Sample records for average diameter ranging

  1. Half-peroneus-longus-tendon graft augmentation for unqualified hamstring tendon graft of anterior cruciate ligament reconstruction.

    PubMed

    Liu, Chung-Ting; Lu, Yung-Chang; Huang, Chang-Hung

    2015-09-01

    In some situations, harvested hamstring tendon grafts are not qualified for anterior cruciate ligament (ACL) reconstruction. This study aimed to present a reinforcing method with additional half peroneus longus tendon (half-PLT) graft augmentation. Eight cases underwent ACL reconstruction with unqualified hamstring tendon grafts (diameter <7 mm) and were salvaged by additional half-PLT graft augmentation. The pivot shift test and KT-1000 tests were performed 3 years after surgery. Functional evaluation of subjective International Knee Documentation Committee (IKDC) and Lysholm scores was also done. In addition, Foot and Ankle Disability Index (FADI) scores were used to evaluate the function of the ankle donor site. The diameter of unqualified four-strand hamstring tendon grafts was 6.2 mm on average (range, 6.0-6.5 mm). The average diameter of hamstring grafts with half-PLT augmentation was 9.6 mm (range, 9.5-10.0 mm). The pivot shift test was negative in all patients. No significant differences between normal and abnormal knees were found by KT-1000. The average IKDC score was 86.0 (range, 83 to 89), and the average Lysholm score was 84.4 (range, 80-90). The average FADI score for the donor sites of half-PLT was 135.8 (range, 134-136). Additional half-PLT can successfully and safely reinforce unqualified hamstring tendon grafts for ACL reconstruction.

  2. Diameter-growth model across shortleaf pine range using regression tree analysis

    Treesearch

    Daniel Yaussy; Louis Iverson; Anantha Prasad

    1999-01-01

    Diameter growth of a tree in most gap-phase models is limited by light, nutrients, moisture, and temperature. Growing-season temperature is represented by growing degree days (gdd), which is the sum of the average daily temperatures above a baseline temperature. Gap-phase models determine the north-south range of a species by the gdd limits at the north and south...

  3. Five Years' Growth of Pruned and Unpruned Cottonwood Planted at 40- by 40-Foot Spacing

    Treesearch

    Roger M. Krinard

    1979-01-01

    Four pruning treatments have been applied for 5 years on cottonwood (Populus deltoides Bartr.) select clone Stoneville 66, planted at 40- by 40-ft spacing. As pruning severity increased, average diameter and maximum crown width decreased. Diameters ranged from 9.2 inches for trees pruned half of height yearly to 11.4 inches for unpruned trees; crown widths ranged from...

  4. Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition

    PubMed Central

    Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2014-01-01

    We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201

  5. Transition of carbon nanostructures in heptane diffusion flames

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui

    2017-02-01

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  6. Baseline Overstory Conditions in Four Watersheds of Varying Management Intensity in the Eastern Ouachita Mountains

    Treesearch

    James M. Guldin; Thomas Foti

    2004-01-01

    Abstract - Baseline tree data were collected in four watersheds in the eastern Ouachita Mountains during 1996-98. By watershed, average basal area ranged from 71 to 102 square feet per acre, average tree density ranged from 234 to 295 trees per acre, and quadratic mean diameter of trees ranged from 7.41 to 8.22 inches. Variables for which the largest...

  7. Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kothiyal, Alok Darshan; Bisht, Mangal Singh; Kumar, Anil

    In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000-18000. Different nanoparticles (Al2O3, CuO, and ZnO), with different concentration (φ) range of 1-4% and different nanoparticle diameter (dnp) range of 30-45 nm are disperse in water (base fluid). Several parameters such as stream wise distance (Xs /dp) range of 1.4-2.6, span wise distance (Ys /dp) range of 1.4-2.6, ratio of protruded height to print diameter (ep /dp) range of 0.83-1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent). Renormalization k - ε model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, φ = 0.04, dnp = 30 nm, Xs /dp = 1.8, Ys /dp = 1.8 and ep /dp = 1.0 . The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within ±7.0% error band.

  8. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  9. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    NASA Astrophysics Data System (ADS)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  10. Effect of a rotor wake on heat transfer from a circular cylinder

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Morehouse, K. A.; Vanfossen, G. J.; Behning, F. P.

    1984-01-01

    The effect of a rotor wake on heat transfer to a downstream stator was investigated. The rotor was modeled with a spoked wheel of 24 circular pins 1.59 mm in diameter. One of the stator pins was electrically heated in the midspan region and circumferentially averaged heat transfer coefficients were obtained. The experiment was run in an annular flow wind tunnel using air at ambient temperature and pressure. Reynolds numbers based on stator cylinder diameter ranged from .001 to .00001. Rotor blade passing frequencies ranged from zero to 2500 Hz. Stationary grids were used to vary the rotor inlet turbulence from one to four percent. The rotor-stator spacings were one and two stator pin diameters. In addition to the heat transfer coefficients, turbulence spectra and ensemble averaged wake profiles were measured. At the higher Reynolds numbers, which is the primary range of interest for turbulent heat transfer, the rotor wakes increased Nusselt number from 10 to 45 percent depending on conditions. At lower Reynolds numbers the effect was as much as a factor of two.

  11. Stochastic theory of fatigue corrosion

    NASA Astrophysics Data System (ADS)

    Hu, Haiyun

    1999-10-01

    A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.

  12. 7 CFR 51.2113 - Size requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of range in count of whole almond kernels per ounce or in terms of minimum, or minimum and maximum diameter. When a range in count is specified, the whole kernels shall be fairly uniform in size, and the average count per ounce shall be within the range specified. Doubles and broken kernels shall not be used...

  13. Diameters of the cavo-sinus-tricuspid area in relation to type I atrial flutter.

    PubMed

    Kozłowski, Dariusz; Hreczecha, Jolanta; Skwarek, Magdalena; Piwko, Grzegorz; Kosiński, Adam; Gawrysiak, Marcin; Grzybiak, Marek

    2003-05-01

    Cardiac arrhythmias have troubled patients and fascinated physicians for centuries. The twentieth century was an era of progress, when the mechanism of cardiac disorders became more commonly recognised. Arrhythmias may be due to abnormalities of automaticity, to abnormalities of conduction, or to a combination of both. In order for re-entry to occur, an area of slowing conduction combined with unidirectional block must be present. Much investigation has centred on the underlying re-entry mechanisms of atrial flutter. In the light of these facts, it would seem that a close acquaintance with the detailed topography of the vena cava orifice (cavo), coronary sinus orifice (sinus) and the attachment of the septal leaflet of the tricuspid valve (tricupid) area could be of great interest, especially for invasive cardiologists. The research was conducted carried out on material consisting of 41 hearts of humans of both sexes from the age of 12 to 80 (6 female, 35 male). Classical macroscopic methods of anatomical evaluation were used. The following measurements were made: the shortest distance between the Eustachian valve and the attachment of the tricuspid valve on the left margin of the coronary sinus orifice (diameter 1), the distance between the attachment of the tricuspid valve and the inferior margin of the sinus orifice (diameter 2), the distance between the Eustachian valve and the attachment of the tricuspid valve on the right margin of the coronary sinus orifice (diameter 3), the distance between the inferior margin of the vena cava inferior and the attachment of the tricuspid valve (diameter 4) and, finally, the diameter between the attachment of the septal cusp of the tricuspid valve and the extemal border of the vena cava inferior (diameter 5). No correlation was found between the age and sex of the three groups of the material. The dimensions of the structure examined were similar in the three groups of hearts. In young adult hearts all the diameters measured ranged from 4 to 47 mm. The average diameters were, respectively: 15.02 mm (diameter 1), 8.97 mm (diameter 2), 17.27 mm (diameter 3), 26.87 mm (diameter 4), 36.42 mm (diameter 5). In the mature adult hearts all the diameters measured ranged from 8 to 45 mm; 18.19 mm (diameter 1), 10.54 mm (diameter 2), 19.95 mm (diameter 3), 28.90 mm (diameter 4), 39.63 mm (diameter 5). In the older adults hearts all the diameters measured ranged from 4 to 47 mm. The average diameters were, respectively: 15.65 mm (diameter 1), 8.70 mm (diameter 2), 7.25 mm (diameter 3), 26.80 mm (diameter 4), 35.85 mm (diameter 5). On the basis of our study we were able to conclude that the diameters of the cavo-sinus-tricuspid area were constant and did not differ significantly within the three (young, mature, old) adult groups examined.

  14. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    PubMed

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.

  15. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  16. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  17. Reynolds Number Effects on Helicopter Rotor Hub Flow

    NASA Astrophysics Data System (ADS)

    Reich, David; Willits, Steve; Schmitz, Sven

    2015-11-01

    The 12 inch diameter water tunnel at the Pennsylvania State University Applied Research Laboratory was used with the objective of quantifying effects of Reynolds number scaling on drag and shed wake of model helicopter rotor hub flows. Hub diameter-based Reynolds numbers ranged from 1.06 million to 2.62 million. Measurements included steady and unsteady hub drag, as well as Particle Image Velocimetry. Results include time-averaged, phase-averaged, and spectral analysis of the drag and wake flow-field. A strong dependence of steady and unsteady drag on Reynolds number was noted, alluding to the importance of adequate Reynolds scaling for model helicopter rotor hubs that exhibit interaction between various bluff bodies.

  18. Roystonea borinquena O.F.

    Treesearch

    K.F Connor

    2002-01-01

    Roystonea borinquena is a rapidly growing tree with an average height of 12-18 m but it can reach up to 26.4 m. Young trees can average 1 m height growth annually. Diameters range from 25 to 70 cm; maximum age is 80-110 yrs. The tree has a smooth, gray trunk with a swollen base and gracefully drooping fronds. It is native to Puerto Rico, the...

  19. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.

  20. Amorphous iron–chromium oxide nanoparticles with long-term stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, B; Brady, S; Kaufman, R

    Purpose: Investigate the correlation of SSDE with organ dose in a pediatric population. Methods: Four anthropomorphic phantoms, representing a range of pediatric body habitus, were scanned with MOSFET dosimeters placed at 23 organ locations to determine absolute organ dosimetry. Phantom organ dosimetry was divided by phantom SSDE to determine correlation between organ dose and SSDE. Correlation factors were then multiplied by patient SSDE to estimate patient organ dose. Patient demographics consisted of 352 chest and 241 abdominopelvic CT examinations, 22 ± 15 kg (range 5−55 kg) mean weight, and 6 ± 5 years (range 4 mon to 23 years) meanmore » age. Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm. 23 organ correlation factors were determined in the chest and abdominopelvic region across nine pediatric weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7−1.4) and abdominopelvic (average 0.9; range 0.7−1.3) was near unity. For organs that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1−0.4) for both the chest and abdominopelvic regions, respectively. Pediatric organ dosimetry was compared to published values and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusion: Average correlation of SSDE and organ dosimetry was found to be better than ± 10% for fully covered organs within the scan volume. This study provides a list of organ dose correlation factors for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.« less

  2. Preston Probe Calibrations at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Smits, Alexander J.

    1998-01-01

    The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.

  3. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    PubMed Central

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  4. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  5. Hair root diameter measurement as an indicator of protein deficiency in nonhospitalized alcoholics.

    PubMed

    Bregar, R R; Gordon, M; Whitney, E N

    1978-02-01

    Protein status of alcoholics admitted to a detoxification center was investigated with a view to adapting a hair root test for use in screening for protein deficiency. Hair root volume and hair root diameter had previously been shown to correlate well with hair root protein and to be sensitive indicators of protein deficiency. Hair root volumes in this study correlated well with mean maximum hair root diameters (n = 35, r = 0.9), which were simpler to measure, so diameter measurements were used. Mean maximum hair root diameters (range 0.02 to 0.19 mm) correlated with plasma RNase concentrations (range 6000 to 14,000 units/ml; n = 17, r = -0.7). Mean hair diameters of 84 alcoholics averaged 0.0864 +/- 0.0366 mm; those of 25 nonalcoholics were significantly greater: 0.100 +/- 0.0254 mm (P less than 0.05). Frequency of occurrence of hair root diameters of 0.06 mm or less was significantly higher in 71 alcoholics (29.5%) than in 23 nonalcoholics (8.6%) matched by age. Mean hair root diameters of 0.06 mm or less therefore can be used to signify protein deficiency where more expensive or technically demanding tests are not feasible. Protein deficiency occurs extensively in non hospitalized alcoholics. This method enables staff to single out those clients most likely to be in need of nutritional counseling and therapy.

  6. Consideration of growth (age)-related effects on globe size and corneal thickness in ovine eyes for use in laboratory studies.

    PubMed

    Doughty, Michael J

    2017-07-01

    The aim was to assess differences in eyeball mass, corneal diameter and central corneal thickness in slaughterhouse-procured ovine eyes. Over a 12-year period, measurements of eye globe mass, horizontal corneal diameter and central corneal thickness were routinely undertaken within two hours post-mortem. Only eyes free of obvious mechanical damage or disease were used. From measurements on 736 quality-selected and trimmed eyes, globe wet mass ranged from 10.4 to 25.2 g, horizontal corneal diameter from 19.0 to 26.5 mm and central corneal thickness measured by ultrasonic pachymetry from 0.543 to 0.836 mm (with an overall average of 690 ± 0.056 mm). The ocular globe mass was strongly correlated to horizontal corneal diameter (r 2  = 0.829). Central corneal thickness correlated with globe mass (r = 0.543) and to horizontal corneal diameter (r = 0.402). Based on the different anatomical measurements, a lamb's eye would be expected to have a thinner cornea (average 0.640 mm) than that of an adult outbred ewe (average 0.730 mm). In freshly procured eyes showing signs of slight corneal oedema, central corneal thickness was greater (average 0.856 ± 0.052 mm) and up to 24 hours of cold storage resulted in predictable increases in central corneal thickness of six to 24 per cent, especially in eyes showing signs of corneal oedema before storage. Based on the correlations obtained, differences in ovine eyes can be attributed to growth-related differences in the animals and thus, indirectly to their expected ages. A simple measure of the horizontal corneal diameter in ovine eyes used for laboratory studies would be a useful indicator in reporting these studies. © 2016 Optometry Australia.

  7. The analysis of corneal asphericity (Q value) and its related factors of 1,683 Chinese eyes older than 30 years.

    PubMed

    Xiong, Ying; Li, Jing; Wang, Ningli; Liu, Xue; Wang, Zhao; Tsai, Frank F; Wan, Xiuhua

    2017-01-01

    To determine corneal Q value and its related factors in Chinese subjects older than 30 years. Cross sectional study. 1,683 participants (1,683 eyes) from the Handan Eye Study were involved, including 955 female and 728 male with average age of 53.64 years old (range from 30 to 107 years). The corneal Q values of anterior and posterior surfaces were measured at 3.0, 5.0 and 7.0mm aperture diameters using Bausch & Lomb Orbscan IIz (software version 3.12). Age, gender and refractive power were recorded. The average Q values of the anterior surface at 3.0, 5.0 and 7.0mm aperture diameters were -0.28±0.18, -0.28±0.18, and -0.29±0.18, respectively. The average Q value of the anterior surface at the 5.0mm aperture diameter was negatively correlated with age (B = -0.003, p<0.01) and the refractive power (B = -0.013, p = 0.016). The average Q values of the posterior surface at 3.0, 5.0, and 7.0mm were -0.26±0.216, -0.26±0.214, and -0.26±0.215, respectively. The average Q value of the posterior surface at the 5.0mm aperture diameter was positively correlated with age (B = 0.002, p = 0.036) and the refractive power (B = 0.016, p = 0.043). The corneal Q value of the elderly Chinese subjects is different from that of previously reported European and American subjects, and the Q value appears to be correlated with age and refractive power.

  8. Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann

    2012-01-01

    Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay

    The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession.more » This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.« less

  10. High performance thermoelectric nanocomposite device

    DOEpatents

    Yang, Jihui [Lakeshore, CA; Snyder, Dexter D [Birmingham, MI

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  11. Ordovician Jeleniów Claystone Formation of the Holy Cross Mountains, Poland - Reconstruction of Redox Conditions Using Pyrite Framboid Study

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek; Trela, Wiesław

    2014-09-01

    The aim of this research is to reconstruct palaeoredox conditions during sedimentation of the Jeleniów Claystone Formation deposits, using framboid pyrite diameter measurements. Analysis of pyrite framboids diameter distribution is an effective method in the palaeoenvironmental interpretation which allow for a more detailed insight into the redox conditions, and thus the distinction between euxinic, dysoxic and anoxic conditions. Most of the samples is characterized by framboid indicators typical for anoxic/euxinic conditions in the water column, with average (mean) values ranging from 5.29 to 6.02 urn and quite low standard deviation (SD) values ranging from 1.49 to 3.0. The remaining samples have shown slightly higher values of framboid diameter typical for upper dysoxic conditions, with average values (6.37 to 7.20 um) and low standard deviation (SD) values (1.88 to 2.88). From the depth of 75.5 m till the shallowest part of the Jeleniów Claystone Formation, two samples have been examined and no framboids has been detected. Because secondary weathering should be excluded, the lack of framboids possibly indicates oxic conditions in the water column. Oxic conditions continue within the Wólka Formation based on the lack of framboids in the ZB 51.6 sample.

  12. Ordovician Jeleniów Claystone Formation of the Holy Cross Mountains, Poland - Reconstruction of redox conditions using pyrite framboid study

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek; Trela, Wiesław

    2014-09-01

    The aim of this research is to reconstruct palaeoredox conditions during sedimentation of the Jeleniów Claystone Formation deposits, using framboid pyrite diameter measurements. Analysis of pyrite framboids diameter distribution is an effective method in the palaeoenvironmental interpretation which allow for a more detailed insight into the redox conditions, and thus the distinction between euxinic, dysoxic and anoxic conditions. Most of the samples is characterized by framboid indicators typical for anoxic/euxinic conditions in the water column, with average (mean) values ranging from 5.29 to 6.02 μm and quite low standard deviation (SD) values ranging from 1.49 to 3.0. The remaining samples have shown slightly higher values of framboid diameter typical for upper dysoxic conditions, with average values (6.37 to 7.20 μm) and low standard deviation (SD) values (1.88 to 2.88). From the depth of 75.5 m till the shallowest part of the Jeleniów Claystone Formation, two samples have been examined and no framboids has been detected. Because secondary weathering should be excluded, the lack of framboids possibly indicates oxic conditions in the water column. Oxic conditions continue within the Wólka Formation based on the lack of framboids in the ZB 51.6 sample

  13. Nanofiber alignment of a small diameter elastic electrospun scaffold

    NASA Astrophysics Data System (ADS)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data providing an accurate, user friendly orientation measurement tool.

  14. Metasequoia glyptostroboides and its Utility in Paleoecological Reconstruction of Eocene High Latitude Forests

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; LePage, B. A.; Vann, D. R.; Johnson, A. H.

    2001-05-01

    Abundant fossil plant remains are preserved in the Eocene-aged deposits of the Buchanan Lake formation on Axel Heiberg Island, Nunavut, Canada. Intact leaf litter, logs, and stumps preserved in situ as mummified remains present an opportunity to determine forest composition, structure, and productivity of a Taxodiaceae-dominated forest that once grew north of the Arctic Circle (paleolatitude 75-80° N). We excavated 37 tree stems for dimensional analysis from mudstone and channel-sand deposits. Stem length ranged from 1.0 m to 14.8 m (average = 3.2 m). Stem diameter ranged from less than 10 cm to greater than 75 cm (average = 32.2 cm). All stem wood was tentatively identified to genus as Metasequoia sp. The diameters and parabolic shape of the preserved tree trunks indicate that the Metasequoia were about 39 m tall across a wide range of diameters. The allometric relationships we derived for modern Metasequoia (n=70) allowed independent predictions of Metasequoia height given the stand density and stump diameters of the fossil forest. The two height estimates of 40 and 40.5 m match the results obtained from measurements of the Eocene trees. We used stump diameter data (n =107, diameter > 20 cm) and an uniform canopy height of 39 m to calculate parabolic stem volume and stem biomass for a 0.22 ha area of fossil forest. Stem volume equaled 2065 m3 ha-1 and stem biomass equaled 560 Mg ha-1 . In the Eocene forest, as determined from length of stems that were free of protruding branches and from 7 exhumed tree tops, the uppermost 9 m of the trees carried live branches with foliage. In living conifers, branch weights and the amount of foliage carried by branches are well correlated with branch diameters measured where the branch joins the main stem. To determine the biomass in branches and foliage in the Eocene forest, we used relationships derived from large modern Metasequoia. Based on the regression of branch weight v. branch diameter (r2 = 0.97) and foliar biomass v. branch diameter (r2 = 0.91) for living Metasequoia and branch diameters of the Eocene trees, branch biomass of the Eocene trees was estimated to be 28 Mg ha-1 dry weight and foliar biomass (and annual foliar production for this deciduous conifer) of fossil Metasequoia was estimated to be 3.5 Mg ha-1 dry weight. Total standing biomass of the fossil forest was estimated to be 591 Mg ha-1 dry weight. On a stand-average basis, the annual ring width of the trees we sampled equaled 1.3 mm. Based on this ring width our preliminary estimate for the aboveground net primary productivity (NPP) of these forests is 5.9 Mg ha-1yr^{-1}$ (foliage production plus wood production). Thus, these were high biomass forests with moderate productivity typical of modern cool temperate forests similar in stature and total biomass to the modern old-growth forests of the Pacific Northwest (USA).

  15. Altered bulbar conjunctival microcirculation in response to contact lens wear

    PubMed Central

    Chen, Wan; Xu, Zhe; Jiang, Hong; Zhou, Jin; Wang, Liang; Wang, Jianhua

    2015-01-01

    Purpose This study was conducted to determine blood flow velocities and corresponding vessel diameters to characterize the response of the bulbar conjunctival microvasculature to contact lens wear. Methods A Functional Slit-lamp Biomicroscope (FSLB), an adapted traditional slit-lamp, was used to image the temporal bulbar conjunctiva of 22 healthy subjects before and after 6 hours of contact lens wear. All of the measurable venules on the conjunctiva were processed to yield vessel diameters and blood flow velocities. Results The averaged blood flow velocity increased from 0.51 ± 0.20 mm/s to 0.65 ± 0.22 mm/s (P < 0.001) after 6 hours of lens wear. The blood flow velocity distribution showed a velocity increase that correlated with the vessel diameter increase from the baseline (r = 0.826, P < 0.05). This pattern maintained a similar trend after 6 hours of lens wear (r = 0.925, P < 0.05), and increased velocities were found across all of the vessel diameter ranges (P < 0.001). Conclusions Blood flow velocity increases across all of the vessel diameter ranges in response to contact lens wear. FSLB is capable of characterizing the bulbar microvascular response to contact lens wear. PMID:27078615

  16. Properties and evolution of near-Earth-object families created by tidal disruption at the Earth

    NASA Astrophysics Data System (ADS)

    Schunova, E.; Walsh, K.; Granvik, M.; Jedicke, R.; Wainscoat, R.; Haghighipour, N.

    2014-07-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent 'S-class' disruption events and create a 'string of pearls' configuration of the resulting fragments after their reaccummulation into gravitationally bound components [3]. We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is Δ H ˜ 1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10^{(0.55±0.04) H}, for the fragments in the S-class families is steeper than the slope of the NEO population [2] in the same size range. The families remain coherent as statistically significant clusters of orbits within the NEO population for an average of barτ_c = (14.7±0.6)×10^3 years after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space -- they are detectable with the techniques developed by [1] and [4] for an average duration (barτ_{det}) ranging from about 2,000 to about 12,000 years for progenitors in the absolute magnitude (H_p) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is H_{p,max} = 20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1 m to 10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth's vicinity. These objects may be suitable targets for asteroid retrieval missions due to their Earth-like orbits with corresponding low v_∞ which permits low-cost missions. The fragments from the tidal disruptions evolve into orbits that bring them into collision with terrestrial planets or the Sun or they may be ejected from the solar system on hyperbolic orbits due to deep planetary encounters. The end-state for the fragments from a tidal disruption at Earth have ˜5× the collision probability with Earth compared to the background NEO population.

  17. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica)

    NASA Astrophysics Data System (ADS)

    Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.

    2010-08-01

    This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.

  18. Long-term diameter growth for trees in the Cinnamon Bay Watershed

    Treesearch

    Peter L. Weaver

    2009-01-01

    From 1983 to 2008, the mean annual diameter growth (MAI) for 1,402 surviving stems of 62 species in the Cinnamon Bay watershed was 0.08¡À0.002 cm yr-1. Long-term MAI ranged from 0.02 cm yr-1 for Randia aculeata to 0.23 cm yr-1 for Inga laurina. Of the 30 species with ¡Ý8 surviving stems, eight averaged ¡Ý0.10 cm yr-1. Hurricane Hugo in 1989, Hurricane Marilyn in 1995,...

  19. Roost habitat of Mexican Spotted Owls (Strix occidentalis lucida) in the canyonlands of Utah

    USGS Publications Warehouse

    Willey, David W.; van Riper, Charles

    2015-01-01

    In large portions of their geographic range, Mexican Spotted Owls (Strix occidentalis lucida) roost in forest-dominated environments, but in some areas the owls use relatively arid rocky canyonlands. We measured habitat characteristics at 133 male roosts (n = 20 males) during 1992-95, and 56 female roosts (n = 13 females) during 1994-95. Across all years and study areas, 44% of Mexican Spotted Owl roosts occurred in mixed-conifer forest patches, 30% in desert scrub habitat, 16% in pinyon-juniper woodlands, and 10% of roosts occurred in riparian vegetation. Two basic substrates were used as perches by owls, including rock ledges or various trees, where roost height averaged 9 m (0.54 SD), and average height of cliffs above perched owls was 50 m (58 SD). For both males and females, trees types used most frequently included various firs (51%), followed by pinyon pine (18%), Utah juniper (15%), and big-tooth maple or box elder combined (15%). Roost sites were located in canyons composed of cliff-forming geologic formations, primarily oriented north-west to south-east. The width of canyons measured at roosts averaged 68 m (105 SD), but ranged from 1-500 m. Canopy cover at roosts used by owls ranged from 44% to 71%, mean tree height of all trees present was 9.5 m and mean diameter of trees was 25.4 cm. Non-roost habitat was warmer, not as steep, and possessed fewer caves and ledges than roost habitat. Trees present in roost plots were taller, and thus showed greater average diameter than trees present in non-roost habitat.

  20. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    PubMed

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  1. Range camera on conveyor belts: estimating size distribution and systematic errors due to occlusion

    NASA Astrophysics Data System (ADS)

    Blomquist, Mats; Wernersson, Ake V.

    1999-11-01

    When range cameras are used for analyzing irregular material on a conveyor belt there will be complications like missing segments caused by occlusion. Also, a number of range discontinuities will be present. In a frame work towards stochastic geometry, conditions are found for the cases when range discontinuities take place. The test objects in this paper are pellets for the steel industry. An illuminating laser plane will give range discontinuities at the edges of each individual object. These discontinuities are used to detect and measure the chord created by the intersection of the laser plane and the object. From the measured chords we derive the average diameter and its variance. An improved method is to use a pair of parallel illuminating light planes to extract two chords. The estimation error for this method is not larger than the natural shape fluctuations (the difference in diameter) for the pellets. The laser- camera optronics is sensitive enough both for material on a conveyor belt and free falling material leaving the conveyor.

  2. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.

    2015-05-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.

  3. Normal Cerebellar Growth by Using Three-dimensional US in the Preterm Infant from Birth to Term-corrected Age.

    PubMed

    Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P

    2018-04-03

    Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of <85) were excluded. The following measurements were performed: vermis height, craniocaudal diameter, superior width, inferior width, vermis area, and transcerebellar diameter. Statistical analyses were conducted by using multilevel analyses. Results A total of 137 infants with a mean GA at birth of 29.4 weeks (range, 25-32 weeks) were included. Transcerebellar diameter increased by 1.04 mm per week on average; vermis height and craniocaudal diameter increased by 0.55 mm and 0.59 mm, respectively. Superior vermian width increased by an average of 0.45 mm, whereas inferior vermian width increased by an average of 0.51 mm per week. Vermis area was found to increase by 0.22 cm 2 per week on average. The sex effect was significant (female lower than male) for vermis height (P < .05), craniocaudal diameter (P < .05), inferior vermian width (P <. 05), and vermis area (P <. 05). Conclusion Cross-sectional and longitudinal reference values were established for cerebellar growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.

  4. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments

    NASA Astrophysics Data System (ADS)

    Colmenares Roldán, Gabriel Jaime; Agudelo Gomez, Liliana María; Carlos Cornelio, Jesús Antonio; Rodriguez, Luis Fernando; Pinal, Rodolfo; Hoyos Palacio, Lina Marcela

    2018-03-01

    Encapsulation and controlled release of substances using polymeric nanoparticles require that these have a high reproducibility, homogeneity, and control over their properties (diameter and polydispersity), especially when they are to be used in medical, pharmaceutical, or nutritional applications among others. In conventional production systems, it is tough to ensure these characteristics; hence, the cost increases when we try to control these properties. This paper shows a comparison between a recirculating system and the standard nanoprecipitation technique for producing polymeric nanoparticles. In previous investigations, we evaluate the effect of recirculating flow and the ratio between the organic and aqueous phase. For this paper, we evaluated the effect of polymer and surfactant concentrations using a multifactorial design of experiments on the recirculating system and on the standard nanoprecipitation system. The response of the design was the average diameter of the nanoparticles and polydispersity index. Finally, we found that the polymer and surfactant concentrations could change the average diameter and polydispersity index of the nanoparticles obtained. On the other hand, it was found that the effect of the polymer concentration was stronger than the surfactant concentration to reduce the average diameter of the nanoparticles. The results of the present study show that the proposed recirculation system presents a high potential to produce polymer nanoparticles with good morphological characteristics, particle size distributions in the nano range, and with a low polydispersity. The average mean size of nanoparticles of polycaprolactone for the design using the recirculating system was of 61 to 140 nm and the values of polydispersity index PDI for this design were between 0.097 and 0.22, while for the design using the standard nanoprecipitation technique, the obtained diameters were 74 to 176 nm and the polydispersity was between 0.26 and 0.41.

  5. Load deflection characteristics and force level of nickel titanium initial archwires.

    PubMed

    Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe

    2012-05-01

    To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.

  6. Properties and evolution of NEO families created by tidal disruption at Earth

    NASA Astrophysics Data System (ADS)

    Schunová, Eva; Jedicke, Robert; Walsh, Kevin J.; Granvik, Mikael; Wainscoat, Richard J.; Haghighipour, Nader

    2014-08-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent ‘s-class’ disruption events where the largest remaining fragment after disruption and reaccumulation retains less than 50% of the parent’s mass. The resulting fragments have a ‘string of pearls’ configuration after their reaccummulation into gravitationally bound components (Richardson, D.C., Bottke, W.F., Love, S.G. [1998]. Icarus 134, 47-76). We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is ΔH∼1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10, for the fragments in the s-class families is steeper than the slope of the NEO population (Mainzer, A., et al. [2011]. Astrophys. J. 743, 156) in the same size range. The es remain coherent as statistically significant clusters of orbits within the NEO population for an average of τbarc=(14.7±0.6)×103 yr after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space-they are detectable with the techniques developed by Fu et al. and Schunová et al. (Fu, H., Jedicke, R., Durda, D.D., Fevig, R., Binzel, R.P. [2005]. Icarus 178(2), 434-449 and Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S. [2012]. Icarus 220, 1050-1063) for an average duration (τbardet) ranging from about 2000 to about 12,000 years for progenitors in the absolute magnitude (Hp) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is Hp,max=20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1-10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth’s vicinity. We expect that there are about 1200 objects in the steady state NEO population in this size range due to tidal disruption assuming that one 1 km diameter NEO tidally disrupts at Earth every 2500 years. These objects may be suitable targets for asteroid retrieval missions due to their Earth-like orbits with corresponding low v∞ which permits low-cost missions. The fragments from the tidal disruptions evolve into orbits that bring them into collision with terrestrial planets or the Sun or they may be ejected from the Solar System on hyperbolic orbits due to deep planetary encounters. The end-state for the fragments from a tidal disruption at Earth have ∼5× the collision probability with Earth compared to the background NEO population.

  7. Creation of high-pinning microstructures in post production YBCO coated conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welp, Ulrich; Miller, Dean J.; Kwok, Wai-Kwong

    A method comprising irradiating a polycrystalline rare earth metal-alkaline earth metal-transition metal-oxide superconductor layer with protons having an energy of 1 to 6 MeV. The irradiating process produces an irradiated layer that comprises randomly dispersed defects with an average diameter in the range of 1-10 nm.

  8. Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer

    2018-02-01

    Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.

  9. Composition distributions in FePt(Au) nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.

    2010-08-01

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  10. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  11. Preparation and Characterization of Silica Aerogel Microspheres.

    PubMed

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-04-20

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.

  12. Scalloped margin domes: What are the processes responsible and how do they operate?

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Michaels, G.; Saunders, S.

    1993-01-01

    Studies of scalloped margin domes (SMD) indicate the scallops are the result of slope failure. SMD's have similar but smaller average diameters (26.5 km) to unmodified domes (29.8 km), and the majority plot at altitudes ranging from 0.5-4.7 km, relative to the mean planetary diameter. A range of morphological types exist from those least modified to those that show heavy modification. Of the 200 SMD's examined, 33 have clearly discernible debris aprons. Examination and comparison of debris aprons with mass movement features on the Moon, Mars, and in sub-aerial and submarine environments on Earth using H/L against area (km(sup 2)), suggests there are three main types of failure; debris avalanche, slumps, and debris flow. The five examples representing the morphological range within the SMD's, show the different modified forms and the different types of slope failures that have occurred.

  13. Home range characteristics of Mexican Spotted Owls in the Rincon Mountains, Arizona

    USGS Publications Warehouse

    Willey, David W.; van Riper, Charles

    2014-01-01

    We studied a small isolated population of Mexican Spotted Owls (Strix occidentalis lucida) from 1996–1997 in the Rincon Mountains of Saguaro National Park, southeastern Arizona, USA. All mixed-conifer and pine-oak forest patches in the park were surveyed for Spotted Owls, and we located, captured, and radio-tagged 10 adult birds representing five mated pairs. Using radio-telemetry, we examined owl home range characteristics, roost habitat, and monitored reproduction within these five territories. Breeding season (Mar–Sep) home range size for 10 adult owls (95% adaptive kernel isopleths) averaged 267 ha (±207 SD), and varied widely among owls (range 34–652 ha). Mean home range size for owl pairs was 478 ha (±417 ha SD), and ranged from 70–1,160 ha. Owls that produced young used smaller home ranges than owls that had no young. Six habitat variables differed significantly between roost and random sites, including: percent canopy cover, number of trees, number of vegetation layers, average height of trees, average diameter of trees, and tree basal area. Radio-marked owls remained in their territories following small prescribed management fires within those territories, exhibiting no proximate effects to the presence of prescribed fire.

  14. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    PubMed

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Historical early stem development of northern white-cedar (Thuja occidentalis L.) in Maine

    Treesearch

    Philip V. Hofmeyer; Laura S. Kenefic; Robert S. Seymour

    2010-01-01

    We used stem analysis to quantify early height and diameter growth rates of 80 northern white-cedar trees (17.4-55.0 cm dbh) harvested in 2005 and 2006 in central and northern Maine. It took an average of 42 years (range, 9-86 years) for sampled trees to grow from stump height to sapling size, 96 years to grow to pole size (range, 28-171), 140 years to grow to...

  16. An alternative NMR method to determine nuclear shielding anisotropies for molecules in liquid-crystalline solutions with (13)C shielding anisotropy of methyl iodide as an example.

    PubMed

    Tallavaara, Pekka; Jokisaari, Jukka

    2008-03-28

    An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.

  17. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  18. Controllable Biotinylated Poly(Ethylene-co-Glycidyl Methacrylate) (PE-co-GMA) Nanofibers to Bind Streptavidin-Horseradish Peroxidase (HRP) for Potential Biosensor Applications

    USDA-ARS?s Scientific Manuscript database

    Poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers with abundant active epoxy groups on surfaces were fabricated through a novel manufacturing process. The prepared PE-co-GMA nanofibers with different average diameters ranging from 100 to 400 nm were aminated by reacting the epoxy groups...

  19. Survey of specific gravity of eight Maine conifers

    Treesearch

    Harold E. Wahlgren; Gregory Baker; Robert R. Maeglin; Arthur C. Hart

    1968-01-01

    This analysis of a mass increment core sampling of eight coniferous species of Maine characterizes specific gravity for each of the species. No clear-cut relationships of specific gravity to forest type, stand density class, height class, or tree diameter at breast height were found. Included in the data are the species average specific gravity and the range. These...

  20. Conversion of an oak seed orchard to oak silvopasture

    Treesearch

    K. Connor; L. Dimov; R. Barlow; M. Smith; E. Kirkland

    2013-01-01

    The potential of hardwood silvopasture has yet to be realized in the Southeastern United States. The decommissioning of the Stauffer Nursery, Opelika, AL, provided the opportunity to intensively research hardwood silvopasture using various oak species. Average crown diameter ranged from 5.9 feet in white oak (Quercus alba) to 10.7 feet in Nuttall oak...

  1. Manual felling time and productivity in southern forests

    Treesearch

    D. Lortz; R. Kluender; W McCoy; [and others

    1997-01-01

    Sixteen stands were harvested by either clearcut, shelterwood, group selection, or single-tree selection methods. Three of the stands had uneven-aged structure. The other 13 were typical, mature, even-aged stands. Harvest intensity (proportion of basal area removed) ranged from 0.27 to 1.00. Harvested sites were similar in slope, average diameter at breast height (d.b....

  2. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  3. Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria

    2013-01-01

    Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke detectors.

  4. Preparation of poly(BMA-co-MMA) particles by soap-free emulsion polymerization and its optical properties as photonic crystals.

    PubMed

    Lee, Ki-Chang; Choo, Hun-Seung

    2014-11-01

    Narrowly dispersed poly(BMA-co-MMA) and PBMA latices with particle diameters ranging within 216-435 nm were synthesized successfully by surfactant-free emulsion polymerization with KPS and AIBA. The average particle diameter and particle size distribution, average molecular weight and its distribution, glass transition temperature, reflectance spectra in visible wavelength, and refractive indices for the respective poly(BMA-co-MMA) latices and their photonic crystals were systematically investigated in terms of BMA/MMA ratio, BMA content, polymerization temperature, and DVB effect. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio. The particle diameter increased with BMA concentration in BMA/MMA ratio. The molecular weight increased with BMA concentration in BMA/MMA ratio and monomer concentration. The drying of the latices offered self-assembled shiny colloidal crystal films showing the characteristic structural colors in visible wavelength. All the poly(BMA-co-MMA) latices prepared in the study were fallen within the range of photonic grade microspheres. The reflectance measurement on the colloidal photonic crystals having different particle diameters clearly exhibited narrow stopbands. The reflection maxima (λ(max)) measured in this study were well close to the λ(max) calculated, derived from the Bragg's equation. The refractive indices of poly(BMA-co-MMA) photonic crystals were found to be almost same as the theoretical values and increased proportionally from 1.50 to 1.57 with BMA content in BMA/MMA ratios. It was, thus, found that the optical reflectance properties of the poly(BMA-co-MMA) colloidal photonic crystals can be controlled easily by adjusting the reaction conditions and BMA/MMA ratio in soap-free emulsion copolymerization of BMA and MMA.

  5. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  6. Contact lens overrefraction variability in corneal power estimation after refractive surgery.

    PubMed

    Joslin, Charlotte E; Koster, James; Tu, Elmer Y

    2005-12-01

    To evaluate the accuracy and precision of the contact lens overrefraction (CLO) method in determining corneal refractive power in post-refractive-surgery eyes. Refractive Surgery Service and Contact Lens Service, University of Illinois, Chicago, Illinois, USA. Fourteen eyes of 7 subjects who had a single myopic laser in situ keratomileusis procedure within 12 months with refractive stability were included in this prospective case series. The CLO method was compared with the historical method of predicting the corneal power using 4 different lens fitting strategies and 3 refractive pupil scan sizes (3 mm, 5 mm, and total pupil). Rigid lenses included 3 9.0 mm overall diameter lenses fit flat, steep, and an average of the 2, and a 15.0 mm diameter lens steep fit. Cycloplegic CLO was performed using the autorefractor function of the Nidek OPD-Scan ARK-10000. Results with each strategy were compared with the corneal power estimated with the historical method. The bias (mean of the difference), 95% limits of agreement, and difference versus mean plots for each strategy are presented. In each subject, the CLO-estimated corneal power varied based on lens fit. On average, the bias between CLO and historical methods ranged from -0.38 to +2.42 diopters (D) and was significantly different from 0 in all but 3 strategies. Substantial variability in precision existed between fitting strategies, with the range of the 95% limits of agreement approximating 0.50 D in 2 strategies and 2.59 D in the worst-case scenario. The least precise fitting strategy was use of flat-fitting 9.0 mm diameter lenses. The accuracy and precision of the CLO method of estimating corneal power in post-refractive-surgery eyes was highly variable on the basis of how rigid lense were fit. One of the most commonly used fitting strategies in clinical practice--flat-fitting a 9.0 diameter lens-resulted in the poorest accuracy and precision. Results also suggest use of large-diameter lenses may improve outcomes.

