System (ADS)

    Bischoff, S. H.; Flesch, L. M.

    2016-12-01

    Differential flow in the lower crust of Tibet has been invoked to explain features in the region, including uniform plateau elevation, crustal thickness/topographic gradients, and uplift without observed shortening. Here, we use 3-D finite element modeling to test impacts of assumed lower crustal viscosities on deformation patterns in the India-Eurasia collision zone. We simulate instantaneous lithospheric deformation with Stokes flow using COMSOL Multiphysics (www.comsol.com). Our model geometry ranges eastward from the Pamir to Sichuan, northward from the southern tip of India to the Tien Shan, and vertically downward from the Earth's surface to 100 km below sea level. We divide model geometry into four domains: Indian lithosphere, Eurasian upper crust, lower crust, and upper mantle. Seismic and magnetotelluric study results guide inclusion of subducted Indian and Burma slabs along with our targeted weak lower crust. Within the larger Eurasian lower crust domain, weak lower crust is restricted to a zone bounded clockwise by the Himalayan Frontal Thrust, Karakorum, Altyn-Tagh, Kunlun, Longmen Shan, and onset of lower elevations along the plateau's southeastern margin. From top to bottom, vertical bounds of the zone are constrained by a constant 20 km below sea level and the shallower of either the top of the Indian slab or Moho. Strength is approximated via 3-D maps of effective viscosity constrained by the vertically-averaged lithospheric estimates of Flesch et al. [2001]. We forward model lower crust effective viscosities on the order of 1018 to 1022 Pa•s and inspect resulting horizontal and vertical deformation patterns. Results suggest that effective viscosities of less than 1020 Pa•s are required for both appreciable differential mass flux through lower crustal flow as well as decoupled lower crustal flow from the upper crust or mantle. Movement of the lower crust is partitioned within weaker fault zones. Effective viscosities of 1020 Pa•s or less produce pronounced patterns of surface subsidence in Qiangtang and uplift in eastern Lhasa and Longmen Shan inconsistent with observations. Solutions show lower crust strength impacts surface stress style with weaker strengths leading to regions of dominant extension separated by compression in the east central Tibetan Plateau.

  9. Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand

    NASA Astrophysics Data System (ADS)

    Greve, A.; Stern, T. A.

    2017-12-01

    Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new crust are most likely the primary sources of the impressive 4 GW heat output of the CVR.

  10. Shear Wave Splitting Underneath Northwest Canada and Eastern Alaska from Transportable Array and Mackenzie Mountains Data

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.

    2017-12-01

    Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.

  11. Three-dimensional Models of Hydrothermal Circulation through a Seamount Network in Fast-spreading Crust

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Lauer, R. M.; Winslow, D. M.

    2015-12-01

    There is a region of 20-24 M.y. old seafloor on the eastern flank of the East Pacific Rise, offshore of Costa Rica, where the advective heat loss from the crust is 60-85% of lithospheric. Much of this advective flux occurs through basement outcrops that penetrate regionally thick sediments, but rates and patterns of hydrothermal circulation in this area are poorly understood. We have run a series of numerical simulations of coupled fluid-heat transport to assess how crustal aquifer and outcrop properties and the distance(s) between outcrops control ridge-flank hydrothermal flows in this setting. Extracting a large fraction of lithospheric heat through this process requires crustal aquifer permeability on the order of 10-10 to 10-9 m2, values considerably higher than seen on other ridge flanks (where advective heat extraction is less efficient). In simulations using two crustal outcrops having a different size, vigorous discharge of outcrop-to-outcrop flow is favored through the smaller and/or less permeable outcrop. In addition, simulations with a larger grid (40 km square versus 20 km square) result in higher fluid flow rates, apparently because there is more heat to be mined by flow between the outcrops. For simulations matching regional heat extraction observations, the outcrop-to-outcrop flow rates from the smaller outcrops are 1,000-3,000 kg/s (for the smaller grids) and 2,000-10,000 kg/s (for larger grids), values consistent with predictions made on the basis of a regional heat flux budget. In many simulations, local convection in and out of individual, large outcrops also removes a significant fraction of lithospheric heat. Additional simulations were conducted with three or four outcrops per simulation grid, to further explore relationships between the geometry, properties, and advective heat extraction.

