NASA Astrophysics Data System (ADS)
Rufeil-Fiori, Elena; Banchio, Adolfo J.
Lipid monolayers with phase coexistence are a frequently used model for lipid membranes. In these systems, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normal distributed size domains. It was found that polydispersity strongly affects the value of the interaction strength obtained, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
Rufeil-Fiori, Elena; Banchio, Adolfo J
2018-03-07
In lipid monolayers with phase coexistence, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normally distributed size domains. For this purpose, we vary the relevant system parameters, polydispersity and interaction strength, within a range of experimental interest. We also analyze the consequences of using a monodisperse model to determine the interaction strength from an experimental RDF. We find that polydispersity strongly affects the value of the interaction strength, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.
Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel
2016-12-01
Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Metamorphic reactions, grain size reduction and deformation of mafic lower crustal rocks
NASA Astrophysics Data System (ADS)
Degli Alessandrini, Giulia; Menegon, Luca; Beltrando, Marco; Dijkstra, Arjan; Anderson, Mark
2016-04-01
This study investigates grain-scale deformation mechanisms associated with strain localization in the mafic continental lower crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction and phase mixing. The investigated shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Shearing occurred at T ≥ 650° C and P ≥ 0.4-0.6 GPa. The shear zone reworks both mafic and ultramafic lithologies and displays anastomosing patterns of (ultra)mylonitic high strain zones wrapping less foliated, weakly deformed low strain domains. Field and microstructural observations indicate that different compositional layers of the shear zone responded differently to deformation, resulting in strain partitioning. Four distinct microstructural domains have been identified: (1) an ultramylonitic domain characterized by an amph + pl matrix (grain size < 30μm) with large amphibole porphyroclasts (grain size between 200μm and 5000μm) and rare garnets; (2) a domain rich in garnet porphyroclasts embedded in a matrix of monomineralic plagioclase displaying a core and mantle structure (average grain size 45μm) (3) a metagabbroic domain with porphyroclasts of clinopyroxene, orthopyroxene and garnets (200μm average grain size) wrapped by monomineralic ribbons of recrystallized plagioclase and (4) a garnet-free ultramylonitic domain composed of an intermixed amph + cpx + opx + pl matrix (6μm average grain size). In these domains, each porphyroclastic mineral responds differently to deformation: amphibole readily breaks down to symplectitic intergrowths of amph + pl or opx + pl. Garnet undergoes fracturing (in domain 2) or reacts to give symplectites of pl + opx (in domain 3). Plagioclase dynamically recrystallizes in mono-phase aggregates, whereas clinopyroxene undergoes fracturing and orthopyroxene undergoes plastic deformation. The behaviour of the different phases and their relative abundance in the layers are believed to influence the deformation of the layers themselves. In symplectite-rich layers (domains 1, 4) deformation is localised, grain-size is below 30μm and phases are well mixed. On the other hand, in pyroxene or plagioclase-rich layers, deformation is less localised, the phases are less mixed and the grain size is larger (domain 2, 3). These preliminary results suggest that syn-kinematic metamorphic reactions forming symplectites played an essential role in grain size reduction, phase mixing and strain localization. We speculate that the compositional domains with symplectites localized deformation more efficiently, by activation of grain size sensitive creep, most likely because those domains were originally more hydrated than the others. On the contrary, domains without symplectites accommodated deformation less efficiently, either through fracturing (clinopyroxene, garnet) or dislocation creep + recrystallization (orthopyroxene, plagioclase).
MIMO equalization with adaptive step size for few-mode fiber transmission systems.
van Uden, Roy G H; Okonkwo, Chigo M; Sleiffer, Vincent A J M; de Waardt, Hugo; Koonen, Antonius M J
2014-01-13
Optical multiple-input multiple-output (MIMO) transmission systems generally employ minimum mean squared error time or frequency domain equalizers. Using an experimental 3-mode dual polarization coherent transmission setup, we show that the convergence time of the MMSE time domain equalizer (TDE) and frequency domain equalizer (FDE) can be reduced by approximately 50% and 30%, respectively. The criterion used to estimate the system convergence time is the time it takes for the MIMO equalizer to reach an average output error which is within a margin of 5% of the average output error after 50,000 symbols. The convergence reduction difference between the TDE and FDE is attributed to the limited maximum step size for stable convergence of the frequency domain equalizer. The adaptive step size requires a small overhead in the form of a lookup table. It is highlighted that the convergence time reduction is achieved without sacrificing optical signal-to-noise ratio performance.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less
Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.
2018-03-01
A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.
Paap, Muirne C S; Kroeze, Karel A; Terwee, Caroline B; van der Palen, Job; Veldkamp, Bernard P
2017-11-01
Examining item usage is an important step in evaluating the performance of a computerized adaptive test (CAT). We study item usage for a newly developed multidimensional CAT which draws items from three PROMIS domains, as well as a disease-specific one. The multidimensional item bank used in the current study contained 194 items from four domains: the PROMIS domains fatigue, physical function, and ability to participate in social roles and activities, and a disease-specific domain (the COPD-SIB). The item bank was calibrated using the multidimensional graded response model and data of 795 patients with chronic obstructive pulmonary disease. To evaluate the item usage rates of all individual items in our item bank, CAT simulations were performed on responses generated based on a multivariate uniform distribution. The outcome variables included active bank size and item overuse (usage rate larger than the expected item usage rate). For average θ-values, the overall active bank size was 9-10%; this number quickly increased as θ-values became more extreme. For values of -2 and +2, the overall active bank size equaled 39-40%. There was 78% overlap between overused items and active bank size for average θ-values. For more extreme θ-values, the overused items made up a much smaller part of the active bank size: here the overlap was only 35%. Our results strengthen the claim that relatively short item banks may suffice when using polytomous items (and no content constraints/exposure control mechanisms), especially when using MCAT.
Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars
2009-01-01
This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P < 0.001) and the fast IIA MyHC isoform (r = 0.90; P < 0.001). Thus, MND size scales with body size and is highly dependent on muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.
Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model
NASA Astrophysics Data System (ADS)
Das, Subir K.
2017-01-01
Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.
Monte Carlo simulation of ferroelectric domain growth
NASA Astrophysics Data System (ADS)
Li, B. L.; Liu, X. P.; Fang, F.; Zhu, J. L.; Liu, J.-M.
2006-01-01
The kinetics of two-dimensional isothermal domain growth in a quenched ferroelectric system is investigated using Monte Carlo simulation based on a realistic Ginzburg-Landau ferroelectric model with cubic-tetragonal (square-rectangle) phase transitions. The evolution of the domain pattern and domain size with annealing time is simulated, and the stability of trijunctions and tetrajunctions of domain walls is analyzed. It is found that in this much realistic model with strong dipole alignment anisotropy and long-range Coulomb interaction, the powerlaw for normal domain growth still stands applicable. Towards the late stage of domain growth, both the average domain area and reciprocal density of domain wall junctions increase linearly with time, and the one-parameter dynamic scaling of the domain growth is demonstrated.