  7. Biliary and pancreatic ductal dilation in patients on methadone maintenance therapy.

    PubMed

    Bates, David D B; Tamayo-Murillo, Dorathy; Kussman, Steven; Luce, Adam; LeBedis, Christina A; Soto, Jorge A; Anderson, Stephan W

    2017-03-01

    To determine whether the diameter of intrahepatic and extrahepatic bile ducts and pancreatic ducts in patients on methadone maintenance therapy is increased when compared with control subjects. Between January 1, 2000 and March 15, 2013, a total of 97 patients (mean age 49.9, range 22-79, 65 male, 32 female) were identified who were receiving chronic methadone maintenance therapy (MMT) when they underwent imaging with abdominal MRI or a contrast-enhanced abdominopelvic CT. A group of 97 consecutive non-MMT control patients (mean age 51.4, range 21-86, 45 male, 52 female) who underwent imaging with abdominal MRI or contrast-enhanced abdominopelvic CT were identified. Patients with known pancreaticobiliary pathology that may confound biliary ductal measurements were excluded. Blinded interpretation was performed, documenting the diameters of the intrahepatic and extrahepatic bile ducts and pancreatic ducts. Descriptive statistics were performed. Patients on MMT demonstrated increased bile duct diameter, with an average increase in duct diameter of 2.39 mm for the common bile duct (p < 0.001; 95% CI 1.88-2.90 mm), 1.43 mm for the intrahepatic bile ducts (p < 0.001; 95% CI 1.12-1.74 mm), and 0.90 mm for the pancreatic duct (p < 0.001; 95% CI 0.64-1.16 mm). No statistically significant correlation was found between ductal diameters and the daily dose of methadone. Patients on methadone maintenance therapy demonstrate significantly increased intra- and extrahepatic bile duct and pancreatic duct diameter when compared with controls. There was no correlation between the dose of methadone and ductal diameter.

  8. Growth of lodgepole pine stands and its relation to mountain pine beetle susceptibility

    Treesearch

    S.A. Mata; J.M. Schmid; W.K. Olsen

    2003-01-01

    Periodic diameter and basal area growth were determined for partially cut stands of lodgepole pine at five locations over approximately 10 year periods. After cutting, average diameters in the partially cut plots generally increased by 0.8 inches or more, while average diameter in the uncut controls increased by 0.6 inches or less. Diameter growth in the partially cut...

  9. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts

    NASA Astrophysics Data System (ADS)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo

    2016-11-01

    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  10. The growth and erosion of cinder cones in Guatemala and El Salvador: Models and statistics

    NASA Astrophysics Data System (ADS)

    Bemis, Karen; Walker, Jim; Borgia, Andrea; Turrin, Brent; Neri, Marco; Swisher, Carl, III

    2011-04-01

    Morphologic data for 147 cinder cones in southern Guatemala and western El Salvador are compared with data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan-Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110 +/- 50 m, an average basal diameter of 660 +/- 230 m and an average top diameter of 180 +/- 150 m. The general morphology of these cones can be described by their average cone angle of slope (24 +/- 7), average height-to-radius ratio (0.33 +/- 0.09) and their flatness (0.24 +/- 0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan-Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/ 39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500-1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.

  11. Analysis of harvesting opportunities for thinning eastern hardwoods on steep terrain

    Treesearch

    Chris B. LeDoux; John E. Baumgras

    1988-01-01

    Harvesting cost and revenue models were used to evaluate yarding costs by yarder type and to compare stump-to-mill harvesting costs to revenues available from multiproduct thinnings in eastern hardwoods. This analysis includes six types of cable yarders and thinnings in stands where the average diameter at breast height of trees harvested ranged from 7 to 12 inches. To...

  12. Tree Diamter Effects on Cost and Productivity of Cut-to-Length Systems

    Treesearch

    Matthew A. Holtzscher; Bobby L. Lanford

    1997-01-01

    Currently, there is a lack of economic information concerning cut-to-length harvesting systems. This study examined and measured the different costs of operating cut-to-length logging equipment over a range of average stand diameters at breast height. Three different cut-to-length logging systems were examined in this study. Systems included: 1) felier-buncher/manual/...

  13. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  14. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  15. Heat transfer and hydrodynamic investigations of a baffled slurry bubble column

    NASA Astrophysics Data System (ADS)

    Saxena, S. C.; Chen, Z. D.

    1992-09-01

    Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 µm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.

  16. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials.

    PubMed

    Song, Kunlin; Wu, Qinglin; Zhang, Zhen; Ren, Suxia; Lei, Tingzhou; Negulescu, Ioan I; Zhang, Quanguo

    2015-07-15

    A novel route to fabricate low-cost porous carbon nanofibers (CNFs) using biomass tar, polyacrylonitrile (PAN), and silver nanoparticles has been demonstrated through electrospinning and subsequent stabilization and carbonization processes. The continuous electrospun nanofibers had average diameters ranging from 392 to 903 nm. The addition of biomass tar resulted in increased fiber diameters, reduced thermal stabilities, and slowed cyclization reactions of PAN in the as-spun nanofibers. After stabilization and carbonization, the resultant CNFs showed more uniformly sized and reduced average diameters (226-507 nm) compared to as-spun nanofibers. The CNFs exhibited high specific surface area (>400 m(2)/g) and microporosity, attributed to the combined effects of phase separations of the tar and PAN and thermal decompositions of tar components. These pore characteristics increased the exposures and contacts of silver nanoparticles to the bacteria including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, leading to excellent antimicrobial performances of as-spun nanofibers and CNFs. A new strategy is thus provided for utilizing biomass tar as a low-cost precursor to prepare functional CNFs and reduce environmental pollutions associated with direct disposal of tar as an industrial waste.

  17. Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis.

    PubMed

    Cavicchi, Richard E; King, Jason; Ripple, Dean C

    2018-05-01

    The spatially averaged density of protein aggregates is an important parameter that can be used to relate size distributions measured by orthogonal methods, to characterize protein particles, and perhaps to estimate the amount of protein in aggregate form in a sample. We obtained a series of images of protein aggregates exhibiting Brownian diffusion while settling under the influence of gravity in a sealed capillary. The aggregates were formed by stir-stressing a monoclonal antibody (NISTmAb). Image processing yielded particle tracks, which were then examined to determine settling velocity and hydrodynamic diameter down to 1 μm based on mean square displacement analysis. Measurements on polystyrene calibration microspheres ranging in size from 1 to 5 μm showed that the mean square displacement diameter had improved accuracy over the diameter derived from imaged particle area, suggesting a future method for correcting size distributions based on imaging. Stokes' law was used to estimate the density of each particle. It was found that the aggregates were highly porous with density decreasing from 1.080 to 1.028 g/cm 3 as the size increased from 1.37 to 4.9 μm. Published by Elsevier Inc.

  18. Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation

    NASA Astrophysics Data System (ADS)

    Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo

    2009-03-01

    We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.

  19. Experimental study of cryogen spray properties for application in dermatologic laser surgery.

    PubMed

    Aguilar, Guillermo; Majaron, Boris; Karapetian, Emil; Lavernia, Enrique J; Nelson, J Stuart

    2003-07-01

    Cryogenic sprays are used for cooling human skin during laser dermatologic surgery. In this paper, six straight-tube nozzles are characterized by photographs of cryogenic spray shapes, as well as measurements of average droplet diameter, velocity, and temperature. A single-droplet evaporation model to predict average spray droplet diameter and temperature is tested using the experimental data presented here. The results show two distinct spray patterns--sprays for 1.4-mm-diameter nozzles (wide nozzles) show significantly larger average droplet diameters and higher temperatures as a function of distance from the nozzle compared with those for 0.5-0.8-mm-diameter nozzles (narrow nozzles). These results complement and support previously reported studies, indicating that wide nozzles induce more efficient heat extraction than the narrow nozzles.

  20. Endoscope-assisted laparoscopic repair of perforated peptic ulcers.

    PubMed

    Lee, Kun-Hua; Chang, Hung-Chi; Lo, Chong-Jeh

    2004-04-01

    Laparoscopic repairs for perforated peptic ulcer (PPU) are likely to fail in patients with shock, gastric outlet obstruction, or large perforations. This prospective study was performed to evaluate a revised approach of laparoscopic repair with endoscopic assistance to treat these patients. Between April 2001 and February 2002, 30 consecutive patients with PPU were enrolled in this study. The mean age was 43.1 +/- 12.2 years. Male to female ratio was 27:2. One patient was excluded from laparoscopic repair due to a gastric outlet obstruction. The other 29 patients were managed according to a protocol of preoperative upper endoscopy and laparoscopic intracorporeal suture repair with an omental patch. The average operative time was 58.1 +/- 13.5 minutes (range, 36-96 min). The average diameter of perforation was 4.2 +/- 2.0 mm (range, 1-12 mm). The average time to resume oral fluids was 3.2 +/- 0.8 days (range, 2-8 days). The average hospital stay was 4.7 +/- 1.1 days (range, 3-10 days). There was no leakage or mortality. Most patients did not receive parenteral analgesics postoperatively. We conclude that endoscope-assisted laparoscopic repair for PPU is safe and effective. This revised technique allows surgeons to exclude patients who are likely to fail the laparoscopic repair.

  1. Relationship between the Foveal Avascular Zone and Foveal Pit Morphology

    PubMed Central

    Dubis, Adam M.; Hansen, Benjamin R.; Cooper, Robert F.; Beringer, Joseph; Dubra, Alfredo; Carroll, Joseph

    2012-01-01

    Purpose. To assess the relationship between foveal pit morphology and size of the foveal avascular zone (FAZ). Methods. Forty-two subjects were recruited. Volumetric images of the macula were obtained using spectral domain optical coherence tomography. Images of the FAZ were obtained using either a modified fundus camera or an adaptive optics scanning light ophthalmoscope. Foveal pit metrics (depth, diameter, slope, volume, and area) were automatically extracted from retinal thickness data, whereas the FAZ was manually segmented by two observers to extract estimates of FAZ diameter and area. Results. Consistent with previous reports, the authors observed significant variation in foveal pit morphology. The average foveal pit volume was 0.081 mm3 (range, 0.022 to 0.190 mm3). The size of the FAZ was also highly variable between persons, with FAZ area ranging from 0.05 to 1.05 mm2 and FAZ diameter ranging from 0.20 to 1.08 mm. FAZ area was significantly correlated with foveal pit area, depth, and volume; deeper and broader foveal pits were associated with larger FAZs. Conclusions. Although these results are consistent with predictions from existing models of foveal development, more work is needed to confirm the developmental link between the size of the FAZ and the degree of foveal pit excavation. In addition, more work is needed to understand the relationship between these and other anatomic features of the human foveal region, including peak cone density, rod-free zone diameter, and Henle fiber layer. PMID:22323466

  2. Survival and growth of black walnut families after 7 years in West Virginia

    Treesearch

    G. W. Wendel; Donald E. Dorn; Donald E. Dorn

    1985-01-01

    Average survival, 7-year stem diameter, and stem diameter growth differed significantly among 34 black walnut families planted in West Virginia. Average total height, height growth, and diameter at breast height were not significantly different among families. Families were from seed collected in West Virginia, Pennsylvania, North Carolina, and Tennessee. The 7-year...

  3. Diameter Growth of Southern Bottomland Hardwoods

    Treesearch

    Henry Bull

    1945-01-01

    There is very little published information on average rates of diameter growth of southern bottomland hardwoods. Probably the best information of this kind is given by Winters, Putnam, and Eldredge,2 who summarize forest survey data on average rates of diameter growth for 4 size classes and 20 species or species groups (including pine and cyress), and for all species...

  4. Height diameter relations of maple street trees

    Treesearch

    David J. Nowak

    1990-01-01

    Height and diameter measurements were taken for silver, sugar and Norway maple street trees in Rochester and Syracuse, New York. Mature silver maples proved to be the tallest of the three species. Average sugar maple height was consistently taller than Norway maple height until diameters reached 28 inches. Average mature tree height for all three species level off in...

  5. Control of the Diameter and Chiral Angle Distributions during Production of Single-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  6. Sap sugar parameters of silver maple provenances and clones grown on upland and bottomland sites

    Treesearch

    J. J. Zaczek; A. D. Carver; K. W. J. Williard; J. K. Buchheit; J. E. Preece; J. C. Mangun

    2003-01-01

    Sap sugar concentration (SSC), sap volume, and stem diameter were measured for 49 different silver maple clones representing a range-wide collection of 13 provenances within replicated upland and bottomland plantations in southern Illinois during the winter of 2001. For comparison, 42 sugar maple trees were sampled in a local sugarbush. Silver maple SSC averaged 1.51...

  7. A diameter distribution approach to estimating average stand dominant height in Appalachian hardwoods

    Treesearch

    John R. Brooks

    2007-01-01

    A technique for estimating stand average dominant height based solely on field inventory data is investigated. Using only 45.0919 percent of the largest trees per acre in the diameter distribution resulted in estimates of average dominant height that were within 4.3 feet of the actual value, when averaged over stands of very different structure and history. Cubic foot...

  8. Growth of ponderosa pine stands in relation to mountain pine beetle susceptibility

    Treesearch

    R. A. Obedzinski; J. M. Schmid; S. A. Mata; W. K. Olsen; R. R. Kessler

    1999-01-01

    Ten-year diameter and basal area growth were determined for partially cut stands at 4 locations. Average diameters in the partially cut plots generally increased by 1 inch or more, while average diameter in the uncut controls increased by 0.9 inches or less. Individual tree growth is discussed in relation to potential susceptibility to mountain pine beetle infestation...

  9. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime.

    PubMed

    Braun, Birgit; Dorgan, John R; Chandler, John P

    2008-04-01

    Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.

  10. Promotion of artery occlusion in dogs by percutaneous rotational atherectomy.

    PubMed

    Hou, Chuan-Ju; Zhang, Duan-Zhen; Wang, Qi-Guang; Cui, Chun-Sheng; Kuang, Li; Chen, Bing; Wang, Yang

    2014-07-01

    This study aims to offer experimental data and indirect evidences for the application of percutaneous rotational atherectomy to treat patent ductus arteriosus (PDA). Eleven dogs (6 male dogs and 5 female dogs; aged 14-20 months, with an average of 16.7±3.2 months; weight 20-25 kg, with an average of 22.7±2.5 kg) were enrolled in this study. The diameters of the left and right arteries ranged from 3.2 to 4.8 mm (average 3.9±0.6 mm) on percutaneous angiography. Percutaneous rotational atherectomy with proper rotablator (the size was 1-1.5 mm larger than the artery diameter) was performed in the arterial intima. After 4 weeks from percutaneous rotational atherectomy, arteriography was conducted to observe the changes in artery diameter. Then all dogs were sacrificed and the pathologic examination was conducted on the left and right axillary arteries. There were obvious changes with different degrees in 22 arteries, including 8 arteries with complete occlusion and 12 arteries with stenosis (≥2/3, 1/2, and 1/3 stenosis in 4, 4, and 4 arteries, respectively). The occlusion rate was 36.4% and the total effective rate was 90.9%. It was considered failure in other 2 arteries with <1/3 of stenosis. Percutaneous rotational atherectomy of arterial intima can promote the occlusion of arteries. This has provided a new choice for the treatment of PDA. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of location in an array on heat transfer to a cylinder in crossflow

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Vanfossen, G. J., Jr.

    1982-01-01

    An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively.

  12. Effect of tendon tensioning: an in vitro study in porcine extensor tendons.

    PubMed

    Figueroa, David; Calvo, Rafael; Vaisman, Alex; Meleán, Patricio; Figueroa, Francisco

    2010-06-01

    Graft tensioning is a controversial issue in anterior cruciate ligament reconstruction (ACLR) that has not achieved consensus between peers. The purpose of this study is to determine if after tensioning tendon length and resistance to maximal load changes. We performed an in vitro study with 50 porcine extensors tendons. The first group (P=25) was tensioned with 80 N (19.97 lb) for 10 min, using an ACL graft preparation board. The second group (C=25) was used as control and was not tensioned. The average initial (groups P and C) and post tensioning tendon length (group C) were measured; the average initial and post tensioning tendon diameter were measured as well. All samples were fixated in a tube-clamp system connected to a tension sensor. The samples were stressed with continuous and progressive tension until ultimate failure at maximum load (UFML) occurs. The initial mean length was: P before tensioning=13.4 mm+/-1.4 mm (range 10.5-16.5); P after tensioning=13.8 mm+/-1.4 mm (range 11.5-16.5); C=13 mm+/-1.35 mm (p=0.005). The mean diameter was: P=5.6 mm (4.5-6); C=5.5 mm (range 4.5-6) (p>0.05). The UFML was: P=189.7 N (114-336); C=229.9 N (143-365) (p=0.029). Tendon tensioning with 80 N for 10 min produced 3% average elongation. These could be beneficial in ACLR since tendon tensioning decreases elongation of the graft after fixation. Regardless, tendon tensioning is not innocuous since it diminishes their resistance when continuously stressed until complete failure occurs.

  13. Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  14. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    PubMed

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  15. Cumulative frequency distribution of past species extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45-60 percent.

  16. [Adaptability of sweet corn ears to a frozen process].

    PubMed

    Ramírez Matheus, Alejandra O; Martínez, Norelkys Maribel; de Bertorelli, Ligia O; De Venanzi, Frank

    2004-12-01

    The effects of frozen condition on the quality of three sweet corn ears (2038, 2010, 2004) and the pattern (Bonanza), were evaluated. Biometrics characteristics like ear size, ear diameter, row and kernel deep were measured as well as chemical and physical measurement in fresh and frozen states. The corn ears were frozen at -95 degrees C by 7 minutes. The yield and stability of the frozen ears were evaluated at 45 and 90 days of frozen storage (-18 degrees C). The average commercial yield as frozen corn ear for all the hybrids was 54.2%. The industry has a similar value range of 48% to 54%. The ear size average was 21.57 cm, row number was 15, ear diameter 45.54 mm and the kernel corn deep was 8.57 mm. All these measurements were found not different from commercial values found for the industry. All corn samples evaluated showed good stability despites the frozen processing and storage. Hybrid 2038 ranked higher in quality.

  17. Mach number effect on jet impingement heat transfer.

    PubMed

    Brevet, P; Dorignac, E; Vullierme, J J

    2001-05-01

    An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number.

  18. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance

    NASA Astrophysics Data System (ADS)

    Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.

    2018-01-01

    Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).

  19. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan

    2014-02-01

    To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013.

  20. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.

    PubMed

    Waker, A J; Aslam

    2011-06-01

    To improve radiation protection dosimetry for low-energy neutron fields encountered in nuclear power reactor environments, there is increasing interest in modeling neutron energy deposition in metrological instruments such as tissue-equivalent proportional counters (TEPCs). Along with these computational developments, there is also a need for experimental data with which to benchmark and test the results obtained from the modeling methods developed. The experimental work described in this paper is a study of the energy deposition in tissue-equivalent (TE) medium using an in-house built graphite-walled proportional counter (GPC) filled with TE gas. The GPC is a simple model of a standard TEPC because the response of the counter at these energies is almost entirely due to the neutron interactions in the sensitive volume of the counter. Energy deposition in tissue spheres of diameter 1, 2, 4 and 8 µm was measured in low-energy neutron fields below 500 keV. We have observed a continuously increasing trend in microdosimetric averages with an increase in neutron energy. The values of these averages decrease as we increase the simulated diameter at a given neutron energy. A similar trend for these microdosimetric averages has been observed for standard TEPCs and the Rossi-type, TE, spherical wall-less counter filled with propane-based TE gas in the same energy range. This implies that at the microdosimetric level, in the neutron energy range we employed in this study, the pattern of average energy deposited by starter and insider proton recoil events in the gas is similar to those generated cumulatively by crosser and stopper events originating from the counter wall plus starter and insider recoil events originating in the sensitive volume of a TEPC.

  1. The Development of Cottonwood Plantations on Alluvial Soils: Dimensions, Volume, Phytomass, Nutrient Content and Other Characteristics

    Treesearch

    M. G. Shelton; G. L. Switzer; L. E. Nelson; J. B. Baker; C. W. Mueller

    1982-01-01

    Phytomass and nutrient accumulation are reported for eight intensively managed cottonwood plantations, ranging in age from four to 16 years on good sites. The results were developed from 24 sample trees and stand populations using the mean tree technique. The early growth of cottonwood plantations was rapid, and diameter and height growth averaged 3.6 cm and 2.6 m,...

  2. The morphology and electrical geometry of rat jaw-elevator motoneurones.

    PubMed Central

    Moore, J A; Appenteng, K

    1991-01-01

    1. The aim of this work was to quantify both the morphology and electrical geometry of the dendritic trees of jaw-elevator motoneurones. To do this we have made intracellular recordings from identified motoneurones in anaesthetized rats, determined their membrane properties and then filled them with horseradish peroxidase by ionophoretic ejection. Four neurones were subsequently fully reconstructed and the lengths and diameters of all the dendritic segments measured. 2. The mean soma diameter was 25 microns and values of mean dendritic length for individual cells ranged from 514 to 773 microns. Dendrites branched on average 9.1 times to produce 10.2 end-terminations. Dendritic segments could be represented as constant diameter cylinders between branch points. Values of dendritic surface area ranged from 1.08 to 2.52 x 10(5) microns 2 and values of dendritic to total surface area from 98 to 99%. 3. At branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was exactly 1.0. Therefore the individual branch points could be collapsed into a single cylinder. Furthermore for an individual dendrite the diameter of this cylinder remained constant with increasing electrical distance from the soma. Thus individual dendrites can be represented electrically as cylinders of constant diameter. 4. However dendrites of a given neurone terminated at different electrical distances from the soma. The equivalent-cylinder diameter of the combined dendritic tree remained constant over the proximal half and then showed a pronounced reduction over the distal half. The reduction in equivalent diameter could be ascribed to the termination of dendrites at differing electrical distances from the soma. Therefore the complete dendritic tree of these motoneurones is best represented as a cylinder over the proximal half of their electrical length but as a cone over the distal half. PMID:1804966

  3. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    NASA Technical Reports Server (NTRS)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  4. Distribution of diameters for Erdős-Rényi random graphs.

    PubMed

    Hartmann, A K; Mézard, M

    2018-03-01

    We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.

  5. Distribution of diameters for Erdős-Rényi random graphs

    NASA Astrophysics Data System (ADS)

    Hartmann, A. K.; Mézard, M.

    2018-03-01

    We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c . The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P (d ) numerically for various values of c , in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10-100 which allow us to obtain the distribution over basically the full range of the support, for graphs up to N =1000 nodes. For values c <1 , our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c >1 the distribution is more complex and no complete analytical results are available. For this parameter range, P (d ) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c , we determined the finite-size rate function Φ (d /N ) and were able to extrapolate numerically to N →∞ , indicating that the large-deviation principle holds.

  6. Debye temperature of metallic nanowires--an experimental determination from the resistance of metallic nanowires in the temperature range 4.2 K-300 K.

    PubMed

    Bid, Aveek; Bora, Achyut; Raychaudhuri, A K

    2007-06-01

    We have studied the resistance of metallic nanowires (silver and copper) as a function of the wire diameter in the temperature range 4.2 K-300 K. The nanowires with an average diameter of 15 nm-200 nm and length 6 microm were electrochemically deposited using polycarbonate membranes as template from AgNO3 and CuSO4, respectively. The wires after growth were removed from the membranes by dissolving the polymer in dichloromethane and their crystalline nature confirmed by XRD and TEM studies. The TEM study establishes that the nanowires are single crystalline and can have twin in them. The resistivity data was fitted to Bloch-Gruneisen theorem with the values of Debye temperature and the electron-acoustic phonon coupling constant as the two fit variables. The value of the Debye temperature obtained for the Ag wires was seen to match well with that of the bulk while for Cu wires a significant reduction was observed. The observed increase in resistivity with a decrease in the wire diameter could be explained as due to diffuse surface scattering of the conduction electrons.

  7. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.

    2018-03-01

    Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.

  8. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    PubMed Central

    Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue

    2014-01-01

    Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241

  9. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal-Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  10. Production of monodisperse cerium oxide microspheres with diameters near 100 µm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  11. Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads.

    PubMed

    Lewińska, Dorota; Rosiński, Stefan; Weryński, Andrzej

    2004-02-01

    In the medical applications of microencapsulation of living cells there are strict requirements concerning the high size uniformity and the optimal diameter, the latter dependent on the kind of therapeutic application, of manufactured gel beads. The possibility of manufacturing small size gel bead samples (diameter 300 microm and below) with a low size dispersion (less than 10%), using an impulsed voltage droplet generator, was examined in this work. The main topic was the investigation of the influence of values of electric parameters (voltage U, impulse time tau and impulse frequency f) on the quality of obtained droplets. It was concluded that, owing to the implementation of the impulse mode and regulation of tau and f values, it is possible to work in a controlled manner in the jet flow regime (U> critical voltage UC). It is also possible to obtain uniform bead samples with the average diameter, deff, significantly lower than the nozzle inner diameter dI (bead diameters 0.12-0.25 mm by dI equal to 0.3 mm, size dispersion 5-7%). Alterations of the physical parameters of the process (polymer solution physico-chemical properties, flow rate, distance between nozzle and gellifying bath) enable one to manufacture uniform gel beads in the wide range of diameters using a single nozzle.

  12. Impact of support calcination and competitive adsorbate in Fe/Mo-Al2O3 catalyst for synthesis of carbon nanotubes by V-flame

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Ping; Sun, Bao-Min; Zhai, Gang; Guo, Yong-Hong; Jia, Xiao-Wei; Kang, Zhi-Zhong

    2018-05-01

    Carbon nanotubes (CNTs) were synthesized via carbon monoxide decomposition with aid of various Fe/Mo-Al2O3 catalysts by V-type flame method. The influences of support calcination and competitive adsorbates on the morphology and properties of CNTs were studied. SEM, HRTEM, TPO and Raman spectroscopy were applied to investigate the morphology and microstructure of CNT products. XRD, H2-TPR were employed to characterize catalysts. The obtained results indicate that calcinated support can increase production and promote the formation of CNTs with small diameter. Utilizing citric acid as a competitive adsorbate is successful in improving the quality of CNTs. Besides, the addition of citric acid and calcinated support in catalyst enhances the catalytic growth activity. The obtained CNTs have a diameter around 4–6 nm within a narrow diameter distribution range. Raman spectrum analysis also illustrates that highly graphitized CNTs are produced on the catalyst with calcinated support and citric acid. These results suggest that support calcination and competitive adsorbate have pronounced effect on the average diameter, diameter distribution, and graphitization of CNTs, which provides a simple and effective way to tune the properties of CNTs.

  13. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  14. French Sizing of Medical Devices is not Fit for Purpose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibriya, Nabil, E-mail: nabskib@yahoo.co.uk; Hall, Rebecca; Powell, Steven

    PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels ofmore » interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed.« less

  15. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, M. J.; Strohm, E. M.; Kolios, M. C.

    2016-12-01

    The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz-500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be 15.5 μ m± 1.8 μ m. The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of 12.0 μ m± 1.3 μ m. The N:C ratio for these cells was calculated to be 1.9± 1.0, which agrees well with previously reported N:C values for this cell type.

  16. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

  18. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  19. Feminization laryngoplasty: assessment of surgical pitch elevation.

    PubMed

    Thomas, James P; Macmillan, Cody

    2013-09-01

    The aim of this study is to analyze change in pitch following feminization laryngoplasty, a technique to alter the vocal tract of male to female transgender patients. This is a retrospective review of 94 patients undergoing feminization laryngoplasty between June 2002 and April 2012 of which 76 individuals completed follow-up audio recordings. Feminization laryngoplasty is a procedure removing the anterior thyroid cartilage, collapsing the diameter of the larynx as well as shortening and tensioning the vocal folds to raise the pitch. Changes in comfortable speaking pitch, lowest vocal pitch and highest vocal pitch are assessed before and after surgery. Acoustic parameters of speaking pitch and vocal range were compared between pre- and postoperative results. The average comfortable speaking pitch preoperatively, C3# (139 Hz), was raised an average of six semitones to G3 (196 Hz), after surgical intervention. The lowest attainable pitch was raised an average of seven semitones and the highest attainable pitch decreased by an average of two semitones. One aspect of the procedure, thyrohyoid approximation (introduced in 2006 to alter resonance), did not affect pitch. Feminization laryngoplasty successfully increased the comfortable fundamental frequency of speech and removed the lowest notes from the patient's vocal range. It does not typically raise the upper limits of the vocal range.

  20. Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-03-01

    An acoustic and photoacoustic characterization of micron-sized perfluorocarbon (PFC) droplets is presented. PFC droplets are currently being investigated as acoustic and photoacoustic contrast agents and as cancer therapy agents. Pulse echo measurements at 375 MHz were used to determine the diameter, ranging from 3.2 to 6.5 μm, and the sound velocity, ranging from 311 to 406 m/s of nine droplets. An average sound velocity of 379 +/- 18 m/s was calculated for droplets larger than the ultrasound beam width of 4.0 μm. Optical droplet vaporization, where vaporization of a single droplet occurred upon laser irradiation of sufficient intensity, was verified using pulse echo acoustic methods. The ultrasonic backscatter amplitude, acoustic impedance and attenuation increased after vaporization, consistent with a phase change from a liquid to gas core. Photoacoustic measurements were used to compare the spectra of three droplets ranging in diameter from 3.0 to 6.2 μm to a theoretical model. Good agreement in the spectral features was observed over the bandwidth of the 375 MHz transducer.

  1. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  2. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan A. Webb; Indrajit Charit; Cory Sparks

    Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less

  3. A photonic crystal fiber glucose sensor filled with silver nanowires

    NASA Astrophysics Data System (ADS)

    Yang, X. C.; Lu, Y.; Wang, M. T.; Yao, J. Q.

    2016-01-01

    We report a photonic crystal fiber glucose sensor filled with silver nanowires in this paper. The proposed sensor is both analyzed by COMSOL multiphysics software and demonstrated by experiments. The extremely high average spectral sensitivity 19009.17 nm/RIU for experimental measurement is obtained, equivalent to 44.25 mg/dL of glucose in water, which is lower than 70 mg/dL for efficient detection of hypoglycemia episodes. The silver nanowires diameter which may affect the sensor's spectral sensitivity is also discussed and an optimal range of silver nanowires diameter 90-120 nm is obtained. We expect that the sensor can provide an effective platform for glucose sensing and potentially leading to a further development towards minimal-invasive glucose measurement.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Veramore » composite nanofibers is 183nm in ranges of 140–260nm.« less

  5. Preparation and characterization of chitosan/Aloe Vera composite nanofibers generated by electrostatic spinning

    NASA Astrophysics Data System (ADS)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    2015-08-01

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Vera composite nanofibers is 183nm in ranges of 140-260nm.

  6. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  7. Volume and weight characteristics of a typical Douglas-fir/ western larch stand, Coram Experimental Forest, Montana

    Treesearch

    Robert E. Benson; Joyce A. Schlieter

    1980-01-01

    An over-mature Douglas-fir/western larch stand on the Coram Experimental Forest in Montana averaged about 7,300 ft3/acre (511 rn3/ha) of wood over 3 inches (7.62 cm) in diameter, and an additional 57 tons/acre (128/ha) of fine material, before harvest. After logging, using three different cutting methods and four different levels of utilization, wood residues ranged...

  8. Measurement and interpretation of skin prick test results.

    PubMed

    van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W

    2015-01-01

    There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.

  9. Adapted preparation technique for screw-type implants: explorative in vitro pilot study in a porcine bone model.

    PubMed

    Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter

    2007-02-01

    The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.

  10. Transverse Cervical Artery: Consistent Anatomical Landmarks and Clinical Experience with Its Use as a Recipient Artery in Complex Head and Neck Reconstruction.

    PubMed

    Tessler, Oren; Gilardino, Mirko S; Bartow, Matthew J; St Hilaire, Hugo; Womac, Daniel; Dionisopoulos, Tassos; Lessard, Lucie

    2017-03-01

    Many head and neck reconstructions occur in patients with extensive history of surgery or radiation treatment. This leads to complicated free flap reconstructions, especially in choosing recipient vessels in a "frozen neck." The transverse cervical artery is an optimal second-line recipient artery in head and neck reconstruction. Seventy-two neck sides in 36 cadavers were dissected, looking for the transverse cervical artery and transverse cervical vein. Anatomical location of these vessels, their diameter, and length were documented. A retrospective analysis on 19 patients who had head and neck reconstruction using the transverse cervical artery as a recipient artery was undertaken as well with regard to outcome of procedures, reason for surgery, previous operations, and use of vein grafts during surgery. The transverse cervical artery was present in 72 of 72 of cadaveric specimens, and was infraclavicular in two of 72 specimens. Transverse cervical artery length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.65 mm. The transverse cervical vein was present in 61 of 72 cadaveric specimens, the length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.90 mm. The transverse cervical artery averaged 33 mm from midline, and branched off the thyrocervical trunk at an average 17 mm superior to the clavicle. Transverse cervical artery stenosis was markedly less in comparison with external carotid artery stenosis. In a 20-year clinical follow-up study, the transverse cervical artery was the recipient artery in 19 patients. A vein graft was used in one patient, and no flap loss occurred in any of the 19 patients. The transverse cervical artery is a reliable and robust option as a recipient artery in free flap head and neck reconstruction.

  11. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    PubMed

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <-2 SDs were considered to have the smallest diameters, individuals with a BAR score >-2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Performance of laser Doppler velocimeter with polydisperse seed particles in high speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Bhattacharyya, S.; Abu-Hijleh, B. A./K.

    1988-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed particle size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV was discussed.

  13. Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Abu-Hijleh, B. A. K.

    1989-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed-particle-size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV are discussed.

  14. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    NASA Astrophysics Data System (ADS)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect method and the direct method prove to be viable approaches to determining throat diameter during solid rocket motor operation.

  15. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  16. Observational evidence for the convective transport of dust over the Central United States

    NASA Astrophysics Data System (ADS)

    Corr, C. A.; Ziemba, L. D.; Scheuer, E.; Anderson, B. E.; Beyersdorf, A. J.; Chen, G.; Crosbie, E.; Moore, R. H.; Shook, M.; Thornhill, K. L.; Winstead, E.; Lawson, R. P.; Barth, M. C.; Schroeder, J. R.; Blake, D. R.; Dibb, J. E.

    2016-02-01

    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude > 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm < diameter < 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter > 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm < diameter < 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15-300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ.

  17. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.

    PubMed

    DeWolf, Scott; Walker, Kristoffer T; Zumberge, Mark A; Denis, Stephane

    2013-06-01

    Wind noise reduction (WNR) is important in the measurement of infrasound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of ~20 dB WNR due to a maximum size limitation. An Optical Fiber Infrasound Sensor (OFIS) reduces wind noise by instantaneously averaging infrasound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to ~30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve ~4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A.

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. Themore » CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (CF{sub SSDE}{sup organ}) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.« less

  19. Measurements of stem diameter: implications for individual- and stand-level errors.

    PubMed

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.

  20. Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Dudina, D. V.; Brester, A. E.; Anisimov, A. G.; Bokhonov, B. B.; Legan, M. A.; Novoselov, A. N.; Skovorodin, I. N.; Uvarov, N. F.

    2017-07-01

    We report one-step fast synthesis and consolidation of iron aluminide FeAl of high open porosity by pressureless reactive Spark Plasma Sintering (SPS). The starting material of the Fe-40at.%Al composition was a mixture of an iron powder with an average particle diameter of 4 μm and an aluminum powder with an average particle diameter of 6 μm. The rationale behind the choice of the SPS as a processing technique and fine and comparable sizes of the two reactants for the synthesis of high-open porosity FeAl was realization of fast full chemical conversion of Fe and Al into single-phase FeAl reducing the time available for the compact shrinkage. According to the XRD phase analysis, single-phase FeAl compacts formed after SPS at 800 and 900°C. These compacts had open porosities of 41 and 46%, respectively. The transverse rupture strength of the compacts sintered at 700-900°C was found to change little with the sintering temperature in the selected range.

  1. Uneven distribution of inorganic pollutants in marine air originating from ocean-going ships.

    PubMed

    Bencs, László; Horemans, Benjamin; Buczyńska, Anna Jolanta; Van Grieken, René

    2017-03-01

    The distribution of mass, water-soluble inorganic salts and mineral elements of size-segregated aerosols (PM 1 , PM 2.5-1 and PM 10-2.5 ), precursor gaseous pollutants, black carbon, and nanoparticles (10-300 nm size range) at the Southern Bight of the North Sea has been studied. The concentrations of air pollutants peaked over shipping lanes, open-water anchorage areas and frequently navigated waters, due to the presence of mobile emission sources. A considerable decrease in air pollutant levels was seen when diverting from these marine areas towards remote or coastal banks. These findings showed the rapid dispersion of pollutants in the marine air. The nano-aerosol count, originating from ocean-going ships, peaked at lower average aerodynamic diameters (e.g., ≈28 nm) than those, observed from low-displacement vessels (45-50 nm, e.g., for fishing boats). The average diameter of nano-PM depended also on weather conditions, e.g., it was higher (≈50 nm) in air of higher humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    PubMed

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  3. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.

    PubMed

    Ripple, Dean C; Hu, Zhishang

    2016-03-01

    Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.

  4. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  5. Treatment of type I endoleaks using transcatheter embolization with onyx.

    PubMed

    Eberhardt, Karla Maria; Sadeghi-Azandaryani, Mojtaba; Worlicek, Stefanie; Koeppel, Thomas; Reiser, Maximilian F; Treitl, Marcus

    2014-02-01

    To report a single-center experience with transcatheter embolization of type I endoleaks using the liquid embolic agent Onyx, an ethylene vinyl alcohol copolymer. Eight patients (4 men; mean age 74.8 years, range 63-86) with 10 type I endoleaks (6 abdominal and 4 thoracic) diagnosed 2 days to 9 years after endovascular repair were treated with Onyx embolization because cuff extension was precluded by an insufficient landing zone in 6 cases and an unsuitable aortic diameter in 2. Endoleaks were accessed with a 4-F diagnostic catheter and a coaxially introduced dimethylsulfoxide-compatible microcatheter. Onyx-34 was predominantly applied due to its high viscosity; patent side branches were coil embolized prior to Onyx delivery in 3 cases. Technical success of the procedure was achieved in all cases. The mean volume of Onyx used for abdominal endoleaks was 11.8 mL (range 3.0-25.5) and 19.4 mL (range 4.5-31.5) for thoracic endoleaks. The average duration of the procedure was 76.7 minutes (range 34.5-110.6), and the average radiation dose area product was 18.8 cGy*cm (2) (range 10.6-55.8). Reperfusion of the endoleak was detected in one case 2 days after the procedure. A second case showed an occluded endoleak but a small trace of contrast between the aortic wall and the stent-graft. Non-target embolization was not found in any case. Mean follow-up was 13.2 months (range 8-24). The mean reduction in diameters for thoracic aneurysms after 6 and 12 months was 0.4 and 0.9 cm, respectively, and 0.6 and 1.2 cm, respectively, for abdominal aneurysms. Transcatheter embolization of type I endoleaks using Onyx is a simple, safe, and sustainable treatment option with a high primary success rate for cases in which stent-graft extension is not possible. The benefit of additional coil embolization remains uncertain.

  6. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  7. Body size and substrate type modulate movement by the western Pacific crown-of-thorns starfish, Acanthaster solaris.

    PubMed

    Pratchett, Morgan S; Cowan, Zara-Louise; Nadler, Lauren E; Caballes, Ciemon F; Hoey, Andrew S; Messmer, Vanessa; Fletcher, Cameron S; Westcott, David A; Ling, Scott D

    2017-01-01

    The movement capacity of the crown-of-thorns starfishes (Acanthaster spp.) is a primary determinant of both their distribution and impact on coral assemblages. We quantified individual movement rates for the Pacific crown-of-thorns starfish (Acanthaster solaris) ranging in size from 75-480 mm total diameter, across three different substrates (sand, flat consolidated pavement, and coral rubble) on the northern Great Barrier Reef. The mean (±SE) rate of movement for smaller (<150 mm total diameter) A. solaris was 23.99 ± 1.02 cm/ min and 33.41 ± 1.49 cm/ min for individuals >350 mm total diameter. Mean (±SE) rates of movement varied with substrate type, being much higher on sand (36.53 ± 1.31 cm/ min) compared to consolidated pavement (28.04 ± 1.15 cm/ min) and slowest across coral rubble (17.25 ± 0.63 cm/ min). If average rates of movement measured here can be sustained, in combination with strong directionality, displacement distances of adult A. solaris could range from 250-520 m/ day, depending on the prevailing substrate. Sustained movement of A. solaris is, however, likely to be highly constrained by habitat heterogeneity, energetic constraints, resource availability, and diurnal patterns of activity, thereby limiting their capacity to move between reefs or habitats.

  8. Heat transfer direction dependence of heat transfer coefficients in annuli

    NASA Astrophysics Data System (ADS)

    Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.

    2018-04-01

    In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.

  9. Hydrogeologic unit map of the Piedmont and Blue Ridge provinces of North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.; Payne, R.A.

    1990-01-01

    The numerous geologic formations and rock types in the Piedmont and Blue Ridge provinces of North Carolina have been grouped into 21 hydrogeologic units on the basis of their water-bearing potential as determined from rock origin, composition, and texture. All major classes of rocks--metamorphic, igneous, and sedimentary--are present, although metamorphic rocks are the most abundant. The origin of the hydrogeologic units is indicated by the rock class or subclass (metaigneous, metavolanic, or metasedimentary). The composition of the igneous, metaigneous, and metavolcanic rocks is designated as felsic, intermediate, or mafic except for the addition in the metavolcanic group of epiclastic rocks and compositionally undifferentiated rocks. Composition is the controlling attribute in the classification of the metasedimentary units of gneiss (mafic or felsic), marble, quartzite. The other metasediments are designated primarily on the basis of texture (grain size, degree of metamorphism, and development of foliation). Sedimentary rocks occur in the Piedmont in several downfaulted basins. A computerized data file containing records from more than 6,200 wells was analyzed to determine average well yields in each of the 21 units. The well yields were adjusted to an average well depth of 154 feet and an average diameter of 6 inches, the average of all wells in the data set, to remove the variation in well yield attributed to differences in depth and diameter. Average yields range from a high of 23.6 gallons per minute for schist to a low 11.6 gallons per minute for sedimentary rocks of Triassic age.