  12. Eastern US crustal thickness estimates from spectral analysis and inversion of onshore Bouguer gravity anaomalies

    NASA Astrophysics Data System (ADS)

    Dybus, W.; Benoit, M. H.; Ebinger, C. J.

    2011-12-01

    The crustal thickness beneath much of the eastern half of the US is largely unconstrained. Though there have been several controlled source seismic surveys of the region, many of these studies suffer from rays that turn in the crust above the Moho, resulting in somewhat ambiguous crustal thickness values. Furthermore, the broadband seismic station coverage east of the Mississippi has been limited, and most of the region remains largely understudied. In this study, we estimated the depth to the Moho using both spectral analysis and inversion of Bouguer gravity anomalies. We systematically estimated depths to lithospheric density contrasts from radial power spectra of Bouguer gravity within 100 km X 100 km windows eastward from the Mississippi River to the Atlantic Coast, and northward from North Carolina to Maine. The slopes and slope breaks in the radial power spectra were computed using an automated algorithm. The slope values for each window were visually inspected and then used to estimate the depth to the Moho and other lithospheric density contrasts beneath each windowed region. Additionally, we performed a standard Oldenburg-Parker inversion for lithospheric density contrasts using various reference depths and density contrasts that are realistic for the different physiographic provinces in the Eastern US. Our preliminary results suggest that the gravity-derived Moho depths are similar to those found using seismic data, and that the crust is relatively thinner (~28-33 km) than expected in beneath the Piedmont region (~35-40 km). Given the relative paucity of seismic data in the eastern US, analysis of onshore gravity data is a valuable tool for interpolating between seismic stations.

  13. Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield

    NASA Astrophysics Data System (ADS)

    Doroshkevich, Anna G.; Prokopyev, Ilya R.; Izokh, Andrey E.; Klemd, Reiner; Ponomarchuk, Anton V.; Nikolaeva, Irina V.; Vladykin, Nikolay V.

    2018-04-01

    The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18 wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct 18O- and 13C-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative εNd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.

  14. Moon-Mercury: Large impact structures, isostasy and average crustal viscosity

    USGS Publications Warehouse

    Schaber, G.G.; Boyce, J.M.; Trask, N.J.

    1977-01-01

    Thirty-five craters and basins larger than 200 km in diameter are recognized on the imaged portion (45%) of Mercury. If the unimaged portion of the planet is similarly cratered, a total of 78 such impact features may be present. Sixty-two craters and basins 200 km in diameter are recognized on the moon, a body with only half the cross-sectional area of Mercury. If surface areas are considered, however, Mercury is cratered only 70% as densely as the moon. The density of impact craters with diameters greater than 400 km on Mercury is only 30% of that on the moon, and for craters with diameters between 400 and 700 km, the density on Mercury is only 21% of the lunar crater density. The size-frequency distribution curve for the large Mercurian craters follows the same cumulative -2 slope as the lunar curve but lies well below the 10% surface saturation level characteristic of the lunar curve. This is taken as evidence that the old heavily cratered terrain on Mercury is, at least presently, not in a state of cratering equilibrium. The reduced density of large craters and basins on Mercury relative to the moon could be either a function of the crater-production rates on these bodies or an effect of different crustal histories. Resurfacing of the planet after the basin-forming period is ruled out by the presence of 54 craters and basins 100 km in diameter and larger (on the imaged portion of Mercury) that have either well-defined or poorly-defined secondary-crater fields. Total isostatic compensation of impact craters ???800 km in diameter indicates that the average viscosity of the Mercurian crust over the past 4+ aeons was the same as that for the moon (???1026.5 P). This calculated viscosity and the distribution of large craters and basins suggest that either the very early crustal viscosity on Mercury was less than that of the moon and the present viscosity greater, or the differences in large crater populations on the two bodies is indeed the result of variations in rates of crater production. ?? 1977.