L2 Reading Comprehension and Its Correlates: A Meta-Analysis
ERIC Educational Resources Information Center
Jeon, Eun Hee; Yamashita, Junko
2014-01-01
The present meta-analysis examined the overall average correlation (weighted for sample size and corrected for measurement error) between passage-level second language (L2) reading comprehension and 10 key reading component variables investigated in the research domain. Four high-evidence correlates (with 18 or more accumulated effect sizes: L2…
Chemical synthesis and structural characterization of small AuZn nanoparticles
NASA Astrophysics Data System (ADS)
Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.
2007-03-01
In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.
Menapace, I; Masad, E; Bhasin, A
2016-04-01
This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Hui, S W
1981-01-01
The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707
2011-03-01
Wilhelm Fucks discriminated between authors using the average number of syllables per word and average distance between equal-syllabled words. He concluded...363–390, 1939. [4] Conrad Mascol. Curves of pauline and pseudo-pauline style. Unitarian Review, 1888. [5] Wilhelm Fucks . On mathmatical analysis of
Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations.
Ahmad, Shaista; Das, Subir K; Puri, Sanjay
2012-03-01
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
Low statistical power in biomedical science: a review of three human research domains.
Dumas-Mallet, Estelle; Button, Katherine S; Boraud, Thomas; Gonon, Francois; Munafò, Marcus R
2017-02-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0-10% or 11-20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.
Low statistical power in biomedical science: a review of three human research domains
Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois
2017-01-01
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409
Dust layer effects on the atmospheric radiative budget and heating rate profiles
NASA Astrophysics Data System (ADS)
Perrone, Maria Rita; Tafuro, A. M.; Kinne, S.
2012-11-01
The effect of mineral aerosol optical properties and vertical distribution on clear-sky, instantaneous and daily-average aerosol direct radiative effects (DREs) and heating rates (HRs) is analyzed in the solar (S, 0.3-4 μm) and terrestrial (T, 4-80 μm) spectral domain, respectively. The used radiative transfer model is based on lidar, sun-sky photometer, and radiosonde measurements. The study focuses on the Sahara dust outbreak of July 16, 2009 which advected dust particles from north-western Africa over south-eastern Italy. Clear-sky, instantaneous aerosol DREs and HRs undergo large changes within few hours, for the variability of the dust aerosol properties and vertical distribution. The daily-average, clear-sky aerosol S-DRE is near -5 Wm-2 and -12 Wm-2 at the top of the atmosphere (ToA) and surface (sfc), respectively. The daily-average aerosol T-DRE offsets the S-DRE by about one third at the ToA and by about one half at the surface. The daily average aerosol HR integrated over the whole aerosol column is 0.5 and -0.3 K day-1 in the S and T domain, respectively. Thus, the all-wave integrated HR is 0.2 K day-1. These results highlight the importance of accounting for the interaction of dust particles with T and S radiation. Sensitivity tests indicate that the uncertainties of the aerosol refractive index, size distribution, and vertical distribution have on average a large impact on aerosol HRs in the S and T domain, respectively. Refractive index and aerosol size distribution uncertainties also have a large impact on S- and T-DREs. The aerosol vertical distribution that has a negligible impact on aerosol S-DREs, is important for aerosol T-DREs. It is also shown that aerosol HRs and DREs in the terrestrial domain are affected by the water vapour vertical distribution.
Fast marching methods for the continuous traveling salesman problem.
Andrews, June; Sethian, J A
2007-01-23
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ("cities") in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M.N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.
Data Acquisition and Analysis for Camouflage Design
1981-04-01
were clustered to produce a facsimile of the original scene in 39 49 or 5 average representative colors in CIELAB notation with spectral reflectance...result of the Euclidean clustering or averaging carried out in 1976 CIELAB color space. The size and shape of these domains, along with color, provide...Reflectance Calibration .... ...... 49 Figure O-i CIE 1976 (L*a*b*) Uniform Color Coordinate System (ClELAO) 53 Figure B-2 CIELAB Clustering
An analysis of scatter decomposition
NASA Technical Reports Server (NTRS)
Nicol, David M.; Saltz, Joel H.
1990-01-01
A formal analysis of a powerful mapping technique known as scatter decomposition is presented. Scatter decomposition divides an irregular computational domain into a large number of equal sized pieces, and distributes them modularly among processors. A probabilistic model of workload in one dimension is used to formally explain why, and when scatter decomposition works. The first result is that if correlation in workload is a convex function of distance, then scattering a more finely decomposed domain yields a lower average processor workload variance. The second result shows that if the workload process is stationary Gaussian and the correlation function decreases linearly in distance until becoming zero and then remains zero, scattering a more finely decomposed domain yields a lower expected maximum processor workload. Finally it is shown that if the correlation function decreases linearly across the entire domain, then among all mappings that assign an equal number of domain pieces to each processor, scatter decomposition minimizes the average processor workload variance. The dependence of these results on the assumption of decreasing correlation is illustrated with situations where a coarser granularity actually achieves better load balance.
Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.
Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian
2011-12-01
To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.
Fast marching methods for the continuous traveling salesman problem
Andrews, June; Sethian, J. A.
2007-01-01
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points (“cities”) in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M·N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh. PMID:17220271
Fast marching methods for the continuous traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.; Sethian, J.A.
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ('cities') in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the Traveling Salesman Problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both amore » heuristic and an optimal solution to this problem. The order of the heuristic algorithm is at worst case M * N logN, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.« less
Regional climate model sensitivity to domain size
NASA Astrophysics Data System (ADS)
Leduc, Martin; Laprise, René
2009-05-01
Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.
The Primacy of Cognition in Schizophrenia
ERIC Educational Resources Information Center
Heinrichs, R. Walter
2005-01-01
Cognitive tasks and concepts are used increasingly in schizophrenia science and treatment. Recent meta-analyses show that across a spectrum of research domains only cognitive measures distinguish a majority of schizophrenia patients from healthy people. Average effect sizes derived from common clinical tests of attention, memory, language, and…
Haberman, Jason; Brady, Timothy F; Alvarez, George A
2015-04-01
Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
New Stopping Criteria for Segmenting DNA Sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wentian
2001-06-18
We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the model selection framework. When this criterion is applied to telomere of S.cerevisiae and the complete sequence of E.coli, borders of biologically meaningful units were identified, and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genomemore » sequences.« less
[Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].
Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun
2009-05-01
By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).
Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing
2017-10-01
High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
Submillisecond-response IR spatial light modulators with polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Sun, Jie; Chen, Yuan; Wu, Shin-Tson
2013-03-01
Polymer network liquid crystal (PNLC) is attractive for many photonic applications because of its fast response time and large phase modulation. However, the voltage-on state light scattering caused by multi-domains of LC molecules hinders its applications in the visible and near infrared regions. To reduce domain sizes and eliminate scattering for λ=1.06 μm and 1.55 μm, we studied the effect of LC viscosity on domain sizes. PNLCs based on five different LC hosts were prepared. The LC host was first mixed with 6% reactive mesogen and then filled into a 12-μm cell with homogeneous alignment. After UV curing, we measured the on-state transmission spectra of these five PNLCs. By fitting the transmission spectra with Rayleigh-Gans-Debye model, we can estimate the average domain sizes. We found that the domain sizes of PNLC are inversely proportional to the rotational viscosity of the LC host. This finding can be explained by the Stokes-Einstein equation. As a result, PNLC with a slower diffusion rate would cause smaller domain sizes, which in turn lead to faster response time. To achieve a slower diffusion rate, we cured the PNLC samples at a lower temperature. By selecting a high viscosity and high Δɛ LC host, we demonstrate a scattering-free (<3%) 2π phase modulator at λ=1.06 μm and λ=1.55 μm. Temperature affects the PNLC performance significantly. As the operation temperature increases from 25oC to 70oC, the response time drops from 220 μs to 30 μs. 2π operating voltage for λ=1.06 μm slightly increases from 65V to 85V. Meanwhile, hysteresis decreases from 7.7% to 2%. For λ=1.55μm, operating voltage is 100V. If reflective mode is employed, operating voltage can be reduced to 55V.
Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Saether, E.; Yamakov, V.
2008-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.
NASA Astrophysics Data System (ADS)
Chiariello, Andrea M.; Bianco, Simona; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario
2017-11-01
Technologies such as Hi-C and GAM have revealed that chromosomes are not randomly folded into the nucleus of cells, but are composed by a sequence of contact domains (TADs), each typically 0.5 Mb long. However, the larger scale organization of the genome remains still not well understood. To investigate the scaling behaviour of chromosome folding, here we apply an approach à la Kadanoff, inspired by the Renormalization Group theory, to Hi-C interaction data, across different cell types and chromosomes. We find that the genome is characterized by complex scaling features, where the average size of contact domains exhibits a power-law behaviour with the rescaling level. That is compatible with the existence of contact domains extending across length scales up to chromosomal sizes. The scaling exponent is statistically indistinguishable among the different murine cell types analysed. These results point toward a scenario of a universal higher-order spatial architecture of the genome, which could reflect fundamental, organizational principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer
2009-04-24
Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2016-01-01
To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size.
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Simulation-based Assessment to Reliably Identify Key Resident Performance Attributes.
Blum, Richard H; Muret-Wagstaff, Sharon L; Boulet, John R; Cooper, Jeffrey B; Petrusa, Emil R; Baker, Keith H; Davidyuk, Galina; Dearden, Jennifer L; Feinstein, David M; Jones, Stephanie B; Kimball, William R; Mitchell, John D; Nadelberg, Robert L; Wiser, Sarah H; Albrecht, Meredith A; Anastasi, Amanda K; Bose, Ruma R; Chang, Laura Y; Culley, Deborah J; Fisher, Lauren J; Grover, Meera; Klainer, Suzanne B; Kveraga, Rikante; Martel, Jeffrey P; McKenna, Shannon S; Minehart, Rebecca D; Mitchell, John D; Mountjoy, Jeremi R; Pawlowski, John B; Pilon, Robert N; Shook, Douglas C; Silver, David A; Warfield, Carol A; Zaleski, Katherine L
2018-04-01
Obtaining reliable and valid information on resident performance is critical to patient safety and training program improvement. The goals were to characterize important anesthesia resident performance gaps that are not typically evaluated, and to further validate scores from a multiscenario simulation-based assessment. Seven high-fidelity scenarios reflecting core anesthesiology skills were administered to 51 first-year residents (CA-1s) and 16 third-year residents (CA-3s) from three residency programs. Twenty trained attending anesthesiologists rated resident performances using a seven-point behaviorally anchored rating scale for five domains: (1) formulate a clear plan, (2) modify the plan under changing conditions, (3) communicate effectively, (4) identify performance improvement opportunities, and (5) recognize limits. A second rater assessed 10% of encounters. Scores and variances for each domain, each scenario, and the total were compared. Low domain ratings (1, 2) were examined in detail. Interrater agreement was 0.76; reliability of the seven-scenario assessment was r = 0.70. CA-3s had a significantly higher average total score (4.9 ± 1.1 vs. 4.6 ± 1.1, P = 0.01, effect size = 0.33). CA-3s significantly outscored CA-1s for five of seven scenarios and domains 1, 2, and 3. CA-1s had a significantly higher proportion of worrisome ratings than CA-3s (chi-square = 24.1, P < 0.01, effect size = 1.50). Ninety-eight percent of residents rated the simulations more educational than an average day in the operating room. Sensitivity of the assessment to CA-1 versus CA-3 performance differences for most scenarios and domains supports validity. No differences, by experience level, were detected for two domains associated with reflective practice. Smaller score variances for CA-3s likely reflect a training effect; however, worrisome performance scores for both CA-1s and CA-3s suggest room for improvement.
Effects of the computational domain on the secondary flow in turbulent plane Couette flow
NASA Astrophysics Data System (ADS)
Gai, Jie; Xia, Zhen-Hua; Cai, Qing-Dong
2015-10-01
A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000 (based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow (SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes. Project supported by the National Natural Science Foundation of China (Grant Nos. 11221061, 11272013, and 11302006).
SACR ADVance 3-D Cartesian Cloud Cover (SACR-ADV-3D3C) product
Meng Wang, Tami Toto, Eugene Clothiaux, Katia Lamer, Mariko Oue
2017-03-08
SACR-ADV-3D3C remaps the outputs of SACRCORR for cross-wind range-height indicator (CW-RHI) scans to a Cartesian grid and reports reflectivity CFAD and best estimate domain averaged cloud fraction. The final output is a single NetCDF file containing all aforementioned corrected radar moments remapped on a 3-D Cartesian grid, the SACR reflectivity CFAD, a profile of best estimate cloud fraction, a profile of maximum observable x-domain size (xmax), a profile time to horizontal distance estimate and a profile of minimum observable reflectivity (dBZmin).
Optimal design of tweezer control for chimera states
NASA Astrophysics Data System (ADS)
Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard
2018-01-01
Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.
Fresnel Lorentz Microscopy Imaging of Domains in Fe3O4 Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Majetich, S. A.; Evarts, E. R.; Hogg, C.; Yamamoto, K.; Hirayama, T.
2009-03-01
Fresnel Lorentz microscopy was used to study the magnetic domain structures of self-assembled nanoparticle arrays as a function of temperature, from 24 to 605 C. 11 nm diameter Fe3O4 nanoparticles with an edge-to-edge spacing of 2.5 nm form magnetic domains through magnetostatic interactions alone. At room temperature stripe domains were evident in monolayer arrays. The average domain size in monolayer regions is larger than that in bilayers. Mean field theories predict a reduced stabilization energy for bilayers, relative to that for monolayers. The domain wall positions were fairly stable up to 500 C, though the contrast in the walls diminished, indicating reduced magnetic order. Above 500 C there were large temperature-dependent changes. The walls surrounding the smaller domains disappeared at lower temperatures than those of the larger domains. Some magnetic contrast was visible up to 575 C, close to the Curie temperature of Fe3O4 (585 C). Transmission electron microscopy after cooling showed that the particle shape and position in the ordered arrays had been preserved during the high temperature imaging experiments.
Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.
Heidenreich, Andreas; Jortner, Joshua
2011-02-21
We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.
EMC Global Climate And Weather Modeling Branch Personnel
Comparison Statistics which includes: NCEP Raw and Bias-Corrected Ensemble Domain Averaged Bias NCEP Raw and Bias-Corrected Ensemble Domain Averaged Bias Reduction (Percents) CMC Raw and Bias-Corrected Control Forecast Domain Averaged Bias CMC Raw and Bias-Corrected Control Forecast Domain Averaged Bias Reduction
NASA Astrophysics Data System (ADS)
Kwon, Sungchul; Kim, Jin Min
2015-01-01
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung
2016-01-01
Purpose To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. Methods A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Results Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Conclusions Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size. PMID:27490718
Lossless Compression of JPEG Coded Photo Collections.
Wu, Hao; Sun, Xiaoyan; Yang, Jingyu; Zeng, Wenjun; Wu, Feng
2016-04-06
The explosion of digital photos has posed a significant challenge to photo storage and transmission for both personal devices and cloud platforms. In this paper, we propose a novel lossless compression method to further reduce the size of a set of JPEG coded correlated images without any loss of information. The proposed method jointly removes inter/intra image redundancy in the feature, spatial, and frequency domains. For each collection, we first organize the images into a pseudo video by minimizing the global prediction cost in the feature domain. We then present a hybrid disparity compensation method to better exploit both the global and local correlations among the images in the spatial domain. Furthermore, the redundancy between each compensated signal and the corresponding target image is adaptively reduced in the frequency domain. Experimental results demonstrate the effectiveness of the proposed lossless compression method. Compared to the JPEG coded image collections, our method achieves average bit savings of more than 31%.
Correlating defect density with growth time in continuous graphene films.
Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok
2014-12-01
We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.
2008112500 2008112400 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias
Gorlin, Eugenia I; Lee, Josephine; Otto, Michael W
2018-01-01
A recent meta-analysis by Bolier et al. indicated that positive psychology interventions have overall small to moderate effects on well-being, but results were quite heterogeneous across intervention trials. Such meta-analytic research helps condense information on the efficacy of a broad psychosocial intervention by averaging across many effects; however, such global averages may provide limited navigational guidance for selecting among specific interventions. Here, we introduce a novel method for displaying qualitative and quantitative information on the efficacy of interventions using a topographical map approach. As an initial prototype for demonstrating this method, we mapped 50 positive psychology interventions targeting well-being (as captured in the Bolier et al. [2013] meta-analysis, [Bolier, L., Haverman, M., Westerhof, G. J., Riper, H., Smit, F., & Bohlmeijer, E. (2013). Positive psychology interventions: A meta-analysis of randomized controlled studies. BMC Public Health, 13, 83]). Each intervention domain/subdomain was mapped according to its average effect size (indexed by vertical elevation), number of studies providing effect sizes (indexed by horizontal area), and therapist/client burden (indexed by shading). The geographical placement of intervention domains/subdomains was determined by their conceptual proximity, allowing viewers to gauge the general conceptual "direction" in which promising intervention effects can be found. The resulting graphical displays revealed several prominent features of the well-being intervention "landscape," such as more strongly and uniformly positive effects of future-focused interventions (including, goal-pursuit and optimism training) compared to past/present-focused ones.
Emery, Rebecca L; Levine, Michele D
2017-08-01
Although impulsivity has been implicated in the development and maintenance of obesity, evidence linking impulsivity to obesity has been mixed. These mixed findings may be related to differences in the type of impulsivity measures used and the varied domains of impulsivity assessed by each measure. The present meta-analysis aimed to examine the impact of measurement selection on the relationship between impulsivity and body mass index (BMI). A total of 142 articles met inclusion criteria and were comprised of 315,818 participants. Effect sizes consisted of Fisher's z-transformed correlation coefficients, which were weighted by the inverse variance to establish the grand mean estimate of the relationship between impulsivity and BMI. Overall weighted mean effect sizes also were computed for each type and domain of impulsivity measure. Moderator analyses were conducted using a mixed-effects approach to determine if the relationship between impulsivity and BMI varied between the types of impulsivity measures used. On average, participants were 32.25 (SD = 12.41) years of age, with a BMI of 26.63 (SD = 5.73) kg/m2. The overall relationship between impulsivity and BMI was small but significant (r = .07). Behavioral task measures of impulsivity produced significantly larger effect sizes (r = .10) than did questionnaire measures of impulsivity (r = .05). Domains of impulsivity that assessed disinhibited behaviors (r = .10), attentional deficits (r = .11), impulsive decision-making (r = .10), and cognitive inflexibility (r = .17) produced significant effect sizes. These meta-analytic findings demonstrate that impulsivity is positively associated with BMI and further document that this association varies by the type of impulsivity measure used and the domain of impulsivity assessed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Appropriate Domain Size for Groundwater Flow Modeling with a Discrete Fracture Network Model.
Ji, Sung-Hoon; Koh, Yong-Kwon
2017-01-01
When a discrete fracture network (DFN) is constructed from statistical conceptualization, uncertainty in simulating the hydraulic characteristics of a fracture network can arise due to the domain size. In this study, the appropriate domain size, where less significant uncertainty in the stochastic DFN model is expected, was suggested for the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) site. The stochastic DFN model for the site was established, and the appropriate domain size was determined with the density of the percolating cluster and the percolation probability using the stochastically generated DFNs for various domain sizes. The applicability of the appropriate domain size to our study site was evaluated by comparing the statistical properties of stochastically generated fractures of varying domain sizes and estimating the uncertainty in the equivalent permeability of the generated DFNs. Our results show that the uncertainty of the stochastic DFN model is acceptable when the modeling domain is larger than the determined appropriate domain size, and the appropriate domain size concept is applicable to our study site. © 2016, National Ground Water Association.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments
NASA Astrophysics Data System (ADS)
Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf
2016-01-01
A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.
A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods
NASA Technical Reports Server (NTRS)
Saether, E.; Yamakov, V.; Glaessgen, E.
2007-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.
2008073000 2008072900 2008072800 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias | NAEFS Products | NAEFS | EMC Ensemble Products EMC | NCEP | National Weather Service
NASA Astrophysics Data System (ADS)
Gao, X.-L.; Ma, H. M.
2010-05-01
A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.
Yang, Shan; Al-Hashimi, Hashim M.
2016-01-01
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693
Pattern Selection and Super-Patterns in Opinion Dynamics
NASA Astrophysics Data System (ADS)
Ben-Naim, Eli; Scheel, Arnd
We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. The spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.