  10. Biometric study of the internal dimensions of subglottis and upper trachea in adult Indian population.

    PubMed

    Prasanna Kumar, S; Ravikumar, A

    2014-01-01

    The anatomy of the larynx and trachea is well described in literature, however the intraluminal dimensions and contour of the subglottis has not been well documented. Subglottis and trachea are dynamic structures and the internal dimensions and contours have been studied only on cadavers or by plain radiograph which has many technical and measurement errors. No data is available about the internal dimensions of the subglottic and trachea in Indian population. This is the first documented study to measure the dimensions of the trachea and subglottis in Indian population. The aim of this study is to measure the internal dimensions and contour of the subglottis and upper trachea of adult Indian population. We conducted cross-sectional, observational study in a university hospital in south India to measure the dimensions of the internal subglottic and upper tracheal lumen. CT scan with 3D reconstruction with multiplanar sections was used for precise measurements. Forty-eight subjects (30 male and 18 female) who had undergone CT scan of the neck and thorax for reasons other than airway compromise were included in the study. The internal coronal diameter (CD), sagittal diameter (SD), and circumference was measured at various levels from 5 to 70 mm below the level of glottis, in the subglottis and upper trachea. Measurements of the scan for each subject were done independently by a radiologist and ENT surgeon and average of the two were documented values of each subject. These measurements were then statistically analyzed using SSPS software. The mean CD of adult Indian male ranged from 13.18 to 17.68 mm. The average intraluminal circumference ranged from 48.82 mm at the subglottis 5 mm from the glottis to a maximum of 54.96 at 30 mm. The mean CD of adult Indian female ranged from 8.7 to 15.34 mm The average intraluminal circumference ranged from 36.5 at 5 mm and a maximum of 43.05 at 70 mm. The 95% CI for the coronal, sagittal and circumference of the subglottis and upper trachea for both genders have been calculated and discussed. We have observed that the average intraluminal dimensions of the subglottis and upper trachea in south Indian population is less than that reported in western literature and earlier studies.

  11. Ground-water resources of the south metropolitan Atlanta region, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Peck, Michael F.

    1991-01-01

    Ground-water resources of the nine county south metropolitan Atlanta region were evaluated in response to an increased demand for water supplies and concern that existing surface water supplies may not be able to meet future supply demands. Previous investigations have suggested that crystalline rock in the study area has low permeability and can not sustain well yields suitable for public supply. However, the reported yield for 406 wells drilled into crystalIine rock units in this area ranged from less than 1 to about 700 gallons per minute, and averaged 43 gallons per minute. The reported flow from 13 springs ranged from 0.5 to 679 gallons per minute. The yield of 43 wells and flow from five springs was reported to exceed 100 gallons per minute. Most of the high-yielding wells and springs were near contact zones between rocks of contrasting lithologic and weathering properties. The high-yielding wells and springs are located in a variety of topographic settings: hillsides, upland draws, and hilltops were most prevalent.The study area, which includes Henry, Fayette, Coweta, Spalding, Lamar, Pike, Meriwether, Upson and Talbot Counties, is within the Piedmont physiographic province except for the southernmost part of Talbot County, which is in the Coastal Plain physiographic province. In the Piedmont, ground-water storage occurs in joints, fractures and other secondary openings in the bedrock, and in pore spaces in the regolith. The most favorable geologic settings for siting highyielding wells are along contact zones between rocks of contrasting lithology and permeability, major zones of fracturing such as the Towaliga and Auchumpkee fault zones, and other numerous shear and microbreccia zones.Although most wells in the study area are from 101 to 300 feet deep, the highest average yields were obtained from wells 51 to 100 feet deep, and 301 to 500 feet deep. Of the wells inventoried, the average diameter of well casing was largest for wells located on hills and ridges, possibly indicating a preference for such topographic locations by cities and industrial users who typically develop larger diameter wells than do domestic users. Generally, for a given depth range or well diameter, the highest yielding wells were obtained in draws and valleys, followed by hills and ridges and slopes and flats.In 1985, wells and springs supplied about 16 million gallons per day or 37 percent of the total water withdrawn in the area. Average recharge to the aquifers in the upper Flint River basin, which constitutes 66 percent of the area, was estimated to be about 575 million gallons per day. Groundwater recharge in this basin ranged from 414 million gallons per day during an average dry year, to 77 million gallons per day during an average wet year. During the severe drought of 1954, the estimated recharge was 70 million gallons per day.Ground water in the study area generally is suitable for most uses. With the exception of local occurences of excessive iron, fluoride, and manganese, concentrations of total and/or dissolved constituents generally meets State and Federal drinking water standards. Ground-water quality may be affected by the presence of radionuclides associated with the decay of uranium found in igneous and metamorphic rocks.

  12. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  13. Chest Computed Tomography Radiation Dose Optimization: Comparison of Automatic Exposure Control Strength Curves.

    PubMed

    Gyssels, Elodie; Bohy, Pascale; Cornil, Arnaud; van Muylem, Alain; Howarth, Nigel; Gevenois, Pierre A; Tack, Denis

    2016-01-01

    The aim of the study was to compare radiation dose and image quality between the "average" and the "very strong" automatic exposure control (AEC) strength curves. Images reconstructed with filtered back-projection techniques and radiation dose data of unenhanced helical chest computed tomography (CT) examinations obtained at 2 hospitals (hospital A, hospital B) using the same scanner devices and acquisition protocols but different AEC strength curves were evaluated over a 3-month period. The selected AEC strength curve applied to "slim" patients (diameter <32 cm estimated from the attenuation automatically measured on the topogram) was "average" and "very strong" in hospital A and hospital B, respectively. Two radiologists with 13 and 24 years of experience scored the image quality of the lung parenchyma and the mediastinum on a 5-point scale. The patients' effective diameter, the delivered CT dose index volume, and dose-length products were recorded. A total of 410 patients were included. The average body mass index was 24.0 kg/m in hospital A and 24.8 kg/m in hospital B. There was no significant difference between hospitals with respect to age, sex ratio, weight, height, body mass index, effective diameters, and image quality scores for each radiologist (P ranging from 0.050 to 1.000). The mean CT dose index volume for the entire population was 2.0 mGy and was significantly lower in hospital B with the "very strong" AEC curve as compared with hospital A (-11%, P=0.001). The mean dose-length product delivered in this 70 kg-weight population was 68 mGy cm, corresponding to an effective dose of 0.95 mSv. Changing the AEC strength curve from "average" to "very strong" for slim patients maintains image quality and reduces the radiation dose to <1 mSv in routine chest CT examinations reconstructed with filtered back-projection techniques.

  14. Shiitake mushroom production on small diameter oak logs in Ohio

    Treesearch

    S.M. Bratkovich

    1991-01-01

    Yields of different strains of shiitake mushrooms (Lentinus edodes) were evaluated when produced on small diameter oak logs in Ohio. Logs averaging between 3-4 inches in diameter were inoculated with four spawn strains in 1985.

  15. Case study of landfill leachate recirculation using small-diameter vertical wells.

    PubMed

    Jain, Pradeep; Ko, Jae Hac; Kumar, Dinesh; Powell, Jon; Kim, Hwidong; Maldonado, Lizmarie; Townsend, Timothy; Reinhart, Debra R

    2014-11-01

    A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m(3) of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6×10(-8) to 3.6×10(-6) m(3) s(-1) per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5×10(-6) to 4.2×10(-4) m s(-1). The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p<0.025) decomposition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Orthopedic stretcher with average-sized person can pass through 18-inch opening

    NASA Technical Reports Server (NTRS)

    Lothschuetz, F. X.

    1966-01-01

    Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.

  17. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    PubMed Central

    Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi

    2012-01-01

    Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293

  18. Pediatric Chest and Abdominopelvic CT: Organ Dose Estimation Based on 42 Patient Models

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.

    2014-01-01

    Purpose To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. Materials and Methods The institutional review board approved this HIPAA–compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0–16 years; weight range, 2–80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDIvol). The relationships between CTDIvol-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. Results For organs within the image coverage, CTDIvol-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R2 > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%–32%) mainly because of the effect of overranging. Conclusion It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDIvol. These CTDIvol-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013 PMID:24126364

  19. A comparison study of size-specific dose estimate calculation methods.

    PubMed

    Parikh, Roshni A; Wien, Michael A; Novak, Ronald D; Jordan, David W; Klahr, Paul; Soriano, Stephanie; Ciancibello, Leslie; Berlin, Sheila C

    2018-01-01

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ c ) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI vol, there was poor correlation, ρ c <0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide acceptable dose estimates for pediatric patients <30 cm in body width. Body weight provides a quick and practical method to identify conversion factors that can be used to estimate SSDE with reasonable accuracy in pediatric patients with body width ≥20 cm.

  20. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters < 3 μm. More than 80% of Ʃamines were found in particles with diameters <1.5 μm, indicating that amines are mainly enriched in fine particles. All amines exhibited a bimodal distribution with a fine mode at 0.49-1.5 μm and a coarse mode at 7.2-10 μm. The maximum contributions of amines to particles (0.21%) and amines-N to water-soluble organic nitrogen (WSON) (3.1%) were found at the sizes < 0.49 μm. The maximum contribution of amines-C to water-soluble organic carbon (WSOC) was 1.6% over the size range of 0.95-1.5 μm. The molar ratio of Ʃamines to ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  1. Robot-assisted extravesical ureteral reimplantation (revur) for unilateral vesico-ureteral reflux in children: results of a multicentric international survey.

    PubMed

    Esposito, Ciro; Masieri, Lorenzo; Steyaert, Henri; Escolino, Maria; Cerchione, Raffaele; La Manna, Angela; Cini, Chiara; Lendvay, Thomas S

    2018-03-01

    This multicentric international retrospective study aimed to report the outcome of robot-assisted extravesical ureteral reimplantation (REVUR) in patients with unilateral vesico-ureteral reflux (VUR). The medical records of 55 patients (35 girls, 20 boys) underwent REVUR in four international centers of pediatric robotic surgery for primary unilateral VUR were retrospectively reviewed. Patients' average age was 4.9 years. The preoperative grade of reflux was III in 12.7%, IV in 47.3% and V in 40%. Twenty-six patients (47.3%) presented a loss of renal function preoperatively and 10 (18.1%) had a duplex system. Average robot docking time was 16.2 min (range 5-30). Average total operative time was 92.2 min (range 50-170). No conversions or intra-operative complications were recorded. All patients had a bladder Foley catheter for 24 h post-operatively. Average hospital stay was 2 days (range 1-3). Average follow-up length was 28 months (range 9-60). We recorded three (5.4%) postoperative complications: 1 small urinoma resolved spontaneously (II Clavien) and 2 persistent reflux, only one requiring redo-surgery using endoscopic injection (IIIb Clavien). REVUR is a safe and effective technique for treatment of primary unilateral VUR. The procedure is easy and fast to perform thanks to the 6° of freedom of robotic arms. The learning curve is short and it is useful to begin the robotics experience with a surgeon expert in robotic surgery as proctor on the 2nd robot console. The high cost and the diameter of instruments remain the main challenges of robotics applications in pediatric urology.

  2. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    PubMed

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  3. The Effect of Density on the Height-Diameter Relationship

    Treesearch

    Boris Zeide; Curtis Vanderschaaf

    2002-01-01

    Using stand density along with mean diameter to predict average height increases the proportion of explained variance. This result, obtained from permanent plots established in a loblolly pine plantation thinned to different levels, makes sense. We know that due to competition, trees with the same diameter are taller in denser stands. Diameter and density are not only...

  4. Fluvial sediment of the Mississippi River at St. Louis, Missouri

    USGS Publications Warehouse

    Jordan, Paul Robert

    1965-01-01

    An investigation of the fluvial sediment of the Mississippi River at St. Louis, Mo., was begun in 1948. Most data have been obtained only to determine the daily suspended-sediment discharge and the particle-size distribution of suspended sediment and bed material, but a few data have been obtained to study the flow resistance, the vertical distribution of sediment and velocity, and the bed-material discharge. The flow of the Mississippi River at St. Louis is made up of the flows from the Missouri River, which had an average flow of 79,860 cubic feet per second for 1897-1958 at Hermann, Mo., and from the upper Mississippi River, which had an average flow of 91,890 cubic feet per second for 1928-58 at Alton, Il. The Missouri River is partly controlled by reservoirs that had a total capacity of 90,300,000 acre-feet in 1956, and the upper Mississippi River is partly controlled by lakes and reservoirs that had a total capacity of 4,890,000 acre-feet in 1956. The flows of the Missouri and upper Mississippi Rivers have not become mixed at St. Louis; so the river has a lateral gradient of suspended-sediment concentration. The concentration near the west bank has been as much as 2,400 parts per million greater than the concentration near the east bank. Suspended-sediment discharges from April 1948 to September 1958 ranged from 4,250 to 7,010,000 tons per day and averaged 496,000 tons per day. Mean concentrations for water years decreased steadily from 1,690 parts per million in 1949 to 403 parts per million in 1956, but they increased to 756 parts per million in 1958. Effects of new reservoirs in the Missouri River basin on the concentration have been obscured by the close relation of concentration to streamflow. Measured suspended-sediment discharge through September 1958 averaged 47 percent clay, 38 percent silt, and 15 percent sand. Variations of particle size were due mainly to differences in the source areas of the sediment. Most of the bed material in the main flow was between 0.125 and 1.000 millimeter in diameter. The average of median diameters was related to the discharge for periods of 1 year and longer. Geometric quartile deviations of the bed material ranged from 1.1 to 2.5 and averaged 1.5. The mean elevation of the bed had a range of almost 10 feet and was related to the median diameter of bed material by the regression equation hb=363.0 - 7.8 d50 for which the standard error of estimate was 0.91 foot. The resistance to flow as measured by Manning's n ranged from 0.024 to 0.041 and was related to the discharge and mean velocity but not to the shear velocity. Normal dune height is 2-8 feet, and average dune length is about 250 feet. When the resistance to flow was low, much of the bed was fairly fiat; a few dunes were present, but they were much longer than the average. For a given discharge during individual rises in stage, the gage height was lower for increasing discharge than for decreasing discharge even though the bed elevation was higher. The changes in gage height were not caused by changes in energy gradient due to changing discharge, by channel storage between the gage and the measuring section, nor by return of overbank flow; but they were probably caused by a combination of changes in roughness due to changing bed configuration and of changes in turbulence constant due to changing sediment concentration. Turbulence constants (Von Karman's k) computed from velocity measurements at 5-10 points in the vertical and from routine velocity measurements at 2 points in the vertical averaged 0.35 and 0.33, respectively. The exponent z1 of the vertical distribution of concentration for different size ranges varied with about the 0.77 power of the fall velocity. Except for the difference between the theoretical variation and the actual variation of z1 with changing fall velocity, the theoretical equation for the vertical distribution of sediment concentration seems to apply reasonably well for the Miss

  5. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.

  6. The densest loblolly pine stand and its silvicultural implications

    Treesearch

    Boris Zeide; John Stephens

    2010-01-01

    Estimation of stand density index has been based on the assumption that the only cause of mortality in fully stocked stands is diameter growth. For example, when average diameter increases by 1 percent, a fixed proportion (1.6 percent) of trees must die, regardless of age, average tree size, and other factors. This balance between growth and mortality entails the...

  7. Correlation between extraocular muscle size and motility restriction in thyroid eye disease.

    PubMed

    Dagi, Lora R; Zoumalan, Christopher I; Konrad, Hindola; Trokel, Stephen L; Kazim, Michael

    2011-01-01

    Evaluate the relationship between extraocular muscle (EOM) size, measured by computed tomography, and ocular motility in thyroid eye disease (TED). This case series is based on a retrospective review of the records of 54 patients (108 orbits) with TED. Main outcome measures included EOM size and degree of motility restriction. The average diameter of each rectus muscle was compared with published norms. Four subpopulations based on Age (< 40 or ≥ 40 years) and State of thyroid eye disease (active or stable) were studied. Versions were measured by the corneal light reflex method. The trend of muscle diameter versus motility restriction was evaluated. The average EOM diameter was greater than the norm in the study cohort and 4 subpopulations. The average diameter was largest in the Older and Active TED subpopulations. The inferior rectus and medial rectus were most frequently restricted in the study cohort and 4 subpopulations. The medial rectus had the strongest trend between increasing diameter and motility restriction, followed by the inferior rectus and the superior muscle group (comprised of the superior rectus and levator palpebrae superioris). However, there was a general lack of strong correlation between the diameter of the rectus muscles and their respective motility, especially in the Younger subpopulation. EOM diameters are larger and have more restricted motility in the Older and Active TED subpopulations. Contrary to prior publications, the correlation between EOM diameters and motility was weak, especially in the Younger subpopulation. These findings suggest that the pathophysiology of EOM enlargement is different based upon the age of the patient and the activity of the orbitopathy.

  8. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  9. Rapid fabrication of titania nanofibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Li, Dan; Xia, Younan

    2003-11-01

    This paper describes a simple and convenient procedure for fabricating polycrystalline titania nanofibers with controllable diameter and porous structures. By combining sol-gel technique and electrospinning, nanofibers made of poly(vinyl pyrrolidone) (PVP) and amorphous TiO2 were firstly obtained by electrospinning an ethanol solution containing both PVP and titanium tetraisopropoxide under appropriate high voltages. These nanofibers could be subsequently converted to anatase without changing their morphology via calcination in air at 500°C. The average diameter of these ceramic nanofibers could be controlled in the range from 20 to 200 nm by varying a number of parameters such as the voltage, the feeding rate of the precursor solution, the ratio between PVP and titanium tetraisopropoxide, and their concentrations in the alcohol solution. Titanium tetraisopropoxide could be transferred to titania nanofibers with ~100% yield by using this technique.

  10. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    NASA Astrophysics Data System (ADS)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  11. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  12. Height-diameter equations for thirteen midwestern bottomland hardwood species

    Treesearch

    Kenneth C. Colbert; David R. Larsen; James R. Lootens

    2002-01-01

    Height-diameter equations are often used to predict the mean total tree height for trees when only diameter at breast height (dbh) is measured. Measuring dbh is much easier and is subject to less measurement error than total tree height. However, predicted heights only reflect the average height for trees of a particular diameter. In this study, we present a set of...

  13. A large volume striped bass egg incubation chamber: design and comparison with a traditional method

    USGS Publications Warehouse

    Harper, C.J.

    2009-01-01

    I conducted a comparative study of a new jar design (experimental chamber) with a standard egg incubation vessel (McDonald jar). Experimental chambers measured 0.4 m in diameter by 1.3 m in height and had a volume of 200 L. McDonald hatching jars measured 16 cm in diameter by 45 cm in height and had a volume of 6 L. Post-hatch survival was estimated at 48, 96 and 144 h. Stocking rates resulted in an average egg density of 21.9 eggs ml-1 (range = 21.6 – 22.1) for McDonald jars and 10.9 eggs ml-1 (range = 7.0 – 16.8) for experimental chambers. I was unable to detect an effect of container type on survival to 48, 96 or 144 h. At 144 h striped bass fry survival averaged 37.3% for McDonald jars and 34.2% for experimental chambers. Survival among replicates was significantly different. Survival of striped bass significantly decreased between 96 and 144 h. Mean survival among replicates ranged from 12.4 to 57.3%. I was unable to detect an effect of initial stocking density on survival. Experimental jars allow for incubation of a larger number of eggs in a much smaller space. As hatchery production is often limited by space or water supply, experimental chambers offer an alternative to extending spawning activities, thereby reducing manpower and cost. However, the increase in the number of eggs per rearing container does increase the risk associated with catastrophic loss of a production unit. I conclude the experimental chamber is suitable for striped bass egg incubation.

  14. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  15. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems.

    PubMed

    Danaei, M; Dehghankhold, M; Ataei, S; Hasanzadeh Davarani, F; Javanmard, R; Dokhani, A; Khorasani, S; Mozafari, M R

    2018-05-18

    Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.

  16. Reproductive biology of galatheoid and chirostyloid (Crustacea: Decapoda) squat lobsters from the Gulf of Mexico.

    PubMed

    Kilgour, Morgan J; Shirley, Thomas C

    2014-01-16

    Reproductive timing, fecundity, and average egg sizes were examined for galatheoid and chirostyloid squat lobster collections from the Gulf of Mexico. While congeners did not always significantly differ in egg size or timing, each genus had a unique average egg diameter size which may indicate whether the developing embryos will be lecithotrophic or planktotrophic larvae. The eggs of Eumunididae, Galatheidae, and Munididae were more numerous and smaller than the larger and less abundant eggs of Chirostylidae and Munidopsidae. With the exception of members of the Munididae, members of genera within the same family had distinct egg diameters. Ovigerous females were significantly larger than non-ovigerous females in some species (i.e., Uroptychus nitidus, Munida forceps, Galacantha spinosa, Munidopsis abbreviata, M. alaminos, M., erinacea, M. robusta, M. sigsbei, and M. simplex). Munidopsis erinacea and Munida affinis males were significantly larger than females; the reverse was true for Munidopsis robusta and Munidopsis simplex. All other species studied did not have a significant difference between males and females. The spatial and bathymetric ranges for many species are extended in this study from prior reports. Seasonality of reproduction was evident in few species, but this may be a result of limited sample sizes.

  17. Hydroxyapatite formation from cuttlefish bones: kinetics.

    PubMed

    Ivankovic, H; Tkalcec, E; Orlic, S; Ferrer, G Gallego; Schauperl, Z

    2010-10-01

    Highly porous hydroxyapatite (Ca(10)(PO(4))(6)·(OH)(2), HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson-Mehl-Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO(3) (2-) groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.

  18. Lithium ion batteries based on nanoporous silicon

    DOEpatents

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  19. Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu

    2018-06-01

    Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.

  20. SU-F-J-63: Abdominal Diameter Changes in Children During Volumetric Modulated Arc Therapy (VMAT): Is Re-Planning Needed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerreiro, F; Janssens, G; Seravalli, E

    Purpose: To investigate the dosimetric impact of daily changes in patient’s diameter, due to weight gain/loss and air in the bowel, based on CBCT information during radiotherapy treatment of pediatric abdominal tumors. Methods: 10 pediatric patients with neuroblastoma (n=6) and Wilms’ (n=4) tumors were included. Available CBCTs were affinely registered to the planning CT for daily set-up variations corrections. A density override approach assigning air-density to the random air pockets and water-density to the remaining anatomy was used to determine the CBCT and CT dose. Clinical VMAT plans, with a PTV prescribed dose ranging between (14.4- 36) Gy, were re-optimizedmore » on the density override CT and re-calculated on each CBCT. Dose-volume statistics of the PTV and kidneys, delineated on each CBCT, were used to compare the daily and cumulative CBCT dose with the reference CT dose. Results: The average patient diameter variation was (0.5 ± 0.7) cm (maximum daily difference of 2.3 cm). The average PTV mean dose difference (MDD) between the CT and the cumulative CBCT plans was (0.1 ± 1.1) % (maximum daily MDD of 2%). A reduction in target coverage up to 3% and 7% was observed for the cumulative and daily CBCT plans, respectively. The average kidneys’ cumulative MDD was (−2.7 ± 3.6) % (maximum daily MDD of −12%), corresponding to an overdosage. Conclusion: Due to patient’s diameter changes, a target underdosage was assessed. Given the high local tumor control of neuroblastoma and Wilms’ diseases, the need of re-planning might be discarded. However, the assessed kidneys overdosage could represent a problem when the normal tissue tolerance is reached. The necessity of re-planning should then be considered to reduce the risk of long-term renal complications. Due to the poor softtissue contrast on CBCT, MRI-guidance is required to obtain a better assessment of the accumulated dose on the remaining OARs.« less

  1. Organization and quantification of the elements in the intertubular space in the adult jaguar testis (Panthera onca, LINNAEUS, 1758).

    PubMed

    Azevedo, Maria Helena Ferreira; Paula, Tarcízio Antônio Rego; Balarini, Maytê Koch; Matta, Sérgio Luiz Pinto; Peixoto, Juliano Vogas; Guião Leite, Flaviana Lima; Rossi, João Luis; da Costa, Eduardo Paulino

    2008-12-01

    The endocrine portion of mammal testicle is represented by Leydig cells which, together with connective cells, leukocytes, blood and lymphatic vessels, form the intertubular space. The arrangement and proportion of these components vary in the different species of mammals and form mechanisms that keep the testosterone level--the main product of the Leydig cell--two to three times higher in the interstitial fluid than in the testicular blood vessels and 40-250 times higher in these than in the peripheral blood. Marked differences are observed among animal species regarding the abundance of Leydig cells, loose connective tissue, development degree and location of the lymphatic vessels and their topographical relationship with seminiferous tubules. In the jaguar about 13% of the testicular parenchyma is occupied by Leydig cells, 8.3% by connective tissue and 0.3% by lymphatic vessels. Although included in standard II, as described in the literature, concerning the arrangement of the intertubular space, the jaguar has grouped lymphatic vessels in the intertubular space instead of isolated ones. In the jaguar the average volume of the Leydig cell was 2386 microm3 and its average nuclear diameter was 7.7 microm. A great quantity of 2.3 microm diameter lipidic drops was observed in the Leydig cell cytoplasm of the jaguar. The Leydig cells in the jaguar occupy an average 0.0036% of the body weight and the average number per gram of testicle was within the range for most mammals: between 20 and 40 million.

  2. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  3. Seasonal morphological changes in the ovary of the Jungle crow (Corvus macrorhynchos).

    PubMed

    Islam, Muhammad Nazrul; Zhu, Xiao Bo; Aoyama, Masato; Sugita, Shoei

    2010-12-01

    Morphometric and histological studies were conducted to examine the seasonal ovarian changes in the Jungle crow of the Kanto area, Japan, from December to June. The ovary weights, largest diameters and atresias of the ovarian follicles and steroid-producing cells were examined. Hematoxylin and eosin-stained ovary sections and ImageJ software were used. The most developed ovary weight increased 373-fold in April, compared to those in December, followed by a 29-fold decrease in June. The average largest follicle diameter of the December and the January ovaries were 1.03 ± 0.35 and 1.05 ± 0.3 mm, respectively. The average largest follicle diameter increased by 2-fold in February, 4-fold in March and 8-fold in April, compared to those of December and January. Thereafter, the average largest follicle diameter declined by 6-fold in June. The average ovary weight and the largest follicle diameter in April increased significantly (P < 0.05) compared to those of December and January, followed by a significant decrease (P < 0.05) in June. The ovary weight correlated well with the expansion of the largest follicular diameter. Non-bursting and bursting atresias of smaller follicles were more common in the December, January, February and June ovaries, and bursting atresias of larger follicles were more common in the March, April and May ovaries. Ovarian steroidogenic cells became heavily charged with lipids in December, January, February and June, and they depleted their lipids in March and April, which might be due to steroid synthesis. Our results indicate that there are significant seasonal histomorphologic variations in the Jungle crow ovary.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, P. E., E-mail: Patricia.Lindsay@rmp.uhn.on.ca; Granton, P. V.; Hoof, S. van

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization ofmore » the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.« less

  5. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula (23 %) has intercepted significantly less rainfall than Pinus nigra (85%). Event C was also observed in the night time between 11th and 12th of May 2014, it lasted 4 hours and 12 minutes and delivered 34.6 mm of rainfall with an average intensity equal to 8.24 mm/h. During the event 147,236 raindrops with average diameter of 1.020 mm and average velocity of 4.078 m/s were detected. Betula pendula has intercepted only 6 % of rainfall whereas Pinus nigra intercepted majority of rainfall, namely 85 %. In case of B. pendula rainfall interception is increasing with higher velocity whereas it is lower for medium diameters than for smaller or larger diameters. Rainfall interception under P. nigra is decreasing with higher velocities and behaving similar as under B. pendula for different diameters but with less obvious difference between diameter classes. We will continue with the measurements and further analysis of several rainfall events will be prepared.

  6. Investigation of the processing conditions for the synthesis of rod-shaped LiCoO2

    NASA Astrophysics Data System (ADS)

    Kim, Taejoong; Kim, Yongseon

    2018-07-01

    We investigate the processing conditions for the synthesis of rod-shaped LiCoO2 (LCO) by a solid-state calcination of a precursor material which was prepared by a hydrothermal method. The rod-like morphology appeared to be easily broken due to the growth of primary crystals recrystallized during the calcination process. Therefore, it is crucial to maintain the temperature under a certain limit. However, the temperature must be high enough to obtain proper crystallinity of the LCO, ideally above 800 °C. Thus, we determined the optimal calcination temperature condition from the common range of temperatures that satisfies both these limiting conditions. The precursor with average diameter of 1 µm sustained the rod shape at calcination temperatures of up to 900 °C; therefore, the optimum calcination temperature could be determined between 800 and 900 °C. Whereas, a proper calcination temperature could not be found for the precursor with 500 nm of diameter because the rod shape did not maintain even at 700 °C. Thus, the maximum temperature at which the rod shape is retained decreases with smaller diameter of the precursor rods, indicating adjusting the diameter above a limiting value is necessary to prepare LCO rod by conventional solid state calcination.

  7. Fine and ultrafine particles in small cities. A case study in the south of Europe.

    PubMed

    Aranda, A; Díaz-de-Mera, Y; Notario, A; Rodríguez, D; Rodríguez, A

    2015-12-01

    Ultrafine particles, PM2.5 and PM10 mass concentration, NO(x), Ozone, SO2, back-trajectories of air masses and meteorological parameters were studied in a small city over the period February, 2013 to June, 2014. The profiles of PM2.5 and PM10 particles are provided, showing averaged values of 16.6 and 21.6 μg m(-3), respectively. The average number concentration of particles in the range of diameters 5.6-560 nm was 1.2 × 10(4)#/ cm(3) with contributions of 42, 51 and 7% from the nucleation, Aitken, and accumulation modes, respectively. The average number concentration of ultrafine particles was 1.1 × 10(4)#/ cm(3). The results obtained are evidence for some differences in the pollution of ambient air by particles in the studied town in comparison to bigger cities. Nucleation events due to emissions from the city were not observed, and traffic emissions amount to a small contribution to PM2.5 and PM10 particles which are mainly due to crustal origin from the arid surroundings and long-range transport from the Sahara Desert.

  8. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32405a

  9. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  10. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer

    PubMed Central

    Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho

    2013-01-01

    Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering. PMID:24381937

  11. Minimization of skin incisions at stripping by Mayo of large-diameter veins.

    PubMed

    Tsukanov, Yu

    2018-03-15

    To study the possibility of minimization of the skin incisions up to a puncture size at stripping by Mayo with the use of the stripper with an oval-ring head for large-diameter veins. The problem is solved due to the geometrical changing of the stripper head from a round to an oval one. The laboratory experiment showed that with a vein diameter of 10-20 mm the total cross-sectional area of its walls constituted 13.61 mm2, with a diameter of more than 20 mm it was 19.98 mm2. There were designed three types of the external dimensions for the stripper: 3.0 х 6.0 mm; 3,5 х 7.0 mm and 4.0 х 8.0 mm. From 1997 to 2017 the stripper with an oval-ring head was used in 1274 patients (male, n=421; female, n=853) for treating 1832 lower limbs. Average age was 46.4±12.3 years (range, 29 to 73). GSV and SSV stripping was performed in 1165 and 137 cases respectively in patients with the trunk diameter of more than 10 mm, severe vein tortuosity, for a vein located immediately under the skin, as well as for patients with the history of thrombophlebitis. The pain level in the 1st evening after the operation was 1.59, on the 7th day it decreased to 0.12 according to VAS-10. The motion activity level in the 1st evening after the operation was 7.24, on the 7th day it decreased to 9.96 according to VAS-10. All patients had primary wound healing. Hematomas along the location of the eliminated veins were of a moderate nature and resolved, on average, within 17 days. With the GSV diameter of 10-20 mm the skin scars were of 2.93 mm (95% CI: 3.09 mm - 4.47 mm), with the GSV diameter of more than 20 mm the skin scars were of 4.10 mm (95% CI: 4.01 mm - 5.07 mm). After 3 months 1102 patients (86,5%) were very satisfied and 172 (13,5%) were just satisfied with the performed operation. The use of the proposed stripper with an oval-ring head in patients with large-diameter subcutaneous trunks leads to the minimization of the skin incisions up to the punctures and, in general, makes the surgery significantly less traumatic, providing a quick recovery and minimization of the skin scars.

  12. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  13. Magnetostatic effects on switching in small magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.

    Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior ofmore » the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.« less

  14. Miscible displacement of a non-Newtonian fluid in a capillary tube

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grownmore » CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.« less

  16. Habitat use and home range of the endangered gold-spotted pond frog (Rana chosenica).

    PubMed

    Ra, Nam-Yong; Sung, Ha-Cheol; Cheong, Seokwan; Lee, Jung-Hyun; Eom, Junho; Park, Daesik

    2008-09-01

    Because of their complex life styles, amphibians and reptiles living in wetlands require both aquatic and terrestrial buffer zones in their protected conservation areas. Due to steep declines in wild populations, the gold-spotted pond frog (Rana chosenica) is listed as vulnerable by the IUCN. However, lack of data about its movements and use of habitat prevents effective conservation planning. To determine the habitat use and home range of this species, we radio-tracked 44 adult frogs for 37 days between 10 July and 4 Nov. 2007 to observe three different populations in the breeding season, non-breeding season, and late fall. The gold-spotted pond frog was very sedentary; its daily average movement was 9.8 m. Frogs stayed close to breeding ponds (within 6.6 m), and did not leave damp areas surrounding these ponds, except for dormancy migration to terrestrial sites such as dried crop fields. The average distance of dormancy migration of seven frogs from the edge of their breeding ponds was 32.0 m. The average size of an individual's home range was 713.8 m(2) (0.07 ha). The year-round population home range, which accounts for the home ranges of a population of frogs, was determined for two populations to be 8,765.0 m(2) (0.88 ha) and 3,700.9 m(2) (0.37 ha). Our results showed that to conserve this endangered species, appropriately sized wetlands and extended terrestrial buffer areas surrounding the wetlands (at least 1.33 ha, diameter 130 m) should be protected.

  17. SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmekawy, A; Ewell, L; Butuceanu, C

    2014-06-01

    Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measuredmore » as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.« less

  18. Phantom studies investigating extravascular density imaging for partial volume correction of 3-D PET /sup 18/FDG studies

    NASA Astrophysics Data System (ADS)

    Wassenaar, R. W.; Beanlands, R. S. B.; deKemp, R. A.

    2004-02-01

    Limited scanner resolution and cardiac motion contribute to partial volume (PV) averaging of cardiac PET images. An extravascular (EV) density image, created from the subtraction of a blood pool scan from a transmission image, has been used to correct for PV averaging in H/sub 2//sup 15/O studies using 2-D imaging but not with 3-D imaging of other tracers such as /sup 18/FDG. A cardiac phantom emulating the left ventricle was used to characterize the method for use in 3-D PET studies. Measurement of the average myocardial activity showed PV losses of 32% below the true activity (p<0.001). Initial application of the EV density correction still yielded a myocardial activity 13% below the true value (p<0.001). This failure of the EV density image was due to the 1.66 mm thick plastic barrier separating the myocardial and ventricular chambers within the phantom. Upon removal of this artifact by morphological dilation of the blood pool, the corrected myocardial value was within 2% of the true value (p=ns). Spherical ROIs (diameter of 2 to 10 mm), evenly distributed about the myocardium, were also used to calculate the average activity. The EV density image was able to account for PV averaging throughout the range of diameters to within a 5% accuracy, however, a small bias was seen as the size of the ROIs increased. This indicated a slight mismatch between the emission and transmission image resolutions, a result of the difference in data acquisitions (i.e., span and ring difference) and default smoothing. These results show that the use of EV density image to correct for PV averaging is possible with 3-D PET. A method of correcting barrier effects in phantoms has been presented, as well as a process for evaluating resolution mismatch.

  19. Reference range of fetal transverse cerebellar diameter between 18 and 24 weeks of pregnancy in a Brazilian population.

    PubMed

    Araujo Júnior, Edward; Martins, Wellington P; Nardozza, Luciano Marcondes Machado; Pires, Claudio Rodrigues; Filho, Sebastião Marques Zanforlin

    2015-02-01

    To determine a reference range of fetal transverse cerebellar diameter in Brazilian population. This was a retrospective cross-sectional study with 3772 normal singleton pregnancies between 18 and 24 weeks of pregnancy. The transverse cerebellar diameter was measured on the axial plane of the fetal head at the level of the lateral ventricles, including the thalamus, cavum septum pellucidum, and third ventricle. To assess the correlation between transverse cerebellar diameter and gestational age, polynomial equations were calculated, with adjustments by the determination coefficient (R2). The mean of fetal transverse cerebellar diameter ranged from 18.49 ± 1.24 mm at 18 weeks to 25.86 ± 1.66 mm at 24 weeks of pregnancy. We observed a good correlation between transverse cerebellar diameter and gestational age, which was best represented by a linear equation: transverse cerebellar diameter: -6.21 + 1.307*gestational age (R2 = 0.707). We determined a reference range of fetal transverse cerebellar diameter for the second trimester of pregnancy in Brazilian population. © The Author(s) 2014.

  20. Simulation of Young’s moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations

    NASA Astrophysics Data System (ADS)

    Bandura, Andrei V.; Evarestov, Robert A.; Lukyanov, Sergey I.; Piskunov, Sergei; Zhukovskii, Yuri F.

    2017-08-01

    Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1-5 nm and 1-20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter d NW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young’s moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168-169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on Y NW for 20 nm-thick NWs (160-162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young’s modulus consequently approaching that (Y b) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.

  1. Aortoiliac morphologic correlations in aneurysms undergoing endovascular repair.

    PubMed

    Ouriel, Kenneth; Tanquilut, Eugene; Greenberg, Roy K; Walker, Esteban

    2003-08-01

    The feasibility of endovascular aneurysm repair depends on morphologic characteristics of the aortoiliac segment. Knowledge of such characteristics is relevant to safe deployment of a particular device in a single patient and to development of new devices for use in patients with a broader spectrum of anatomic variations. We evaluated findings on computed tomography scans for 277 patients being considered for endovascular aneurysm repair. Aortic neck length and angulation estimates were generated with three-dimensional trigonometry. Specific centerline points were recorded, corresponding to the aorta at the celiac axis, lowest renal artery, cranial aspect of the aneurysm sac, aortic terminus, right hypogastric artery origin, and left hypogastric origin. Aortic neck thrombus and calcium content were recorded, and neck conicity was calculated in degrees. Statistical analysis was performed with the Spearman rank correlation. Data are expressed as median and interquartile range. Median diameter of the aneurysms was 52 mm (interquartile range, 48-59 mm) in minor axis and 56 mm (interquartile range, 51-64 mm) in major axis, and median length was 88 mm (interquartile range, 74-103 mm). Median proximal aortic neck diameter was 26 mm (interquartile range, 22-29 mm), and median neck length was 30 mm (interquartile range, 18-45 mm). The common iliac arteries were similar in diameter (right artery, 16 mm [interquartile range, 13-20 mm]; left artery, 15 mm [interquartile range, 11-18 mm]) and length (right, 59 mm [interquartile range, 50-69 mm]; left, 60 mm [interquartile range, 49-70 mm]). Median angulation of the infrarenal aortic neck was 40 degrees (interquartile range, 29-51 degrees), and median angulation of the suprarenal segment was 45 degrees (interquartile range, 36-57 degrees). By gender, sac diameter, proximal neck diameter, and iliac artery diameter were significantly larger in men. Significant linear associations were identified between sac diameter and sac length, neck angulation, and iliac artery diameter. As the length of the aneurysm sac increased the proximal aortic neck length decreased. Conversely, as the sac length decreased sac eccentricity increased. Mural thrombus content within the neck increased with increasing neck diameter. There is considerable variability in aortoiliac morphologic parameters. Significant associations were found between various morphologic variables, links that are presumably related to a shared pathogenesis for aberration in aortoiliac diameter, length, and angulation. Ultimately this information can be used to develop new endovascular devices with broader applicability and improved long-term results.

  2. Heat Transfer at a Long Electrically-Simulated Water Wall in a Circulating Fluidised Bed

    NASA Astrophysics Data System (ADS)

    Sundaresan, R.; Kolar, Ajit Kumar

    In the present work, heat transfer measurements are reported in a 100mm square, 5.5 m tall, cold CFB. The test section is a 19 mm OD electrically heated heat transfer tube, 4.64 m tall (covering more than 80% of the CFB height), sandwiched between two equally tall dummy tubes of 19mm OD, thus simulating a water wall geometry, forming one wall of the CFB. Narrow cut sand particles of mean diameters 156, 256, and 362 micrometers, and a wide cut sample of mean diameter 265 micrometer were used as the bed material. The superficial gas velocity ranged from 4.2 to 8.2 m/s, and the solids recycle flux varied from 17 to 110 kg/m2s. Local heat transfer coefficient at the simulated water wall varies, as expected from a low value at the top of the riser to a high value at the bottom, with an interesting increasing and decreasing trend in between. The average heat transfer coefficients were compared with those available in open literature. Correlations for average heat transfer coefficient are presented, both in terms of an average suspension density and also in terms of important nondimensional numbers, namely, Froude number, relative solids flux and velocity ratio. Comparisons are also made with predictions of relevant heat transfer models. Based on the present fifty-five experimental data points, the following correlation was presented with a correlation coefficient of 0.862 and maximum error is ± 15 %.

  3. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  4. Imaging the spotty surface of Betelgeuse in the H band

    NASA Astrophysics Data System (ADS)

    Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S.; Mugnier, L.; Thiébaut, E.; Berger, J. P.; Ridgway, S. T.; Monnier, J. D.; Millan-Gabet, R.; Traub, W.

    2009-12-01

    Aims. This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. Methods: We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. Results: We measure an average limb-darkened diameter of 44.28 ± 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 ± 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 ± 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Conclusions: Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.

  5. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  6. A geometrical optics approach for modeling aperture averaging in free space optical communication applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Davis, Christopher C.

    2006-09-01

    Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.

  7. A new algorithm for stand table projection models.

    Treesearch

    Quang V. Cao; V. Clark Baldwin

    1999-01-01

    The constrained least squares method is proposed as an algorithm for projecting stand tables through time. This method consists of three steps: (1) predict survival in each diameter class, (2) predict diameter growth, and (3) use the least squares approach to adjust the stand table to satisfy the constraints of future survival, average diameter, and stand basal area....