  15. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    PubMed Central

    Wang, Qiang; Hawkesworth, Chris J.; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui

    2016-01-01

    There is considerable controversy over the nature of geophysically recognized low-velocity–high-conductivity zones (LV–HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7–0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700–1,050 °C and pressures of 0.5–1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15–50 km in areas where the LV–HCZs have been recognized. This provides new petrological evidence that the LV–HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau. PMID:27307135

  16. Crustal gravitational potential energy change at the convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2003-12-01

    The Taiwan orogen has formed due to the convergence between the Philippine Sea plate and Eurasian plate. Numerous earthquakes are occurring along the active convergent plate boundary in eastern Taiwan. To the northeast, the Philippine Sea plates is subducting northwards beneath the Ryukyu Arc. To the south, the Eurasian plate is subducting eastwards beneath the Luzon Arc. The plate interaction has caused crustal deformation and produced earthquakes. The earthquakes have caused radial permanent displacement of the crust and have altered the crustal gravitational potential energy. Here we use the earthquake source mechanisms, determined by the Broadband Array in Taiwan for Seismology (BATs) from 1995 to 2003, to calculate the crustal gravitational potential energy (GPE) change and discuss their tectonic implication along the convergent plate boundary. In Ilan Plain, the westernmost Okinawa Trough, it shows a crustal GPE loss. It is related to the crustal subsidence because of the backarc extension of the Okinawa Trough. In contrast, due to the Philippine Sea plate subucting northwards beneath Eurasian Plate, the Ryukyu convergent boundary shows systematic crustal GPE gain. Near Taiwan, the crustal GPE change is gained, indicating the collisional convergence of the Luzon Arc. To the south of Taiwan, along the Luzon Arc the crustal GPE is also gain, representing the initial uplifting of the Taiwan mountain belt.

  17. Crustal and Upper Mantle Structure Beneath the Canary Islands From Teleseismic Receiver Functions.

    NASA Astrophysics Data System (ADS)

    Lodge, A.; Nippress, S. E.; Rietbrock, A.

    2007-12-01

    The Canary Islands are situated in the North Atlantic Ocean, <200km west of Morocco, Africa. The islands are volcanic ocean islands, associated with the classic hot spot characteristic combination of bathymetric, gravity and geoid anomalies. However, unlike the classic hot spot location of Hawaii, the archipelago is located on a slow moving plate, showing more similarities to the Cape Verde Islands, but unlike both Hawaii and Cape Verde, the Canary Islands are close to the continental shelf. The aims of this work are to provide seismic constraints on the structure beneath the Canary Islands to determine whether this structure indicates a clear age progression across the archipelago as observed at Cape Verde and to determine whether deeper structure may illuminate the source of the hot spot features. To take a transect through the Canary Islands using receiver function analysis, we re-analysed broadband data from the MIDSEA project station (available through IRIS), CDLV on Lanzarote (1999-2001), but apply the multiple- taper spectral correlation estimate for receiver function calculation. We also analysed broadband data from the IRIS Network station of TBT from La Palma (1993-1996). Additionally we also use data from a short period seismic network consisting of 150 short period stations installed for 2 weeks as part of the TOM-TEIDEVS project on the island of Tenerife. Only 1 teleseismic event suitable for receiver function analysis was recorded during this period. Initially an average of all events was to be used for modelling, but significant differences in receiver function shape between different areas of the island, suggested separate stacks for different regions was more appropriate. Initial forward modelling for the average azimuthal stack for CDLV, supports earlier receiver function work that indicates a crust thickened up to ~20km depth, but no evidence of a continental like structure. The average azimuthal stack for TBT shows few details, but when events are grouped by back azimuth and stacked, significant differences in shape are observed. Comparison of the tangential components for different back azimuths, suggests the existence of dipping and/or anisotropic layers. Forward modelling for a stack of data from the caldera in Tenerife, indicates no crustal thickening. This suggests a relationship between crustal thickening and age across the archipelago. Further analysis and application of grid search methods will reveal the structure beneath each of the islands in more detail and indicate whether a thermal or a compositional origin is more appropriate for the islands.

  18. Observed source parameters for dynamic rupture with non-uniform initial stressand relatively high fracture energy

    USGS Publications Warehouse

    Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,

    2012-01-01

    We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.