Seo, Sam; Lee, Chong Eun; Jeong, Jae Hoon; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2017-03-11
To determine the influences of myopia and optic disc size on ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thickness profiles obtained by spectral domain optical coherence tomography (OCT). One hundred and sixty-eight eyes of 168 young myopic subjects were recruited and assigned to one of three groups according to their spherical equivalent (SE) values and optic disc area. All underwent Cirrus HD-OCT imaging. The influences of myopia and optic disc size on the GCIPL and RNFL thickness profiles were evaluated by multiple comparisons and linear regression analysis. Three-dimensional surface plots of GCIPL and RNFL thickness corresponding to different combinations of myopia and optic disc size were constructed. Each of the quadrant RNFL thicknesses and their overall average were significantly thinner in high myopia compared to low myopia, except for the temporal quadrant (all Ps ≤0.003). The average and all-sectors GCIPL were significantly thinner in high myopia than in moderate- and/or low-myopia (all Ps ≤0.002). The average OCT RNFL thickness was correlated significantly with SE (0.81 μm/diopter, P < 0.001), axial length (-1.44 μm/mm, P < 0.001), and optic disc area (5.35 μm/mm 2 , P < 0.001) by linear regression analysis. As for the OCT GCIPL parameters, average GCIPL thickness showed a significant correlation with SE (0.84 μm/diopter, P < 0.001) and axial length (-1.65 μm/mm, P < 0.001). There was no significant correlation of average GCIPL thickness with optic disc area. Three-dimensional curves showed that larger optic discs were associated with increased average RNFL thickness and that more-myopic eyes were associated with decreased average GCIPL and RNFL thickness. Myopia can significantly affect GCIPL and RNFL thickness profiles, and optic disc size has a significant influence on RNFL thickness. The current OCT maps employed in the evaluation of glaucoma should be analyzed in consideration of refractive status and optic disc size.
Supercomputer simulations of structure formation in the Universe
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2017-06-01
We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.
Family-specific scaling laws in bacterial genomes.
De Lazzari, Eleonora; Grilli, Jacopo; Maslov, Sergei; Cosentino Lagomarsino, Marco
2017-07-27
Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Turbulent thermal superstructures in Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef
2018-04-01
We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .
Jeon, Jae-Hyung; Metzler, Ralf
2010-02-01
Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.
Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Li, Oksana A.; Lin, Chun-Rong; Chen, Hung-Yi; Hsu, Hua-Shu; Shih, Kun-Yauh; Edelman, Irina S.; Wu, Kai-Wun; Tseng, Yaw-Teng; Ovchinnikov, Sergey G.; Lee, Jiann-Shing
2016-06-01
Ni0.2Zn0.8Fe2O4 spinel nanoparticles have been synthesized by combustion method. Average particles size varies from 15.5 to 50.0 nm depending on annealing temperature. Correlations between particles size and magnetic and magneto-optical properties are investigated. Magnetization dependences on temperature and external magnetic field correspond to the sum of paramagnetic and superparamagnetic response. Critical size of single-domain transition is found to be 15.9 nm. Magnetic circular dichroism (MCD) studies of nickel zinc spinel are presented here for the first time. The features in magnetic circular dichroism spectrum are assigned to the one-ion d-d transitions in Fe3+ and Ni2+ ions, as well to the intersublattice and intervalence charge transfer transitions. The MCD spectrum rearrangement was revealed with the change of the nanoparticles size.
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Shen, Jay J; Xu, Yu; Staples, Shelley; Bolstad, Anne L
2014-07-01
To assess interpersonal skills of internationally educated nurses (IEN) while interacting with standardized patients. Participants included 52 IEN at two community hospitals in the southwestern region of the USA. Standardized patients were used to create patient-nurse encounter. Seventeen items in four domains ("skills in interviewing and collecting information"; "skills in counseling and delivering information"; "rapport"; and "personal manner") in an Interpersonal Skills (IPS) instrument were measured by a Likert scale 1-4 with 4 indicating the best performance. The average composite score per domain and scores of the 17 items were compared across the domains. On 10 of the 17 items, the nurses received scores under 3. Counseling with an average score of 2.10 and closure with an average score of 2.44 in domain 2, small talk with an average score of 2.06 in domain 3, and physical exam with average score of 2.21 in domain 4 were below 2.5. The average composite score of domain 1 was 3.54, significantly higher than those of domains 2-4 (2.77, 2.81, and 2.71, respectively). Age was moderately related to the average score per domain with every 10 year increase in age resulting in a 0.1 increase in the average score. Sex and country of origin showed mixed results. The interpersonal skills of IEN in three of the four domains need improvement. Well-designed educational programs may facilitate the improvement, especially in areas of small talk, counseling, closure, and physical exam. Future research should examine relationships between the IPS and demographics factors. © 2013 The Authors. Japan Journal of Nursing Science © 2013 Japan Academy of Nursing Science.
NASA Astrophysics Data System (ADS)
Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio
The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.
Molecular dynamics study of the isotropic-nematic quench.
Bradac, Z; Kralj, S; Zumer, S
2002-02-01
Effects of cylindrical and spherical confinement on the kinetics of the isotropic-nematic quench is studied numerically. The nematic liquid crystal structure was modeled by a modified induced-dipole--induced-dipole interaction. Molecules were allowed to wander around points of a hexagonal lattice. Brownian molecular dynamics was used in order to access macroscopic time scales. In the bulk we distinguish between the early, domain, and late stage regime. The early regime is characterized by the exponential growth of the nematic uniaxial order parameter. In the domain regime domains are clearly visible and the average nematic domain size xi(d) obeys the dynamical scaling law xi(d)-t(gamma). The late stage evolution is dominated by dynamics of individual defects. In a confined system the qualitative change of the scaling behavior appears when xi(d) becomes comparable to a typical linear dimension R of the confinement. In the confining regime (xi(d)>or=R) the scaling coefficient gamma depends on the details of the confinement and also the final equilibrium nematic structure. The domain growth is well described with the Kibble-Zurek mechanism.
Small-Scale Dissipation in Binary-Species Transitional Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2011-01-01
Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.
Cordeiro, Daniela Valença; Lima, Verônica Castro; Castro, Dinorah P; Castro, Leonardo C; Pacheco, Maria Angélica; Lee, Jae Min; Dimantas, Marcelo I; Prata, Tiago Santos
2011-01-01
To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC) and conventional peripapillary retinal nerve fiber layer (pRNFL) analyses provided by spectral domain optical coherence tomography (SD-OCT) in glaucoma. Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers) and pRNFL thickness measurement (3.45 mm circular scan) by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC) curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm(2) disc sizes were arbitrarily chosen (based on data distribution) and the predicted areas under the ROC curves (AUCs) and sensitivities were compared at fixed specificities for each. Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872) and GCC parameters (average thickness = 0.824; P = 0.19). The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176) or average GCC thickness (0.088; P ≥ 0.56). AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm(2)) were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities - at 80% specificity for average pRNFL (84.5%) and GCC thicknesses (74.5%) - were found with disc sizes fixed at 1.5 mm(2) and 2.5 mm(2). Diagnostic accuracy was similar between pRNFL and GCC thickness parameters. Although not statistically significant, there was a trend for a better diagnostic accuracy of pRNFL thickness measurement in cases of smaller discs. For GCC analysis, an inverse effect was observed.