  8. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  9. Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X., E-mail: zhouxuan12@mails.thu.edu.cn; Zeng, R.; Zhuang, C.

    2015-06-15

    Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images.more » Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K.« less

  10. Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers

    PubMed Central

    Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.

    2013-01-01

    Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175

  11. On the look-up tables for the critical heat flux in tubes (history and problems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, P.L.; Smogalev, I.P.

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality.more » The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.« less

  12. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  13. Confined Impinging Jets in Porous Media

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Mansi, N.; Nardini, S.

    2016-09-01

    Impinging jets are adopted in drying of textiles, paper, cooling of gas turbine components, freezing of tissue in cryosurgery and manufacturing, electronic cooling. In this paper an experimental investigation is carried out on impinging jets in porous media with the wall heated from below with a uniform heat flux. The fluid is air. The experimental apparatus is made up of a fun systems, a test section, a tube, to reduce the section in a circular section. The tube is long 1.0 m and diameter of 0.012 m. The test section has a diameter of 0.10 m and it has the thickness of 10, 20 and 40 mm. In the test section the lower plate is in aluminum and is heated by an electrical resistance whereas the upper plate is in Plexiglas. The experiments are carried out employing a aluminum foam 40 PPI at three thickness as the test section. Results are obtained in a Reynolds number range from 5100 to 15300 and wall heat flux range from 510 W/m2 to 1400 W/m2. Results are given in terms of wall temperature profiles, local and average Nusselt numbers, pressure drops, friction factor and Richardson number.

  14. Modal content of noise generated by a coaxial jet in a pipe

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1978-01-01

    Noise generated by air flow through a coaxial obstruction in a long, straight pipe was investigated with concentration on the modal characteristics of the noise field inside the pipe and downstream of the restriction. Two measurement techniques were developed for separation of the noise into the acoustic duct modes. The instantaneous mode separation technique uses four microphones, equally spaced in the circumferential direction, at the same axial location. The time-averaged mode separation technique uses three microphones mounted at the same axial location. A matrix operation on time-averaged data produces the modal pressure levels. This technique requires the restrictive assumption that the acoustic modes are uncorrelated with each other. The measured modal pressure spectra were converted to modal power spectra and integrated over the frequency range 200-6000 Hz. The acoustic efficiency levels (acoustic power normalized by jet kinetic energy flow), when plotted vs. jet Mach number, showed a strong dependence on the ratio of restriction diameter to pipe diameter. The acoustic energy flow analyses based on the thermodynamic energy equation and on the results of Mohring both resulted in orthogonality properties for the eigenfunctions of the radial mode shape equation. These orthogonality relationships involve the eigenvalues and derivatives of the radial mode shape functions.

  15. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  16. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    NASA Astrophysics Data System (ADS)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  17. Combustion of a Polymer (PMMA) Sphere in Microgravity

    NASA Technical Reports Server (NTRS)

    Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.

    1999-01-01

    A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.

  18. Relationship between leaf functional traits and productivity in Aquilaria crassna (Thymelaeaceae) plantations: a tool to aid in the early selection of high-yielding trees.

    PubMed

    López-Sampson, Arlene; Cernusak, Lucas A; Page, Tony

    2017-05-01

    Physiological traits are frequently used as indicators of tree productivity. Aquilaria species growing in a research planting were studied to investigate relationships between leaf-productivity traits and tree growth. Twenty-eight trees were selected to measure isotopic composition of carbon (δ13C) and nitrogen (δ15N) and monitor six leaf attributes. Trees were sampled randomly within each of four diametric classes (at 150 mm above ground level) ensuring the variability in growth of the whole population was represented. A model averaging technique based on the Akaike's information criterion was computed to identify whether leaf traits could assist in diameter prediction. Regression analysis was performed to test for relationships between carbon isotope values and diameter and leaf traits. Approximately one new leaf per week was produced by a shoot. The rate of leaf expansion was estimated as 1.45 mm day-1. The range of δ13C values in leaves of Aquilaria species was from -25.5‰ to -31‰, with an average of -28.4 ‰ (±1.5‰ SD). A moderate negative correlation (R2 = 0.357) between diameter and δ13C in leaf dry matter indicated that individuals with high intercellular CO2 concentrations (low δ13C) and associated low water-use efficiency sustained rapid growth. Analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could best explain growth in Aquilaria species were δ13C, δ15N, petiole length, number of new leaves produced per week and specific leaf area. The model constructed with these variables explained 55% (R2 = 0.55) of the variability in stem diameter. This demonstrates that leaf traits can assist in the early selection of high-productivity trees in Aquilaria species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Updating Indiana Annual Forest Inventory and Analysis Plot Data Using Eastern Broadleaf Forest Diameter Growth Models

    Treesearch

    Veronica C. Lessard

    2001-01-01

    The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are calibrated for species groups and formulated as the product of an average diameter growth component and a modifier component. The regional models...

  20. Tortuosity correction of Kozeny's hydraulic diameter of a porous medium

    NASA Astrophysics Data System (ADS)

    Shin, C.

    2017-02-01

    The hydraulic diameter of a porous medium is the most important characteristic parameter governing porous flow aspects. Kozeny's hydraulic diameter has been used as the representative definition ever since he proposed it in 1927. However, it seems likely that this definition does not perfectly reflect the porous flow features even if the geometric relations of porous media are reasonably considered. Here we reviewed its definition by introducing Darcy's friction flow relation, and discovered that the term "tortuosity" should be included in the definition to more accurately characterize porous flows. Thus, the definition of "Tortuous Hydraulic Diameter (THD)," which corrects Kozeny's hydraulic diameter using tortuosity, is newly presented. Moreover, computational fluid dynamics simulations were performed to check the validity and applicability of the THD approach. As a result, it is seen that the THD demonstrates very low errors, with an average of 1.67%, whereas Kozeny's definition has relatively large errors, with an average of 12.8%. Accordingly, it is confirmed that the THD relation is the more accurate hydraulic diameter definition for a porous medium. Ultimately, the corrected definition can contribute to more reliable determinations of the other characteristic parameters and more reasonable porous flow analyses.

  1. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters.

    PubMed

    Katti, Dhirendra S; Robinson, Kyle W; Ko, Frank K; Laurencin, Cato T

    2004-08-15

    Wound healing is a complex process that often requires treatment with antibiotics. This article reports the initial development of a biodegradable polymeric nanofiber-based antibiotic delivery system. The functions of such a system would be (a) to serve as a biodegradable gauze, and (b) to serve as an antibiotic delivery system. The polymer used in this study was poly(lactide-co-glycolide) (PLAGA), and nanofibers of PLAGA were fabricated with the use of the electrospinning process. The objective of this study was to determine the effect of fabrication parameters: orifice diameter (needle gauge), polymer solution concentration, and voltage per unit length, on the morphology and diameter of electrospun nanofibers. The needle gauges studied were 16 (1.19 mm), 18 (0.84 mm), and 20 (0.58 mm), and the range of polymer solution concentration studied was from 0.10 g/mL to 0.30 g/mL. The effect of voltage was determined by varying the voltage per unit electrospinning distance, and the range studied was from 0.375 kV/cm to 1.5 kV/cm. In addition, the mass per unit area of the electrospun nanofibers as a function of time was determined and the feasibility of antibiotic (cefazolin) loading into the nanofibers was also studied. The results indicate that the diameter of nanofibers decreased with an increase in needle gauge (decrease in orifice diameter), and increased with an increase in the concentration of the polymer solution. The voltage study demonstrated that the average diameter of the nanofibers decreased with an increase in voltage. However, the effect of voltage on fiber diameter was less pronounced as compared to polymer solution concentration. The results of the areal density study indicated that the mass per unit area of the electrospun nanofibers increased linearly with time. Feasibility of drug incorporation into the nanofibers was demonstrated with the use of cefazolin, a broad-spectrum antibiotic. Overall, these studies demonstrated that PLAGA nanofibers can be tailored to desired diameters through modifications in processing parameters, and that antibiotics such as cefazolin can be incorporated into these nanofibers. Therefore, PLAGA nanofibers show potential as antibiotic delivery systems for the treatment of wounds. Copyright 2004 Wiley Periodicals, Inc.

  2. Thickness, medullation and growth rate of female scalp hair are subject to significant variation according to pigmentation and scalp location during ageing.

    PubMed

    Van Neste, Dominique

    2004-01-01

    The biological importance and/or significance of human hair colour is unknown even though greying is obviously associated with ageing. In order to further characterise hair pigmentation in relation with hair growth variables we evaluated 3 scalp sites (top of the head (T): left and right and occipital(O)) in 12 untreated menopausal women (age range: 49-66 years: average 59.63 +/- 5.66) who presented complaining of hair loss and/or diffuse alopecia. Controls were 12 non menopausal sexually mature woman (7 age range 15-21 and 5 age range 38-48) not complaining of hair loss. One hair sample (whenever possible n = 60) was taken one month after clipping from T and O on each person; menopausal women were sampled twice. The following measures were performed with a light microscope: diameter (average min-max., microm), medulla (0% = absent to 100% = fully developed) and linear hair growth rate (mm/day). The hairs were categorised as pigmented (P) or non-pigmented (white, W) as compared with a black and white reference card. A total of 3343 hairs were analysed with 2-factor analysis of variance (ANOVA). A global comparison (all hairs) showed that the average diameter of W hair (67.68 microm) exceeded that of P hair (57.41 microm) (p = 0.0001) and this was maintained on all 3 scalp sites. In addition, the medulla of W hair (23.91%) appeared more developed than the medulla of P hair (12.21%) (p = 0.0001) and was more expressed in W T hairs as compared with W O hairs (p = 0.0325). There was also a significant interaction between site and pigmentation (p = 0.0074). Growth rate of W hairs (0.38 mm/d) was higher than that of P hairs (0.35 mm/d) (p = 0.0001) and there was a significant variation according to scalp sites (p = 0.0001). There was also a significant interaction between site and pigmentation (p = 0.0062) with the following rank order: O W (0.40 mm/d), T W (0.37 mm/d), O P (0.37 mm/d) and T P (0.34 mm/d). Subgroups of W and P of paired thickness in the range of 50 to 80 pm consistently showed a 10% faster growth rate of W. Previous studies have shown that growth rate and diameter declines in age and alopecia i.e. in hair thinning. Our data shows that the reduced growth rate of terminal hairs is in fact limited to the pigmented hairs. The mechanisms by which white hairs are spared these ageing changes are not yet understood. Less pigmented hairs are usually undetected by photo- graphic techniques used for drug trials. The potential role of drug induced modifications of hair pigmentation should be taken into account during the interpretation of efficacy except if contrast-enhancement has been applied. Copyright John Libbey Eurotext 2003.

  3. Characterization of fiber diameter using image analysis

    NASA Astrophysics Data System (ADS)

    Baheti, S.; Tunak, M.

    2017-10-01

    Due to high surface area and porosity, the applications of nanofibers have increased in recent years. In the production process, determination of average fiber diameter and fiber orientation is crucial for quality assessment. The objective of present study was to compare the relative performance of different methods discussed in literature for estimation of fiber diameter. In this work, the existing automated fiber diameter analysis software packages available in literature were developed and validated based on simulated images of known fiber diameter. Finally, all methods were compared for their reliable and accurate estimation of fiber diameter in electro spun nanofiber membranes based on obtained mean and standard deviation.

  4. Definition of Linear Color Models in the RGB Vector Color Space to Detect Red Peaches in Orchard Images Taken under Natural Illumination

    PubMed Central

    Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2012-01-01

    This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates. PMID:22969369

  5. Definition of linear color models in the RGB vector color space to detect red peaches in orchard images taken under natural illumination.

    PubMed

    Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2012-01-01

    This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.

  6. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian; Graber, Christof; Liburdy, James

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon.more » Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)« less

  7. Microscopic Structure of Metal Whiskers

    NASA Astrophysics Data System (ADS)

    Borra, Vamsi; Georgiev, Daniel G.; Karpov, V. G.; Shvydka, Diana

    2018-05-01

    We present TEM images of the interior of metal whiskers (MWs) grown on electroplated Sn films. Along with earlier published information, our observations focus on a number of questions, such as, why MWs' diameters are in the micron range (significantly exceeding the typical nanosizes of nuclei in solids), why the diameters remain practically unchanged in the course of MW growth, what the nature of MW diameter stochasticity is, and what the origin of the well-known striation structure of MW side surfaces is. In an attempt to address such questions, we perform an in-depth study of MW structure at the nanoscale by detaching a MW from its original film, reducing its size to a thin slice by cutting its sides by a focused ion beam, and performing TEM on that structure. Also, we examine the root of the MW and Cu-Sn interface for the intermetallic compounds. Our TEM observations reveal a rich nontrivial morphology suggesting that MWs may consist of many side-by-side grown filaments. This structure appears to extend to the outside whisker surface and be the reason for the striation. In addition, we put forward a theory where nucleation of multiple thin metal needles results in micron-scale and larger MW diameters. This theory is developed in the average field approximation similar to the roughening transitions of metal surfaces. The theory also predicts MW nucleation barriers and other observed features.

  8. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae).

    PubMed

    Dai, Zhendong; Gorb, Stanislav N; Schwarz, Uli

    2002-08-01

    This paper studies slide-resisting forces generated by claws in the free-walking beetle Pachnoda marginata (Coleoptera, Scarabaeoidea) with emphasis on the relationship between the dimension of the claw tip and the substrate texture. To evaluate the force range by which the claw can interact with a substrate, forces generated by the freely moving legs were measured using a load cell force transducer. To obtain information about material properties of the claw, its mechanical strength was tested in a fracture experiment, and the internal structure of the fractured claw material was studied by scanning electron microscopy. The bending stress of the claw was evaluated as 143.4-684.2 MPa, depending on the cross-section model selected. Data from these different approaches led us to propose a model explaining the saturation of friction force with increased texture roughness. The forces are determined by the relative size of the surface roughness R(a) (or an average particle diameter) and the diameter of the claw tip. When surface roughness is much bigger than the claw tip diameter, the beetle can grasp surface irregularities and generate a high degree of attachment due to mechanical interlocking with substrate texture. When R(a) is lower than or comparable to the claw tip diameter, the frictional properties of the contact between claw and substrate particles play a key role in the generation of the friction force.

  9. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Increases in the number of small-diameter, tree-sized (stems greater than 2.5 meter height) aspen stems were observed but only inside fences that excluded ungulates. In unfenced areas, stand structure was stagnant, with many medium- and large-diameter (older) stems and no replacement of small-diameter stems. By 2013, aspen saplings (stems less than or equal to 2.5 meter height) were recruiting on 29 percent of sampled sites, an increase from 13 percent of sites at baseline, but this was mainly due to growth inside fences. Upland herbaceous offtake dropped below baseline levels (61 percent) on both core and noncore winter range in 2010–14. Less than 10 percent of the upland areas had intense herbivory (greater than 85 percent offtake), and less than 30 percent of the landscape had offtake greater than 70 percent after 2009. Offtake levels in 2013 and 2014 indicated an increase in grazing pressure on upland sites compared to 2010–12 levels, but this change may have been in response to loss of large patches of both herbaceous and woody forage in Moraine Park following the 2012 Fern Lake Fire. Winter willow offtake remained steady from 2009 to 2014, and although there were no substantial increases in offtake, there were also no consistent declines. Winter-range willow offtake was below the baseline level of 35 percent only in 2013 and 2014. Willow heights have stayed at or above baseline levels of 0.9 meter. Average heights of willow increased compared to baseline measures within fenced habitat on the core winter range and on noncore (all unfenced) winter range. Willow cover increased at least 75 percent compared to baseline within core winter-range fenced areas and roughly 25 percent in noncore winter range. Overall, during the first 5 years of implementation, the EVMP at Rocky Mountain National Park seems to be making steady progress toward the vegetation objectives set out by the EVMP. Habitat fencing has been the most effective means of improving aspen and willow habitat conditions.

  10. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    NASA Astrophysics Data System (ADS)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  11. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  12. Improved Ultrasonic Fuel Mass Flowmeter for Army Aircraft Engine Diagnostics

    DTIC Science & Technology

    1975-06-01

    B-6), at least for large pipes , with diameters from ~0, 2 m to over 1 m. See Refs. 3-7. For area-averaging over a limited range of flow...u l a r c r o s s section. Sheet -meta l duct can be instal led to operate at hydrosta t ic p r e s s u r e within pipes of normal or heavy...practical limit is on the order of 1/4 of the pipe radius. To avoid this limit , and at the same time obtain propagation over a path independent of

  13. Estimating Gestational Age With Sonography: Regression-Derived Formula Versus the Fetal Biometric Average.

    PubMed

    Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John

    2018-03-01

    To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Aperture averaging in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  15. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  16. Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming

    USGS Publications Warehouse

    Smalley, M.L.; Emmett, W.W.; Wacker, A.M.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is about 0.5 milli- meter. About 20 percent (by weight) is medium gravel to small cobbles--12.7 millimeters (0.5 inch) or coarser. The bedload moves slowly (about 0.03 percent of the water speed) and briefly (about 10 percent of the time). The average travel distance of a median-sized particle is about 1 river mile per year. The study results indicate that the average replenishment rate of bedload material coarser than 12.7 millimeters is about 1,500 to 2,000 tons (less than 1,500 cubic yards) per year. Finer material (0.075 to 6.4 millimeters in diameter) is replen- ishment at about 4,500 to 5,000 cubic yards per year. The total volume of potentially usable material would average about 6,000 cubic yards per year.

  17. Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4

    DOE PAGES

    Mirzaei, S.; Kremer, F.; Feng, R.; ...

    2017-03-14

    SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less

  18. Associating seasonal range characteristics with survival of female white-tailed deer

    USGS Publications Warehouse

    Klaver, R.W.; Jenks, J.A.; Deperno, C.S.; Griffin, S.L.

    2008-01-01

    Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ?? 0.005 [x- ?? SE]) and low (S = 0.968 ?? 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.

  19. Optimal radial force and size for palliation in gastroesophageal adenocarcinoma: a comparative analysis of current stent technology.

    PubMed

    Mbah, Nsehniitooh; Philips, Prejesh; Voor, Michael J; Martin, Robert C G

    2017-12-01

    The optimal use of esophageal stents for malignant and benign esophageal strictures continues to be plagued with variability in pain tolerance, migration rates, and reflux-related symptoms. The aim of this study was to evaluate the differences in radial force exhibited by a variety of esophageal stents with respect to the patient's esophageal stricture. Radial force testing was performed on eight stents manufactured by four different companies using a hydraulic press and a 5000 N force gage. Radial force was measured using three different tests: transverse compression, circumferential compression, and a three-point bending test. Esophageal stricture composition and diameters were measured to assess maximum diameter, length, and proximal esophageal diameter among 15 patients prior to stenting. There was a statistically significant difference in mean radial force for transverse compression tests at the middle (range 4.25-0.66 newtons/millimeter N/mm) and at the flange (range 3.32-0.48 N/mm). There were also statistical differences in mean radial force for circumferential test (ranged from 1.19 to 10.50 N/mm, p < 0.001) and the three-point bending test (range 0.08-0.28 N/mm, p < 0.001). In an evaluation of esophageal stricture diameters and lengths, the smallest median diameter of the stricture was 10 mm (range 5-16 mm) and the median proximal diameter normal esophagus was 25 mm (range 22-33 mm), which is currently outside of the range of stent diameters. Tested stents demonstrated significant differences in radial force, which provides further clarification of stent pain and intolerance in certain patients, with either benign or malignant disease. Similarly, current stent diameters do not successfully exclude the proximal esophagus, which can lead to obstructive-type symptoms. Awareness of radial force, esophageal stricture composition, and proximal esophageal diameter must be known and understood for optimal stent tolerance.

  20. The Characteristics of Incidental Pituitary Microadenomas in 120 Korean Forensic Autopsy Cases

    PubMed Central

    Kim, Jang-Hee; Seo, Jung-Seok; Lee, Bong-Woo; Lee, Sang-Young; Jeon, Seok-Hoon

    2007-01-01

    To investigate the characteristics of incidental pituitary microadenomas, we examined 120 pituitary glands from Korean forensic autopsy cases, from which eight tumors were identified (incidence 6.7%). The average age of the affected subjects was 50 yr (range: 33-96 yr) with a female predominance. The maximum diameters of the tumors ranged from 0.4 to 5.4 mm (mean: 2.8 mm). Immunohistochemical analysis of pituitary hormones revealed three growth hormone-secreting adenomas, one prolactin-producing adenoma, one gonadotropin-producing adenoma, one plurihormonal adenoma, and two null cell adenomas. MIB-1 staining for Ki-67 antigen showed no positive expression. The microvessel density (MVD) of the pituitary microadenomas ranged from 2.3 to 11.6% (mean: 5.3%) and was significantly lower than that of nonneoplastic pituitary glands (11.9-20.1%, mean: 14.8%). Our study provides reference data on incidental pituitary microadenomas in the Korean population. PMID:17923757

  1. The influence of partial cutting on mountain pine beetle-caused tree mortality in Black Hills ponderosa pine stands

    Treesearch

    J.M. Schmid; S.A. Mata; R.R. Kessler; J.B. Popp

    2007-01-01

    Ponderosa pine stands were partially cut to various stocking levels at five locations, periodically surveyed, and remeasured during the 20 years after installation. Mean diameter generally increased 2 inches over the 20-year period on most partially cut plots and less than 2 inches on unmanaged controls. Average diameter growth for diameter classes in partially cut...

  2. Permeability model of sintered porous media: analysis and experiments

    NASA Astrophysics Data System (ADS)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  3. Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza

    2012-03-01

    In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.

  4. Feasibility of recanalization of human coronary arteries using high-intensity ultrasound.

    PubMed

    Ernst, A; Schenk, E A; Woodlock, T J; Alliger, H; Gottlieb, S; Child, S Z; Meltzer, R S

    1994-01-15

    To investigate the feasibility of ultrasonic recanalization of obstructed human coronary arteries in vitro, high-intensity ultrasound was applied to 16 coronary arteries obtained at autopsy, using a prototype instrument enabling insonification through a catheter tip. It was a 119 cm long, 0.95 mm thick wire in an 8Fr catheter connected to an external ultrasonic transformer and power generator. A 5 MHz phased-array 2-dimensional echocardiography instrument was used to determine minimal luminal diameter and percent diameter narrowing before and after ultrasound application. The ultrasonic energy was delivered at 21.5 kHz and with a 52 +/- 19 micrometer average amplitude of tip displacement. The mean percent luminal diameter narrowing, flow rate and mean pressure gradient before ultrasound exposure were 74 +/- 11%, 97 +/- 61 ml/min, and 92 +/- 18 mm Hg, respectively. After recanalization, the mean percent luminal diameter narrowing decreased to 45 +/- 17% (p < 0.001), the mean flow rate increased to 84 +/- 92 ml/min (p < 0.001), and the mean pressure gradient was reduced to 45 +/- 24 mm Hg (p < 0.001). Of the debris particles, 95% had a diameter < 9 microns (range 5 to 12). Arterial perforation occurred in 5 of 16 arteries (31%) and all 5 occurred due to stiff wire manipulation and without ultrasound application. Mechanical fracture of the wire occurred in 8 cases (50%). No signs of thermal injury were found on histology. Thus, ultrasonic recanalization of human coronary arteries in vitro is feasible. It may reduce obstruction and improve blood flow. Debris sizes are sufficiently small to minimize the hazard of peripheral embolization.

  5. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study.

    PubMed

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-12-21

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.

  6. Attenuation-based size metric for estimating organ dose to patients undergoing tube current modulated CT exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun

    2015-02-15

    Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less

  7. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    PubMed

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  8. Comparative evaluation of five Pleurotus species for their growth behaviour and yield performance using wheat straw as a substrate.

    PubMed

    Holkar, Somnath Kadappa; Chandra, Ram

    2016-01-01

    Pleurotus spp. is one of the most important edible mushrooms cultivated in India. The present study was an attempt to compare five Pleurotus species in context of actual time required for each growth stage viz., spawn run period, number of days required for initiation of pin heads of sporophores, average weight of fruiting bodies in all the flushes and total yield. The spawn run period in all the five species were recorded between 18 days-21 days, similarly for initiation of pinheads 5 days -7 days were required after spawn run period. A total of 24 days to 27 days, 34 days to 37 days and 47 days to 53 days were required for harvesting the I, II and III flushes respectively. An average number of 41 to 70 sporophores per bag containing 1 kg of dry substrates were obtained from all the Pleurotus species. Maximum 14 g weight of single sporophore was recorded from P. florida, similarly, an average maximum diameter of 5.3 cm of sporophores of P. florida was observed whereas the diameter of sporophores in rest of the species ranged from 3.0 cm to 3.2 cm. The number of sporophores were obtained from P. sajor-caju (n-70) and all the species showed significant difference with respect to the number of sporophores in a bunch at probability level of P = 0.05. Maximum weight of single bunch was recorded (58 g) in P. florida and total yield of 740 gkg(-1) of dry matter was recorded in P. florida.

  9. Growth, chamber building rate and reproduction time of Palaeonummulites venosus under natural conditions.

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino

    2017-04-01

    Investigations on Palaeonummulites venosus using the natural laboratory approach for determining chamber building rate, test diameter increase rate, reproduction time and longevity is based on the decomposition of monthly obtained frequency distributions based on chamber number and test diameter into normal-distributed components. The shift of the component parameters 'mean' and 'standard deviation' during the investigation period of 15 months was used to calculate Michaelis-Menten functions applied to estimate the averaged chamber building rate and diameter increase rate under natural conditions. The individual dates of birth were estimated using the inverse averaged chamber building rate and the inverse diameter increase rate fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e. frequency divided by sediment weight) based on chamber building rate and diameter increase rate resulted both in a continuous reproduction through the year with two peaks, the stronger in May /June determined as the beginning of the summer generation (generation1) and the weaker in November determined as the beginning of the winter generation (generation 2). This reproduction scheme explains the existence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date seems to be round about one year, obtained by both estimations based on the chamber building rate and the diameter increase rate.

  10. Harvesting Productionin Uneven-Aged Loblolly-Shortleaf Pine Stands:The Crossett Farm Forestry Forties

    Treesearch

    R. Kluender; B. Stokes; S. Woodfin

    1992-01-01

    Twostands managed using uneven-aged techniques werehar- vested aspar-t of a5-year entry schedule. Felling and skidding productivity varied significantly with average stem diameter and volume and was affected by diameter distribution of the removed material.

  11. Mechanical properties of untreated and alkaline treated fibers from zalacca midrib wastes

    NASA Astrophysics Data System (ADS)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    The environmental concern has been raised due to the abundance of waste from synthetic materials which cannot be biodegraded after their life-time. It provides opportunity to exploit natural resources which are neglected. For example, midrib wastes from zalacca plants after cutting are able to utilize as composite reinforcement. The aim of this research was to characterize the mechanical properties of zalacca midrib fibers. As other ones, zalacca midrib fibers consisted of cellulose, hemicellulose and lignin, which their compositions were 42.54, 34.35 and 28.01 % respectively. To raise their cellulose content, the zalacca fibers were alkaline treated by immersion in the sodium hydroxide for 2 hours and rinsing in the distilled water. The concentration of sodium hydroxide was varied 1 and 5%. To investigate the influence of alkaline treatment, the mechanical testing and morphological analysis was performed. The tensile testing was done to obtain ultimate strength, elastic modulus and strain to fracture. The surface morphology of fibers was observed by SEM. The average ultimate tensile strength of zalacca fibers ranged from 182.12 MPa (untreated) to 417.94 MPa (5%NaOH treated). The diameter measurement showed that the alkaline treatment reduce the average fiber diameters due to the decline of the hemicellulose and lignin content as fiber matrix. This caused the increase of the tensile strength and elastic modulus due to the reduction of diameters as divider meanwhile the cellulose content as structural supporter of the fibers was relatively constant. From the SEM analysis, it was shown that the alkaline treatment reduced the fiber matrix so that its surface morphology became rougher due to the microfibrils appearance.

  12. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  13. Development of the Statocyst in the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael; Hejl, Robert

    1997-01-01

    The development of the statocyst of the freshwater snail Biomphalaria glabrata has been examined from embryo to adult. Special emphasis was put on the growth of the statoconia in the statocysts. In the statocysts of embryonic snails (90-120 h after oviposition) there is not a single statolith but an average of 40-50 statoconia per statocyst. The number of statoconia increases to 385-400 when the snails reach a shell diameter of 4 mm and remains relatively constant thereafter, irrespective of shell size. Small statoconia are found in supporting cells, which suggests that the statoconia are produced within these cells. The average diameter of statoconia and the total mass of statoconia increase with increasing shell diameter. The average number of large statoconia (diameter greater than 7 micrometers) per statocyst continues to increase from 2 to 10 mm animals while the number of small ones (diameter less than 4 micrometers) initially rises and then decreases after 4 mm. These results demonstrate continuous growth of the statoconia in the cyst lumen of Biomphalaria. The single statoconia vibrate in a regular pattern in vivo, indicating beating of the statocyst cilia. The statoconia sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The length of cilia and the size of statocyst gradually increase as the animal grows. However, the increase in the volume of the statocyst is relatively small compared with the increase in body weight during normal development.

  14. GHGfrack: An Open-Source Model for Estimating Greenhouse Gas Emissions from Combustion of Fuel during Drilling and Hydraulic Fracturing.

    PubMed

    Vafi, Kourosh; Brandt, Adam

    2016-07-19

    This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.

  15. Echocolor Doppler morpho-functional study of the jugulo-subclavian confluence in chronic cerebro-spinal venous insufficiency and multiple sclerosis patients.

    PubMed

    Mandolesi, Sandro; d'Alessandro, Aldo; Desogus, Antonello Ignazio; Ciccone, Marco Matteo; Zito, Annapaola; Stammegna, Immacolata; Niglio, Tarcisio; Orsini, Augusto; Mandolesi, Dimitri; d'Alessandro, Alessandro; Revelli, Luca

    2017-01-01

    The aim of this work is to measure the mean diameter of the confluence jugulo- subclavian, the impact of different types of jugular confluences and the correlation between the types of confluences and the Valsalva maneuver (jugular reflux) in subjects with Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) and Multiple Sclerosis. We investigated by Echo-Color-Doppler (ECD) 103 subjects (67 F 36M) of mean age 45 ± 12 years (a minimum of 22 to a maximum of 79 years, with a median of 44 and a modal value 42 years), mean EDSS of 4.7 and average disease duration of 12 years. The 103 right jugular veins investigated had an average diameter of 8.4 ± 2.4 mm (minimum 4.0, maximum 14.9 mm; median 7.9; modal value 7.6 mm). Three form types were found: 56 cylindrical, 29 conical and 18 funnel. Valsalva maneuver was positive in 30 patients. The 103 left jugular investigated had an average diameter of 8.9 ± 2.4 mm (minimum 2.8, maximum 14.4 mm; median of 8.8; modal value 8.7 mm). The form types were found: 42 cylindrical, 45 conical and 16 funnel. Valsalva maneuver was positive in 30 patients. The mean diameter of the jugular veins was 8.7 mm. Internal jugular veins with cylindrical morphology have a diameter smaller than other forms; this difference is statistically significant. The different morphology of the jugular vein confluence does not increase the possibility of a reflux because the positive Valsalva maneuvers are not statistically significant when compared to the various types. CCSVI, EchoColorDoppler Map, Jugulo-Subclavian Confluence Diameter.

  16. Comparative range of orthodontic wires.

    PubMed

    Ingram, S B; Gipe, D P; Smith, R J

    1986-10-01

    ADA specification No. 32 for determining the range (elastic limit) of orthodontic wires uses the bending of a wire section treated as a cantilever beam. An alternative method for defining the range of orthodontic wires proposed by Waters (1981) is to wrap wire sections around mandrels of varying diameters and measure the deformation imparted after unwrapping. Four brass mandrels with a total of 46 test diameters ranging from 3.5 to 60.0 mm were used in this study. Wire sections 9 cm in length were rolled on the mandrel with a hand lathe. The mandrel cross section required to produce a predetermined amount of deformation (2 mm arc height for a 5 cm chord) was defined as the yield diameter for that particular wire. No individual wire was tested twice so as to avoid introduction of strain history. Test samples of 488 different orthodontic wires supplied by nine commercial distributors were evaluated (a total of 4,747 samples). Stainless steel wires of identical dimensions had a large variation in range, depending on the state of strain hardening and heat treatment. For example, 0.020 inch round wire had yield diameters ranging from 22.8 mm for Australian special plus orange (TP Laboratories) to 42.9 mm for Nubryte gold (G.A.C. International). Chromium cobalt wires had less range than stainless steel before heat treatment, but increased greatly in range after heat treatment. Nitinol (Unitek) had the greatest range of all wires tested (yield diameter of 8.7 mm for 0.016 inch Nitinol). Multistranded stainless steel wires had yield diameters between 9.0 and 14.0 mm.

  17. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  18. Comparison of the arithmetic and geometric means in estimating crown diameter and crown cross-sectional area

    Treesearch

    KaDonna Randolph

    2010-01-01

    The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...

  19. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  20. Conductivity Evolution of Fracture Proppant in Partial Monolayers and Multilayers

    NASA Astrophysics Data System (ADS)

    Fan, M.; Han, Y.; McClure, J. E.; Chen, C.

    2017-12-01

    Proppant is a granular material, typically sand, coated sand, or man-made ceramic materials, which is widely used in hydraulic fracturing to keep the induced fractures open. Optimization of proppant placement in a hydraulic fracture, as well as its role on the fracture's conductivity, is vital for effective and economical production of petroleum hydrocarbons. In this research, a numerical modeling approach, combining Discrete Element Method (DEM) with lattice Boltzmann (LB) method, was adopted to advance the understanding of fracture conductivity as function of proppant concentration under various effective stresses. DEM was used to simulate effective stress increase and the resultant proppant particle compaction and rearrangement during the process of reservoir depletion due to hydrocarbon extraction. DEM-simulated pore structure was extracted and imported into the LB simulator as boundary conditions to calculate the time-dependent permeability of the proppant pack. We first validated the DEM-LB coupling workflow; the simulated proppant pack permeabilities as functions of effective stress were in good agreement with laboratory measurements. Next, several proppant packs were generated with various proppant concentrations, ranging from partial-monolayer to multilayer structures. Proppant concentration is defined as proppant mass per unit fracture face area. Fracture conductivity as function of proppant concentration was measured in LB simulations. It was found that a partial-monolayer proppant pack with large-diameter particles was optimal in maintaining sufficient conductivity while lowering production costs. Three proppant packs with the same average diameter but different diameter distributions were generated. Specifically, we used the coefficient of variation (COV) of diameter, defined as the ratio of standard deviation of diameter to mean diameter, to characterize the heterogeneity in particle size. We obtained proppant pack porosity, permeability, and fracture width reduction as functions of effective stress. Under the same effective stress, a proppant pack with a smaller diameter COV had higher porosity and permeability and smaller fracture width reduction, which are all favorable for maintaining the fracture conductivity during the process of hydrocarbon extraction.

  1. [Microsurgical anatomy importance of A1-anterior communicating artery complex].

    PubMed

    Monroy-Sosa, Alejandro; Pérez-Cruz, Julio César; Reyes-Soto, Gervith; Delgado-Hernández, Carlos; Macías-Duvignau, Mario Alberto; Delgado-Reyes, Luis

    2013-01-01

    The anterior cerebral artery originates from the bifurcation of the internal carotid artery lateral to the optic chiasm, then joins with its contralateral counterpart via the anterior communicating artery. A1-anterior communicating artery complex is the most frequent anatomical variants and is the major site of aneurysms between 30 to 37%. Know the anatomy microsurgical, variants anatomical and importance of complex precommunicating segment-artery anterior communicating in surgery neurological of the pathology vascular, mainly aneurysms, in Mexican population. The study was performed in 30 brains injected. Microanatomy was studied (length and diameter) of A1-anterior communicating artery complex and its variants. 60 segments A1, the average length of left side was 11.35 mm and 11.84 mm was right. The average diameter of left was 1.67 mm and the right was 1.64 mm. The average number of perforators on the left side was 7.9 and the right side was 7.5. Anterior communicating artery was found in 29 brains of the optic chiasm, its course depended on the length of the A1 segment. The average length of the segment was 2.84 mm, the average diameter was 1.41 mm and the average number of perforators was 3.27. A1-anterior communicating artery complex variants were found in 18 (60%) and the presence of two blister-like aneurysms. It is necessary to understand the A1-anterior communicating artery complex microanatomy of its variants to have a three-dimensional vision during aneurysm surgery.

  2. Evidence of Asymmetries in the Aldebaran Photosphere from Multi-Wavelength Lunar Occultations

    NASA Astrophysics Data System (ADS)

    Dyachenko, V.; Richichi, A.; Pandey, A.; Sharma, S.; Tasuya, O.; Balega, Yu.; Beskakotov, A.; Rastegaev, D.

    2017-06-01

    We present the results of three lunar occultations of the K5 giant Aldebaran, observed in late 2015 and early 2016. The 6-m SAO, 1.3-m Devasthal, and 2.4-m TNT telescopes were used to obtain light curves with few ms sampling and at wavelengths ranging from the ultraviolet to the red. These were fitted using uniform -disk (UD) models and then converted to limb-darkened (LD) models using Kurucz's atmospheric models. The resulting diameter values are in good agreement with previous determinations, with an average LD diameter of 20.3 milliseconds of arc. We have also been able to use model-independent methods to reconstruct the star's brightness profile and have found indications that the photospheric brightness profile of Aldebaran may not have been symmetric, a finding already reported by other authors for this and for similar late-type stars. The presence of surface spots on a scale of a few milliarcseconds is a likely explanation of the observed asymmetries.

  3. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice.

    PubMed

    Ishida, O; Maruyama, K; Sasaki, K; Iwatsuru, M

    1999-11-10

    We have examined the size dependence of extravasation and interstitial localization of polyethyleneglycol-coated liposomes (PEG-liposomes) in the solid tumor tissue by means of electron microscopic observation. Liposomes composed of distearoyl phosphatidylcholine, cholesterol and distearoylphosphatidylethanolamine derivative of polyethyleneglycol (PEG) were prepared in various size ranges. PEG-liposomes with an average diameter of 100-200 nm showed the most prolonged circulation time and the greatest tumor accumulation in all the solid tumors employed in this experiment. Although large PEG-liposomes with a diameter of 400 nm showed a short circulation time in normal mice, the results in splenectomized mice indicated that they do have an intrinsic prolonged circulation character in vivo. However, large PEG-liposomes could not extravasate into solid tumor tissue. These results indicate that the size of liposomes is critical for extravasation. The electron microscopic observations revealed the almost exclusive engulfment of extravasated liposomes by tumor-associated macrophages; very few were taken up by tumor cells.

  4. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    NASA Astrophysics Data System (ADS)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Truşcă, Roxana; Vasile, Eugeniu; Iordache, Florin; Chifiriuc, Mariana-Carmen; Holban, Alina Maria

    2015-05-01

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET-TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  5. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  6. Impact craters and Venus resurfacing history

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E.

    1992-01-01

    The history of resurfacing by tectonism and volcanism on Venus is reconstructed by means of an analysis of Venusian impact crater size-frequency distributions, locations, and preservation states. An atmospheric transit model for meteoroids demonstrates that for craters larger than about 30 km, the size-frequency distribution is close to the atmosphere-free case. An age of cessation of rapid resurfacing of about 500 Ma is obtained. It is inferred that a range of surface ages are recorded by the impact crater population; e.g., the Aphrodite zone is relatively young. An end-member model is developed to quantify resurfacing scenarios. It is argued that Venus has been resurfacing at an average rate of about 1 sq km/yr. Numerical simulations of resurfacing showed that there are two solution branches that satisfy the completely spatially random location restraint for Venusian craters: a is less than 0.0003 (4 deg diameter circle) and a is greater than 0.1 (74 deg diameter circle).

  7. Chaotic Mountain Blocks in Pluto’s Sputnik Planitia

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; Knight, Katherine I.; Stern, S. Alan; Olkin, Catherine; Grundy, William M.; McKinnon, William B.; Moore, Jeffrey M.; Schenk, Paul M.; Spencer, John R.; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; New Horizons Geology, Geophysics and Imaging Science Theme Team, The New Horizons Surface Composition Science Theme Team

    2017-10-01

    One of the first high-resolution Pluto images returned by New Horizons displayed a collection of tall, jagged peaks rising out of the large nitrogen ice sheet informally known as Sputnik Planitia (SP). This mountain range was later revealed to be one of several along the western edge of SP. The mountains are several hundred broken-up blocks of Pluto’s primarily water ice lithosphere and some retain surface terrains similar to the nearby intact crust surrounding SP. Water ice with some fractures or porosity is likely >5% less dense than solid N2 ice at Pluto’s temperatures. Thus it is possible the blocks are, or were, floating icebergs or at least partially suspended to the point that some blocks appear to be tilted as if they have faltered (Moore et al., 2016, Science, 351, 1284-1293).We analyze four mountain ranges on the western edge of SP and compare to chaotic terrains on Europa and Mars. The blocks on Pluto have angular planforms but we characterize their size using block surface area converted to an equivalent circular diameter. Topography was used to define block extents. The blocks range in size from 3-30 km in diameter, with a mode of ~8-10 km. Blocks range from 0.2-3.8 km in height, and block height generally increases with block diameter. One or more dark layers can be identified in a few scarp faces, and are at a similar depth to each other and to layers seen in fault and crater walls elsewhere on Pluto. A large N-S trending fault system runs tangential to SP and may be the source of crustal disruption on the western side.On Europa and Mars block sizes vary greatly between different chaos regions, but Conamara Chaos has an average block size of ~5 km in diameter, smaller than that typically seen on Pluto. Also the blocks often transition into fractured terrain still connected to the surround lithosphere at the periphery of the chaos regions. The source regions for the blocks are more obvious on Europa and Mars. Additionally the block heights on Europa and Mars generally do not increase with block size. Thus, the main mechanism of crustal breakup is likely different between these bodies.