  19. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    NASA Astrophysics Data System (ADS)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for absence of UHP rocks in the southern Tibet.

  20. Joint inversion of surface wave dispersion and receiver functions for crustal structure in Oklahoma

    NASA Astrophysics Data System (ADS)

    Guo, Hao

    The surge in seismicity in Oklahoma starting in 2008 raises questions about the actual locations of the earthquakes in the upper crust. The key to answering this is an improved crustal model that explains as many observations as possible. Love and Rayleigh wave dispersion, teleseismic P-wave receiver functions and some unique transverse motions observed at distances less than 100 km that are characteristics of rays reverberating in a basin provide data to derive the crustal model. The surface wave dispersion data set consists of over 300,000 Love/Rayleigh phase/group values obtained from ambient noise cross-correlation of BH channels of the 133 Transportable Array (TA) stations of Earthscope to periods as short as 2 seconds. Station coverage is dense enough to perform the tomography on a 25*25 km grid that should be able to image shallow geological structures. In addition, receiver functions were obtained using teleseismic data recorded from 3 US Geological Survey Networks (GS) stations and 6 Oklahoma Seismic Network (OK) stations from 2011 to 2014. The 1-D S-wave velocity models derived by the joint inversion of surface wave dispersion and receiver functions with geological constraints are tested by fitting the independent transverse seismograms. This test also provides constraints on the earthquake depths in relation to the geological structure.

  1. The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles

    PubMed Central

    Gardiner, Nicholas J.; Kirkland, Christopher L.; Van Kranendonk, Martin J.

    2016-01-01

    Hf isotope ratios measured in igneous zircon are controlled by magmatic source, which may be linked to tectonic setting. Over the 200–500 Myr periodicity of the supercontinent cycle - the principal geological phenomenon controlling prevailing global tectonic style - juvenile Hf signals, i.e. most radiogenic, are typically measured in zircon from granites formed in arc settings (crustal growth), and evolved zircon Hf signals in granites formed in continent-collision settings (crustal reworking). Interrogations of Hf datasets for excursions related to Earth events commonly use the median value, however this may be equivocal due to magma mixing. The most juvenile part of the Hf signal is less influenced by crustal in-mixing, and arguably a more sensitive archive of Earth’s geodynamic state. We analyze the global Hf dataset for this juvenile signal, statistically correlating supercontinent amalgamation intervals with evolved Hf episodes, and breakup leading to re-assembly with juvenile Hf episodes. The juvenile Hf signal is more sensitive to Pangaea and Rodinia assembly, its amplitude increasing with successive cycles to a maximum with Gondwana assembly which may reflect enhanced subduction-erosion. We demonstrate that the juvenile Hf signal carries important information on prevailing global magmatic style, and thus tectonic processes. PMID:27924946

  2. Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking

    NASA Astrophysics Data System (ADS)

    Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi

    2017-12-01

    As seismic traveltime tomography continues to be refined using data from the vast USArray data set, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface wave amplification and attenuation at shorter periods (8-32 s) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than traveltime observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh wave amplitudes without the need for 3-D tomographic inversions.

  3. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  4. Comments on 'Anisotropic magnetic susceptibility in the continental lower crust and its implication for the shape of magnetic anomalies' by G. Florio et al.

    NASA Astrophysics Data System (ADS)

    Rochette, P.

    1994-12-01

    In their letter Lorio et al. (1993) recently explored the likelihood that the deflection with respect to present day magnetic North of dipolar lower crustal magnetic anomalies are caused by an induced magnetization deflected by strong anisotropy of magnetic susceptibility (AMS) rather than the usual explanation of an ancient natural remanent magnetization of a rotated body. Such an alternative would solve the theoretical problems raised by the stability of Natural Remanent Magnetization (NRM) at high temperature in the usually coarse grained magnetite bearing source rocks necessary to create large magnetic anomalies (Shive, 1989). They present a case study of two deep anomalies in southern Italy where the deflection is 30 to 40 deg. From a model of an anisotropic cubic source and an AMS dataset from representative deep crustal rocks from various part of the world, they conclude that no significant deflection of anomaly axis can be due to the average anisotropy ratio P(prime) = 1.5 observed in the dataset.