Nano-domain states of strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancharova, Uliana V., E-mail: ancharova@gmail.com; Cherepanova, Svetlana V., E-mail: svch@catalysis.ru; Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090
Series of the oxygen-deficient strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2) substituted with high-charged cations have been investigated by HRTEM and synchrotron radiation XRD. For artificial lowering of x, all the compounds were treated and quenched in vacuum from 950 °C, which led to the formation of the vacancy-ordered brownmillerite phase at local order. Depending on y, the substituted strontium ferrites have three differently disordered nano-domain states. At y≤0.03 there are twinned lamellar 1D nano-domain structures. At 0.04≤y≤0.05 and 0.06≤y≤0.08 the intergrown 3D nano-domain structures with two different types of disorder are formed. The higher the y,more » the lower the domain size. Disordering phenomena of the 3D nano-domain states were examined with local structure simulations followed by the Debye calculation of XRD patterns. - Graphical abstract: Evolution of nano-domain structure with an increase in the substitution degree y in strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2): an increase in y decreases the average size of domains and increases the degree of disorder, thus producing the lamellar (1D) or 3D nano-domains. - Highlights: • Two major nanodomain states were found for SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2). • Both contain vacancy-ordered orthorhombic domains intergrown with cubic matrix. • First (y≤0.03) shows orthorhombic and second (0.04≤y≤0.08) – cubic XRD patterns. • First contains 1D twinned lamellar domains with low-angle boundaries and deformations. • Second contains intergrown isotropic in 3D domains perpendicular oriented in matrix.« less
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Models for randomly distributed nanoscopic domains on spherical vesicles
NASA Astrophysics Data System (ADS)
Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John
2018-06-01
The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.
The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs
Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.
2012-01-01
Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739
Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos
2016-09-09
We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is muchmore » slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).« less
Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.
Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily
2007-07-15
Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.
NASA Astrophysics Data System (ADS)
Qin, C.; Hassanizadeh, S.
2013-12-01
Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a number of material properties in the model need to be determined experimentally, such as mass and heat exchange coefficients between neighboring layers. Fig. 1: Schematic representation of three thin porous layers, which may exchange mass, momentum, and energy. Also, a typical averaging domain (REV) is shown. Note that the layer thickness and thus the REV height can be spatially variable. Also, in reality, the layers are tightly stacked and there is no gap between them.
An approach to emotion recognition in single-channel EEG signals: a mother child interaction
NASA Astrophysics Data System (ADS)
Gómez, A.; Quintero, L.; López, N.; Castro, J.
2016-04-01
In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains. Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness.
Pattern selection and super-patterns in the bounded confidence model
Ben-Naim, E.; Scheel, A.
2015-10-26
We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes ofmore » the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. Furthermore, the spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.« less
Pattern selection and super-patterns in the bounded confidence model
NASA Astrophysics Data System (ADS)
Ben-Naim, E.; Scheel, A.
2015-10-01
We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. The spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.
Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang
2015-01-01
Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218
Zhang, Shuangyue; Han, Dong; Politte, David G; Williamson, Jeffrey F; O'Sullivan, Joseph A
2018-05-01
The purpose of this study was to assess the performance of a novel dual-energy CT (DECT) approach for proton stopping power ratio (SPR) mapping that integrates image reconstruction and material characterization using a joint statistical image reconstruction (JSIR) method based on a linear basis vector model (BVM). A systematic comparison between the JSIR-BVM method and previously described DECT image- and sinogram-domain decomposition approaches is also carried out on synthetic data. The JSIR-BVM method was implemented to estimate the electron densities and mean excitation energies (I-values) required by the Bethe equation for SPR mapping. In addition, image- and sinogram-domain DECT methods based on three available SPR models including BVM were implemented for comparison. The intrinsic SPR modeling accuracy of the three models was first validated. Synthetic DECT transmission sinograms of two 330 mm diameter phantoms each containing 17 soft and bony tissues (for a total of 34) of known composition were then generated with spectra of 90 and 140 kVp. The estimation accuracy of the reconstructed SPR images were evaluated for the seven investigated methods. The impact of phantom size and insert location on SPR estimation accuracy was also investigated. All three selected DECT-SPR models predict the SPR of all tissue types with less than 0.2% RMS errors under idealized conditions with no reconstruction uncertainties. When applied to synthetic sinograms, the JSIR-BVM method achieves the best performance with mean and RMS-average errors of less than 0.05% and 0.3%, respectively, for all noise levels, while the image- and sinogram-domain decomposition methods show increasing mean and RMS-average errors with increasing noise level. The JSIR-BVM method also reduces statistical SPR variation by sixfold compared to other methods. A 25% phantom diameter change causes up to 4% SPR differences for the image-domain decomposition approach, while the JSIR-BVM method and sinogram-domain decomposition methods are insensitive to size change. Among all the investigated methods, the JSIR-BVM method achieves the best performance for SPR estimation in our simulation phantom study. This novel method is robust with respect to sinogram noise and residual beam-hardening effects, yielding SPR estimation errors comparable to intrinsic BVM modeling error. In contrast, the achievable SPR estimation accuracy of the image- and sinogram-domain decomposition methods is dominated by the CT image intensity uncertainties introduced by the reconstruction and decomposition processes. © 2018 American Association of Physicists in Medicine.
Replication domains are self-interacting structural chromatin units of human chromosomes
NASA Astrophysics Data System (ADS)
Arneodo, Alain
2011-03-01
In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into self-interacting structural and functional units is a general feature of mammalian organisms.
NASA Astrophysics Data System (ADS)
Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin
2017-01-01
We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.
Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering
NASA Astrophysics Data System (ADS)
Pencer, J.; Mills, T.; Anghel, V.; Krueger, S.; Epand, R. M.; Katsaras, J.
2005-12-01
Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or “clusters” (~10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called “rafts”, in ~30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 °C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of ~10 nm.
Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia
2017-05-01
In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Bartels, Meike
2015-03-01
Wellbeing is a major topic of research across several disciplines, reflecting the increasing recognition of its strong value across major domains in life. Previous twin-family studies have revealed that individual differences in wellbeing are accounted for by both genetic as well as environmental factors. A systematic literature search identified 30 twin-family studies on wellbeing or a related measure such as satisfaction with life or happiness. Review of these studies showed considerable variation in heritability estimates (ranging from 0 to 64 %), which makes it difficult to draw firm conclusions regarding the genetic influences on wellbeing. For overall wellbeing twelve heritability estimates, from 10 independent studies, were meta-analyzed by computing a sample size weighted average heritability. Ten heritability estimates, derived from 9 independent samples, were used for the meta-analysis of satisfaction with life. The weighted average heritability of wellbeing, based on a sample size of 55,974 individuals, was 36 % (34-38), while the weighted average heritability for satisfaction with life was 32 % (29-35) (n = 47,750). With this result a more robust estimate of the relative influence of genetic effects on wellbeing is provided.
Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers
Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.; ...
2017-04-11
To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less
Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.
To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less
ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)
Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan
2012-10-25
The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Compatibilizing Bulk Polymer Blends by Using Organoclays
NASA Astrophysics Data System (ADS)
Si, Mayu; Gersappe, Dilip; Zhang, Wenhua; Ade, Harald; Rafailovich, Miriam; Sokolov, Jonathan; Rudomen, Gregory; Schwartz, Bradley; Fisher, Robert
2004-03-01
We investigated the compatiblizing performance of organoclays on melt mixed binary and tertiary polymer blends, such as, PS/PMMA, PC/SAN, PS/PMMA/PVC and PS/PMMA/PE. These polymer blends were characterized by TEM, STXM, DSC and DMA. TEM and STXM photographs show that the addition of organoclays into polymer blends drastically reduces the average domain size of the component phases. And the organoclay goes to the interfacial region between the different polymers and effectively slows down the domain size increasing during high temperature annealing. DMA and DSC results show the effect of organoclays on the mechanical properties and glass transitions temperature, which indicates the compatibilization on the molecular level. The generalized compatibilization induced by the nanoscale fillers for blends can be explained in terms of mean field models where the reduction of interfacial tension induced by in-situ grafting is counterbalanced by the increased bending energy due to the rigidity of the filler. This in turn can be shown to be a function of the degree of exfoliation, aspect ratio, and polymer filler interactions. Supported by NSF funded MRSEC at Stony Brook
Microphase separation in random multiblock copolymers
NASA Astrophysics Data System (ADS)
Govorun, E. N.; Chertovich, A. V.
2017-01-01
Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.
NASA Astrophysics Data System (ADS)
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.
A time-dependent model to determine the thermal conductivity of a nanofluid
NASA Astrophysics Data System (ADS)
Myers, T. G.; MacDevette, M. M.; Ribera, H.
2013-07-01
In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.
A solid-state NMR method to determine domain sizes in multi-component polymer formulations
NASA Astrophysics Data System (ADS)
Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon
2015-12-01
Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
Dynamics and Predictability of The Eta Regional Model: The Role of Domain Size
NASA Astrophysics Data System (ADS)
Vannitsem, S.; Chomé, F.; Nicolis, C.
This paper investigates the dynamical properties of the Eta model, a state-of-the- art nested limited-area model, following the approach previously developed by the present authors. It is first shown that the intrinsic dynamics of the model depends crucially on the size of the domain, with a non-chaotic behavior for small domains, supporting earlier findings on the absence of sensitivity to the initial conditions in these models. The quality of the predictions of several Eta model versions differing by their domain size is next evaluated and compared with the Avn analyses on a targeted region, centered on France. Contrary to what is usually taken for granted, a non-trivial relation between predictability and domain size is found, the best model versions be- ing the ones integrated on the smallest and the largest domain sizes. An explanation in connection with the intrinsic dynamics of the model is advanced.
NASA Astrophysics Data System (ADS)
Hwang, Jin Hwan; Pham, Van Sy
2017-04-01
The Big-Brother Experiment (BBE) evaluates the effect of domain size on the ocean regional circulation model (ORCMs) in the downscaling and nesting from the ocean global circulation (OGCMs). The BBE first establishes a mimic ocean global circulation models (M-OGCMs) data and employs a ORCM to simulate for a highly resolved large domain. This M-OGCM's results were then filtered to remove short scales then used for boundary and initial conditions of the nested ORCMs, which have the same resolution to the M-OGCMs. The various sizes of domain were embedded in the M-OGCMs and the cases were simulated to see the effect of domain size with the extra buffering distance to the results of the ORCMs. The diagnostic variables including temperature, salinity and vorticity of the nested domain are then compared with those of the M-OGCMs before filtering. Differences between them can address the errors associating with the sizes of the domain, which are not attributed unambiguously to models errors or observational errors. The results showed that domain size significantly impacts on the results of ORCMs. As the domain size of the ORCM becomes lager, the distance of the extra space between the area of interest and the updated LBCs increases. So, the results of ORCMs perform more highly correlated with the M-OGCM. But, there are a certain optimal sizes of the OGCMs, which could be larger than nested ORCMs' domain size from 2 to 10 times, depending on the computational costs. Key words: domain size, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
BalčiÅ«nas, Sergejus; Ivanov, Maksim; Grigalaitis, Robertas; Banys, Juras; Amorín, Harvey; Castro, Alicia; Algueró, Miguel
2018-05-01
The broadband dielectric properties of high sensitivity piezoelectric 0.36BiScO3-0.64PbTiO3 ceramics with average grain sizes from 1.6 μm down to 26 nm were investigated in the 100-500 K temperature range. The grain size dependence of the dielectric permittivity was analysed within the effective medium approximation. It was found that the generalised core-shell (or brick wall) model correctly explains the size dependence down to the nanoscale. For the first time, the grain bulk and boundary properties were obtained without making any assumptions of values of the parameters or simplifications. Two contributions to dielectric permittivity of the grain bulk are described. The first is the size-independent one, which follows the Curie-Weiss law. The second one is shown to plausibly follow the Kittel's law. This seems to suggest the unexpected persistence of mobile ferroelectric domains at the nanoscale (26 nm grains). Alternative explanations are discussed.
NASA Astrophysics Data System (ADS)
Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.