  8. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    DOEpatents

    Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  9. Biomass of singleleaf pinyon and Utah juniper

    Treesearch

    E. L. Miller; R. O. Meeuwig; J. D. Budy

    1981-01-01

    Biomass determinations in singleleaf pinyon (Pinus monophylla) - Utah juniper (Juniperus osteosperma) stands in Nevada indicate that stem diameter and average crown diameter are the tree measurements most highly correlated with ovendry weights. The equations and tables developed provide a means for estimating the total aboveground...

  10. Assessing the accuracy of using oscillating gradient spin echo sequences with AxCaliber to infer micron-sized axon diameters.

    PubMed

    Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie

    2017-02-01

    Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.

  11. Periorbital Biometric Measurements using ImageJ Software: Standardisation of Technique and Assessment Of Intra- and Interobserver Variability

    PubMed Central

    Rajyalakshmi, R.; Prakash, Winston D.; Ali, Mohammad Javed; Naik, Milind N.

    2017-01-01

    Purpose: To assess the reliability and repeatability of periorbital biometric measurements using ImageJ software and to assess if the horizontal visible iris diameter (HVID) serves as a reliable scale for facial measurements. Methods: This study was a prospective, single-blind, comparative study. Two clinicians performed 12 periorbital measurements on 100 standardised face photographs. Each individual’s HVID was determined by Orbscan IIz and used as a scale for measurements using ImageJ software. All measurements were repeated using the ‘average’ HVID of the study population as a measurement scale. Intraclass correlation coefficient (ICC) and Pearson product-moment coefficient were used as statistical tests to analyse the data. Results: The range of ICC for intra- and interobserver variability was 0.79–0.99 and 0.86–0.99, respectively. Test-retest reliability ranged from 0.66–1.0 to 0.77–0.98, respectively. When average HVID of the study population was used as scale, ICC ranged from 0.83 to 0.99, and the test-retest reliability ranged from 0.83 to 0.96 and the measurements correlated well with recordings done with individual Orbscan HVID measurements. Conclusion: Periorbital biometric measurements using ImageJ software are reproducible and repeatable. Average HVID of the population as measured by Orbscan is a reliable scale for facial measurements. PMID:29403183

  12. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  13. Magnetic Resonance Velocimetry analysis of an angled impinging jet

    NASA Astrophysics Data System (ADS)

    Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David

    2016-11-01

    Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  14. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  15. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    PubMed

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in estimated mean f(S) declined rapidly with increasing sample size. At n = 10, the coefficient of variation in mean f(S) was 7% and at n = 15 it was slightly less than 5%. These observations indicate that radial variation in sap velocity is an important, albeit often overlooked, source of uncertainty in the scaling process. Failure to recognize that not all sapwood is functional in water transport will introduce systematic bias into estimates of both tree and stand water use. Future studies should devise sampling strategies for assessing radial variation in sap velocity and such strategies should be used to identify the magnitude of this variation in a range of non-, diffuse- and ring-porous trees.

  16. SU-E-T-579: Impact of Cylinder Size in High-Dose Rate Brachytherapy (HDRBT) for Primary Cancer in the Vagina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H; Gopalakrishnan, M; Lee, P

    2014-06-01

    Purpose: To evaluate the dosimetric impact of cylinder size in high dose rate Brachytherapy for primary vaginal cancers. Methods: Patients treated with HDR vaginal vault radiation in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm increment were analyzed. All patients’ doses were prescribed at the 0.5 cm from the vaginal surface with different treatment lengths. A series of reference points were created to optimize the dose distribution. The fraction dose was 5.5 Gy, the treatment was repeated for 4 times in two weeks. A cylinder volume was contoured in each case according tomore » the prescribed treatment length, and then expanded to 5 mm to get a volume Cylinder-5mm-exp. A volume of PTV-Eval was obtained by subtracting the cylinder volume from the Cylinder-5mm-exp. The shell volume, PTV-Eval serves as the target volume for dosimetric evaluation. Results: DVH curves and average doses of PTV-Eval were obtained. Our results indicated that the DVH curves shifted toward higher dose side when larger cylinder was used instead of smaller ones. When 3.0 cm cylinder was used instead of 2.5 cm, for 3.0 cm treatment length, the average dose only increased 1%, from 790 to 799 cGy. However, the average doses for 3.5 and 4 cm cylinders respectively are 932 and 1137 cGy at the same treatment length. For 5.0 cm treatment length, the average dose is 741 cGy for 2.5 cm cylinder, and 859 cGy for 3 cm cylinder. Conclusion: Our data analysis suggests that for the vaginal intracavitary HDRBT, the average dose is at least 35% larger than the prescribed dose in the studied cases; the size of the cylinder will impact the dose delivered to the target volume. The cylinder with bigger diameter tends to deliver larger average dose to the PTV-Eval.« less

  17. Air quality at night markets in Taiwan.

    PubMed

    Zhao, Ping; Lin, Chi-Chi

    2010-03-01

    In Taiwan, there are more than 300 night markets and they have attracted more and more visitors in recent years. Air quality in night markets has become a public concern. To characterize the current air quality in night markets, four major night markets in Kaohsiung were selected for this study. The results of this study showed that the mean carbon dioxide (CO2) concentrations at fixed and moving sites in night markets ranged from 326 to 427 parts per million (ppm) during non-open hours and from 433 to 916 ppm during open hours. The average carbon monoxide (CO) concentrations at fixed and moving sites in night markets ranged from 0.2 to 2.8 ppm during non-open hours and from 2.1 to 14.1 ppm during open hours. The average 1-hr levels of particulate matter with aerodynamic diameters less than 10 microm (PM10) and less than 2.5 microm (PM2.5) at fixed and moving sites in night markets were high, ranging from 186 to 451 microg/m3 and from 175 to 418 microg/m3, respectively. The levels of PM2.5 accounted for 80-97% of their respective PM10 concentrations. The average formaldehyde (HCHO) concentrations at fixed and moving sites in night markets ranged from 0 to 0.05 ppm during non-open hours and from 0.02 to 0.27 ppm during open hours. The average concentration of individual polycyclic aromatic hydrocarbons (PAHs) was found in the range of 0.09 x 10(4) to 1.8 x 10(4) ng/m3. The total identified PAHs (TIPs) ranged from 7.8 x 10(1) to 20 x 10(1) ng/m3 during non-open hours and from 1.5 x 10(4) to 4.0 x 10(4) ng/m3 during open hours. Of the total analyzed PAHs, the low-molecular-weight PAHs (two to three rings) were the dominant species, corresponding to an average of 97% during non-open hours and 88% during open hours, whereas high-molecular-weight PAHs (four to six rings) represented 3 and 12% of the total detected PAHs in the gas phase during non-open and open hours, respectively.

  18. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation.

    PubMed

    Gasser, T C; Nchimi, A; Swedenborg, J; Roy, J; Sakalihasan, N; Böckler, D; Hyhlik-Dürr, A

    2014-03-01

    To translate the individual abdominal aortic aneurysm (AAA) patient's biomechanical rupture risk profile to risk-equivalent diameters, and to retrospectively test their predictability in ruptured and non-ruptured aneurysms. Biomechanical parameters of ruptured and non-ruptured AAAs were retrospectively evaluated in a multicenter study. General patient data and high resolution computer tomography angiography (CTA) images from 203 non-ruptured and 40 ruptured aneurysmal infrarenal aortas. Three-dimensional AAA geometries were semi-automatically derived from CTA images. Finite element (FE) models were used to predict peak wall stress (PWS) and peak wall rupture index (PWRI) according to the individual anatomy, gender, blood pressure, intra-luminal thrombus (ILT) morphology, and relative aneurysm expansion. Average PWS diameter and PWRI diameter responses were evaluated, which allowed for the PWS equivalent and PWRI equivalent diameters for any individual aneurysm to be defined. PWS increased linearly and PWRI exponentially with respect to maximum AAA diameter. A size-adjusted analysis showed that PWS equivalent and PWRI equivalent diameters were increased by 7.5 mm (p = .013) and 14.0 mm (p < .001) in ruptured cases when compared to non-ruptured controls, respectively. In non-ruptured cases the PWRI equivalent diameters were increased by 13.2 mm (p < .001) in females when compared with males. Biomechanical parameters like PWS and PWRI allow for a highly individualized analysis by integrating factors that influence the risk of AAA rupture like geometry (degree of asymmetry, ILT morphology, etc.) and patient characteristics (gender, family history, blood pressure, etc.). PWRI and the reported annual risk of rupture increase similarly with the diameter. PWRI equivalent diameter expresses the PWRI through the diameter of the average AAA that has the same PWRI, i.e. is at the same biomechanical risk of rupture. Consequently, PWRI equivalent diameter facilitates a straightforward interpretation of biomechanical analysis and connects to diameter-based guidelines for AAA repair indication. PWRI equivalent diameter reflects an additional diagnostic parameter that may provide more accurate clinical data for AAA repair indication. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Effective separation technique for small diameter whiskers.

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.

    1972-01-01

    Description of a technique for separating small-diameter whiskers from the as-grown matt by gently agitating the whisker matts in a solution of deionized or distilled water for six to eight hours. High-strength Al2O3 whiskers were effectively separated by this technique, comprising an average 48% of the original weight of the whisker matt. According to estimation, more than 90% of separated whiskers had diameters between 0.7 and 2.0 microns.

  20. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-07-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  1. Root and shoot responses of Taxodium distichum seedlings subjected to saline flooding

    USGS Publications Warehouse

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Luse, B.P.; DeBosier, A.S.

    1999-01-01

    Variation among progeny of five half-sib family collections of baldcypress (Taxodium distichum) from three freshwater and two brackish-water seed sources subjected to saline flooding was evaluated Mini-rhizotrons (slant tubes) were used to monitor root elongation for a period of 99 days. Salinity level produced significant effects across all baldcypress half-sib families, with root elongation averaging 1594.0, 956.8, and 382.1 mm, respectively, for the 0, 4, and 6 g l-1 treatments. Combined mean root elongation for families from brackish-water seed sources was greater (1236.7 mm) than for families from freshwater seed sources (794.6 mm). Considerable variation occurred at the highest salinity treatment, however, with one freshwater family maintaining more than 28% more root growth than the average of the two brackish-water collections. Hence, results indicate that short-term evaluation of root elongation at these salinity concentrations may not be a reliable method for salt tolerance screening of baldcypress. Species-level effects for height and diameter, which were measured at day 62, were significant for both parameters. Height increment in the control (7.4 cm), for example, was approximately five times greater than height increment in the 6 g l-1 salinity treatment (1.5 cm). Family-level variation was significant only for diameter, which had an incremental range of 0.2 to 1.5 mm across all salinity levels.

  2. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    PubMed Central

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  3. Efficacy and safety of transoral outlet reduction via endoscopic suturing in patients with weight regain after a surgical Roux-en-Y gastric bypass.

    PubMed

    Espinet Coll, Eduardo; Nebreda Durán, Javier; López-Nava Breviere, Gontrand; Galvao Neto, Manoel; Gómez Valero, José Antonio; Bacchiddu, Silvia; Vila Lolo, Carmen; Díaz Galán, Patricia; Bautista-Castaño, Inmaculada; Juan-Creix Comamala, Antonio

    2018-05-09

    many patients that undergo bariatric surgery (Roux-en-Y gastric bypass [RYGB]) may regain some of their weight lost over time. A transoral outlet reduction (TORe) with endoscopic suture could be a valid alternative in these patients. this was a retrospective initial series of 13 consecutive patients with weight regain after RYGB and a dilated gastro-jejunal anastomosis (> 15 mm). TORe was performed using an endoscopic transmural suture device (OverStitch-Apollo®), which was used to reduce the anastomosis aperture and also to treat the gastric pouch. The initial data of feasibility, safety and weight loss are described with a limited follow-up of six months. there was a mean maximum weight loss of 37.69 kg after RYGB and a subsequent average regain of 21.62 kg. The mean anastomosis diameter was 36 mm (range 20-45) which was reduced to 9 mm (range 5-12) (75% reduction), with an average of 2.5 sutures. The mean pouch size was 7.2 cm (range 2-10), which decreased to 4.7 cm (range 4-5) (34.72% reduction), with an average of 2.7 sutures. The mean weight loss six months after TORe was 12.29 kg, a weight loss of 56.85% of the weight regained after RYGB. No complications related to the procedure were recorded. endoscopic suture reduction of the dilated gastro-jejunal anastomosis and the gastric pouch seems a feasible and safe option in our limited initial experience. With a multidisciplinary approach and a short term follow-up, this seems to be a minimally invasive and effective option to control weight regain after RYGB.

  4. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  5. ARC-1986-A86-7010

    NASA Image and Video Library

    1986-01-22

    Range : 2.52 million miles (1.56 million miles) Resolution : 47km. ( 29 mi.) Closest Approach: 127,000 km. (79,000 mi.) P-29479B/W This Voyager 2 image of the brightest Uranian satellite of the five largest, Ariel, was shot through a clear filter with the narrow angle camera. Ariel is about 1,300 km. ( 800 mi. )in diameter. This image shows several distinct bright areas that reflect nearly 45 % of the incident sunlight. On average, the satellite displays reflectivity of about 25-30 %. The bright areas are probably fresh water ice, perhaps excavated by impacts. the south pole of Ariel is slightly off center of the disk in this view.

  6. Structural phase transitions in SrTiO 3 nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Liu, Sizhan; Scofield, Megan E.

    2017-07-31

    Pressure dependent structural measurements on monodispersed nanoscale SrTiO3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = Pc) for larger particle sizes. The results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a large range of strain values, possibly enabling device use.

  7. The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: experimental assessment with pediatric phantoms

    NASA Astrophysics Data System (ADS)

    Brisse, H. J.; Brenot, J.; Pierrat, N.; Gaboriaud, G.; Savignoni, A.; DeRycke, Y.; Neuenschwander, S.; Aubert, B.; Rosenwald, J.-C.

    2009-04-01

    This study assessed and compared various image quality indices in order to manage the dose of pediatric abdominal MDCT protocols and to provide guidance on dose reduction. PMMA phantoms representing average body diameters at birth, 1 year, 5 years, 10 years and 15 years of age were scanned in a four-channel MDCT with a standard pediatric abdominal CT protocol. Image noise (SD, standard deviation of CT number), noise derivative (ND, derivative of the function of noise with respect to dose) and contrast-to-noise ratio (CNR) were measured. The 'relative' low-contrast detectability (rLCD) was introduced as a new quantity to adjust LCD to the various phantom diameters on the basis of the LCD1% assessed in a Catphan® phantom and a constant central absorbed dose. The required variations of CTDIvol16 with respect to phantom size were analyzed in order to maintain each image quality index constant. The use of a fixed SD or CNR level leads to major dose ratios between extreme patient sizes (factor 22.7 to 44 for SD, 31.7 to 51.5 for CNR2.8%), whereas fixed ND and rLCD result in acceptable dose ratios ranging between factors of 2.9 and 3.9 between extreme phantom diameters. For a 5-9 mm rLCD1%, adjusted ND values range between -0.84 and -0.11 HU mGy-1. Our data provide guidance on dose reduction on the basis of patient dimensions and the required rLCD (e.g., to get a constant 7 mm rLCD1% for abdominal diameters of 10, 13, 16, 20 and 25 cm, tube current-time product should be adjusted in order to obtain CTDIvol16 values of 6.2, 7.2, 8.8, 11.6 and 17.7 mGy, respectively).

  8. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-01-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch (P/d) and slot length-to-diameter (l/d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/d = 2 and x/d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  9. [Small-diameter portosystemic shunts: indications and limitations].

    PubMed

    Angel Mercado, M; Granados-García, J; Barradas, F; Chan, C; Contreras, J L; Orozco, H; Angel-Mercado, M

    1998-01-01

    Low diameter porto-systemic shunts for the treatment of portal hypertension bleeding have emerged as a consequence of the technical development of vascular grafts (PTFE) that allow the use of a narrow lumen. The experience with this kind of operation at the Instituto Nacional de la Nutrición Salvador Zubirán, Mexico City during a 6-year period is reported. There were twenty-seven patients with good liver function (Child-Pugh A-B) were operated or electively, average Age 47.5 years (range 17-71), twenty three patients with liver cirrhosis, one with portal fibrosis and three with idiopathic portal hypertension. Operative mortality: 4%. Rebleeding: 14%. Postoperative encephalopathy was observed in 14 of 27, three of them being grade III-IV (11%). In the remaining 11 cases, it was mild and easily controlled. Postoperative angiography showed shunt patency in 81% of the cases; in 33% of the cases, portal vein diameter reduction was shown, as well as two cases with portal vein thrombosis. In 77% of the cases, adequate postoperative quality of life was observed. Survival (Kaplan-Meier): 86% at 12 months and 56% at 60 months. These kinds of shunts are a good alternate choice for patients considered for surgery, in which other portal blood flow preserving procedures (selective shunts, devascularization with transection) are not feasible.

  10. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-06-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  11. Progress report on hot particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.; Kaurin, D.G.; Waligorski, M.

    1992-02-01

    NCRP Report 106 on the effects of hot particles on the skin of pigs, monkeys, and humans was critically reviewed and reassessed. The analysis of the data of Forbes and Mikhail on the effects from activated UC{sub 2} particles, ranging in diameter from 144 {mu}m to 328 {mu}m, led to the formulation of a new model to predict both the threshold for acute ulceration and for ulcer diameter. In this model, a point dose of 27 Gy at a depth of 1.33 mm in tissue will cause an ulcer with a diameter determined by the radius to which this dosemore » extends. Application of the model to the Forbes and Mikhail data obtained with mixed fission product beta particles yielded a threshold'' (5% probability) of 6 {times} 10{sup 9} beta particles from a point source of high energy (2.25 MeV maximum) beta particles on skin. The above model was used to predict that approximately 1.2 {times} 10{sup 10} beta particles from Sr-Y-90 would produce similar effects, since few Sr-90 beta particles reach 1.33 mm depth. These emissions correspond to doses at 70-{mu}m depth in tissue of approximately 5.3 to 5.5 Gy averaged over 1 cm{sup 2}, respectively.« less

  12. Progress report on hot particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.; Kaurin, D.G.; Waligorski, M.

    1992-02-01

    NCRP Report 106 on the effects of hot particles on the skin of pigs, monkeys, and humans was critically reviewed and reassessed. The analysis of the data of Forbes and Mikhail on the effects from activated UC{sub 2} particles, ranging in diameter from 144 {mu}m to 328 {mu}m, led to the formulation of a new model to predict both the threshold for acute ulceration and for ulcer diameter. In this model, a point dose of 27 Gy at a depth of 1.33 mm in tissue will cause an ulcer with a diameter determined by the radius to which this dosemore » extends. Application of the model to the Forbes and Mikhail data obtained with mixed fission product beta particles yielded a ``threshold`` (5% probability) of 6 {times} 10{sup 9} beta particles from a point source of high energy (2.25 MeV maximum) beta particles on skin. The above model was used to predict that approximately 1.2 {times} 10{sup 10} beta particles from Sr-Y-90 would produce similar effects, since few Sr-90 beta particles reach 1.33 mm depth. These emissions correspond to doses at 70-{mu}m depth in tissue of approximately 5.3 to 5.5 Gy averaged over 1 cm{sup 2}, respectively.« less

  13. Magnetic resonance imaging mesencephalic tectum dimensions according to age and gender.

    PubMed

    Sabanciogullari, Vedat; Salk, Ismail; Balaban, Hatice; Oztoprak, Ibrahim; Kelkit, Seref; Cimen, Mehmet

    2013-01-01

    To analyze and classify normal MRI tectum length and colliculus dimensions according to age and gender. Tectum length and colliculus diameters were measured on the T1 midsagittal and axial cranial MR images in the radiology archive of 532 (344 women, 188 men) patients aged 37.36+/-21.49 (range: 4-91) years old on average, and with no disorders affecting the mesencephalic tectum. All 532 patients underwent clinical MR imaging of the cranium at the MRI Unit of Sivas Numune Hospital and Sivas Cumhuriyet University Hospital, Sivas, Turkey between February and December 2011. Although there was a positive linear correlation between tectum length and age, there was a negative correlation between the anteroposterior diameter of the colliculus superior and colliculus inferior and age (p<0.01). While tectum length (M3) increases with age, the anteroposterior diameter of the colliculus superior and inferior (M1 and M2) decreased (p<0.01). The colliculi were larger, and the tectum was longer in men. Although there was no difference in size between right and left superior colliculi, the left colliculus inferior was larger than the right one. In addition to the fact that normal mesencephalic tectum dimensions provide information on the brain development of individuals, they may also be beneficial for the detection and treatment of related pathologies.

  14. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  15. Error rate of automated calculation for wound surface area using a digital photography.

    PubMed

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    NASA Astrophysics Data System (ADS)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  17. Red-shouldered hawk nesting habitat preference in south Texas

    USGS Publications Warehouse

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.

  18. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size.

    PubMed

    Li, Zhili; Zhang, Yanling; Wurtz, William; Lee, Jin K; Malinin, Vladimir S; Durwas-Krishnan, Sripriya; Meers, Paul; Perkins, Walter R

    2008-09-01

    The stress of nebulization has been shown to alter the properties of liposomal drugs. What has not been demonstrated is whether nebulized liposomes differ as a function of droplet size. Because droplet size influences lung deposition, liposomes with different properties could be deposited in different areas of the lung (e.g., central vs. peripheral). In this report, a liposomal amikacin formulation (Arikace, a registered trademark of Transave, Inc., Monmouth Junction, NJ) that is being developed as an inhaled treatment for gram negative infections was aerosolized with an eFlow (registered trademark of PARI, GmbH, Munich, Germany) nebulizer, reclaimed from the various stages of an Andersen cascade impactor (ACI) and analyzed for lipid-to-drug (L/D) (w/w) ratio, amikacin retention, and liposome size. For the nebulized solution, 99.7% of the total deposited drug was found on ACI stages 0 through 5, which have cutoff diameters of 9, 5.8, 4.7, 3.3, 2.1, and 1.1 microm, respectively. Properties were found to differ for drug reclaimed on stage 0 compared stages 1-5, which were not different from one another. For drug found on stages 1-5 (97% of total drug), the averages (n = 3) for L/D, percent encapsulated amikacin, and liposome mean diameter ranged from 0.59 to 0.68 (w/w), 71% to 75%, 248 to 282 nm, respectively. Drug found on stage 0 (2.8% of total drug) had an average L/D ratio of 0.51 and average liposome mean diameter of 375 nm. Examination of another batch of liposomal amikacin revealed no statistically significant differences between drug reclaimed on stages 0-5. Although a droplet size dependence was noted for one batch of Arikace aerosolized with the eFlow, the effect was considered to be inconsequential because the fraction in doubt represented nonrespirable particles >9 microm and accounted for <3% of the total deposited dose. The methodology applied here appears useful in evaluating aerosolized liposome systems. However, our results should not be assumed to apply to other liposome/drug compositions and nebulizers.

  19. Stone Attenuation Values Measured by Average Hounsfield Units and Stone Volume as Predictors of Total Laser Energy Required During Ureteroscopic Lithotripsy Using Holmium:Yttrium-Aluminum-Garnet Lasers.

    PubMed

    Ofude, Mitsuo; Shima, Takashi; Yotsuyanagi, Satoshi; Ikeda, Daisuke

    2017-04-01

    To evaluate the predictors of the total laser energy (TLE) required during ureteroscopic lithotripsy (URS) using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser for a single ureteral stone. We retrospectively analyzed the data of 93 URS procedures performed for a single ureteral stone in our institution from November 2011 to September 2015. We evaluated the association between TLE and preoperative clinical data, such as age, sex, body mass index, and noncontrast computed tomographic findings, including stone laterality, location, maximum diameter, volume, stone attenuation values measured using average Hounsfield units (HUs), and presence of secondary signs (severe hydronephrosis, tissue rim sign, and perinephric stranding). The mean maximum stone diameter, volume, and average HUs were 9.2 ± 3.8 mm, 283.2 ± 341.4 mm 3 , and 863 ± 297, respectively. The mean TLE and operative time were 2.93 ± 3.27 kJ and 59.1 ± 28.1 minutes, respectively. Maximum stone diameter, volume, average HUs, severe hydronephrosis, and tissue rim sign were significantly correlated with TLE (Spearman's rho analysis). Stepwise multiple linear regression analysis defining stone volume, average HUs, severe hydronephrosis, and tissue rim sign as explanatory variables showed that stone volume and average HUs were significant predictors of TLE (standardized coefficients of 0.565 and 0.320, respectively; adjusted R 2  = 0.55, F = 54.7, P <.001). Stone attenuation values measured by average HUs and stone volume were strong predictors of TLE during URS using Ho:YAG laser procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    PubMed

    Brochu, Alice B W; Chyan, William J; Reichert, William M

    2012-10-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. Copyright © 2012 Wiley Periodicals, Inc.

  1. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  2. Formation of small gold clusters in solution by laser excitation of interband transition

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Kondow, Tamotsu

    2003-04-01

    Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.

  3. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  4. Indoor and outdoor particulate matter in primary school classrooms with fan-assisted natural ventilation in Singapore.

    PubMed

    Chen, Ailu; Gall, Elliott T; Chang, Victor W C

    2016-09-01

    We conducted multiday continuous monitoring of indoor and outdoor particulate matter (PM) in classrooms with fan-assisted natural ventilation (NV) at five primary schools in Singapore. We monitored size-resolved number concentration of PM with diameter 0.3-10 μm at all schools and alveolar deposited surface area concentrations of PM with diameter 0.01-1.0 μm (SA0.01-1.0) at two schools. Results show that, during the monitoring period, schools closer to expressways and in the downtown area had 2-3 times higher outdoor PM0.3-1.0 number concentrations than schools located in suburban areas. Average indoor SA0.01-1.0 was 115-118 μm(2) cm(-3) during periods of occupancy and 72-87 μm(2) cm(-3) during unoccupied periods. There were close indoor and outdoor correlations for fine PM during both occupied and unoccupied periods (Pearson's r = 0.84-1.0) while the correlations for coarse PM were weak during the occupied periods (r = 0.13-0.74). Across all the schools, the size-resolved indoor/outdoor PM ratios (I/O ratios) were 0.81 to 1.58 and 0.61 to 0.95 during occupied and unoccupied periods, respectively, and average infiltration factors were 0.64 to 0.94. Average PM net emission rates, calculated during periods of occupancy in the classrooms, were lower than or in the lower range of emission rates reported in the literature. This study also reveals that indoor fine and submicron PM predominantly come from outdoor sources, while indoor sources associated with occupancy may be important for coarse PM even when the classrooms have high air exchange rates.

  5. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 1

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical link was demonstrated between JPL's Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of June, August, and September of 2000. The bidirectional laser link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. The 780-nm beacon laser transmitted from TMF comprised eight co-propagating mutually incoherent laser beams. The normalized variance or scintillation index (SI) of the individual beacon lasers measured by recording the signal received through 8.50-cm-diameter spotting telescopes on three different nights (June 28-30, 2000) was 1.05 +/- 0.2, 1.76 +/- 0.6, and 0.96 +/- 0.24, respectively. These measurements agreed with values predicted by a heuristic model. The SI of the signal received at SP was found to decrease progressively with an increasing number of beams, and a factor of 3 to 3.5 reduction was achieved for all eight beams. The beam divergence determined by mapping out the point spread function of a few of the individual laser footprints received at SP was 85 to 150 microrad, compared to a design goal of 120 microrad. The 852-nm communications laser beam received at TMF through a 60-cm-diameter telescope on the nights of August 4 and September 14 and 15, 2000, yielded SI values of 0.23 +/- 0.04, 0.32 +/- 0.01, and 0.49 +/- 0.18, respectively, where the reduction was attributed to aperture averaging. The probability distribution functions of the received signal at either end, mitigated by multi-beam averaging in one direction and by aperture averaging in the other direction, displayed lognormal behavior. Consequently, the measured fade statistics showed good agreement with a lognormal model.

  6. The effect of sand storms on acute asthma in Riyadh, Saudi Arabia.

    PubMed

    Alangari, Abdullah A; Riaz, Muhammad; Mahjoub, Mohamed Osman; Malhis, Nidal; Al-Tamimi, Saleh; Al-Modaihsh, Abdullah

    2015-01-01

    Major sand storms are frequent in the Middle East. This study aims to investigate the role of air particulate matter (PM) level in acute asthma in children in Riyadh, Saudi Arabia. An aerosol spectrometer was used to evaluate PM < 10μm in diameter (PM10) and PM < 2.5 μm in diameter (PM2.5) concentrations in the air every 30 minutes throughout February and March 2012 in Riyadh. Data on children 2-12 years of age presenting to the emergency department of a major children's hospital with acute asthma during the same period were collected including their acute asthma severity score. The median with interquartile range (IQR) levels of PM10 and PM2.5 were 454 μg/m(3) (309,864) and 108 μg/m(3) (72,192) respectively. There was no correlation between the average daily PM10 levels and the average number of children presenting with acute asthma per day (r = -0.14, P = 0.45), their daily asthma score (r = 0.014, P = 0.94), or admission rate ( r= -0.08, P = 0.65). This was also true for average daily PM2.5 levels. In addition, there was no difference in these variables between days with PM10 >1000 μg/m(3), representing major sand storms, plus the following 5 days and other days with PM10< 1000 μg/m(3). Sand storms, even major ones, had no significant impact on acute asthma exacerbations in children in Riyadh, Saudi Arabia. The very high levels of PM, however, deserve further studying especially of their long-term effects.

  7. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  8. Modification of the effect of ambient air pollution on pediatric asthma emergency visits: susceptible subpopulations

    PubMed Central

    Strickland, Matthew J; Klein, Mitchel; Flanders, W Dana; Chang, Howard H; Mulholland, James A; Tolbert, Paige E; Darrow, Lyndsey A

    2016-01-01

    Background Children may have differing susceptibility to ambient air pollution concentrations depending on various background characteristics of the children. Methods Using emergency department (ED) data linked with birth records from Atlanta, Georgia, we identified ED visits for asthma or wheeze among children aged 2–16 years from 1 January 2002 through 30 June 2010 (n=109,758). We stratified by preterm delivery, term low birth weight, maternal race, Medicaid status, maternal education, maternal smoking, delivery method, and history of a bronchiolitis ED visit. Population-weighted daily average concentrations were calculated for 1-hour maximum carbon monoxide and nitrogen dioxide; 8-hour maximum ozone; and 24-hour average particulate matter less than 10 microns in diameter, particulate matter less than 2.5 microns in diameter (PM2.5), and the PM2.5 components sulfate, nitrate, ammonium, elemental carbon, and organic carbon, using measurements from stationary monitors. Poisson time-series models were used to estimate rate ratios for associations between three-day moving average pollutant concentrations and daily ED visit counts and to investigate effect-measure modification by the stratification factors. Results Associations between pollutant concentrations and asthma exacerbations were larger among children born preterm and among children born to African American mothers. Stratification by race and preterm status together suggested that both factors affected susceptibility. The largest estimated effect size (for an interquartile-range increase in pollution) was observed for ozone among preterm births to African American mothers: rate ratio=1.138 (95% confidence interval=1.077–1.203). In contrast, the rate ration for the ozone association among full-term births to mothers of other races was 1.025 (0.970–1.083). Conclusions Results support the hypothesis that children vary in their susceptibility to ambient air pollutants. PMID:25192402

  9. Automated estimation of individual conifer tree height and crown diameter via Two-dimensional spatial wavelet analysis of lidar data

    Treesearch

    Michael J. Falkowski; Alistair M.S. Smith; Andrew T. Hudak; Paul E. Gessler; Lee A. Vierling; Nicholas L. Crookston

    2006-01-01

    We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved with lidar...

  10. Effect of V2O5 concentration on structural and optical properties of WO3 thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Meenakshi, M.; Gowthami, V.; Perumal, P.; Sanjeeviraja, C.

    2014-10-01

    Thin films of WO3 and V2O5 doped WO3 were coated on glass substrates using sputtering targets of diameter 50mm and thickness 5mm with RF power of 100 W and source to substrate distance of 60mm at room temperature for various V2O5 compositions (1, 2, 4, 6 and 10 %). XRD studies revealed that as deposited films were amorphous for all compositions. Morphological studies like Laser Raman and SEM too confirmed this amorphous nature of films. Refractive index (n) and the extinction coefficient (k) were calculated from the optical spectra such as transmittance and absorbance measured over the wavelength range of 200 to 2500nm. The films exhibited transmittance in the range of 80 to 90% in the UV-Vis-NIR region. Optical band gaps were calculated for both direct and indirect transitions. The optical parameters such as optical dispersion energies Eo and Ed, the average dielectric constant (ɛ), average values of the oscillator strength (So), wavelength of single oscillator (λo), and plasma frequency (ωp) were also calculated.

  11. Stress changes ahead of an advancing tunnel

    USGS Publications Warehouse

    Abel, J.F.; Lee, F.T.

    1973-01-01

    Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.

  12. Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Kang, Chiwon; Lee, Hoo-Jeong

    2018-05-01

    In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.

  13. Age, Growth and Reproduction of the Eastern Mudminnow (Umbra pygmaea) at the Great Swamp National Wildlife Refuge, New Jersey.

    USGS Publications Warehouse

    Panek, Frank; Weis, Judith S.

    2012-01-01

    Umbra pygmaea DeKay (Eastern Mudminnow) is one of four species of Umbridae in North America. There is little published life-history information on the species within its native range, particularly on age, growth, and reproduction. This study focuses on these aspects of the life history of this fish at the Great Swamp National Wildlife Refuge in Morris County, NJ. A total of 336 fish of seven species was collected from June 1978 through May 1979, with the Eastern Mudminnow comprising 74% of the total. The average annual growth increment in total length for the Eastern Mudminnow was 15.3 2.06 mm, with age-1 fish averaging 40 mm total length and age-5 fish, the oldest collected, averaging 107 mm total length. The length-weight relationship was log10W = -5.291 + 3.182 log10TL mm for males and log10W = -4.999 + 3.032 log10TL mm for females. We observed no statistically significant sexually dimorphic differences in length-weight relationships in this population. The ratio of females to males increased from a low of 0.6 (predominance of male fish) at age-1 to a high of 4.6 (predominance of females) at age-5. Annual mortality for age 2–5 fish ranged from 40–76% with a mean of 59 13%. Age-specific fecundity estimates ranged from 250 eggs/female at age-1 to 2168 eggs/female at age-5. The relationship of number of mature ova to age was best described by the exponential function y = 149.29e0.5287x, where y = age-specific fecundity and x = age in years. Ova ranged from 0.1–0.2 mm in diameter in June and July and averaged 1.41 0.1 mm (range = 1.29–1.62 mm) in early February prior to spawning. Peak spawning occurred in mid-April at temperatures of 9–12 °C, and all females were spent by late April (13–15 °C).

  14. MRI surface-coil pair with strong inductive coupling.

    PubMed

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  15. Failure analysis of fractured dental zirconia implants.

    PubMed

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  16. Infrasound production by bolides: A global statistical study

    NASA Astrophysics Data System (ADS)

    Ens, T. A.; Brown, P. G.; Edwards, W. N.; Silber, E. A.

    2012-05-01

    We have examined a dataset consisting of 71 bolides detected by satellite sensors, which provide energy and location estimates, with simultaneous measurements of the same events on 143 distinct waveforms. These bolides have total source energies ranging from 0.02 kt TNT equivalent yield to ≈20 kt and probable diameters of order a few meters on average. We find that it is possible to detect large events with energies of ≈20 kt or more globally. Infrasonic detections of these events for stratospheric arrivals have ranges between 350-17,000 km and show clear wind-related amplitude modifications. We find that our period-yield relations are virtually identical to that found from AFTAC nuclear test data with the most robust period-yield correlation found for those events having multiple station averaged periods. We have also found empirical expressions relating maximum expected detection range for infrasound as a function of energy and low and high frequency cut-off as a function of energy. Our multi-variate fits suggest that 1/2 > yield-scaling is most appropriate for long range bolide infrasound measurements with a distance scaling exponent of ≈1.1 best representing the data. Our best-fit wind correction exponent is a factor of ≈3 smaller than found by previous studies which we suggest may indicate a decrease in the value of k with range. We find that the integral acoustic efficiency for bolides is ≥0.01% with a best lower limit estimate nearer 0.1%. Finally, we conclude that a range independent atmosphere implementation of the normal-mode approach to simulate bolide amplitudes is ineffective at large ranges due to the large change in atmospheric conditions along source-receiver paths.

  17. The hazard of near-Earth asteroid impacts on earth

    NASA Astrophysics Data System (ADS)

    Chapman, Clark R.

    2004-05-01

    Near-Earth asteroids (NEAs) have struck the Earth throughout its existence. During epochs when life was gaining a foothold ˜4 Ga, the impact rate was thousands of times what it is today. Even during the Phanerozoic, the numbers of NEAs guarantee that there were other impacts, possibly larger than the Chicxulub event, which was responsible for the Cretaceous-Tertiary extinctions. Astronomers have found over 2500 NEAs of all sizes, including well over half of the estimated 1100 NEAs >1 km diameter. NEAs are mostly collisional fragments from the inner half of the asteroid belt and range in composition from porous, carbonaceous-chondrite-like to metallic. Nearly one-fifth of them have satellites or are double bodies. When the international telescopic Spaceguard Survey, which has a goal of discovering 90% of NEAs >1 km diameter, is completed, perhaps as early as 2008, nearly half of the remaining impact hazard will be from land or ocean impacts by bodies 70-600 m diameter. (Comets are expected to contribute only about 1% of the total risk.) The consequences of impacts for civilization are potentially enormous, but impacts are so rare that worldwide mortality from impacts will have dropped to only about 150 per year (averaged over very long durations) after the Spaceguard goal has, presumably, ruled out near-term impacts by 90% of the most dangerous ones; that is, in the mid-range between very serious causes of death (disease, auto accidents) and minor but frightening ones (like shark attacks). Differences in perception concerning this rather newly recognized hazard dominate evaluation of its significance. The most likely type of impact events we face are hyped or misinterpreted predicted impacts or near-misses involving small NEAs.

  18. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses

    PubMed Central

    Zanatta, Florian; Patiño, Jairo; Lebeau, Frederic; Massinon, Mathieu; Hylander, Kristofer; de Haan, Myriam; Ballings, Petra; Degreef, Jerôme; Vanderpoorten, Alain

    2016-01-01

    Background and Aims The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations. Methods A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. Key Results Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s–1. There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. Conclusions Settling velocities in mosses can significantly depart from expectations derived from Stokes’ Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores. PMID:27296133

  19. [Feeding habitats and trophic levels of Rhopilema esculentum Kishinouye in Liaodong Bay based on analyzing carbon and nitrogen stable isotopes.

    PubMed

    Sun, Ming; Wang, Bin; Li, Yu Long; Wang, Ai Yong; Dong, Jing; Ma, Tian Yu; Ban, Yan Li

    2016-04-22

    By using stable isotope techniques, we analyzed the carbon and nitrogen stable isotope ratios of Rhopilema esculentum Kishinouye and its potential feed materials in Liaodong Bay of Bohai Sea, aiming to identify potential food sources and trophic levels of R. esculentum . The results showed that the δ 13 C and δ 15 N values for R. esculentum ranged from -20.27‰ to -23.06‰ (ave raged at -21.33‰), and from 6.82‰ to 10.03‰ (averaged at 8.25‰), respectively. The main food sources for R. esculentum included suspended materials, phytoplankton, fish eggs, zooplankton (≤1000 μm), zooplankton (1000-1500 μm), zooplankton (>1500 μm), among which, zooplankton (≤1000 μm) was the most important food source and contributed 71%-88% of the total food sources, followed by zooplankton (>1500 μm) (6%-19%), zooplankton (1000-1500 μm) (0%-22%), suspended materials (0%-10%), phytoplankton(0%-8%) and fish eggs (0%-2%). A Pearson correlation test indicated that there was significant negative relationship between the diameter and δ 13 C value of R. esculentum (P<0.05), while no significant correlation was found between its diameter and δ 15 N value (P>0.05). The trophic level of R. esculentum ranged from 2.79 to 3.88 depending on diameter classes,with a mean valu of 3.28 These results indicated that R. esculentum plays a key role in controlling microzooplankton in the Liaodong Bay, which is significant for providing deeper understanding into the tropic structure of biological communities as well as into the material cycles and energy flow of entire ecosystem in the Liaodong Bay.

  20. Morphology of Lonar Crater, India: Comparisons and implications

    USGS Publications Warehouse

    Fudali, R.F.; Milton, D.J.; Fredriksson, K.; Dube, A.

    1980-01-01

    Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30-35 m of rim rock uplift, 5-10 m of ejected debris); depth of 230-245 m (from rim crest to crater floor). The crater's circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects. A continuous ejecta blanket extends an average of 1410 m beyond the pre-erosion rim crest. In general, 'fresh' terrestrial craters, less than 10 km in diameter, have smaller depth/diameter and larger rim height/diameter ratios than their lunar counterparts. Both ratios are intermediate for Mercurian craters, suggesting that crater shape is gravity dependent, all else being equal. Lonar demonstrates that all else is not always equal. Its depth/diameter ratio is normal but, because of less rim rock uplift, its rim height/diameter ratio is much smaller than both 'fresh' terrestrial and lunar impact craters. The target rock column at Lonar consists of one or more layers of weathered, soft basalt capped by fresh, dense flows. Plastic deformation and/or compaction of this lower, incompetent material probably absorbed much of the energy normally available in the cratering process for rim rock uplift. A variety of features within the ejecta blanket and the immediately underlying substrate, plus the broad extent of the blanket boundaries, suggest that a fluidized debris surge was the dominant mechanism of ejecta transportation and deposition at Lonar. In these aspects, Lonar should be a good analog for the 'fluidized craters' of Mars. ?? 1980 D. Reidel Publishing Co.

  1. Airflow and temperature distribution inside the maxillary sinus: a computational fluid dynamics simulation.

    PubMed

    Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng

    2012-06-01

    The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.