  5. Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Bohm, Mirjam; Asch, Günter

    2014-12-01

    Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.

  6. Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E.

    2017-05-01

    The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. Horizontal crustal displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense melt years. We discover that solitary seasonal waves of substantial mass transport (1.67 ± 0.54 Gt/month) traveled at an average speed of 7.1 km/month through Rink Glacier in 2012. We deduce that intense surface melting enhanced either basal lubrication or softening of shear margins, or both, causing the glacier to thin dynamically in summer. The newly routed upstream subglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present with important ramifications for the future sea level rise.

  7. Continuum calculations of continental deformation in transcurrent environments

    NASA Technical Reports Server (NTRS)

    Sonder, L. J.; England, P. C.; Houseman, G. A.

    1986-01-01

    A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.

  8. The moon: Sources of the crustal magnetic anomalies

    USGS Publications Warehouse

    Hood, L.L.; Coleman, P.J.; Wilhelms, D.E.

    1979-01-01

    Previously unmapped Apollo 16 subsatellite magnetometer data collected at low altitudes over the lunar near side are presented. Medium-amplitude magnetic anomalies exist over the Fra Mauro and Cayley Formations (primary and secondary basin ejecta emplaced 3.8 to 4.0 billion years ago) but are nearly absent over the maria and over the craters Copernicus, Kepler, and Reiner and their encircling ejecta mantles. The largest observed anomaly (radial component ??? 21 gammas at an altitude of 20 kilometers) is exactly correlated with a conspicuous light-colored deposit on western Oceanus Procellarum known as Reiner ??. Assuming that the Reiner ?? deposit is the source body and estimating its maximum average thickness as 10 meters, a minimum mean magnetization level of 5.2 ?? 2.4 ?? 10-2 electromagnetic units per gram, or ??? 500 times the stable magnetization component of the most magnetic returned sample, is calculated. An age for its emplacement of ??? 2.9 billion years is inferred from photogeologic evidence, implying that magnetization of lunar crustal materials must have continued for a period exceeding 1 billion years. Copyright ?? 1979 AAAS.

  9. Crustal structure of the Central-Eastern Greenland: results from the TopoGreenland refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans

    2014-05-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results with the new receiver function studies (Kraft et al., personal communication) suggests the possibility for a massive underplating along the profile. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland, which have average elevation above 1500 m with peak elevations of more than 3.5 km near the Scoresby Sund in Eastern Greenland, is unknown. Our new results on the crustal structure provide constraints for assessment of the isostatic balance of the crust in Greenland, as well as for examining possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region.

  10. Crustal structure of the Alps as seen by attenuation tomography

    NASA Astrophysics Data System (ADS)

    Mayor, Jessie; Calvet, Marie; Margerin, Ludovic; Vanderhaeghe, Olivier; Traversa, Paola

    2016-04-01

    We develop a simple tomographic approach exploiting the decay rate of coda waves to map the absorption properties of the crust in a region delimited approximately by the Rhine Graben to the North, the Apennines to the South, the Massif Central to the West and the Dinarides to the East. Our dataset comprises 40 000 coda records of about 2000 weak to moderate crustal earthquakes, with magnitude ranging from 2.8 to 6 and recorded by broad-band, accelerometric and short-period stations. After proper choice of a coda window minimizing the effects of variable epicentral distances, we measure the coda quality factor Qc in five non-overlapping frequency windows covering the 1-32 Hz band for all available source station pairs. These measurements are subsequently converted into maps of absorption quality factor (Qi) using a linearized, approximate relation between Qc and Qi. In practice the following procedure is applied in each frequency band: (1) we divide the target region into 40 × 40 km cells; (2) for each source-station pair, we assign the measured Qc value to each pixel intercepted by the direct ray path; (3) the results are averaged over all paths and subsequently smoothed with a 3 × 3 pixels moving window. Our approach is consistent with the high sensitivity of Qc to the value of Qi between source and station. Our tomographic approach reveals strong lateral variations of absorption with length scales ranging from 100 km to 1000 km. At low frequency (∼ 1 Hz), the correlation with the surface geology is clear, Cenozoic and Mesozoic sedimentary basins (resp. crystalline massifs) being recognized as high (resp. low)-absorption regions. Furthermore the Qi map delineates finer geological features such as the Ivrea Body, the Rhône Valley, or felsic intrusions in the central Alps. At high-frequency (>16 Hz), only the thickest Cenozoic sedimentary deposits show up as high-attenuation regions and a north/south dichotomy is apparent in the absorption structure. The limit between low-attenuation regions to the North and high-attenuation region to the South correlates geographically with the location of the Periadriatic Lineament (PL), a major late-alpine crustal- to lithospheric-scale structure. Furthermore, the attenuation structure seems to prolong the PL to the West along a line marked by large historical earthquakes. The Apennines orogenic belts exhibit a distinct frequency behavior, with high attenuation at low-frequency and low-attenuation at high-frequency. Low-frequency absorption may likely be explained by the relatively thick cover of Cenozoic sedimentary materials, as well as by shallow geothermal activity. We hypothesize that the frequency dependence of the attenuation structure, in particular in the Apennines, is caused by a change of the wavefield composition which accentuates the sensitivity of the coda to the deeper parts of the medium as the frequency increases.