  2. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard

    2014-12-01

    Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  3. L1(0)-FePd nanocluster wires by template-directed thermal decomposition and subsequent hydrogen reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, BZ; Marinescu, M; Liu, JF

    2013-12-14

    This paper reports the nanostructure, formation mechanism, and magnetic properties of tetragonal L1(0)-type Fe55Pd45 (at. %) nanocluster wires (NCWs) fabricated by thermal decomposition of metal nitrates and subsequent hydrogen reduction in nanoporous anodized aluminum oxide templates. The as-synthesized NCWs have diameters in the range of 80-300 nm, and lengths in the range of 0.5-10 mu m. The NCWs are composed of roughly round-shaped nanoclusters in the range of 3-30 nm in size and a weighted average size of 10 nm with a mixture of single-crystal and poly-crystalline structures. The obtained intrinsic coercivity H-i(c) of 3.32 kOe at room temperature formore » the tetragonal Fe55Pd45 NCWs is higher than those of electrodeposited Fe-Pd solid nanowires while among the highest values reported so far for L1(0)-type FePd nanoparticles. (C) 2013 AIP Publishing LLC.« less

  4. Performance of SMARTer at Very Low Scattering Vector q-Range Revealed by Monodisperse Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto

    2008-03-17

    A monodisperse nanoparticle sample of polystyrene has been employed to determine performance of the 36 meter small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) at the Neutron Scattering Laboratory (NSL)--Serpong, Indonesia, in a very low scattering vector q-range. Detector position at 18 m from sample position, beam stopper of 50 mm in diameter, neutron wavelength of 5.66 A as well as 18 m-long collimator had been set up to achieve very low scattering vector q-range of SMARTer. A polydisperse smeared-spherical particle model was applied to fit the corrected small-angle scattering data of monodisperse polystyrene nanoparticle sample. The mean average of particlemore » radius of 610 A, volume fraction of 0.0026, and polydispersity of 0.1 were obtained from the fitting results. The experiment results from SMARTer are comparable to SANS-J, JAEA - Japan and it is revealed that SMARTer is powerfully able to achieve the lowest scattering vector down to 0.002 A{sup -1}.« less

  5. [Retinal vessels before and after photocoagulation in diabetic retinopathy. Determining the diameter using digitized color fundus slides].

    PubMed

    Remky, A; Arend, O; Beausencourt, E; Elsner, A E; Bertram, B

    1996-01-01

    Retinal vessel diameter is an important parameter in blood flow analysis. Despite modern digital image technology, most clinical studies investigate diameters subjectively using projected fundus slides or negatives. In the present study we used a technique to examine vessel diameters by digital image analysis of color fundus slides. We investigated in a retrospective manner diameter changes in twenty diabetic patients before and after panretinal laser coagulation. Color fundus slides were digitized by a new high resolution scanning device. The resulting images consisted in three channels (red, green, blue). Since vessel contrast was the highest in the green channel, we assessed grey value profiles perpendicular to the vessels in the green channel. Diameters were measured at the half-height of the profile. After panretinal laser coagulation, average venous diameter was decreased, whereas arterial diameter remained unchanged. There was no significant relation between the diameter change and the number of laser burns or the presence of neovascularization. Splitting digitized images into color planes enables objective measurements of retinal diameters in conventional color slides.

  6. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-duct Engine Inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.

    2002-01-01

    Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however, the analysis produced higher impingement efficiencies and larger impingement limits than the experiment. It is speculated that this discrepancy is due to droplet splashing and breakup experienced by large droplets during impingement.

  7. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.

    PubMed

    Ohki, Tomohiro; Nakagawa, Atsuhiro; Hirano, Takayuki; Hashimoto, Tokitada; Menezes, Viren; Jokura, Hidefumi; Uenohara, Hiroshi; Sato, Yasuhiko; Saito, Tsutomu; Shirane, Reizo; Tominaga, Teiji; Takayama, Kazuyoshi

    2004-01-01

    Although water jet technology has been considered as a feasible neuroendoscopic dissection methodology because of its ability to perform selective tissue dissection without thermal damage, problems associated with continuous use of water and the ensuing fountain-effect-with catapulting of the tissue-could make water jets unsuitable for endoscopic use, in terms of safety and ease of handling. Therefore, the authors experimented with minimization of water usage during the application of a pulsed holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced liquid jet (LILJ), while assuring the dissection quality and the controllability of a conventional water jet dissection device. We have developed the LILJ generator for use as a rigid neuroendoscope, discerned its mechanical behavior, and evaluated its dissection ability using the cadaveric rabbit ventricular wall. The LILJ generator is incorporated into the tip of a stainless steel tube (length: 22 cm; internal diameter: 1.0 mm; external diameter: 1.4 mm), so that the device can be inserted into a commercial, rigid neuroendoscope. Briefly, the LILJ is generated by irradiating an internally supplied water column within the stainless steel tube using the pulsed Ho:YAG laser (wave length: 2.1 microm, pulse duration time: 350 microseconds) and is then ejected through the metal nozzle (internal diameter: 100 microm). The Ho:YAG laser pulse energy is conveyed through optical quartz fiber (core diameter: 400 microm), while cold water (5 degrees C) is internally supplied at a rate of 40 ml/hour. The relationship between laser energy (range: 40-433 mJ/pulse), standoff distance (defined as the distance between the tip of the optical fiber and the nozzle end; range: 10-30 mm), and the velocity, shape, pressure, and average volume of the ejected jet were analyzed by means of high-speed camera, PVDF needle hydrophone, and digital scale. The quality of the dissection plane, the preservation of blood vessels, and the penetration depth were evaluated using five fresh cadaveric rabbit ventricular walls, under neuroendoscopic vision. Jet velocity (7.0-19.6 m/second) and pressure (0.07-0.28 MPa) could be controlled by varying the laser energy, which determined the penetration depth in the cadaveric rabbit ventricular wall (0.07-1.30 mm/shot). The latter could be cut into desirable shapes-without thermal effects-under clear neuroendoscopic vision. The average volume of a single ejected jet could be confined to 0.42-1.52 microl/shot, and there was no accompanying generation of shock waves. Histological specimens revealed a sharp dissection plane and demonstrated that blood vessels of diameter over 100 microm could be preserved, without thermal damage. The present pulsed LILJ system holds promise as a safe and reliable dissection device for deployment in a rigid neuroendoscope. Copyright 2004 Wiley-Liss, Inc.

  8. Digital terrestrial photogrammetric methods for tree stem analysis

    Treesearch

    Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn

    2000-01-01

    A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...

  9. Tibial Lengthening: Extraarticular Calcaneotibial Screw to Prevent Ankle Equinus

    PubMed Central

    Belthur, Mohan V.; Paley, Dror; Jindal, Gaurav; Burghardt, Rolf D.; Specht, Stacy C.

    2008-01-01

    Between 2003 and 2006, we used an extraarticular, cannulated, fully threaded posterior calcaneotibial screw to prevent equinus contracture in 10 patients (four male and six female patients, 14 limbs) undergoing tibial lengthening with the intramedullary skeletal kinetic distractor. Diagnoses were fibular hemimelia (two), mesomelic dwarfism (two), posteromedial bow (one), hemihypertrophy (one), poliomyelitis (one), achondroplasia (one), posttraumatic limb-length discrepancy (one), and hypochondroplasia (one). Average age was 24.5 years (range, 15–54 years). The screw (length, typically 125 mm; diameter, 7 mm) was inserted with the ankle in 10° dorsiflexion. Gastrocnemius soleus recession was performed in two patients to achieve 10° dorsiflexion. Average lengthening was 4.9 cm (range, 3–7 cm). Screws were removed after a mean 3.3 months (range, 2–6 months). Preoperative ankle range of motion was regained within 6 months of screw removal. No neurovascular complications were encountered, and no patients experienced equinus contracture. We also conducted a cadaveric study in which one surgeon inserted screws in eight cadaveric legs under image intensifier control. The flexor hallucis longus muscle belly was the closest anatomic structure noted during dissection. The screw should be inserted obliquely from upper lateral edge of the calcaneus and aimed lateral in the tibia to avoid the flexor hallucis longus muscle. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800215

  10. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index.

    PubMed

    Retz, K; Kotopoulis, S; Kiserud, T; Matre, K; Eide, G E; Sande, R

    2017-08-01

    To investigate if the thermal index for bone (TIB) displayed on screen is an adequate predictor for the derated spatial-peak temporal-average (I SPTA .3 ) and spatial-peak pulse-average (I SPPA .3 ) acoustic intensities in a selection of clinical diagnostic ultrasound machines and transducers. We calibrated five clinical diagnostic ultrasound scanners and 10 transducers, using two-dimensional grayscale, color Doppler and pulsed-wave Doppler, both close to and far from the transducer, with a TIB between 0.1 and 4.0, recording 103 unique measurements. Acoustic measurements were performed in a bespoke three-axis computer-controlled scanning tank, using a 200-μm-diameter calibrated needle hydrophone. There was significant but poor correlation between the acoustic intensities and the on-screen TIB. At a TIB of 0.1, the I SPTA .3 range was 0.51-50.49 mW/cm 2 and the I SPPA .3 range was 0.01-207.29 W/cm 2 . At a TIB of 1.1, the I SPTA .3 range was 19.02-309.44 mW/cm 2 and the I SPPA .3 range was 3.87-51.89 W/cm 2 . TIB is a poor predictor for I SPTA .3 and I SPPA .3 and for the potential bioeffects of clinical diagnostic ultrasound scanners. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  11. Technical note: estimating absorbed doses to the thyroid in CT.

    PubMed

    Huda, Walter; Magill, Dennise; Spampinato, Maria V

    2011-06-01

    To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.

  12. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  13. Estimating the board foot to cubic foot ratio

    Treesearch

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  14. Diameter class volume tables for California old-growth timber

    Treesearch

    Duncan Dunning

    1945-01-01

    Tables giving average tree volumes by breast-height diameter classes frequently may be used in timber cruising to save money, time, and men. Such tables may be appropriate in cruises of large areas having many trees in low-intensity cruises warranting the sacrifice in accuracy that results from omission of individual tree height measurements, during wartime when men...

  15. Projecting a Stand Table Through Time

    Treesearch

    Quang V. Cao; V. Clark Baldwin

    1999-01-01

    Stand tables provide number of trees per acre for each diameter class. This paper presents a general technique to predict a future stand table, based on the current stand table and future stand summary statistics such as trees and basal area per acre, and average diameter. The stand projection technique involves (a) predicting surviving trees for each class, and (b)...

  16. Interosseous membrane window size for tibialis posterior tendon transfer-Geometrical and MRI analysis.

    PubMed

    Wagner, Pablo; Ortiz, Cristian; Vela, Omar; Arias, Paul; Zanolli, Diego; Wagner, Emilio

    2016-09-01

    Tibialis posterior (TP) tendon transfer through the interosseous membrane is commonly performed in Charcot-Marie-Tooth disease. In order to avoid entrapment of this tendon, no clear recommendation relative to the interosseous membrane (IOM) incision size has been made. Analyze the TP size at the transfer level and therefore determine the most adequate IOM window size to avoid muscle entrapment. Eleven lower extremity magnetic resonances were analyzed. TP muscle measurements were made in axial views, obtaining the medial-lateral and antero-posterior diameter at various distances from the medial malleolus tip. The distance from the posterior to anterior compartment was also measured. These measurements were applied to a mathematical model to predict the IOM window size necessary to allow an ample TP passage in an oblique direction. The average tendon diameter (confidence-interval) at 15cm proximal to the medial malleolus tip was 19.47mm (17.47-21.48). The deep posterior compartment to anterior compartment distance was 10.97mm (9.03-12.90). Using a mathematical model, the estimated IOM window size ranges from 4.2 to 4.9cm. The IOM window size is of utmost importance in trans-membrane TP transfers, given that if equal or smaller than the transposed tendon oblique diameter, a high entrapment risk exists. A membrane window of 5cm or 2.5 times the size of the tendon diameter should be performed in order to theoretically diminish this complication. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  17. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  18. Studying the effects of nucleating agents on texture modification of puffed corn-fish snack.

    PubMed

    Shahmohammadi, Hamid Reza; Bakar, Jamilah; Rahman, Russly Abdul; Adzhan, Noranizan Mohd

    2014-02-01

    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number. © 2014 Institute of Food Technologists®

  19. Ultrasonographically detected gallbladder polyps: A reason for concern? A seven-year follow-up study

    PubMed Central

    Kratzer, Wolfgang; Haenle, Mark M; Voegtle, Andrea; Mason, Richard A; Akinli, Atilla S; Hirschbuehl, Klaus; Schuler, Andreas; Kaechele, Volker

    2008-01-01

    Background The management of coincidental detected gallbladder polyps (GP) is still nebulous. There are few published data regarding their long-term growth. Objective of the present study was to investigate the prevalence and growth of gallbladder polyps in a survey of unselected subjects from the general population of a complete rural community. Methods A total of 2,415 subjects (1,261 women; 1,154 men) underwent ultrasound examination of the gallbladder, in November 1996 as part of a prospective study. Subjects in whom GP were detected at the initial survey underwent follow-up ultrasound examinations after 30 and 84 months. Results At the initial survey gallbladder polyps were detected in 34 subjects (1.4%; females: 1.1%, range 14 to 74 years; males: 1.7%, range 19 to 63 years). Median diameter was 5 ± 2.1 mm (range 2 to10 mm) at the initial survey, 5 mm ± 2.8 mm (range 2 to 12 mm) at 30 months and 4 ± 2.3 mm (range 2 to 9 mm) at 84 months. At the time of first follow-up no change in diameter was found in 81.0% (n = 17), reduction in diameter in 4.8% (n = 1) and increase in diameter in 14.3% (n = 3). At the time of second follow-up no increase in polyp diameter was found in 76.9% (n = 10) and reduction in diameter in 7.7% (n = 1). No evidence of malignant disease of the gallbladder was found. Conclusion Over a period of seven years little change was measured in the diameter of gallbladder polyps. There was no evidence of malignant disease of the gallbladder in any subject. PMID:18793401

  20. Ultrasonographically detected gallbladder polyps: a reason for concern? A seven-year follow-up study.

    PubMed

    Kratzer, Wolfgang; Haenle, Mark M; Voegtle, Andrea; Mason, Richard A; Akinli, Atilla S; Hirschbuehl, Klaus; Schuler, Andreas; Kaechele, Volker

    2008-09-15

    The management of coincidental detected gallbladder polyps (GP) is still nebulous. There are few published data regarding their long-term growth. Objective of the present study was to investigate the prevalence and growth of gallbladder polyps in a survey of unselected subjects from the general population of a complete rural community. A total of 2,415 subjects (1,261 women; 1,154 men) underwent ultrasound examination of the gallbladder, in November 1996 as part of a prospective study. Subjects in whom GP were detected at the initial survey underwent follow-up ultrasound examinations after 30 and 84 months. At the initial survey gallbladder polyps were detected in 34 subjects (1.4%; females: 1.1%, range 14 to 74 years; males: 1.7%, range 19 to 63 years). Median diameter was 5 +/- 2.1 mm (range 2 to 10 mm) at the initial survey, 5 mm +/- 2.8 mm (range 2 to 12 mm) at 30 months and 4 +/- 2.3 mm (range 2 to 9 mm) at 84 months. At the time of first follow-up no change in diameter was found in 81.0% (n = 17), reduction in diameter in 4.8% (n = 1) and increase in diameter in 14.3% (n = 3). At the time of second follow-up no increase in polyp diameter was found in 76.9% (n = 10) and reduction in diameter in 7.7% (n = 1). No evidence of malignant disease of the gallbladder was found. Over a period of seven years little change was measured in the diameter of gallbladder polyps. There was no evidence of malignant disease of the gallbladder in any subject.

  1. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  2. Microlaparoscopic technique for partial salpingectomy using bipolar electrocoagulation.

    PubMed

    Siegle, J C; Cartmell, L W; Rayburn, W F

    2001-07-01

    To describe a technique of performing a partial salpingectomy using a small-diameter (2-mm) laparoscope and bipolar electrocoagulation. Sixty consecutive women desiring permanent sterilization underwent laparoscopic partial salpingectomy using a 2-mm transumbilical laparoscope and secondary midline sites suprapubically and midway above the pubis. A midportion of the tube was coagulated using Kleppinger forceps, transected with scissors and removed using grasping forceps. Additional time to remove both coagulated tubal segments averaged 4 minutes (range, 3-10). Each segment (mean, 1.5 cm; range, 0.9-2.4 cm) was confirmed in the operating room, then histologically. The transected tubal edges were separated with no thermal injury to nearby structures and with no mesosalpingeal hemorrhage. No cases required conversion from microlaparoscopy to a traditional method, and recovery time was not prolonged. The puncture sites healed well without sutures. Successful removal of electrocoagulated tubal segments with histologic confirmation was undertaken microlaparoscopically, with minimal additional operative time.

  3. Structural phase transitions in SrTiO 3 nanoparticles

    DOE PAGES

    Zhang, Han; Liu, Sizhan; Scofield, Megan E.; ...

    2017-08-04

    We present that pressure dependent structural measurements on monodispersed nanoscale SrTiO 3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO 3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = P c) for larger particle sizes. In conclusion, the results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a largemore » range of strain values, possibly enabling device use.« less

  4. Flow past an axially aligned spinning cylinder: Experimental Study

    NASA Astrophysics Data System (ADS)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  5. Biocompatible silicon quantum dots by ultrasound-induced solution route

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon-Jo

    2004-10-01

    The water-soluble silicon quantum dots (QDs) of average diameter ~3 nm were prepared in organic solvent by ultrasound-induced solution route. This speedy rout produces the silicon QDs in the size range from 2 nm to 4 nm at room temperature and ambient pressure. The product yield of QDs was estimated to be higher than 60 % based on the initial NaSi weight. The surfaces of QDs were terminated with organic molecules including biocompatible ending groups (hydroxyl, amine and carboxyl) during simple preparation. Covalent attached molecules were characterized by FT-IR spectroscopy. These water-soluble passivation of QDs has just a little effect on the optical properties of original QDs.

  6. Attractive particle interaction forces and packing density of fine glass powders

    PubMed Central

    Parteli, Eric J. R.; Schmidt, Jochen; Blümel, Christina; Wirth, Karl-Ernst; Peukert, Wolfgang; Pöschel, Thorsten

    2014-01-01

    We study the packing of fine glass powders of mean particle diameter in the range (4–52) μm both experimentally and by numerical DEM simulations. We obtain quantitative agreement between the experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and non-bonded van der Waals forces are taken into account. Our results suggest that considering only viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the behavior of fine powders. Based on the results from simulations and experiments, we propose a mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the average particle size. PMID:25178812

  7. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  8. Hydrodynamic interaction of trapped active Janus particles in two dimensions

    NASA Astrophysics Data System (ADS)

    Debnath, Tanwi; Li, Yunyun; Ghosh, Pulak K.; Marchesoni, Fabio

    2018-04-01

    The dynamics of a pair of identical artificial microswimmers bound inside two harmonic traps, in a thin sheared fluid film, is numerically investigated. In a two-dimensional Oseen approximation, the hydrodynamic pair coupling is long-ranged and proportional to the particle radius to film thickness ratio. On increasing such ratio above a certain threshold, a transition occurs between a free regime, where each swimmer orbits in its own trap with random phase, and a strong synchronization regime, where the two swimmers strongly repel each other to an average distance larger than both the trap distance and their free orbit diameter. Moreover, the swimmers tend to synchronize their positions opposite the center of the system.

  9. Geology and hydrology for environmental planning in Marquette County, Michigan

    USGS Publications Warehouse

    Twenter, F.R.

    1981-01-01

    Marquette County, in the glaciated area of the Upper Peninsula of Michigan, includes 1,878 square miles. Precipitation averages 32 inches per year. Bedrock and glacial deposits contain materials that are good aquifers. Sedimentary bedrock units generally yield sufficient water for domestic supply and, in places, may yield more than 100 gallons per minute to large-diameter wells. In the glacial deposits, sand and gravel beds are the principal aquifers; yields to wells range from less than 10 to 200 gallons per minute. Igneous and metamorphic rocks yield little or no water to wells. Suitable sewage and refuse disposal sites are not readily available because of the abundance of wetlands, streams, and lakes susceptible to infiltrating leachate.

  10. Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide.

    PubMed

    Tanaka, Daiki; Shoji, Yuya; Kuwahara, Masashi; Wang, Xiaomin; Kintaka, Kenji; Kawashima, Hitoshi; Toyosaki, Tatsuya; Ikuma, Yuichiro; Tsuda, Hiroyuki

    2012-04-23

    We report a multi-mode interference-based optical gate switch using a Ge(2)Sb(2)Te(5) thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.6 dB. Repetitive switching over 2,000 irradiation cycles was also successfully demonstrated. In addition, self-holding characteristics were confirmed by observing the dynamic responses, and the rise and fall times were 130 ns and 400 ns, respectively. © 2012 Optical Society of America

  11. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method.

    PubMed

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-11

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  12. Production of silk sericin/silk fibroin blend nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhua; Tsukada, Masuhiro; Morikawa, Hideaki; Aojima, Kazuki; Zhang, Guangyu; Miura, Mikihiko

    2011-08-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  13. Quiet Clean Short-Haul Experimental Engine (QCSEE) aerodynamic characteristics of 30.5 centimeter diameter inlets

    NASA Technical Reports Server (NTRS)

    Paul, D. L.

    1975-01-01

    A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.

  14. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.

    PubMed

    Ao, Chenghong; Niu, Yan; Zhang, Ximu; He, Xu; Zhang, Wei; Lu, Canhui

    2017-04-01

    Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm). The ECHNN exhibited extraordinary mechanical properties with a tensile strength and a Young's modulus up to 70.6MPa and 3.12GPa respectively. Moreover, it was discovered that the thermostability of the ECHNN could be enhanced with the incorporation of nano-HA. Cell culture experiments demonstrated that the ECHNN scaffolds were quite biocompatible for HDFCs attachment and proliferation, suggesting their great potentials as scaffold materials in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  16. One step growth of GaN/SiO2 core/shell nanowire in vapor-liquid-solid route by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Yadav, Shivesh; Dhar, S.

    2017-11-01

    GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.

  17. Co-electrospinning of bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Salalha, Wael; Kuhn, Jonathan; Chervinsky, Shmuel; Zussman, Eyal

    2006-03-01

    Co-electrospinning provides a novel and highly versatile approach towards composite fibers with diameters ranging from a few hundred nm down to 30 nm with embedded elements. In the present work, co-electrospinning of poly(vinyl alcohol) (PVA) and viruses (T7, T4, λ) or bacteria (Escherichia coli, Staphylococcus albus) was carried out. These preparations should have applications for tissue engineering, gene therapy, phage therapy and biosensing. The average diameter of the co-spun nanofibers was about 300 nm. We found that the encapsulated viruses and bacteria manage to survive the electrospinning process, its pressure buildup in the core of the fiber and the electrostatic field in the co-electrospinning process. Approximately 10% of the Escherichia coli and 20% of Staphylococcus albus cells are viable after spinning. Approximately 5% of the bacterial viruses were also viable after the electrospinning. It should be noted that the encapsulated cells and viruses remain stable for two months without a further decrease in number. These results demonstrate the potential of the co-electrospinning process for the encapsulation and immobilization of bio-objects and the possibility of adapting them to technical applications (e.g., bio-chips).

  18. [Predictability of the corneal flap creation with the femtosecond laser in LASIK].

    PubMed

    Mai, Zhi-bin; Liu, Su-bing; Nie, Xiao-li; Sun, Hong-xia; Xin, Bao-li; Tang, Xiu-xia

    2012-05-01

    To observe the predictability of corneal flap creation with the FEMTO LDV femtosecond laser and analyze preliminarily the factors correlating to the thickness and diameter of the flap . It was a study of serial cases. 260 eyes of 130 consecutive patients were treated with the FEMTO LDV. The eyes were assigned to two groups according to intended flap thickness, 110 µm (208 eyes) and 90 µm (52 eyes). Intended flap diameter varied from 8.5 to 9.5 mm. Difference analysis of flap diameter and intended diameter as well as flap thickness and intended thickness were made. The data was analyzed with SPSS to sum up a multiple stepwise regression formula that could express their quantitative relationship. The 90 µm flap group had a average flap thickness of (95.12 ± 7.65) µm, while for the 110 µm group the average flap thickness was (104.81 ± 3.09) µm. The difference between right and left eyes was not statistically significant (t(110 µm) = -1.223, t(90 µm) = -1.343, P > 0.05). Corneal flap thickness was inversely correlated with flap diameter (r(110 µm) = -0.143, r(90 µm) = -0.315, P < 0.05), but was not related to preoperative patient age, corneal thickness, keratometric value K or intraocular pressure (r(110 µm) = -0.160, 0.054, -0.011, -0.363; r(90 µm) = 0.024, 0.074, -0.212, -0.434, all P > 0.05). Corneal flap diameter was positively correlated with preoperative corneal keratometric value K and thickness (P < 0.001, P < 0.05). Multiple stepwise regression analysis showed flap diameter was an influencing factor for flap thickness. Preoperative corneal keratometric value K and thickness were influencing factors for flap diameter. The LASIK flap creation with the FEMTO LDV laser has relatively good predictability. Flap diameter is an influencing factor for flap thickness.

  19. Structure formation control of foam concrete

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  20. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.

    PubMed

    Labuschagne, Philip W; Naicker, Brendon; Kalombo, Lonji

    2016-02-29

    The purpose of this investigation was to determine whether shellac, a naturally occurring material with enteric properties, could be processed in supercritical CO2 (sc-CO2) using the particles from gas saturated solution (PGSS) process and how process parameters affect the physico-chemical properties of shellac. In-situ attenuated total reflection fourier transform infra-red (ATR-FTIR) spectroscopy showed that CO2 dissolves in shellac with solubility reaching a maximum of 13% (w/w) at 300 bar pressure and 40 °C and maximum swelling of 28%. The solubility of sc-CO2 in shellac allowed for the formation of porous shellac structures of which the average pore diameter and pore density could be controlled by adjustment of operating pressure and temperature. In addition, it was possible to produce shellac microparticles ranging in average diameter from 180 to 300 μm. It was also shown that processing shellac in sc-CO2 resulted in accelerated esterification reactions, potentially limiting the extent of post-processing "ageing" and thus greater stability. Due to additional hydrolysis reactions enhanced by the presence of sc-CO2, the solubility of shellac at pH 7.5 was increased by between 4 and 7 times, while dissolution rates were also increased. It was also shown that the in-vitro dissolution profiles of shellac could be modified by slight adjustment in operating temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    PubMed

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cellulosic fibers and nonwovens from solutions: Processing and properties

    NASA Astrophysics Data System (ADS)

    Dahiya, Atul

    Cellulose is a renewable and bio-based material source extracted from wood that has the potential to generate value added products such as composites, fibers, and nonwoven textiles. This research was focused on the potential of cellulose as the raw material for fiber spinning and melt blowing of nonwovens. The cellulose was dissolved in two different benign solvents: the amine oxide 4-N-methyl morpholine oxide monohydrate (NMMO•H2O) (lyocell process); and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C 4MIM]Cl). The solvents have essentially no vapor pressure and are biologically degradable, making them environmentally advantageous for manufacturing processes. The objectives of this research were to: (1) characterize solutions of NMMO and [C4MIM]Cl; (2) develop processing techniques to melt blow nonwoven webs from cellulose using NMMO as a solvent; (3) electrospin cellulosic fibers from the [C4MIM]Cl solvent; (4) spin cellulosic single fibers from the [C4MIM]Cl solvent. Different concentration solutions of cellulose in NMMO and [C4MIM]Cl were initially characterized rheologically and thermally to understand their behavior under different conditions of stress, strain, and temperature. Results were used to determine processing conditions and concentrations for the melt blowing, fiber spinning, and electrospinning experiments. The cellulosic nonwoven webs and fibers were characterized for their physical and optical properties such as tensile strength, water absorbency, fiber diameter, and fiber surface. Thermal properties were also measured by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Lyocell webs were successfully melt blown from the 14% cellulose solution. Basis weights of the webs were 27, 79, and 141 g/m2 and thicknesses ranged from 0.3-0.9 mm, depending on die temperatures and die to collector distance. The average fiber diameter achieved was 2.3 microns. The 6% lyocell solutions exhibited poor spinability and did not form nonwoven webs. The electrospun nonwoven webs obtained were evaluated for fiber diameter and surface/web structure using scanning electron microscopy (SEM). The fibers obtained were in the range of 17-25 microns and the fiber surfaces and shapes varied with spinning conditions. A capillary rheometer was used to spin single fibers from [C 4MIM]Cl. Circular fibers in diameter ranging from 12-84 microns were obtained.

  3. An experimental investigation of the effect of walls on gas-liquid flows through fixed particle beds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert

    The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Grenacher, L.; Stampfl, U.

    The purpose of this study was to evaluate the impact of stent design on in-stent stenosis in rabbit iliac arteries. Four different types of stent were implanted in rabbit iliac arteries, being different in stent design (crown or wave) and strut thickness (50 or 100 {mu}m). Ten stents of each type were implanted. Each animal received one crown and one wave stent with the same strut thickness. Follow-up was either 12 weeks (n = 10 rabbits) or 24 weeks (n = 10 rabbits). Primary study end points were angiographic and microscopic in-stent stenosis. Secondary study end points were vessel injury,more » vascular inflammation, and stent endothelialization. Average stent diameter, relative stent overdilation, average and minimal luminal diameter, and relative average and maximum luminal loss were not significantly different. However, a trend to higher relative stent overdilation was recognized in crown stents compared to wave stents. A trend toward higher average and minimal luminal diameter and lower relative average and maximum luminal loss was recognized in crown stents compared to wave stents with a strut thickness of 100 {mu}m. Neointimal height, relative luminal area stenosis, injury score, inflammation score, and endothelialization score were not significantly different. However, a trend toward higher neointimal height was recognized in crown stents compared to wave stents with a strut thickness of 50 {mu}m and a follow-up of 24 weeks. In conclusion, in this study, crown stents seem to trigger neointima. However, the optimized radial force might equalize the theoretically higher tendency for restenosis in crown stents. In this context, also more favorable positive remodeling in crown stents could be important.« less

  5. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  6. Thermomechanical means to improve the critical current density of BSCCO tapes

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger; Haldar, Pradeep; Motowidlo, Leszek

    2001-01-01

    A method of preparing wires or tapes including Bi-2223 superconductor material by providing oxide and carbonate sources of Bi, Sr, Ca, Cu and Pb, milling the material for a time not to exceed about 30 minutes but preferably not greater than 20 minutes to produce a homogeneous mixture. Then heat treating by calcining the milled mixture at a temperature of at least about 830.degree. C. for a time not less than about 12 hours, followed by at least one additional milling for a time not to exceed about 20 minutes and one additional heat treatment, to produce an oxide powder having an average diameter in the 4 to 5 micron range. Then a silver or silver alloy tube is filled with the oxide powder, and shape formed into a rectangular tape. Then alternately thermally treating and mechanically working the tube filled with oxide powder by heating the filled tube to an elevated temperature of about 835.degree. C. to 840.degree. C. and reducing the diameter of the tube, repeating the thermal and mechanical treatment. The filled tube is held at the elevated temperature for a total time in the range of from about 48 hours to about 350 hours to provide Pb.sub.0.4, Bi.sub.1.8 Sr.sub.2.0 Ca.sub.2.2 Cu.sub.3 O.sub.x where x is between 10 and 11.

  7. Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts

    NASA Astrophysics Data System (ADS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2018-04-01

    Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the conductive sub-layer δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL on the circular tubes with various twisted-tape inserts were determined on the basis of numerical solutions for the swirl velocities u sw ranging from 5.23 to 21.18 m/s. Correlations between the conductive sub-layer thickness δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL for twisted-tape-induced swirl-flow heat transfer in a vertical circular tube were derived.

  8. Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.

    2009-01-01

    Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha-1 in plots that had experienced fire, but only 0.5 trees ha-1 in plots that remained unburned. ?? 2009 Elsevier B.V. All rights reserved.

  9. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  10. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  11. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-08

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  12. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  13. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  14. The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H

    1932-01-01

    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.

  15. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  16. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite.

    PubMed

    Predoi, Daniela; Iconaru, Simona Liliana; Buton, Nicolas; Badea, Monica Luminita; Marutescu, Luminita

    2018-04-30

    This study presents, for the first-time, the results of a study on the hydrodynamic diameter of essential oils (EOs) of basil and lavender in water, and solutions of EOs of basil (B) and lavender (L) and hydroxyapatite (HAp). The possible influence of basil and lavender EOs on the size of hydroxyapatite nanoparticles was analyzed by Scanning Electron Microscopy (SEM). We also investigated the in vitro antimicrobial activity of plant EOs and plant EOs hydroxyapatite respectively, against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus 1144 (MRSA 1144) and S. aureus 1426) and Gram-negative bacteria ( Escherichia coli ATCC 25922 and Escherichia coli ESBL 4493). From the autocorrelation function, obtained by Dynamic Light Scattering (DLS) measurements it was observed that basil yielded one peak at an average hydrodynamic diameter of 354.16 nm, while lavender yielded one peak at an average hydrodynamic diameter of 259.76 nm. In the case of HAp nanoparticles coated with basil (HApB) and lavender (HApL) essential oil, the aggregation was minimal. We found that the lavender EO exhibited a very good inhibitory growth activity (MIC values ranging from <0.1% for E. coli reference strain to 0.78% for S. aureus strains). The biological studies indicated that HapL material displayed an enhanced antimicrobial activity, indicating the potential use of HAp as vehicle for low concentrations of lavender EO with antibacterial properties. Flow cytometry analysis (FCM) allowed us to determine some of the potential mechanisms of the antimicrobial activities of EOs, suggesting that lavender EO was active against E. coli by interfering with membrane potential, the membrane depolarization effect being increased by incorporation of the EOs into the microporous structure of HAp. These findings could contribute to the development of new antimicrobial agents that are urgently needed for combating the antibiotic resistance phenomena.

  17. Perforator flap based on the third perforator of the profunda femoris artery (PFA)-assisted closure of the free vertical posteromedial thigh (vPMT) flap donor site.

    PubMed

    Scaglioni, Mario F; Barth, Andrè A; Chen, Yen-Chou

    2018-06-19

    The primary closure of the vertical posteromedial thigh (vPMT) free flap donor site is very important to minimize donor site morbidity and maximize cosmetic appearance. However, sometimes due to the dimension of the defect, a vPMT flap is wider than the 8-10 cm requirement. The authors report their experience with the third perforator of the profunda femoris artery (PFA) during the vPMT free flap donor-site closure. Between January 2016 and December 2017, 5 patients underwent reconstruction of lower extremity (2 pts.) and head and neck (3 pts.) area with the free vPMT flaps. Attempts to close the vPMT free flap donor site directly failed due to the flaps' width (average: 11 cm) and pedicled perforator flaps based on the third perforator of the PFA at the distal thigh were harvested to close the defect primary without the use of a skin graft. The size of perforator flap based on 3rd perforator of PFA was on average 6 cm × 4 cm (ranged: 4-8 cm × 3-6 cm). In all patients, the third perforator of the PFA was identified and the perforator diameter was on average 2.0 mm (range, 1.8-2.2 mm). All perforators were musculocutaneous and single. The dimensions of the flaps were on average 6 cm × 4 cm (range: 4 to 8 cm × 3 to 6 cm). All flaps healed uneventfully without complications and the patients were satisfied with cosmetic and functional results at 6 months follow-up. The third perforator of the PFA may be an option to ensure primary closure of the PMT flap donor site, when a larger flap for reconstruction is needed with subsequent impossibility to achieve primary closure of the donor site. © 2018 Wiley Periodicals, Inc.

  18. High pressure jet injection of viscous solutions for endoscopic submucosal dissection (ESD): first clinical experience.

    PubMed

    Pioche, Mathieu; Lépilliez, Vincent; Déprez, Pierre; Giovannini, Marc; Caillol, Fabrice; Piessevaux, Hubert; Rivory, Jérôme; Guillaud, Olivier; Ciocîrlan, Mihai; Salmon, Damien; Lienhart, Isabelle; Lafon, Cyril; Saurin, Jean-Christophe; Ponchon, Thierry

    2015-08-01

    Long lasting elevation is a key factor during endoscopic submucosal dissection (ESD) and can be obtained by water jet injection of saline solution or by viscous macromolecular solutions. In a previous animal study, we assessed the Nestis Enki II system to combine jet injection and viscous solutions. In the present work, we used this combination in humans in different sites of the digestive tract. We retrospectively report all of the consecutive ESD procedures performed with jet injection of viscous solutions in four centers. Information was collected about the lesion, the procedure, the histological result, and the outcomes for the patient. In total, 45 resections were completed by six operators: five experts and one beginner with only one previous experience in human ESD. Lesions were located in the esophagus (10), the stomach (11), the duodenum (1), the colon (1) and the rectum (22). Average maximal lesion diameter was 4.8 cm (SD 2.4, range 2 - 11 cm), average lesion surface area was 19.8 cm(2) (SD 17.7, range 2.2 - 72 cm(2)), and average duration of procedure was 79.9 min (SD 50.3 min, range 19 - 225 min). ESD could be conducted while the endoscope was retroflexed at its maximum in 26 cases. Four adverse events were observed: two diminutive perforations and two delayed bleeding occurrences treated conservatively. The R0 resection rate was 91.1 %. The catheter was obstructed in six occurrences of bleeding. Endoscopic submucosal dissection using high pressure injection of viscous macromolecular solutions is safe and effective in different parts of the digestive tract. It does not impede working with the endoscope in the maximal retroflexed position.

  19. Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan

    USGS Publications Warehouse

    Perkins, Don C.; Culbertson, James K.

    1970-01-01

    A hydrographic and sedimentation survey of Band-e Kajakai (Kajakai Reservoir) on the Darya-ye Hirmand (Helmand River) was carried out during the period September through December 1968. Underwater mapping techniques were used to determine the reservoir capacity as of 1968. Sediment range lines were established and monumented to facilitate future sedimentation surveys. Afghanistan engineers and technicians were trained to carry out future reservoir surveys. Samples were obtained of the reservoir bed and in the river upstream from the reservoir. Virtually no sediments coarser than about 0.063 millimeter were found on the reservoir bed surface. The median diameter of sands being transported into the reservoir ranged from 0.040 to 0.110 millimeter. The average annual rate of sedimentation was 7,800 acre-feet. Assuming an average density of 50 pounds per cubic foot (800 kilograms per cubic meter), the estimated average sediment inflow to the reservoir was about 8,500,000 tons (7,700,000 metric tons) per year. The decrease in capacity at spillway elevation for the period 1953 to 1968 due to sediment deposition was 7.8 percent, or 117,700 acre-feet. Redefinition of several contours above the fill area resulted in an increase in capacity at spillway elevation of 13,600 acre-feet; thus, the net change in capacity was 7.0 percent, or 104,800 acre-feet. Based on current data and an estimated rate of compaction of deposited sediment, the assumption of no appreciable change in hydrologic conditions in the drainage area, the leading edge of the principal delta will reach the irrigation outlet in 40-45 years. It is recommended that a resurvey of sediment range lines be made during the period 1973-75.

  20. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-06

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  1. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  2. Practical management of periprosthetic leakage in patients rehabilitated with a Provox® 2 voice prosthesis after total laryngectomy.

    PubMed

    Friedlander, Eviatar; Pinacho Martínez, Paloma; Poletti Serafini, Daniel; Martín-Oviedo, Carlos; Martínez Guirado, Tomás; Scola Yurrita, Bartolomé

    Periprosthetic leakage of liquids is a common complication in patients rehabilitated with voice prostheses. Our objective was to describe and review the results of procedures for treating periprosthetic leakage. This was a retrospective analysis of 41 patients rehabilitated with Provox® 2 voice prostheses between 1997 and 2015. We describe 3 techniques: periprosthetic silicon collar placement, injection of hyaluronic acid into the tracheoesophageal wall and the combination of the 2 techniques. We present a method to reduce the diameter of the tracheoesophageal fistula by removing the voice prosthesis and placing a nasogastric tube through the fistula. In the 3 groups treated with silicone collar (n=5, 13 procedures), hyaluronic acid injection (n=5, 9 procedures) and the combination of both techniques (n=3, 5 procedures), we observed an increase in prosthesis lifespan of an average of 56 days (range 7-118 days), 32 days (range 3-55 days) and 63 days (range 28-136 days), respectively. The tracheoesophageal fistula diameter reduction was performed in 100% (n=6) of patients. The use of silicone collars, injection of hyaluronic acid into the tracheoesophageal wall and the combination of both techniques for the treatment of periprosthesis leakage increase the lifespan of the prosthesis. Temporary prosthesis removal and placement of nasogastric tube has also been shown effective in our experience. These techniques are simple, inexpensive and reproducible, thereby reducing healthcare costs. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  3. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  4. Controle de la morphologie d'hydrogels poreux a partir de structures polymeres

    NASA Astrophysics Data System (ADS)

    Esquirol, Anne-Laure

    This master thesis presents a new fabrication method to prepare hydrogels with fully interconnected and tunable macropore networks prepared with co-continuous polymer blends. The main contributions are: (1) a hydrogel fabrication process providing a high control over the average pore size diameter, their volume fraction and their interconnectivity; (2) the microstructural characterization of porous hydrogels with new techniques such as X-ray microtomography and (3) the preparation of porous gels with industrial equipment such as extruders and injection molding presses. The development and improvement of methods and techniques to prepare porous polymers and porous gels have been intensive areas of research in materials science over the past 20 years because of their potential use in fields as diverse as high performance membranes and filtration devices, supports for catalysis and biochemical reactions, encapsulating devices for drug release, and scaffolds for cells seeding and proliferation. For this last application, in tissue engineering, some typical parameters related to porosity must be rigorously controlled: (1) the average pore size diameter; (2) the pore volume fraction; (3) the pore interconnectivity. Porous hydrogels are excellent candidates due to their similarities with the extracellular matrix (composition, mechanical properties and diffusion properties). A certain number of methods and techniques have been developed and studied to prepare gels comprising microstructured 3-D networks of (more or less) interconnected pores (also called sometimes microfluidic gels or (macro)porous gels). Poly(L-lactide) (PLA) porous materials were realized from immiscible and co-continuous binary blends of polystyrene/poly(L-lactide) (PS/PLA) at 50/50 %vol prepared by different methods : (1) internal mixer (cubic samples with 0.8 mm sides) and (2) extrusion followed by injection molding which allows the fabrication of bars with superior dimensions (0.95 cm x 1.25 cm x 6.3 cm). Quiescent annealing of the binary blends was performed at 190 °C to tune the characteristic dimensions of the co-continuous morphology: (1) 0, 10, 30, 60 and 90 min for cubic samples and (2) 0, 10, 20 and 30 min for bars. Afterwards, the PLA phase has been isolated by a specific solvent extraction of the PS phase to obtain porous PLA molds. Gravimetric analysis have demonstrated a co-continuity superior to 95% for cubic samples and superior to 85% for the bars. This morphology was analyzed by scanning electron microscopy (SEM) for each annealing time (for the cubic samples). Image analysis performed on the SEM micrographs have demonstrated that the average pore diameter can range from 3 mum to over 400 mum and that the specific interfacial area ranges from 5800 cm-1 to 45 cm-1, for annealing times going from 0 min to 90 min). The porosity of the bars was observed by X-ray microtomography and shows that the average pore diameter ranges from 10 mum to 500 mum (annealing from 10 min to 30 min). Solutions of agar or alginate were subsequently injected into the PLA porous molds by using a manual injection system, followed by an in situ gelification. Visual inspections and optical microscope observations show a complete injection for molds with average pore sizes over 20 mum (cubic samples) and over 300 mum (for bars). These assumptions are also supported by the gels morphology characterization. The second polymer phase (PLA) was subsequently dissolved using a second selective solvent, leaving only the porous gel structures. X-ray microtomography analysis, which provide 2-D and 3-D images, have demonstrated that the morphologies of the porous gels are similar to the PLA molds microstructures. For example, porous gels prepared with cubic PLA molds annealed during 60 min, show an average pore size of about 285 mum (as compared to 200 mum for the PLA molds) and a specific interfacial area of 70 cm -1 (as compared to 100 cm-1 for the PLA molds). Similar results were obtained for the porous gels prepared with the porous PLA bars (qualitative observation). The effectiveness of two sterilization methods has been proven on nutrient agar (NA) and "Brain Heart Infusion" (BHI) with no bacterial colonies apparition. The first method is the freeze-drying followed by an oven treatment at 120 °C in a sterile environment. The porous gel morphology was characterized by X-ray microtomography before and after freeze-drying, and after rehydration, demonstrating the conservation of the macroscopic dimensions of the gels, of their morphologies and porosities. The second method is the successive baths in an ethanol solution. Finally mechanical compression tests have shown that porous gels, as can be expected, have a lower compressive resistance as compared to non-porous hydrogels. (Abstract shortened by UMI.).