  11. Birch's Crustal Heat Production-Heat Flow Law: Key to Quantifying Mantle Heat Flow as a function of time

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.; Thakur, M.

    2007-12-01

    Birch (1968) first showed the linear correlation of surface heat flow and radioactive heat production (Qs = Qo + bAs ) in granites in New England, USA and discussed implications to the vertical scale of radioactive heat generation in the crust. Subsequently similar relationships have been found worldwide and numerous papers written describing more details and expanding the implications of Birch's Law. The results are a powerful contribution from heat flow research to the understanding of the lithosphere and its evolution. Models are both well constrained experimentally and simple in implications. However, there still exist thermal models of the crust and lithosphere that do not have the same firm foundation and involve unnecessary ad hoc assumptions. A main point of confusion has been that the several of the original relationships were so low in error as to be considered by some to be "fortuitous". Interestingly a "similar" relationship has been proposed based on regional scale averaging of Qs -As data. A second point of confusion is that one admissible crustal radioactivity distribution model (the constant heat generation to depth b) has been criticized as unrealistic for a number of reasons, including the effect of erosion. However, it is appropriate to refer to the Qs -As relationship as a law because in fact the relationship holds as long as the vertical distribution is "geologically realistic." as will be demonstrated in this paper. All geologic and geophysical models of the continental crust imply decreasing heat production as a function of depth (i.e. the seismic layering for example) except in very special cases. This general decrease with depth is the only condition required for the existence of a "linear" Qs -As relationship. A comparison of all the Qs -As relationships proposed for terrains not affected by thermal events over the last 150 to 200 Ma shows a remarkably uniformity in slope (10 ± 3 km) and intercept value (30 ± 5 mWm-2 ). Therefore these parameters of Birch's Law equation represent the starting place for discussions of lithospheric thermal regime and evolution. The stability of the values of intercept Qo for areas with thermal ages of Paleozoic and older prove that the lithosphere heat flow does not vary significantly with age as is demonstrated in the companion paper. The minimum mantle heat flow for preMesozoic thermal terrains is 20 - 25 mWm-2. This value is consistent with the lack of indication from xenolith data that lithosphere thickness changes with age and with theoretical models of mantle convection.

  12. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  13. Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra, central New Mexico

    USGS Publications Warehouse

    Maldonado, F.; Budahn, J.R.; Peters, L.; Unruh, D.M.

    2006-01-01

    The geochronology, geochemistry, and isotopic compositions of basaltic flows erupted from the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra volcanic centres in central New Mexico indicate that each of these lavas had unique origins and that the predominant mantle involved in their production was an ocean-island basalt type. The basalts from Cat Hills (0.11 Ma) and Cat Mesa (3.0 Ma) are similar in major and trace element composition, but differences in MgO contents and Pb isotopic values are attributed to a small involvement of a lower crustal component in the genesis of the Cat Mesa rocks. The Cerro Verde rock is comparable in age (0.32 Ma) to the Cat Hills lavas, but it is more radiogenic in Sr and Nd, has higher MgO contents, and has a lower La/Yb ratio. This composition is explained by the melting of an enriched mantle source, but the involvement of another crustal component cannot be disregarded. The Wind Mesa rock is characterized by similar age (4.01 Ma) and MgO contents, but it has enriched rare-earth element contents compared with the Cat Mesa samples. These are attributed to a difference in the degree of partial melting of the Cat Mesa source. The Mesita Negra rock (8.11 Ma) has distinctive geochemical and isotopic compositions that suggest a different enriched mantle and that large amounts of a crustal component were involved in generating this magma. These data imply a temporal shift in magma source regions and crustal involvement, and have been previously proposed for Rio Grande rift lavas. ?? 2006 NRC Canada.

  14. Eastern Mediterranean geothermal resources and subduction dynamics

    NASA Astrophysics Data System (ADS)

    Roche, Vincent; Sternai, Pietro; Guillou-Frottier, Laurent; Jolivet, Laurent; Gerya, Taras

    2017-04-01

    The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here, we integrate these investigations by using the well documented geothermal anomalies geothermal anomalies. First, we use 3D high-resolution thermo-mechanical numerical models to quantify the potential contribution of the past Aegean-Anatolian subduction dynamics to such present-day measured thermal anomalies. Results suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Our quantification shows that the slab-induced shear heating at the base of the crust could partly explain the high heat flow values above the slab tear (i.e. in the Menderes Massif, Western Turkey). Second, the associated thermal signature at the base of the continental crust is used as basal thermal boundary condition for 2D crustal-scale models dedicated to the understanding of heat transfer from the abnormally hot mantle to the shallow geothermal reservoir. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results suggest that permeable low-angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. We suggest that detachments can drain crustal and/or mantellic fluids up to several kilometers depths. At the basin-scale, we show that the permeability of detachments may control the reservoirs location. Temperatures at the base of detachments may be subject to protracted increase (due to anomalously high basal heat flow) through time, thereby generating dome-shaped thermal structures. These structures, usually with 20km characteristic wavelength, may reach the Moho involving lateral rheological contrasts and possibly crustal-scale boudinage, thereby driving the formation of new crustal detachments.

  15. Density contrast across the Moho beneath the Indian shield: Implications for isostasy

    NASA Astrophysics Data System (ADS)

    Paul, Himangshu; Mangalampally, Ravi Kumar; Tiwari, Virendra Mani; Singh, Arun; Chadha, Rajender Kumar; Davuluri, Srinagesh

    2018-04-01

    Knowledge of isostasy provides insights into how excess (or deficit) of mass on and within the lithosphere is maintained over different time scales, and also helps decipher the vertical dynamics. In continental regions, isostasy is primarily manifested as a crustal root, the extent of which is defined by the lithospheric strength and the density contrast at the Moho. In this study, we briefly review the methodology for extracting the density contrast across the Moho using the amplitudes of the P-to-s converted and free-surface reverberating phases in a receiver function (RF). We test the efficacy of this technique by applying it on synthetic and real data from 10 broadband seismic stations sited on diverse tectonic provinces in the Indian shield. We determine the density contrast after parameterizing the shear-wave velocity structure beneath the stations using the nearest neighbourhood algorithm. We find considerable variation in the density contrast across the Moho beneath the stations (0.4-0.65 gm/cc). This is explained in terms of isostatic compensation, incorporating the existing estimates of lithospheric strength (Te). Crustal roots computed using the estimated Te and the deduced density contrast substantiate the crustal thickness values inferred through RF analysis, and vice versa. This illustrates isostasy as a combination of variation in density contrast and Te. The density contrasts and crustal thicknesses inferred from RF analysis explain well the isostatic compensation mechanism in different regions. However, unusually large density contrasts (∼0.6 gm/cc) corresponding to elevated regions are intriguing and warrant further investigations. Our observation of varied density contrasts at the Moho in a Precambrian continental setting is interesting and raises a question about the existence of such situations in other parts of the world.

  16. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Gopal; Champati ray, P. K.; Mohanty, S.