  5. Stand Density and Canopy Gaps

    Treesearch

    Boris Zeide

    2004-01-01

    Estimation of stand density is based on a relationship between number of trees and their average diameter in fully stocked stands. Popular measures of density (Reineke’s stand density index and basal area) assume that number of trees decreases as a power function of diameter. Actually, number of trees drops faster than predicted by the power function because the number...

  6. Mesavage and Girard form class taper functions derived from profile equations

    Treesearch

    Thomas g. Matney; Emily B. Schultz

    2007-01-01

    The Mesavage and Girard (1946) average upper-log taper tables remain a favorite way of estimating tree bole volume because they only require the measurement of merchantable (useable) height to an indefinite top diameter limit. For the direct application of profile equations, height must be measured to a definite top diameter limit, and this makes the collection of data...

  7. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    NASA Astrophysics Data System (ADS)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  8. The feeding habits of the snail kite in Florida, USA

    USGS Publications Warehouse

    Sykes, P.W.

    1987-01-01

    The feeding habits of the Snail Kite (Rostrhamus sociabilis) were observed intermittently from 1967-1980 in Florida, USA. Approximately 97% of all observed foraging bouts were over marshes having sparse emergent vegetation. The visually-hunting kite was unable to forage over floating mats of exotic water hyacinth (Eichhornia crassipes). Male kites had shorter hunting bouts than females. For still-hunting, the birds' perches ranged from 0.15-4.6 m high and captures occurred an average of 5.8 m from perches. Females were significantly more successful (70%) for course-hunting than males (48%), but I found no difference for still-hunting. Birds tended to forage throughout the day, except for occasional inactive periods by some individuals during midday. On cooler days, foraging commenced slightly later in the morning than on warmer days. Kites probably capture freshwater apple snails (Pomacea paludosa) as deep as 16 cm. Capture rates for adults generally ranged from 1.7-3.4 snails per hour. Kites usually foraged over a common hunting area, and defense of foraging sites was rare. Handling of snails, from the kite's arrival at the feeding perch unit consumption, averaged 2.7 min, with no significant difference between sexes. However, adult females were more efficient at the extraction portion of this process than were adult males. Snails were usually extracted before being brought to the nest, except in the latter part of the nestling period when some snails were extracted at or near the nest and some were brought intact. Adults feed small chicks bill to bill, and both parents generally shared equally in care of the young, except at two nests where the females did 67% or more of the feeding. Mean length of snails taken by kites was 42.8 mm (range 25.2-71.3 n=697) and mean diameter was 45.8 mm (range 27.4-82.4, n=697). The most common size classes tkaen were 30-60 mm in length and diameter. Nutritional and gross energy values were determined for apple snails. Female snails with albumen glands removed (versus males or mixed samples of both sexes of complete tissue or with viscera removed) had the highest caloric value (.hivin.x=4.04 kcal/g, n=10). Kites cast pellets, a behavior documented here for the first time.

  9. Relationship between the tensile strengths and diameters of human umbilical cords.

    PubMed

    Fernando, D M G; Gamage, S M K; Ranmohottige, S; Weerakkody, I; Abeyruwan, H; Parakrama, H

    2018-05-01

    Mothers of alleged infanticides might claim that umbilical cord broke during precipitate delivery causing injuries detected on baby at autopsy. There is paucity of evidence regarding this possibility. The objective of the study was to determine relationship between tensile strength and diameter or weight per unit length of cord. Diameters and weights per unit length of fresh umbilical cords were determined. Tensile strengths were measured by Hounsfield Testing Machine. Relationship between tensile strength versus cord diameter and weight per unit length were analyzed. Of 122 cords, average tensile strength, diameter and weight per centimeter were 50.4 N, 7.73 mm and 6.87 g respectively. The tensile strengths were directly proportional to diameter. There was no association between tensile strength and weight per centimeter. Measurement of the diameter of cord is important during autopsy to predict tensile strength and thereby to presume whether cord could have broken by the weight of the baby. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Particle sizing by weighted measurements of scattered light

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.

    1988-01-01

    A description is given of a measurement method, applicable to a poly-dispersion of particles, in which the intensity of scattered light at any angle is weighted by a factor proportional to that angle. Determination is then made of four angles at which the weighted intensity is four fractions of the maximum intensity. These yield four characteristic diameters, i.e., the diameters of the volume/area mean (D sub 32 the Sauter mean) and the volume/diameter mean (D sub 31); the diameters at cumulative volume fractions of 0.5 (D sub v0.5 the volume median) and 0.75 (D sub v0.75). They also yield the volume dispersion of diameters. Mie scattering computations show that an average diameter less than three micrometers cannot be accurately measured. The results are relatively insensitive to extraneous background light and to the nature of the diameter distribution. Also described is an experimental method of verifying the conclusions by using two microscopic slides coated with polystyrene microspheres to simulate the particles and the background.

  11. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches.

    PubMed

    Du, Shuang-Kui; Jiang, Hongxin; Ai, Yongfeng; Jane, Jay-Lin

    2014-08-08

    Physicochemical properties and digestibility of pinto bean, red kidney bean, black bean and navy bean starches were analyzed. All the common bean starches had oval and spherical granules with average diameter of 25.3-27.4 μm. Amylose contents were 32.0-45.4%. Black bean starch showed the highest peak viscosity, breakdown, final viscosity and setback, whereas red kidney bean starch showed the lowest pasting temperature, peak viscosity, breakdown, and setback. Pinto bean starch showed the highest onset and peak gelatinization temperatures, and the lowest gelatinization temperature range; whereas navy bean starch exhibited the lowest values. Amylopectin of red kidney bean had the highest molecular weight (Mw) and z-average gyration radius (Rz), whereas black bean amylopectin had the lowest values of Mw and Rz. The proportions of DP 6-12, DP 13-24, DP 25-36, and DP ≥ 37 and average branch-chain lengths were 23.30-35.21%, 47.79-53.53%, 8.99-12.65%, 6.39-13.49%, and 17.91-21.56, respectively. All the native bean starches were highly resistant to enzyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The contact heat transfer between the heating plate and granular materials in rotary heat exchanger under overloaded condition

    NASA Astrophysics Data System (ADS)

    Duan, Luanfang; Qi, Chonggang; Ling, Xiang; Peng, Hao

    2018-03-01

    In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE) was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 - 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder's model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%.

  13. Use of visual range measurements to predict fine particulate matter exposures in Southwest Asia and Afghanistan.

    PubMed

    Masri, Shahir; Garshick, Eric; Hart, Jaime; Bouhamra, Walid; Koutrakis, Petros

    2017-01-01

    Military personnel deployed to Southwest Asia and Afghanistan were exposed to high levels of ambient particulate matter (PM). However, quantitative ambient exposure data for conducting health studies are limited due to a lack of PM monitoring stations. Since visual range (VR) is proportional to particle light extinction, VR can serve as a surrogate for PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) concentrations. We used data on VR, relative humidity (RH), and PM 2.5 ground measurements collected in Kuwait from years 2004-2005 to establish the relationship between PM 2.5 and VR. Model validation obtained by regressing trimester average PM 2.5 predictions against PM 2.5 measurements in Kuwait produced an r 2 value of 0.84. Cross validation of urban and rural sites in Kuwait also revealed good model fit. We applied this relationship to location-specific visibility data at 104 regional sites between years 2000-2012 to estimate monthly average PM 2.5 concentrations. Monthly averages at sites in Iraq, Afghanistan, United Arab Emirates, Kuwait, Djibouti, and Qatar ranged from 10 to 365 µg/m3 during this period, while site averages ranged from 22 to 80 µg/m3, indicating considerable spatial and temporal heterogeneity in ambient PM 2.5 across these regions. These data support the use of historical visibility data to estimate location-specific PM 2.5 concentrations for application in epidemiological studies. This study demonstrates the ability to use airport visibility to estimate PM 2.5 concentrations in Southwest Asian and Afghanistan. This supports the use of historical and ongoing visibility data to estimate PM 2.5 exposure in this region of the world, where PM exposure information is otherwise scarce. This is of high utility to epidemiologists investigating the relationship between chronic exposure to PM 2.5 and respiratory diseases among deployed military personnel stationed at various military bases throughout the region. Such information will enable the drafting of improved policies relating to military health.

  14. A Similarity Criterion for Supersonic Flow Past a Cylinder with a Frontal High-Porosity Cellular Insert

    NASA Astrophysics Data System (ADS)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.; Maslov, A. A.

    2018-03-01

    We have experimentally and numerically studied the influence of the ratio of the diameter of a cylinder with a frontal gas-permeable porous insert made of nickel sponge to the average pore diameter in the insert on the aerodynamic drag of this model body in supersonic airflow ( M ∞ = 4.85, 7, and 21). The analytical dependence of the normalized drag coefficient on a parameter involving the Mach number and the ratio of cylinder radius to average pore radius in the insert is obtained. It is suggested to use this parameter as a similarity criterion in the problem of supersonic airflow past a cylinder with a frontal high-porosity cellular insert.

  15. Network of listed companies based on common shareholders and the prediction of market volatility

    NASA Astrophysics Data System (ADS)

    Li, Jie; Ren, Da; Feng, Xu; Zhang, Yongjie

    2016-11-01

    In this paper, we build a network of listed companies in the Chinese stock market based on common shareholding data from 2003 to 2013. We analyze the evolution of topological characteristics of the network (e.g., average degree, diameter, average path length and clustering coefficient) with respect to the time sequence. Additionally, we consider the economic implications of topological characteristic changes on market volatility and use them to make future predictions. Our study finds that the network diameter significantly predicts volatility. After adding control variables used in traditional financial studies (volume, turnover and previous volatility), network topology still significantly influences volatility and improves the predictive ability of the model.

  16. Size quantization patterns in self-assembled InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Taddei, S.; Rosa-Clot, M.

    1997-07-01

    Molecular beam epitaxy has been used for growing self-assembled InAs quantum dots. A continuous variation of the InAs average coverage across the sample has been obtained by properly aligning the (001) GaAs substrate with respect to the molecular beam. Excitation of a large number of dots (laser spot diameter ≈ 100 μm) results in structured photoluminescence spectra; a clear quantization of the dot sizes is deduced from the distinct luminescence bands separated in energy by an average spacing of 20-30 meV. We ascribe the individual bands of the photoluminescence spectrum after low excitation to families of dots with roughly the same diameter and heights differing by one monolayer.

  17. The Effect of Light Level and Small Pupils on Presbyopic Reading Performance.

    PubMed

    Xu, Renfeng; Gil, Daniel; Dibas, Mohammed; Hare, William; Bradley, Arthur

    2016-10-01

    To examine the impact of small pupils and light levels on reading performance of distance-corrected presbyopes. To determine whether small pupils would enable presbyopes to read at near even at low light levels. To establish the lower range of text luminances, we quantified the space-averaged luminance of text in nine different artificially lit interior environments, and examined the impact of the text characters on space-averaged luminance of electronic and printed displays. Distance and near reading speeds of 20 presbyopes (ages 40-60 years) were measured while viewing through artificial pupils (diameters 1-4.5 mm), natural pupils, or with a multifocal contact lens. Space-averaged text luminance levels varied from 0.14 to 140 cd/m2 (including the range of measured environmental text luminances). Adding black text to a white computer display or paper reduces luminance by approximately 15% to 31%, and the lowest encountered environmental text luminance was approximately 2 to 3 cd/m2. For both distance and near reading performance, the 2- to 3-mm small pupil yielded the best overall reading acuity for space-averaged text light levels ≥ 2 cd/m2. The 2- to 3-mm artificial pupils and the multifocal contact lenses both enabled maximum or near-maximum reading speeds for 0.5 logMAR characters at distance and near, but with natural pupils, reading speeds were significantly reduced at near. Although photon noise at low luminance reduces the visual benefits of small pupils, the benefits of 2- to 3-mm artificial pupils are sufficient to enable >80% of distance-corrected presbyopes to read proficiently at near, even at the lowest text luminances found in interior environments.

  18. Defining Normal Parameters for the Male Nipple-Areola Complex: A Prospective Observational Study and Recommendations for Placement on the Chest Wall.

    PubMed

    Yue, Dominic; Cooper, Lilli R L; Kerstein, Ryan; Charman, Susan C; Kang, Norbert V

    2018-01-10

    The nipple-areola complex (NAC) is important aesthetically and functionally for both sexes. Methods for positioning the NAC in males are less well established in the literature compared to females but are just as important. This study aims to determine the normal parameters for the male NAC, to review literature, and to present a reliable method for preoperative placement. Normal male patients, with no prior chest wall conditions, were prospectively recruited to participate. General demographics and chest wall dimensions were recorded-sternal notch to nipple (SNND), internipple (IND), anterior axillary folds distances (AFD), NAC, and chest circumference were measured. Comparisons were made using t test and ANOVA. One hundred and fifty-eight patients were recruited (age range, 18-90 years); mostly (86.7%) with normal or overweight BMI. The IND averaged 249.4 mm, the SNND averaged 204.2 mm, and the AFD averaged 383.8 mm. Areola diameter averaged 26.6 mm and for the nipple, 6.9 mm. The IND:AFD ratio was 0.65. There was no statistical difference in the IND:AFD ratio, SNND, or NAC parameters comparing different ethnic groups. The SNND increased with greater BMI (P ≤ 0.001). Using these data, we suggest ideal NAC dimensions and devised a simple method for positioning of the NAC on the male chest wall. This is the largest study, with the widest range in age and BMI, to date on this topic. Although fewer men than women undergo surgery to the breast, there is a growing awareness for enhancing the appearance of the male chest wall. © 2018 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  19. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.

    PubMed

    Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  20. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    PubMed

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  1. [Spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest].

    PubMed

    Shao, Fang-Li; Yu, Xin-Xiao; Song, Si-Ming; Zhao, Yang

    2011-11-01

    This paper analyzed the spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest in a 4 hm2 plot of Mulan Paddock, based on the diameter distribution and the spatial structure parameters mingling degree, neighborhood comparison, and angle index. In the forest, the diameter distribution of the stands presented as an inverse 'J' curve, the average mingling degree was 0.4, with the individuals at weak and zero mingling degree reached 51.6%, and the average mingling degree of P. davidiana and B. platyphylla was 0.25 and 0.39, respectively. The neighborhood comparison based on the diameter at breast height (DBH) and tree height was almost the same, suggesting that the P. davidiana and B. platyphylla were in the transition state from subdominant to middle. The horizontal distribution pattern had a close relation to the minimum measured DBH, being clustered when the DBH was > or = 1 cm and < 6 cm, and random when the DBH was > or = 6 cm.

  2. Morphology control of PLA microfibers and spheres via melt electrospinning

    NASA Astrophysics Data System (ADS)

    Yu, Shu-Xin; Zheng, Jie; Yan, Xu; Wang, Xiao-Xiong; Nie, Guang-Di; Tan, Ye-Qiang; Zhang, Jun; Sui, Kun-Yan; Long, Yun-Ze

    2018-04-01

    In conventional solution electrospinning, the morphologies (e.g., spheres, beaded fibers, and fibers) of electrospun products can be controlled by solution concentration. Here, we report that the morphologies and structures of polylactic acid (PLA) via melt electrospinning also can be adjusted from microfibers to microspheres by simply increasing the spinning temperature. It was found that with temperature increasing from 200 °C to 240 °C, the average diameter of melt-electrospun PLA fibers decreased from 58.46 to 2.96 μm. Then, beaded fibers and microspheres about 14.5 μm in diameter were collected when the spinning temperature was increased to 250 °C and 260 °C. In addition, we also found that the average PLA fiber diameter decreased with increasing the applied spinning voltage, and increased with the increase of spinning distance. To explain the formation mechanism of different PLA microstructures, rheological property and infrared spectra of PLA under different spinning temperatures were also tested.

  3. Ultrafine Ti4+ doped α-Fe2O3 nanorod array photoanodes with high charge separation efficiency for solar water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Yilin; Liu, Jie; Luo, Wenjun; Wen, Xin; Liu, Xiaokang; Zou, Zhigang; Huang, Wei

    2017-06-01

    Hematite (α-Fe2O3) is a promising photoanode material for solar water splitting due to its suitable band gap, earth-abundance, excellent stability and non-toxicity. However, a short hole diffusion length limits its performance. A nanorod array structure can shorten hole transfer distance to photoelectrode/electrolyte interface and decrease recombination of photo-generated carriers. However, average diameters of all previously reported nanorods are over 50 nm, thus being too thick for holes to transfer to the interface. It is still a big challenge to prepare a Fe2O3 nanorod array photoelectrode with finer diameter. In this study, we prepare an ultrafine α-Fe2O3 nanorod array film with average diameter about 25 nm by calcining γ-FeOOH for the first time. The ultrafine nanorod array photoanode indicates much higher carrier separation efficiency and performance than a conventional nanorod array film.

  4. Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D

    NASA Technical Reports Server (NTRS)

    Pike, R. J.; Spudis, P. D.

    1985-01-01

    The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.

  5. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  6. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Benfold, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal.

  7. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets

    NASA Astrophysics Data System (ADS)

    Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.

    2017-12-01

    The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.

  8. Heat transfer from high-temperature surfaces to fluids II : correlation of heat-transfer and friction data for air flowing in inconel tube with rounded entrance

    NASA Technical Reports Server (NTRS)

    Lowdermilk, Warren H; Grele, Milton D

    1949-01-01

    A heat transfer investigation, which was an extension of a previously reported NACA investigation, was conducted with air flowing through an electrically heated inconel tube with a rounded entrance,an inside diameter of 0.402 inch, and a length of 24 inches over a range of conditions, which included Reynolds numbers up to 500,000, average surface temperatures up to 2050 degrees R, and heat-flux densities up to 150,000 Btu per hour per square foot. Conventional methods of correlating heat-transfer data wherein properties of the air were evaluated at the average bulk, film, and surface temperatures resulted in reductions of Nusselt number of about 38, 46, and 53 percent, respectively, for an increase in surface temperature from 605 degrees to 2050 degrees R at constant Reynolds number. A modified correlation method in which the properties of air were based on the surface temperature and the Reynolds number was modified by substituting the product of the density at the inside tube wall and the bulk velocity for the conventional mass flow per unit cross-sectional area, resulted in a satisfactory correlation of the data for the extended ranges of conditions investigated.

  9. Polychaeta (Annelida) associated with Thalassia testudinum in the northeastern coastal waters of Venezuela.

    PubMed

    Liñero Arana, Ildefonso; Díaz Díaz, Oscar

    2006-09-01

    Seasonal variations of polychaetes in a Thalassia testudinum bed were studied from June 2000 to April 2001 in Chacopata, northeastern Venezuela. Eight replicate samples were taken monthly with a 15 cm diameter core and the sediment was passed through a 0.5 mm mesh sieve. A total of 1,013 specimens, belonging to 35 species, was collected. The monthly density ranged from 387 ind/m2 (September) to 1,735 ind/m2 in May (x = 989+/-449 ind/m2). Species richness was lowest in August and September (8) and highest (25) in April (x = 18.00+/-5.29). The shoot density of Thalassia showed an average of 284+/-77.60 shoots/m2, with extreme values in February (164) and May (422). Species diversity ranged from 1.25 in August and 3.33 bits/ind in December (x = 2.47+/-0.64). Significant positive correlations were detected among the number of Thalassia shoots, polychaete abundance and species richness, as well as among species richness, polychaete abundance and species diversity. Species number and average density were found within the intervals of mean values reported in similar studies. The higher number of species and organisms obtained in March-April and June-July can be attributed to the recruitment correlated with the regional up-welling.

  10. Device-less patent foramen ovale closure by radiofrequency thermal energy.

    PubMed

    Walpoth, Nazan B; Habermacher, Kathrin; Moarof, Igal; Watson, Sandy; Wahl, Andreas; Windecker, Stephan; Schönenberger, Christa; Meier, Bernhard

    2008-02-23

    The goal of this study was to assess the feasibility, safety and success of a system which uses radiofrequency energy (RFE) rather than a device for percutaneous closure of patent foramen ovale (PFO). Sixteen patients (10 men, 6 women, mean age 50 years) were included in the study. All of them had a proven PFO with documented right-to-left shunt (RLS) after Valsalva manoeuvre (VM) during transoesophageal echocardiography (TEE). The patients had an average PFO diameter of 6 +/- 2 mm at TEE and an average of 23 +/- 4 microembolic signals (MES) in power M-mode transcranial Doppler sonography (pm-TCD), measured over the middle cerebral artery. An atrial septal aneurysm (ASA) was present in 7 patients (44%). Balloon measurement, performed in all patients, revealed a stretched PFO diameter of 8 +/- 3 mm. In 2 patients (stretched diameter 11 and 14 mm respectively, both with ASA >10 mm), radiofrequency was not applied (PFO too large) and the PFO was closed with an Amplatzer PFO occluder instead. A 6-month follow-up TEE was performed in all patients. There were no serious adverse events during the procedure or at follow-up (12 months average). TEE 6 months after the first RFE procedure showed complete closure of the PFO in 50% of the patients (7/14). Closure appeared to be influenced by PFO diameter, complete closure being achieved in 89% (7/8) with a balloon-stretched diameter < or =7 mm but in none of the patients >7 mm. Only one of the complete closure patients had an ASA. Of the remainder, 4 (29%) had an ASA. Although the PFO was not completely closed in this group, some reduction in the diameter of the PFO and in MES was documented by TEE and pm-TCD with VM. Five of the 7 residual shunt patients received an Amplatzer PFO occluder. Except for one patient with a minimal residual shunt, all showed complete closure of PFO at 6-month follow-up TEE and pm-TCD with VM. The other two refused a closure device. The results confirm that radiofrequency closure of the PFO is safe albeit less efficacious and more complex than device closure. The technique in its current state should not be attempted in patients with a balloon-stretched PFO diameter >7 mm and an ASA.

  11. Influence of cervical preflaring on apical file size determination.

    PubMed

    Pecora, J D; Capelli, A; Guerisoli, D M Z; Spanó, J C E; Estrela, C

    2005-07-01

    To investigate the influence of cervical preflaring with different instruments (Gates-Glidden drills, Quantec Flare series instruments and LA Axxess burs) on the first file that binds at working length (WL) in maxillary central incisors. Forty human maxillary central incisors with complete root formation were used. After standard access cavities, a size 06 K-file was inserted into each canal until the apical foramen was reached. The WL was set 1 mm short of the apical foramen. Group 1 received the initial apical instrument without previous preflaring of the cervical and middle thirds of the root canal. Group 2 had the cervical and middle portion of the root canals enlarged with Gates-Glidden drills sizes 90, 110 and 130. Group 3 had the cervical and middle thirds of the root canals enlarged with nickel-titanium Quantec Flare series instruments. Titanium-nitrite treated, stainless steel LA Axxess burs were used for preflaring the cervical and middle portions of root canals from group 4. Each canal was sized using manual K-files, starting with size 08 files with passive movements until the WL was reached. File sizes were increased until a binding sensation was felt at the WL, and the instrument size was recorded for each tooth. The apical region was then observed under a stereoscopic magnifier, images were recorded digitally and the differences between root canal and maximum file diameters were evaluated for each sample. Significant differences were found between experimental groups regarding anatomical diameter at the WL and the first file to bind in the canal (P < 0.01, 95% confidence interval). The major discrepancy was found when no preflaring was performed (0.151 mm average). The LA Axxess burs produced the smallest differences between anatomical diameter and first file to bind (0.016 mm average). Gates-Glidden drills and Flare instruments were ranked in an intermediary position, with no statistically significant differences between them (0.093 mm average). The instrument binding technique for determining anatomical diameter at WL is not precise. Preflaring of the cervical and middle thirds of the root canal improved anatomical diameter determination; the instrument used for preflaring played a major role in determining the anatomical diameter at the WL. Canals preflared with LA Axxess burs created a more accurate relationship between file size and anatomical diameter.

  12. Effect of Personal Exposure to PM2.5 on Respiratory Health in a Mexican Panel of Patients with COPD

    PubMed Central

    Cortez-Lugo, Marlene; Ramírez-Aguilar, Matiana; Sansores-Martínez, Raúl; Pérez-Padilla, Rogelio; Ramírez-Venegas, Alejandra; Barraza-Villarreal, Albino

    2015-01-01

    Background: Air pollution is a problem, especially in developing countries. We examined the association between personal exposure to particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) on respiratory health in a group of adults with chronic obstructive pulmonary disease (COPD). Methods: All participants resided in Mexico City and during follow-up, personal exposure to PM2.5, respiratory symptoms, medications, and daily activity were registered daily. Peak expiratory flow (PEF) was measured twice daily, from February through December, 2000, in 29 adults with moderate, severe, and very severe COPD. PEF changes were estimated for each 10 µg/m3 increment of PM2.5, adjustment for severity of COPD, minimum temperature, and day of the sampling. Results: For a 10-µg/m3 increase in the daily average of a two-day personal exposure to PM2.5, there was a significant 33% increase in cough (95% CI, range, 5‒69%), and 23% in phlegm (95% CI, range, 2‒54%), a reduction of the PEF average in the morning of −1.4 L/min. (95% CI , range, −2.8 to −0.04), and at night of −3.0 L/min (95% CI, range, −5.7 to −0.3), respectively. Conclusions: Exposure to PM2.5 was associated with reductions in PEF and increased respiratory symptoms in adults with COPD. The PEF reduction was observed both at morning and at night. PMID:26343703

  13. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-01

    The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  14. Twenty-year growth of thinned and unthinned ponderosa pine in the Methow Valley of northern Washington.

    Treesearch

    James W. Barrett

    1981-01-01

    Diameter, height and volume growth, and yield of thinned and unthinned plots are given for a suppressed, 47-year-old stand of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in the Methow Valley of northern Washington that averaged about 3 inches in diameter and 23 feet tall before thinning. Considerations are discussed for choosing tree spacing...

  15. Cottonwood Plantation Growth Through 20 Years

    Treesearch

    Roger M. Krinard; Robert L. Johnson

    1984-01-01

    At age 20 survival of unthinned cottonwood (Populusdeltoides Bartr. ex Marsh.) planted on medium-textured soil at spacings of 4 by 9, 8 by 9, 12 by 12, and 16 by 18 feet was 10, 17, 30, and 62 percent, and average diameters were 10.6, 11.8, 12.6, and 13.7 inches, respectively. Depending on spacing and diameter threshold, -cubic volume mean annual increment peaked at...

  16. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the mean of the average diameters from inside to inside of staves at the inner edges of the heads. (2..., one taken from inside to inside of staves at the inner edge of the head, the other from inside to inside of staves at the inner edge of the croze ring, or from inside to inside of staves at a point where...

  17. Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data.

    PubMed

    Liu, Huolong; Galbraith, S C; Ricart, Brendon; Stanton, Courtney; Smith-Goettler, Brandye; Verdi, Luke; O'Connor, Thomas; Lee, Sau; Yoon, Seongkyu

    2017-06-15

    In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots. The experimental results have demonstrated that all the process responses, granule properties and tablet properties are influenced by changing the screw speed, throughput and L/S ratio. The TSWG process was optimized to produce granules with specific volume average diameter of 150μm and the yield of 95% based on the developed regression models. A design space (DS) was built based on volume average granule diameter between 90 and 200μm and the granule yield larger than 75% with a failure probability analysis using Monte Carlo simulations. Validation experiments successfully validated the robustness and accuracy of the DS generated using the CCF experimental design in optimizing a continuous TSWG process. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    PubMed Central

    Moore, Bria M.; Brady, Samuel L.; Mirro, Amy E.; Kaufman, Robert A.

    2014-01-01

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) were then multiplied by patient-specific SSDE to estimate patient organ dose. The \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. Individual\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ , was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE. PMID:24989395

  19. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain

    NASA Astrophysics Data System (ADS)

    Rodil, I. F.; Lastra, M.

    2004-09-01

    Ten sandy beaches along the north coast of Spain were studied during September 1999 to analyse the number of species, abundance and biomass of macroinfauna along a gradient of intermediate beach types and exposure range. Faunal samples were collected with metallic cylinders (25 cm diameter, 15 cm depth) at 10 equally spaced shore levels along six replicated transects separated randomly and extending from above the drift line to the low tide swash zone. Exposure rate, Dean's parameter ( Ω), beach state index (BSI) and relative tidal range (RTR) were estimated at each beach. Length and width of the beach, intertidal slope, sorting and median grain size and also swash amplitude and wave characteristics were measured. The number of species was between 10 and 29. Macrofaunal abundances ranged between 4962 and 71,228 ind. linear m -1 and between 31 and 329 ind. m -2, while biomass (ash free dry weight) ranged between 0.027 and 0.278 g m -2 and between 3 and 61 g linear m -1. The results show some significant trends: the number of species is the biotic variable most affected by physical and morphodynamic factors, increasing linearly with relative tidal range and decreasing with increasing average grain size. The same trend was observed from exposed to very exposed beaches and the biomass decreased exponentially with increasing average grain size. These trends agree with previous studies in different coasts in the world where coarse sands limit the benthic macrofauna. The morphodynamic parameters as Dean's parameter or Beach State Index did not show a predictive value. The results suggest that different characteristics of benthic macrofauna communities in intermediate beaches can be affected in different ways by the physical processes involved in beach morphodynamics.

  20. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    NASA Astrophysics Data System (ADS)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  1. Measurement of focal ground-glass opacity diameters on CT images: interobserver agreement in regard to identifying increases in the size of ground-glass opacities.

    PubMed

    Kakinuma, Ryutaro; Ashizawa, Kazuto; Kuriyama, Keiko; Fukushima, Aya; Ishikawa, Hiroyuki; Kamiya, Hisashi; Koizumi, Naoya; Maruyama, Yuichiro; Minami, Kazunori; Nitta, Norihisa; Oda, Seitaro; Oshiro, Yasuji; Kusumoto, Masahiko; Murayama, Sadayuki; Murata, Kiyoshi; Muramatsu, Yukio; Moriyama, Noriyuki

    2012-04-01

    To evaluate interobserver agreement in regard to measurements of focal ground-glass opacities (GGO) diameters on computed tomography (CT) images to identify increases in the size of GGOs. Approval by the institutional review board and informed consent by the patients were obtained. Ten GGOs (mean size, 10.4 mm; range, 6.5-15 mm), one each in 10 patients (mean age, 65.9 years; range, 58-78 years), were used to make the diameter measurements. Eleven radiologists independently measured the diameters of the GGOs on a total of 40 thin-section CT images (the first [n = 10], the second [n = 10], and the third [n = 10] follow-up CT examinations and remeasurement of the first [n = 10] follow-up CT examinations) without comparing time-lapse CT images. Interobserver agreement was assessed by means of Bland-Altman plots. The smallest range of the 95% limits of interobserver agreement between the members of the 55 pairs of the 11 radiologists in regard to maximal diameter was -1.14 to 1.72 mm, and the largest range was -7.7 to 1.7 mm. The mean value of the lower limit of the 95% limits of agreement was -3.1 ± 1.4 mm, and the mean value of their upper limit was 2.5 ± 1.1 mm. When measurements are made by any two radiologists, an increase in the length of the maximal diameter of more than 1.72 mm would be necessary in order to be able to state that the maximal diameter of a particular GGO had actually increased. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  2. Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing.

    PubMed

    Sze, Jasmine Y Y; Kumar, Shailabh; Ivanov, Aleksandar P; Oh, Sang-Hyun; Edel, Joshua B

    2015-07-21

    Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.

  3. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder.

    PubMed

    Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N

    2015-12-01

    In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.

  4. Anterior capsulotomy with an ultrashort-pulse laser.

    PubMed

    Tackman, Ramon Naranjo; Kuri, Jorge Villar; Nichamin, Louis D Skip; Edwards, Keith

    2011-05-01

    To assess the precision of laser anterior capsulotomy compared with that of manual continuous curvilinear capsulorhexis (CCC). Asociación Para Evitar La Ceguera en México IAP, Hospital Dr. Luis Sánchez Bulnes, Mexico City, Mexico. Nonrandomized single-center clinical trial. In patients presenting for cataract surgery, the LensAR Laser System was used to create a laser anterior capsulotomy of the surgeon's desired size. Capsule buttons were retrieved and measured and then compared with buttons retrieved from eyes having a manually torn CCC. Deviation from the intended diameter and the regularity of shape were assessed. When removing the capsule buttons at the start of surgery, the surgeon rated the ease of removal on a scale of 1 to 10 (1 = required manual capsulorhexis around the whole diameter; 10 = button free floating or required no manual detachment from remaining capsule during removal). The mean deviation from the intended diameter was 0.16 mm ± 0.17 (SD) for laser anterior capsulotomy and 0.42 ± 0.54 mm for CCC (P=.03). The mean absolute deviation from the intended diameter was 0.20 ± 0.12 mm and 0.49 ± 0.47 mm, respectively (P=.003). The mean of the average squared residuals was 0.01 ± 0.03 and 0.02 ± 0.04, respectively (P=.09). The median rating of the ease of removal was 9 (range 5 to 10). Laser anterior capsulotomy created a more precise capsule opening than CCC, and the buttons created by the laser procedure were easy to remove at the beginning of cataract surgery. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Fast and robust shape diameter function.

    PubMed

    Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe

    2018-01-01

    The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.

  6. Proximity to encroaching coconut palm limits native forest water use and persistence on a Pacific atoll

    USGS Publications Warehouse

    Krauss, Ken W.; Duberstein, Jamie A.; Cormier, Nicole; Young, Hillary S.; Hathaway, Stacie A.

    2015-01-01

    Competition for fresh water between native and introduced plants is one important challenge facing native forests as rainfall variability increases. Competition can be especially acute for vegetation on Pacific atolls, which depend upon consistent rainfall to replenish shallow groundwater stores. Patterns of sap flow, water use, and diameter growth of Pisonia grandis trees were investigated on Sand Islet, Palmyra Atoll, Line Islands, during a period of low rainfall. Sap flow in the outer sapwood was reduced by 53% for P. grandis trees growing within coconut palm (Cocos nucifera) stands (n = 9) versus away from coconut palm (n = 9). This suggested that water uptake was being limited by coconut palm. Radial patterns of sap flow into the sapwood of P. grandis also differed between stands with and without coconut palm, such that individual tree water use for P. grandis ranged from 14 to 67 L day−1, averaging 47·8 L day−1 without coconut palm and 23·6 L day−1 with coconut palm. Diameter growth of P. grandis was measured from nine islets. In contrast to sap flow, competition with coconut palm increased diameter growth by 89%, equating to an individual tree basal area increment of 5·4 versus 10·3 mm2 day−1. Greater diameter growth countered by lower rates of water use by P. grandis trees growing in competition with coconut palm suggests that stem swell may be associated with water storage when positioned in the understory of coconut palm, and may facilitate survival when water becomes limiting until too much shading overwhelms P. grandis. 

  7. Accommodation and age-dependent eye model based on in vivo measurements.

    PubMed

    Zapata-Díaz, Juan F; Radhakrishnan, Hema; Charman, W Neil; López-Gil, Norberto

    2018-03-21

    To develop a flexible model of the average eye that incorporates changes with age and accommodation in all optical parameters, including entrance pupil diameter, under photopic, natural, environmental conditions. We collated retrospective in vivo measurements of all optical parameters, including entrance pupil diameter. Ray-tracing was used to calculate the wavefront aberrations of the eye model as a function of age, stimulus vergence and pupil diameter. These aberrations were used to calculate objective refraction using paraxial curvature matching. This was also done for several stimulus positions to calculate the accommodation response/stimulus curve. The model predicts a hyperopic change in distance refraction as the eye ages (+0.22D every 10 years) between 20 and 65 years. The slope of the accommodation response/stimulus curve was 0.72 for a 25 years-old subject, with little change between 20 and 45 years. A trend to a more negative value of primary spherical aberration as the eye accommodates is predicted for all ages (20-50 years). When accommodation is relaxed, a slight increase in primary spherical aberration (0.008μm every 10 years) between 20 and 65 years is predicted, for an age-dependent entrance pupil diameter ranging between 3.58mm (20 years) and 3.05mm (65 years). Results match reasonably well with studies performed in real eyes, except that spherical aberration is systematically slightly negative as compared with the practical data. The proposed eye model is able to predict changes in objective refraction and accommodation response. It has the potential to be a useful design and testing tool for devices (e.g. intraocular lenses or contact lenses) designed to correct the eye's optical errors. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. Performance Evaluation and Initial Clinical Test of the Positron Emission Mammography System (PEMi)

    NASA Astrophysics Data System (ADS)

    Li, Lin; Gu, Xiao-Yue; Li, Dao-Wu; Huang, Xian-Chao; Chai, Pei; Feng, Bao-Tong; Wang, Pei-Lin; Yun, Ming-Kai; Dai, Dong; Zhang, Zhi-Ming; Yin, Peng-Fei; Xu, Wen-Gui; Wei, Long

    2015-10-01

    A new polygon positron emission mammography imaging system (PEMi) was developed in 2009 by the Institute of High Energy Physics, Chinese Academy of Sciences. PEMi is constructed in a polygon structure with lutetium yttrium orthosilicate crystal arrays mounted on a position-sensitive photomultiplier. The system consists of 64 blocks and each block is arranged in 16 ×16 crystal arrays with a pixel size of 1.9 ×1.9 ×15 mm. The diameter of the detector ring is 166 mm, and the axial length is 128 mm. The transaxial field of view of PEMi is 110 mm. The goal of the initial study was to test PEMi's performance and the clinical imaging ability with a small group of selected subjects. The detectors have a measured intrinsic spatial resolution averaging 1.67 mm. The axial and tangential resolution remained under 2.5-mm full width at half maximum within the central 5-cm diameter of the field of view. The hot rods with a diameter of 1.7 mm can be clearly identified, and the structure of the region containing 1.35-mm diameter rods can also be observed. Using a 6-ns coincidence timing window and a 360 660-keV energy window, the peak sensitivity of the tomograph is 6.88%. The noise-equivalent count rate peak is 110 766 cps for a breast-like cylindrical phantom of 100 mm in diameter at an activity concentration of 0.03 MBq/cc. The recovery coefficients ranged from 0.21 to 0.85 for rods between 1 mm and 5 mm in the image-quality phantom. The reconstructed image resolution achieved an improvement compared with whole-body positron emission tomography (PET), which might reduce the lower threshold on detectable lesion size. Example patient images demonstrate that PEMi is clinically feasible. And more detailed structure information was obtained with PEMi than with the whole-body PET imaging.

  9. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.

  10. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  11. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  12. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits

    NASA Astrophysics Data System (ADS)

    Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.

    2018-05-01

    We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.

  13. Antarctic aerosols - A review

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  14. Angle-of-arrival variance of waves and rays in strong atmospheric scattering: split-step simulation results

    NASA Astrophysics Data System (ADS)

    Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas

    2017-09-01

    The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.

  15. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  16. Local endwall heat/mass-transfer distributions in pin fin channels

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Kim, Y. S.; Han, J. C.

    1987-10-01

    Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.

  17. Lunar crater volumes - Interpretation by models of impact cratering and upper crustal structure

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1978-01-01

    Lunar crater volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. Craters smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while craters larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple craters to about 1.5 for complex craters. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex crater morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.

  18. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  19. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    USGS Publications Warehouse

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  20. Molecular order and functional properties of starches from three waxy wheat varieties grown in China.

    PubMed

    Wang, Shujun; Wang, Jinrong; Zhang, Wei; Li, Caili; Yu, Jinglin; Wang, Shuo

    2015-08-15

    Molecular order and functional properties of starch from three waxy wheat varieties grown in China were investigated by a combination of various technical analyses. The total starch content of the waxy wheat ranged between 54.1% and 55.0%, and the amylose content of the starch was between 0.71% and 1.63%. Average particle diameter of the three starches varied between 16.5 and 17.4 μm. Three waxy wheat starches presented the typical A-type X-ray diffraction pattern, with relative crystallinity between 38.7% and 40.0%. No significant differences were observed in relative crystallinity, IR ratios of 1047/1022 cm(-1) and 1022/995 cm(-1), and FWHH of the band at 480 cm(-1), indicating the similarity in long-range order of crystallites and short-range order of double helices of three starch granules. Small differences were observed in swelling power, gelatinization parameters, pasting viscosities, and in vitro enzymatic digestibility of three waxy wheat starches. Under the stored condition, no retrogradation occurred for three waxy wheat starches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    NASA Astrophysics Data System (ADS)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  2. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less

  3. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  4. TU-CD-207-12: Impact of Anatomical Noise On Detection Performance of Microcalcifications in Multi-Contrast Breast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, J; Ge, Y; Li, K

    2015-06-15

    Purpose: The anatomical noise power spectra (NPS) for differential phase contrast (DPC) and dark field (DF) imaging have recently been characterized using a power-law model with two parameters, alpha and beta, an innovative extension to the methodology used in x-ray attenuation based breast imaging such as mammography, DBT, or cone-beam CT. Beta values of 3.6, 2.6, and 1.3 have been measured for absorption, DPC, and DF respectively for cadaver breasts imaged in the coronal plane; these dramatic differences should be reflected in their detection performance. The purpose of this study was to determine the impact of anatomical noise on breastmore » calcification detection and compare the detection performance of the three contrast mechanisms of a multi-contrast x-ray imaging system. Methods: In our studies, a calcification image object was segmented out of the multi-contrast images of a cadaver breast specimen. 50 measured total NPS were measured from breast cadavers directly. The ideal model observer detectability was calculated for a range of doses (5–100%) and a range of calcification sizes (diameter = 0.25–2.5 mm). Results: Overall we found the highest average detectability corresponded to DPC imaging (7.4 for 1 mm calc.), with DF the next highest (3.8 for 1 mm calc.), and absorption the lowest (3.2 for 1 mm calc.). However, absorption imaging also showed the slowest dependence on dose of the three modalities due to the significant anatomical noise. DPC showed a peak detectability for calcifications ∼1.25 mm in diameter, DF showed a peak for calcifications around 0.75 mm in diameter, and absorption imaging had no such peak in the range explored. Conclusion: Understanding imaging performance for DPC and DF is critical to transition these modalities to the clinic. The results presented here offer new insight into how these modalities complement absorption imaging to maximize the likelihood of detecting early breast cancers. J. Garrett, Y. Ge, K. Li: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX.« less

  5. Solvothermal in situ synthesis of Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less

  6. TH-AB-207A-06: The Use of Realistic Phantoms to Predict CT Dose to Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, D; Kost, S; Fraser, N

    Purpose: To predict pediatric patient dose from diagnostic CT scans using Monte Carlo simulation of realistic reference phantoms of various ages, weights, and heights. Methods: A series of deformable pediatric reference phantoms using Non-Uniform Rational B-Splines (NURBS) was developed for a large range of ages, percentiles, and reference anatomy. Individual bones were modeled using age-dependent factors, and red marrow was modeled as functions of age and spatial distribution based on Cristy1. Organ and effective doses for the phantom series were calculated using Monte Carlo simulation of chest, abdominopelvic, and chest-abdomen-pelvis CT exams. Non-linear regression was performed to determine the relationshipmore » between dose-length-product (DLP)-normalized organ and effective doses and phantom diameter. Patient-specific voxel computational phantoms were also created by manual segmentation of previously acquired CT images for 40 pediatric patients (0.7 to 17 years). Organ and effective doses were determined by Monte Carlo simulation of these patient-specific phantoms. Each patient was matched to the closest pediatric reference phantom based primarily on age and diameter for all major organs within the torso. Results: A total of 80 NURBS phantoms were created ranging from newborn to 15 years with height/weight percentiles from 10 to 90%. Organ and effective dose normalized by DLP correlated strongly with exponentially decreasing average phantom diameter (R{sup 2} > 0.95 for most organs). A similar relationship was determined for the patient-specific voxel phantoms. Differences between patient-phantom matched organ-dose values ranged from 0.37 to 2.39 mGy (2.87% to 22.1%). Conclusion: Dose estimation using NURBS-based pediatric reference phantoms offers the ability to predict patient dose before and after CT examinations, and physicians and scientists can use this information in their analysis of dose prescriptions for particular subjects and study types. This may lead to practices that minimize radiation dose while still achieving high quality images and, ultimately, improved patient care. NIH/NCI 1 R01 CA155400-01A1.« less

  7. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen.

    PubMed

    Sell, Scott; Barnes, Catherine; Simpson, David; Bowlin, Gary

    2008-04-01

    The purpose of this study was to construct a flowmeter that could accurately measure the hydraulic permeability of electrospun fibrinogen scaffolds, providing insight into the transport properties of electrospun scaffolds while making the measurement of their topographical features (fiber diameter and pore size) more accurate. Three different concentrations of fibrinogen were used (100, 120, and 150 mg/mL) to create scaffolds with three different fiber diameters and pore sizes. The fiber diameters and pore sizes of the electrospun scaffolds were first analyzed with scanning electron microscopy and image analysis software. The permeability of each scaffold was measured with the flowmeter and used to calculate permeability-based fiber diameters and pore sizes, which were compared to values obtained through image analysis. Permeability measurement revealed scaffold permeability to increase with fibrinogen concentration, much like average fiber diameter and pore size. Comparison between the two measurement methods demonstrated the efficacy of the flowmeter as a way to measure scaffold features. Copyright 2007 Wiley Periodicals, Inc.

  8. Clinical experience in coronary stenting with the Vivant Z Stent.

    PubMed

    Chee, K H; Siaw, F S; Chan, C G; Chong, W P; Imran, Z A; Haizal, H K; Azman, W; Tan, K H

    2005-06-01

    This single centre study was designed to demonstrate feasibility, safety and efficacy of the Vivant Z stent (PFM AG, Cologne, Germany). Patients with de novo lesion were recruited. Coronary angioplasty was performed with either direct stenting or after balloon predilatation. Repeated angiogram was performed 6 months later or earlier if clinically indicated. Between January to June 2003, a total of 50 patients were recruited (mean age 55.8 +/- 9 years). A total of 52 lesions were stented successfully. Mean reference diameter was 2.77 mm (+/-0.59 SD, range 2.05-4.39 mm) with mean target lesion stenosis of 65.5% (+/-11.6 SD, range 50.1-93.3%). Forty-six lesions (88.5%) were American College of Cardiologist/American Heart Association class B/C types. Direct stenting was performed in 18 (34.6%) lesions. Mean stent diameter was 3.18 mm (+/-0.41 SD, range 2.5-4 mm), and mean stent length was 14.86 mm (+/-2.72 SD, range 9-18 mm). The procedure was complicated in only one case which involved the loss of side branch with no clinical sequelae. All treated lesions achieved Thrombolysis In Myocardial Infarction 3 flow. Mean residual diameter stenosis was 12.2% (+/-7.55 SD, range 0-22.6%) with acute gain of 1.72 mm (+/-0.50 SD, range 0.5-2.8). At 6 months, there was no major adverse cardiovascular event. Repeated angiography after 6 months showed a restenosis rate of 17% (defined as >50% diameter restenosis). Mean late loss was 0.96 mm (+/-0.48 SD) with loss index of 0.61 (+/-0.38 SD). The restenosis rate of those lesions less than 3.0 mm in diameter was 22.2% compared with 6.25% in those lesions more than 3.0 mm in diameter. The Vivant Z stent was shown to be safe and efficacious with low restenosis rate in de novo coronary artery lesion.

  9. Relationships of outdoor and indoor ultrafine particles at residences downwind of a major international border crossing in Buffalo, NY.

    PubMed

    McAuley, T R; Fisher, R; Zhou, X; Jaques, P A; Ferro, A R

    2010-08-01

    During winter 2006, indoor and outdoor ultrafine particle (UFP) size distribution measurements for particles with diameters from 5.6 to 165 nm were taken at five homes in a neighborhood directly adjacent to the Peace Bridge Complex (PBC), a major international border crossing connecting Buffalo, New York to Fort Erie, Ontario. Monitoring with 1-s time resolution was conducted for several hours at each home. Participants were instructed to keep all external windows and doors closed and to refrain from cooking, smoking, or other activity that may result in elevating the indoor UFP number concentration. Although the construction and age for the homes were similar, indoor-to-outdoor comparisons indicate that particle infiltration rates varied substantially. Overall, particle concentrations indoors were lower and less variable than particle concentrations outdoors, with average indoor-outdoor ratios ranging from 0.1 to 0.5 (mean 0.34) for particles between 5.6 and 165 nm in diameter. With no indoor sources, the average indoor-outdoor ratios were lowest (0.2) for 20-nm particles, higher (0.3) for particles <10 nm, and highest (0.5) for particles 70-165 nm. This study provides insight into the penetration of UFP into homes and the resulting change in particle size distributions as particles move indoors near a major diesel traffic source. Although people spend most of their time in their homes, exposure estimates for epidemiological studies are generally determined using ambient concentrations. The findings of this study will contribute to improved size-resolved UFP exposure estimates for near roadway exposure assessments and epidemiological studies.

  10. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    PubMed

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  11. Twenty-year growth of ponderosa pine saplings thinned to five spacings in central Oregon.

    Treesearch

    Barrett James W.

    1982-01-01

    Diameter, height, and volume growth and yield are given for plots thinned to 1000, 500, 250, 125, and 62 trees per acre in a 40- to 70-year-old stand of suppressed ponderosa pine (Pinus ponderosa Dougl. ex Laws.) saplings in central Oregon. Trees averaged about 1-inch in diameter and 8 feet in height at the time of thinning. Considerations for...

  12. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  13. Mars Pathfinder Near-Field Rock Distribution Re-Evaluation

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Golombek, M. P.

    2003-01-01

    We have completed analysis of a new near-field rock count at the Mars Pathfinder landing site and determined that the previously published rock count suggesting 16% cumulative fractional area (CFA) covered by rocks is incorrect. The earlier value is not so much wrong (our new CFA is 20%), as right for the wrong reason: both the old and the new CFA's are consistent with remote sensing data, however the earlier determination incorrectly calculated rock coverage using apparent width rather than average diameter. Here we present details of the new rock database and the new statistics, as well as the importance of using rock average diameter for rock population statistics. The changes to the near-field data do not affect the far-field rock statistics.

  14. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  15. Effect of sex and rearing system on the quality and mineral content of fiber from raeini cashmere goats

    PubMed Central

    2012-01-01

    The aim of this study was to compare the quality characteristics and mineral content of the fiber from male and female cashmere goats raised under different management systems. Male and female Raeini cashmere goats (<1.5 years of age, n = 48) were selected from flocks raised at a government breeding station or raised commercially under either rural or nomadic conditions. The staple length, cashmere fiber diameter, coefficient of variation for fiber diameter, percentage of cashmere in a fleece, percentage of guard hair in a fleece and cashmere tenacity averaged 4.6 ±0.1 cm, 18.0 ±0.1 μm, 20.9 ± 0.4%, 66.1 ± 1.5%, 33.8 ± 1.5% and 1.8 ± 0.2 gf/tex, respectively. The sulfur, copper and zinc content of the cashmere averaged 2.8 ± 0.1%, 0.00065 ± 0.00002% and 0.01276 ± 0.00025%, respectively. Rearing method significantly affected staple length, coefficient of variation of fiber diameter, cashmere tenacity and copper content. Males had a higher coefficient of variation of fiber diameter and cashmere tenacity than females (P < 0.05). PMID:22958733

  16. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Hermida, M. I.; Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla; Romero-Enrique, J. M.

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N{sub 2}, CO{sub 2}, and O{sub 2}, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO{sub 2} adsorption properties depend mainly on the bulk flue gas thermodynamic conditionsmore » and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO{sub 2} adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO{sub 2} adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO{sub 2} adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO{sub 2} concentrations and low temperatures, the CO{sub 2} adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.« less

  17. Craters formed in mineral dust by hypervelocity microparticles.

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.

    1972-01-01

    As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.

  18. Improvement of chemical vapor deposition process for production of large diameter carbon base monofilaments

    NASA Technical Reports Server (NTRS)

    Hough, R. L.; Richmond, R. D.

    1971-01-01

    Research was conducted to develop large diameter carbon monofilament, containing 25 to 35 mole % element boron, in the 2.0 to 10.0 mil diameter range using the chemical vapor deposition process. The objective of the program was to gain an understanding of the critical process variables and their effect on fiber properties. Synthesis equipment was modified to allow these variables to be studied. Improved control of synthesis variables permitted reduction in scatter of properties of the monofilaments. Monofilaments have been synthesized in the 3.0 to nearly 6.0 mil diameter range having measured values up to 552,000 psi for ultimate tensile strength and up to 30 million psi for elastic modulus.

  19. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver.

    PubMed

    Rogers, Kim R; Navratilova, Jana; Stefaniak, Aleksandr; Bowers, Lauren; Knepp, Alycia K; Al-Abed, Souhail R; Potter, Phillip; Gitipour, Alireza; Radwan, Islam; Nelson, Clay; Bradham, Karen D

    2018-04-01

    Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM. Published by Elsevier B.V.

  20. Effect of collagen and elastin content on the burst pressure of human blood vessel seals formed with a bipolar tissue sealing system.

    PubMed

    Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E

    2014-01-01

    Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Managing uneven-aged stands

    Treesearch

    Jay R. Law; Craig G. Lorimer

    1989-01-01

    Maintaining uneven-aged stands involves cutting trees from a range of diameter classes in such a way that the residual stand has a balanced, steeply descending diameter distribution curve (fig. 1). The objective is to distribute trees by diameter classes so that over time the stand contains trees of different ages and sizes.

  2. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    PubMed

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  3. Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROS-mediated endoplasmic reticulum stress response

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Zeng, Kun; Pan, Weidong; Song, Tao

    2014-11-01

    Magnetic nanoparticles (MNPs) have been increasingly applied in various areas, such as the biomedical and electronic industries. The unique properties of MNPs are beneficial to their applications, but concerns about their safety to human health along with the growing applications and production also arise. In this study, the cytotoxicity of superparamagnetic MNPs, with an average diameter of 10 nm and typical diameter range between 5 and 30 nm, was investigated using neuro-2a cells. The MNPs internalized into the cytoplasm of neuro-2a cells and inhibited the cell viability in a dose-dependent manner at concentrations ranging from 100 to 500 μg/mL. The cell growth inhibition would be partly attributed to the MNP-induced cell cycle arrest in the G0/G1 phase. MNPs triggered the endoplasmic reticulum (ER) stress response, as indicated by the up-regulated expression of the classical ER stress genes, binding immunoglobulin protein, activating transcription factor 6, and CCAAT-enhancer-binding protein homologous protein (CHOP). The induced production of cellular reactive oxygen species (ROS) and increased expression of heme oxygenase 1 and nuclear factor erythroid two-related factor two genes demonstrated that oxidative stress was also induced. Furthermore, the clearance of ROS by free radical scavenger N-acetylcysteine reduced the up-regulation of MNP-induced CHOP mRNA expressions, thereby suggesting that ROS was involved in the process of ER stress response induced by MNPs.

  4. Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    1980-02-01

    Interspecific morphological differences and intraspecific morphological changes with latitude were evaluated to help examine the distributional ranges of Carnegiea gigantea, Lemaireocereus thurberi, Lophocereus schottii, Pachycereus pecten-aboriginum, and P. pringlei in the Sonoran Desert (US and Mexico). A computer model, which predicted the average surface temperature of the stem within 1/sup 0/C of that measured hourly throughout a 24-h period, was particularly useful in studying the thermal relations of the stem apex, where the lowest surface temperature occurred. Simulated increases in stem diameter raised the minimum apical temperature for C. gigantea and may help account for the extension of its rangemore » to higher latitudes than the other species studied. However, diameter increases led to a slight decrease in minimum apical temperatures for Lophocereus schottii. The immature stems of L. schottii are morphologically distinct from the mature stems, which caused minimum apical temperatures to be 1.6/sup 0/C lower for the immature stems under given environmental conditions; thus, freezing damage to the immature stems could limit the northward extension of the range of this species. As the apical pubescence in the simulations was increased up to the normal amount (10 mm), the minimum apical temperature for the stem of C. gigantea increased 2.4/sup 0/C. Simulated increases in spine shading of the apexalso raised the minimum apical temperatures, again indicating the influence of morphological features on the temperature of the meristematic region.« less

  5. Laparoscopic Management of Large Ovarian Cysts at a Rural Hospital

    PubMed Central

    Shindholimath, Vishwanath V; Jyoti, S G; Patil, K V; Ammanagi, A S

    2009-01-01

    Objective: To assess the feasibility and outcome of laparoscopic surgery for the management of large ovarian cysts at a rural hospital. Materials and Methods: Fifteen patients from March 2004 to February 2007, with large ovarian cysts, with diameter >10 cm, were managed laparoscopically. The masses were cystic and were not associated with ascites or enlarged lymph nodes on ultrasound. Serum CA-125 levels were within the normal range (35 U/ml). Preoperative evaluation included history, clinical examination, sonographic images and serum markers. The management of these ovarian cysts included aspiration, cystectomy or salphingo-oophorectomy, depending on the patient’s age, obstetric history and desire of future fertility. In large, solid, fixed or irregular adnexal masses, suspicious of malignancy, laparotomy was done. Results: Five patients presented with pain in the abdomen and 10 patients with abdominal distension and discomfort. The average maximum diameter of the ovarian cysts was 16.75 cm (range 10–24 cm). The mean duration of the operation was 80 min. The postoperative hospital stay was from 4 to 6 days. No intraoperative complications occurred and the hospital course of all patients was uncomplicated. In one case, laparoscopy was converted to laparotomy. One patient had minor wound infection at umbilical port site. The patients did not report any complaints during follow up and the clinical examination findings were normal in all, up to 9 months after discharge. Conclusion: With proper patient selection, the size of an ovarian cyst is not necessarily a contraindication for laparoscopic surgery. PMID:22442520

  6. Lens capsule structure assessed with atomic force microscopy

    PubMed Central

    Sueiras, Vivian M.; Moy, Vincent T.

    2015-01-01

    Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829

  7. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  8. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  9. Characteristic of skin formation using zircon- and graphite-coated mold in thin wall ductile iron fabrication

    NASA Astrophysics Data System (ADS)

    Dhaneswara, Donanta; Suharno, Bambang; Nugroho, Janu Ageng; Ariobimo, Rianti Dewi S.; Sofyan, Nofrijon

    2017-03-01

    One of the problems in thin wall ductile iron (TWDI) fabrication is skin formation during the casting. The presence of this skin will decrease strength and strain of the TWDI. One of the ways to control this skin formation is to change the cooling rate during the process through a mold coating. In testing the effectiveness of skin prevention, the following variables were used for the mold coating i.e. (i) graphite: (ii) zirconium; and (iii) double layer of graphite-zirconium. After the process, the plates were characterized by non-etching, etching, tensile test, and SEM observation. The results showed that the average skin formation using graphite: 65 µm; zirconium: 13.04 µm; and double layer of graphite-zirconium: 33.25 µm. It seems that zirconium has the most effect on the skin prevention due to sulfur binding and magnesium locked, which then prevented rapid cooling resulting in less skin formation. The results also showed the number of nodules obtained in specimen with graphite: 703 nodules/mm2 with average diameter of 12.57 µm, zirconium: 798 nodules/mm2 with average diameter of 12.15 µm, and double layer of graphite-zirconium: 697 nodules/mm2 with average diameter of 11.9 µm and nodularity percentage of 82.58%, 84.53%, and 84.22%, respectively. Tensile test showed that the strength of the specimen with graphite is 301.1 MPa, with zirconium is 388.8 MPa, and with double layer of graphite-zirconium is 304 MPa. In overall, zirconium give the best performance on the skin formation prevention in TWDI fabrication.

  10. Crater Topography on Titan: Implications for Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  11. Evolution of the magnetic properties of Co10Cu90 nanoparticles prepared by wet chemistry with thermal annealing.

    PubMed

    García, I; Echeberria, J; Kakazei, G N; Golub, V O; Saliuk, O Y; Ilyn, M; Guslienko, K Y; González, J M

    2012-09-01

    Nanoparticles of Co10Cu90 alloy have been prepared by sonochemical wet method. According to transmission electron microscopy, bimetallic particles with typical diameter of 50-100 nm consisting of nanocrystallites with average diameter of 15-20 nm were obtained. The samples were annealed at 300 degrees C and 450 degrees C. Zero field cooled and field cooled temperature dependences of magnetization in the temperature range of 5-400 K at 50 Oe, as well as magnetization hysteresis loops at 15, 100 and 305 K were measured by vibrating sample magnetometry. Presence of antiferromagnetic phase, most probably of the oxide Co3O4, was observed in as-prepared sample. The lowest coercivity was found for the CoCu sample annealed at-300 degrees C, whereas for as prepared sample and the one annealed at 450 degrees C it was significantly higher. The samples were additionally probed by continuous wave ferromagnetic resonance at room, temperature using a standard X-band electron spin resonance spectrometer. A good correspondence between evolution of the coercivity and the microwave resonance fields with annealing temperature was observed.

  12. Plume particle collection and sizing from static firing of solid rocket motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.

    1995-01-01

    A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

  13. The flux of small near-Earth objects colliding with the Earth.

    PubMed

    Brown, P; Spalding, R E; ReVelle, D O; Tagliaferri, E; Worden, S P

    2002-11-21

    Asteroids with diameters smaller than approximately 50-100 m that collide with the Earth usually do not hit the ground as a single body; rather, they detonate in the atmosphere. These small objects can still cause considerable damage, such as occurred near Tunguska, Siberia, in 1908. The flux of small bodies is poorly constrained, however, in part because ground-based observational searches pursue strategies that lead them preferentially to find larger objects. A Tunguska-class event-the energy of which we take to be equivalent to 10 megatons of TNT-was previously estimated to occur every 200-300 years, with the largest annual airburst calculated to be approximately 20 kilotons (kton) TNT equivalent (ref. 4). Here we report satellite records of bolide detonations in the atmosphere over the past 8.5 years. We find that the flux of objects in the 1-10-m size range has the same power-law distribution as bodies with diameters >50 m. From this we estimate that the Earth is hit on average annually by an object with approximately 5 kton equivalent energy, and that Tunguska-like events occur about once every 1,000 years.

  14. Aerobic method for the synthesis of nearly size-monodisperse bismuth nanoparticles from a redox non-innocent precursor

    NASA Astrophysics Data System (ADS)

    Winter, H.; Christopher-Allison, E.; Brown, A. L.; Goforth, A. M.

    2018-04-01

    Herein, we report an aerobic synthesis method to produce bismuth nanoparticles (Bi NPs) with average diameters in the range 40-80 nm using commercially available bismuth triiodide (BiI3) as the starting material; the method uses only readily available chemicals and conventional laboratory equipment. Furthermore, size data from replicates of the synthesis under standard reaction conditions indicate that this method is highly reproducible in achieving Bi NP populations with low standard deviations in the mean diameters. We also investigated the mechanism of the reaction, which we determined results from the reduction of a soluble alkylammonium iodobismuthate precursor species formed in situ. Under appropriate concentration conditions of iodobismuthate anion, we demonstrate that burst nucleation of Bi NPs results from reduction of Bi3+ by the coordinated, redox non-innocent iodide ligands when a threshold temperature is exceeded. Finally, we demonstrate phase transfer and silica coating of the Bi NPs, which results in stable aqueous colloids with retention of size, morphology, and colloidal stability. The resultant, high atomic number, hydrophilic Bi NPs prepared using this synthesis method have potential for application in emerging x-ray contrast and x-ray therapeutic applications.

  15. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants

    PubMed Central

    Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, DK; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature. PMID:28828256

  16. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants.

    PubMed

    Lara-Romero, Javier; Campos-García, Jesús; Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, D K; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero; Villegas, Javier A

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya , two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.

  17. Production of silk sericin/silk fibroin blend nanofibers

    PubMed Central

    2011-01-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure. PMID:21867508

  18. Effect of Gamma Rays on Sophora davidii and Detection of DNA Polymorphism through ISSR Marker

    PubMed Central

    Wang, Puchang; Mo, Bentian; Luo, Tianqiong

    2017-01-01

    Sophora davidii (Franch.) Kom. ex Pavol is an important medicinal plant and a feeding scrub with ecological value. The effects of different gamma irradiation doses (20–140 Kr) on seed germination and seedling morphology were investigated in S. davidii, and intersimple sequence repeat (ISSR) markers were used to identify the DNA polymorphism among mutants. Significant variations were observed for seed germination, stem diameter, and number of branches per plant. The improved agronomic traits, such as stem diameter and number of branches per plant, were recorded at 80 Kr dose and 20 Kr dose for seed germination. ISSR analysis generated in total 183 scorable fragments, of which 94 (51.37%) were polymorphic. The percentage of polymorphism ranged from 14.29 to 93.33 with an average of 45.69%. Jaccard's coefficients of dissimilarity varied from 0.6885 to 1.000, indicative of the level of genetic variation among the mutants. The constructed dendrogram grouped the entities into five clusters. Consequently, it was concluded that gamma rays irradiation of seeds generates a sufficient number of induced mutations and that ISSR analysis offered a useful molecular marker for the identification of mutants. PMID:28612030

  19. Delivery of propellant soluble drug from a metered dose inhaler.

    PubMed Central

    Ashworth, H L; Wilson, C G; Sims, E E; Wotton, P K; Hardy, J G

    1991-01-01

    The deposition of particulate suspensions delivered from a metered dose inhaler has been investigated extensively. The distribution of propellant, delivered from a metered dose inhaler, was studied by radiolabelling it with technetium-99m hexamethylpropyleneamine oxime. Andersen sampler measurements indicated that half of the dose was associated with particles in the size range 0.5-5 microns diameter. The preparation was administered to healthy subjects by inhalation and deposition was monitored with a gamma camera. Each lung image was divided into an inner, mid, and peripheral zone. The effects on deposition of varying the size of the delivery orifice (0.46, 0.61, and 0.76 mm internal diameters) and the effect of attaching a spacer were assessed. Lung deposition was independent of the orifice size within the actuator. Without the spacer the average dose deposited in the lungs was 39%, with 15% penetrating into the peripheral part of the lungs. Attachment of the spacer to the mouth-piece increased the mean lung deposition to 57% and reduced oropharyngeal deposition. The study has shown that propellant soluble drugs can be delivered efficiently to the lungs from a metered dose inhaler. Images PMID:2038731

  20. In-situ deposition of Pd nanoparticles on tubular halloysite template for initiation of metallization.

    PubMed

    Fu, Yubin; Zhang, Lide; Zheng, Jiyong

    2005-04-01

    Halloysite template has a tubular microstructure; its wall has a multi-layer aluminosilicate structure. A new catalytic method is adopted here, through the in-situ reduction of Pd ions on the surface of tubular halloysite by methanol to initiate electroless plating; the detailed deposition features of Pd nanoparticles are investigated for the first time. The results indicate that an in-situ reduction and deposition of Pd occurs at room temperature, in which the halloysite template plays an important role. Impurities in halloysite (such as ferric oxide) influence the formation and distribution of the Pd nanoparticles. The Pd nanoparticles are of a non-spherical shape in most cases, which would be caused by the irregular appearance of halloysite. No intercalation of the nanoparticles occurs between the aluminosilicate layers in the halloysite. The diameter of Pd nanoparticles increases with time; the average diameter ranges from 1 nm to 4 nm. Pd nanoparticles on a halloysite template can catalyze electroless deposition of Ni to prepare a novel nano-sized cermet at low cost. This practicable catalytic method could also be used on other clay substrates for the initiation of metallization.

  1. Cost-effective single-step carbon nanotube synthesis using microwave oven

    NASA Astrophysics Data System (ADS)

    Algadri, Natheer A.; Ibrahim, K.; Hassan, Z.; Bououdina, M.

    2017-08-01

    This paper reports the characterization of carbon nanotubes (CNTs) synthesised using a conventional microwave oven method, offering several advantages including fast, simple, low cost, and solvent free growth process. The procedure involves flattening of graphite/ferrocene mixture catalyst inside the microwave oven under ambient conditions for a very short duration of 5 s, which inhibits the loss factor of graphite and ferrocene. The effect of graphite/ferrocene mixture ratio for the synthesis of CNTs is investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), Raman spectroscopy and UV-NIR-Vis measurements. The samples produced using the different ratios contain nanotubes with an average diameter in the range 44-79 nm. The highest yield of CNTs is attained with graphite/ferrocene mixture ratio of 70:30. The lowest I D/I G ratio intensity as identified by Raman spectroscopy for 70:30 ratio indicates the improved crystallinity of CNTs. Due to the capillary effect of CNTs, Fe nanoparticles are found to be encapsulated inside the tubes at different positions along the tube length. The obtained results showed that the smaller the diameter of graphite and ferrocene favors the synthesis of graphene oxide upon microwave radiation.

  2. The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques.

    PubMed

    Bridson, R H; Santos, R C D; Al-Duri, B; McAllister, S M; Robertson, J; Alpar, H O

    2006-06-01

    Numerous strategies are currently available for preparing liposomes, although no single method is ideal in every respect. Two methods for producing liposomes using compressed carbon dioxide in either its liquid or supercritical state were therefore investigated as possible alternatives to the conventional techniques currently used. The first technique used modified compressed carbon dioxide as a solvent system. The way in which changes in pressure, temperature, apparatus geometry and solvent flow rate affected the size distributions of the formulations was examined. In general, liposomes in the nano-size range with an average diameter of 200 nm could be produced, although some micron-sized vesicles were also present. Liposomes were characterized according to their hydrophobic drug-loading capacity and encapsulated aqueous volumes. The latter were found to be higher than in conventional techniques such as high-pressure homogenization. The second method used compressed carbon dioxide as an anti-solvent to promote uniform precipitation of phospholipids from concentrated ethanolic solutions. Finely divided solvent-free phospholipid powders of saturated lipids could be prepared that were subsequently hydrated to produce liposomes with mean volume diameters of around 5 microm.

  3. Comparative elemental analysis of fine particulate matter (PM2.5) from industrial and residential areas in Greater Cairo-Egypt by means of a multi-secondary target energy dispersive X-ray fluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Hassan, Salwa K.; Karydas, Andreas G.; Zaki, Z. I.; Mostafa, Nasser Y.; Kregsamer, Peter; Wobrauschek, Peter; Streli, Christina

    2018-07-01

    Fine aerosol particles with aerodynamic diameter equal or <2.5 μm (PM2.5) have been collected from industrial and residential areas of Greater Cairo, Egypt during two different seasons namely; autumn 2014 and winter 2014/2015. Energy dispersive X-ray fluorescence (EDXRF) analysis utilizing polarization geometry and three different secondary targets (CaF2, Ge, and Mo) was employed for the quantitative analysis of eighteen (18) elements in PM2.5 samples. Light elements like Na and Mg was possible to be quantified, whereas detection limits in the range of few ng m-3 were attained for the most of the detected elements. Although, the average mass concentrations of the PM2.5 collected from the residential area (27 ± 7 μg m-3) is close to the annual mean limit value, a significant number of the collected samples (33%) presented higher average mass concentrations. For the industrial location, the average mass concentration is equal to 55 ± 19 μg m-3, exceeded twofold the annual mean limit value of the European Commission. Remarkably high elemental concentrations were determined for the most of the detected elements from the industrial area samples, clearly indicating the significant influence of anthropogenic activities. The present optimized EDXRF analysis offered significantly improved analytical range and limits of detection with respect to previous similar studies, thus enhancing our knowledge and understanding on the contribution of different pollution sources.

  4. Three scales of aerial photography compared for making stand measurements

    Treesearch

    Earl J. Rogers; Gene Avery; Roy A. Chapman

    1959-01-01

    Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.

  5. Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.

    PubMed

    Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M

    2016-02-01

    Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P < 0.0001)] The fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.

  6. The Impact of Aerosol Sources and Aging on CCN Formation in the Houston-Galveston-Gulf of Mexico Region

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Covert, D.

    2007-12-01

    The impact of anthropogenic aerosol on cloud properties, cloud lifetime, and precipitation processes is one of the largest uncertainties in our current understanding of climate change. Aerosols affect cloud properties by serving as cloud condensation nuclei (CCN) thereby leading to the formation of cloud droplets. The process of cloud drop activation is a function of both the size and chemistry of the aerosol particles which, in turn, depend on the source of the aerosol and transformations that occur downwind. In situ field measurements that can lead to an improved understanding of the process of cloud drop formation and simplifying parameterizations for improving the accuracy of climate models are highly desirable. During the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources, aging, chemistry, and size in the activation of particles to form cloud droplets. Here, we use the correlation between variability in critical diameter for activation (determined empirically from measured CCN concentrations and the number size distribution) and aerosol composition to quantify the impact of composition on particle activation. Variability in aerosol composition is parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range is lowest for marine aerosol and higher for aerosol impacted by anthropogenic emissions. Combining all data collected at 0.44 percent supersaturation (SS) reveals that composition (defined in this way) explains 40 percent of the variance in the critical diameter. As expected, the dependence of activation on composition is strongest at lower SS. At the same time, correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during GoMACCS, composition plays a dominant role in determining the fraction of particles that are activated to form cloud droplets. Using Kohler theory, we estimate the error that results in calculated CCN concentrations if the organic fraction of the aerosol is neglected (i.e., a fully soluble composition of ammonium sulfate is assumed) for the range of organic mass fractions and mean diameters observed during GoMACCS. We then relate this error to the source and age of the aerosol. At 0.22 and 0.44 percent SS, the error is considerable for anthropogenic aerosol sampled near the source region as this aerosol has, on average, a high POM mass fraction and smaller particle mean diameter. The error is lower for more aged aerosol as it has a lower POM mass fraction and larger mean particle diameter. Hence, the percent error in calculated CCN concentration is expected to be larger for younger, organic- rich aerosol and smaller for aged, sulfate rich aerosol and for marine aerosol. We extend this analysis to continental and marine data sets recently reported by Dusek et al. [Science, 312, 1375, 2006] and Hudson [Geophys. Res., Lett., 34, L08801, 2007].

  7. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models.

  8. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models. PMID:28894366

  9. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.

    PubMed

    Fagan, Jeffrey A; Hároz, Erik H; Ihly, Rachelle; Gui, Hui; Blackburn, Jeffrey L; Simpson, Jeffrey R; Lam, Stephanie; Hight Walker, Angela R; Doorn, Stephen K; Zheng, Ming

    2015-05-26

    In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.

  10. A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles.

    PubMed

    Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun

    2009-09-21

    Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.

  11. A fast and remote magnetonanothermometry for a liquid environment

    NASA Astrophysics Data System (ADS)

    He, Le; Liu, Wenzhong; Xie, Qingguo; Pi, Shiqiang; Morais, P. C.

    2016-02-01

    This study reports on a new approach for remote nanothermometry with short response time (milliseconds) aiming to operate in liquid media using AC susceptibility components of a suspended magnetic nanoparticle subjected to the Brownian relaxation mechanism. A simple, low cost, and accurate system was designed to measure AC susceptibility using an AC magnetic field at small amplitude (6 Oe) and frequency range (5 kHz) superimposed on a weak DC magnetic field (up to 30 Oe). A model based on the AC susceptibility of magnetic nanoparticles (30 nm average diameter) was constructed to describe the temperature measurement sensitivity of the dominated Brownian relaxation time. A new approach for remote nanothermometry was achieved with measured AC susceptibility by the designed system and the proposed model. Our experimental results show that our magnetonanothermometer allows temperature errors lower than 0.3 K with standard deviations lower than 0.1 K in the temperature range from 310 to 320 K.

  12. Free-Space Oscillating Pressures Near the Tips of Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H; Regier, Arthur A

    1950-01-01

    The theory is given for calculating the free-space oscillating pressures associated with a rotating propeller, at any point in space. Because of its complexity this analysis is convenient only for use in the critical region near the propeller tips where the assumptions used by Gutin to simplify his final equations are not valid. Good agreement was found between analytical and experimental results in the tip Mach number range 0.45 to two, three, four, five, six, on eight-blade propellers and for a range of tip clearances from 0.04 to 0.30 times the propeller diameter. If the power coefficient, tip Mach number, and the tip clearance are known for a given propeller, the designer may determine from these charts the average maximum free-space oscillating pressure in the critical region near the plane of rotation. A section of the report is devoted to the fuselage response to these oscillating pressures and indicates some of the factors to be considered in solving the problems of fuselage vibration and noise.

  13. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Dreshfield, R. L.

    1980-01-01

    Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

  14. Tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator

    PubMed Central

    Kim, Hayoung; Kim, Kap Jung; Ahn, Jae Hoon; Choy, Won Sik; Kim, Yong In; Koo, Jea Yun

    2008-01-01

    The aim of this study was to evaluate the efficacy of tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator for the treatment of leg length discrepancy or short stature. This retrospective study was performed on 18 tibiae (13 patients) in which attempts were made to reduce complications. We used an Ilizarov external fixator and a nail (10 mm diameter in 17 tibiae and 11 mm in one tibia) in combination. Average limb lengthening was 4.19 cm (range, 2.5–5.5). The mean duration of external fixation was 12.58 days per centimetre gain in length, and the mean consolidation index was 40.53 (range, 35.45–51.85). All distracted segments healed spontaneously without refracture or malalignment. Gradual limb lengthening using a reamed type intramedullary nail and circular external fixation in combination was found to be reliable and effective and reduced external fixation time with fewer complications. PMID:18415098

  15. [The penis prolongation and augmentation combined with autologous granular fat injection and silicone implantation].

    PubMed

    Xie, Yang-chun; Zhang, Yang; Fan, Jin-cai; Liu, Yuan-bo; Liu, Li-qiang; Wang, Qian

    2007-07-01

    To prevent the retraction of the penis after prolongation and augmentation. After all the superficial and part of the deep suspensory ligament amputation, we implanted the silicon sheet (the length 2.3-3.6 cm, the width 1.5-2.5 cm, the thickness 2-3 mm) and injected autologous granular fat (30-48 ml) into penis. 16 patients (age 22-63 years, averagely 38 years) underwent this kind operation, the prolongation length is 1.8-5.1 cm, the average was 2.91 cm, the increased diameter of penis was 0.6-1 cm, the average is 0.85 cm, the following period is 3 months to 2 years. The results are satisfactory with the penis retraction less than 8%, and less than 10% decrease in diameter. This method is an ideal way of the penis prolongation and augmentation, the implantation of the silicon sheet is effective way to prevent the retraction of the penis.

  16. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

    PubMed Central

    Stahl, Christian; Albe, Karsten

    2012-01-01

    Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091

  17. Filter media properties of mineral fibres produced by plasma spray.

    PubMed

    Prasauskas, Tadas; Matulevicius, Jonas; Kliucininkas, Linas; Krugly, Edvinas; Valincius, Vitas; Martuzevicius, Dainius

    2016-01-01

    The purpose of this study was to determine the properties of fibrous gas filtration media produced from mineral zeolite. Fibres were generated by direct current plasma spray. The paper characterizes morphology, chemical composition, geometrical structure of elementary fibres, and thermal resistance, as well as the filtration properties of fibre media. The diameter of the produced elementary fibres ranged from 0.17 to 0.90 μm and the length ranged from 0.025 to 5.1 mm. The release of fibres from the media in the air stream was noticed, but it was minimized by hot-pressing the formed fibre mats. The fibres kept their properties up to the temperature of 956°C, while further increase in temperature resulted in the filter media becoming shrunk and brittle. The filtration efficiency of the prepared filter mats ranged from 95.34% to 99.99% for aerosol particles ranging in a size between 0.03 and 10.0 μm. Unprocessed fibre media showed the highest filtration efficiency when filtering aerosol particles smaller than 0.1 µm. Hot-pressed filters were characterized by the highest quality factor values, ranging from 0.021 to 0.064 Pa(-1) (average value 0.034 Pa(-1)).

  18. Stochastically generating tree diameter lists to populate forest stands based on the linkage variables forest type and stand age

    Treesearch

    Bernard R. Parresol; F. Thomas Lloyd

    2003-01-01

    Forest inventory data were used to develop a standage-driven, stochastic predictor of unit-area, frequency weighted lists of breast high tree diameters (DBH). The average of mean statistics from 40 simulation prediction sets of an independent 78-plot validation dataset differed from the observed validation means by 0.5 cm for DBH, and by 12 trees/h for density. The 40...

  19. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    NASA Astrophysics Data System (ADS)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  20. Modeling light scattering in the shadow region behind thin cylinders for diameter analysis

    NASA Astrophysics Data System (ADS)

    Blohm, Werner

    2018-03-01

    In this paper, the scattered light intensities resulting in the shadow region at an observation plane behind monochromatically illuminated circular cylinders are modeled by sinusoidal sequences having a squared dependence on spatial position in the observation plane. Whereas two sinusoidal components appear to be sufficient for modeling the light distribution behind intransparent cylinders, at least three sinusoidal components are necessary for transparent cylinders. Based on this model, a novel evaluation algorithm for a very fast retrieval of the diameter of thin cylindrical products like metallic wires and transparent fibers is presented. This algorithm was tested in a cylinder diameter range typical for these products (d ≈ 70 … 150 μm; n ≈ 1.5). Numerical examples are given to illustrate its application by using both synthetic and experimental scattering data. Diameter accuracies below 0.05 μm could be achieved for intransparent cylinders in the tested diameter range. However, scattering effects due to morphological-dependent resonances (MDRs) are problematical in the diameter analysis of transparent products. In order to incorporate these effects into the model, further investigations are needed.

Top