    2018-01-01

    Alaknanda basin in the Garhwal Himalaya, India, is a tectonically active region owing to ongoing crustal deformation, erosion, and depositional processes active in the region. Active tectonics in this region have greatly affected the drainage system and geomorphic expression of topography and provide an ideal natural set up to investigate the influence of tectonic activity resulting from the India-Eurasia collision. We evaluated active tectonics by using high resolution digital elevation model (DEM) based on eight geomorphic indices (stream length gradient index, valley floor width-to-height ratio, hypsometric integral, drainage basin asymmetry, transverse topography symmetry factor, mountain front sinousity index, bifurcation ratio, and basin shape index) and seismicity in eight subbasins of Alaknanda basin. The integrated product, relative tectonic activity index (TAI) map, was classified into three classes such as: 'highly active' with values ranging up to 2.0; 'moderately active' with values ranging from 2.0 to 2.25; and 'less active' with values > 2.25. Further, the results were compared with relatively high crustal movement rate of 41.10 mm/y computed through high precession Global Navigation Satellite System (GNSS) based continuous operating reference station (CORS) data. Thus, we concluded that this new quantitative approach can be used for better characterization and assessment of active seismotectonic regions of the Himalaya and elsewhere.

  17. Crustal attenuation characteristics in western Turkey

    NASA Astrophysics Data System (ADS)

    Kurtulmuş, Tevfik Özgür; Akyol, Nihal

    2013-11-01

    We analysed 1764 records produced by 322 micro- and moderate-size local earthquakes in western Turkey to estimate crustal attenuation characteristics in the frequency range of 1.0 ≤ f ≤ 10 Hz. In the first step, we obtained non-parametric attenuation functions and they show that seismic recordings of transverse and radial S waves exhibit different characteristics at short and long hypocentral distances. Applying a two-step inversion, we parametrized Q( f ) and geometrical spreading exponent b( f ) for the entire distance range between 10 and 200 km and then we estimated separately Q and b values for short (10-70 km) and large (120-200 km) distance ranges. We could not observe significant frequency dependencies of b for short distance range, whereas the significant frequency dependence of b was observed for large distances. Low Q0 values (˜60) with strong frequency dependence of Q (˜1.4) for short distances suggest that scattering might be an important factor contributing to the attenuation of body waves in the region, which could be associated to a high degree of fracturing, fluid filled cracks, young volcanism and geothermal activity in the crust. Weak Q frequency dependence and higher Q0 values for large distances manifest more homogenous medium because of increasing pressure and enhanced healing of cracks with increasing temperature and depth. Q anisotropy was also observed for large hypocentral distance ranges.

  18. How to build stable geochemical reservoirs on Mars?

    NASA Astrophysics Data System (ADS)

    Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2014-05-01

    To explain the complex thermo-chemical processes needed for the formation of distinct and stable geochemical reservoirs early in the thermo-chemical evolution of Mars, most geochemical studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical models show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography modelling [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable geochemical reservoirs is presented similar to the model of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The entire convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution [6]. Some of these reservoirs can be sustained during the entire evolution whereas others change with time - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites. References: [1] Elkins-Tanton et al., 2005, EPSL; [2] Debaille et al., 2009, Nature; [3] Tosi et al., 2013, JGR; [4] Plesa et al., submitted to EPSL; [5] Ogawa and Yanagisawa 2011, JGR; [6] Plesa and Breuer, 2013, PSS.

  19. Regional Studies of Highland-Lowland Age Differences Across the Mars Crustal Dichotomy Boundary

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; DeSoto, G. E.; Lazrus, R. M.

    2005-01-01

    Regional differences in crater retention ages (CRAs) across the Mars dichotomy boundary are compared to the global highland-lowland age difference previously determined from visible and buried impact basins based on MOLA-derived Quasi-Circular Depressions (QCDs). Here Western Arabia (WA) is compared with Ismenius Lacus (IL). We find the buried lowlands in the two regions have total CRAs essentially identical to the global average. Even more intriguing, the WA cratered terrain appears to have a CRA like that of the adjacent buried lowlands,

  20. Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?

    NASA Technical Reports Server (NTRS)

    Hastings, D. A.

    1985-01-01

    Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes.

Top