2004-01-01
In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Last, Isidore; Jortner, Joshua
We report on theoretical and computational studies of electron and nuclear energies in the Coulomb explosion of (D{sub 2}){sub n/2} clusters (n=250-33 000, cluster radius R{sub 0}=11 A-55 A) coupled to ultraintense Gaussian laser fields (laser peak intensities I{sub M}=10{sup 15}-10{sup 18} W cm{sup -2}, pulse widths {tau}=25-50 fs, and frequency {nu}=0.35 fs{sup -1}). Molecular dynamics simulations were fit by semiempirical relations for the average E{sub av} and maximal E{sub M} ion energies and for their dependence on the cluster radius (R{sub 0}) and on the laser parameters. This revealed two kinds of Coulomb explosion domains separated by the bordermore » radius R{sub 0}{sup (I)}, which marks complete cluster outer ionization and which depends on I{sub M} and {tau}, (i) the cluster vertical ionization (CVI) domain (R{sub 0}
Toroidal surface complexes of bacteriophage {phi}12 are responsible for host-cell attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo-Macias, Alejandra; Katz, Garrett; Wei Hui
2011-06-05
Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage {phi}12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of {phi}12 demonstrates that the gene for the hexameric spike is located in {phi}12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimatesmore » derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: > Subtomogram averaging reveals enhanced detail of a {phi}12 cystovirus surface protein complex. > The surface protein complex has a toroidal shape and six-fold symmetry. > It is encoded by the medium-size genome segment. > The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.« less
Elliott, Madison; Parente, Frederick
2014-01-01
To examine the efficacy of cognitive rehabilitation strategies specifically designed to improve memory after traumatic brain injury (TBI) and stroke vs. memory improvement with the passage of time. A meta-analysis was performed on 26 studies of memory retraining and recovery that were published between the years of 1985 and 2013. Effect sizes (ESs) from each study were calculated and converted to Pearson's r and then analysed to assess the overall effect size and the relationship among the ESs, patient demographics and treatment interventions. RESULTS indicated a significant average ES (r = 0.51) in the treatment intervention conditions, as well as a significant average ES (r = 0.31) in the control conditions, in which participants did not receive any treatment. The largest ESs occurred in studies of stroke patients and studies concerning working memory rehabilitation. RESULTS showed that memory rehabilitation was an effective therapeutic intervention, especially for stroke patients and for working memory as a treatment domain. However, the results also indicated that significant memory improvement occurred spontaneously over time.
NASA Astrophysics Data System (ADS)
Shao, Yu-Tsun; Zuo, Jian-Min
Domain walls (DWs) play a critical role in determining the polarization switching behavior in relaxor-based ferroelectric crystals. The domains in relaxor-ferroelectric crystals consist of polar nanoregions (PNRs) and their interface is poorly understood. Here, we report an energy-filtered (EF-) scanning convergent beam electron diffraction (SCBED) study for the identification of PNRs and determination of their interface. With the aid of electro dynamical diffraction simulation, nanometer-sized PNRs having monoclinic Pm (MC) symmetry in single crystal PZN- 8%PT were identified. Lattice rotation vortices having an average radius of 7 nm at the 50° DWs were revealed by maps of crystal orientations, domain configurations, symmetry breaking. Such measurements suggest the merging of 2D and 1D topological defects, with implications for domain-switching mechanisms in relaxor ferroelectric crystals. The interplay between polarization, charge, and strain degrees of freedom suggests a complex landscape of topological defects in ferroelectrics that may be explored for a new form of nanoscale ferroelectric devices. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.
The physical size of transcription factors is key to transcriptional regulation in chromatin domains
NASA Astrophysics Data System (ADS)
Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi
2015-02-01
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Heating efficiency dependency on size and morphology of magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Parekh, Kinnari; Parmar, Harshida; Sharma, Vinay; Ramanujan, R. V.
2018-04-01
Different size magnetite nanoparticles ranging from superparamagnetic (9 nm) to single domain (27 nm) and multi domain (53 nm) were synthesized using chemical route. Morphology of these particles as seen from TEM images indicates shape change from spherical to cubic with the growth of particles. The saturation magnetization (σs) and Specific Loss Power (SLP) showed maximum for single domain size, 72 emu/g and 102 W/g, respectively then those of multi domain size particles. These samples show higher SLP at relatively low concentration, low frequency and low amplitude compared to samples prepared by other routes.
Effect of dipolar moments in domain sizes of lipid bilayers and monolayers
NASA Astrophysics Data System (ADS)
Travesset, A.
2006-08-01
Lipid domains are found in systems such as multicomponent bilayer membranes and single component monolayers at the air-water interface. It was shown by Keller et al. [J. Phys. Chem. 91, 6417 (1987)] that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution, and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges), and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.
NASA Astrophysics Data System (ADS)
Chen, Jing-Bo
2014-06-01
By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.
Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara
2015-03-10
An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Lockyer, Kay; Gao, Fang; Derrick, Jeremy P.; Bolgiano, Barbara
2015-01-01
An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8 × 106 g/mol to larger than 20 × 106 g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. PMID:25640334
NASA Astrophysics Data System (ADS)
Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.
2010-07-01
Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.
Figures of Merit for Magnetic Recording Media
NASA Astrophysics Data System (ADS)
Skomski, Ralph; Sellmyer, D. J.
2007-03-01
Since the first nucleation-field calculations for hard-soft nanostructures with multilayered [1] and arbitrary [2] geometries, exchange-spring magnets have attracted much attention in various areas of magnetism, including magnetic recording. Ultrahigh storage densities correspond to the strong-coupling limit, realized on small length scales and described by volume-averaged anisotropies. Second-order perturbation theory yields finite-size corrections that describe a partial decoupling of the phases. Since soft phases reduce the nucleation field, nanostructuring can be used to reduce the coercivity Hc while maintaining the energy barrier EB. However, the ratio EB/Hc is an ill-defined figure of merit, because the comparison with the Stoner-Wohlfarth model requires the introduction of a particle volume, as contrasted to an area. By using elongated particles with a continuous anisotropy gradient, it is possible to reduce the coercivity by a factor scaling as the bit size divided by the domain-wall width of the hard phase. However, with decreasing bit size this effect becomes less pronounced. In the strong-coupling limit, thermal stability yields a maximum storage density of order γ/kBT, where γ is the domain-wall energy of the hard phase. - This research is supported by NSF MRSEC, INSIC, and NCMN. [1] S. Nieber and H. Kronm"uller, phys. stat. sol. (b) 153, 367 (1989). [2] R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).
NASA Astrophysics Data System (ADS)
Morrill-Winter, Caleb; Philip, Jimmy; Klewicki, Joseph
2017-03-01
The turbulence contribution to the mean flow is reflected by the motions producing the Reynolds shear stress (<-uv>) and its gradient. Recent analyses of the mean dynamical equation, along with data, evidence that these motions asymptotically exhibit self-similar geometric properties. This study discerns additional properties associated with the uv signal, with an emphasis on the magnitudes and length scales of its negative contributions. The signals analysed derive from high-resolution multi-wire hot-wire sensor data acquired in flat-plate turbulent boundary layers. Space-filling properties of the present signals are shown to reinforce previous observations, while the skewness of uv suggests a connection between the size and magnitude of the negative excursions on the inertial domain. Here, the size and length scales of the negative uv motions are shown to increase with distance from the wall, whereas their occurrences decrease. A joint analysis of the signal magnitudes and their corresponding lengths reveals that the length scales that contribute most to <-uv> are distinctly larger than the average geometric size of the negative uv motions. Co-spectra of the streamwise and wall-normal velocities, however, are shown to exhibit invariance across the inertial region when their wavelengths are normalized by the width distribution, W(y), of the scaling layer hierarchy, which renders the mean momentum equation invariant on the inertial domain.
Room temperature ferroelectricity in continuous croconic acid thin films
NASA Astrophysics Data System (ADS)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan
2016-09-01
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-04-01
We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.
Room temperature ferroelectricity in continuous croconic acid thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei
2016-09-05
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structuresmore » of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.« less
Chen, Fang; Ren, Zhaohui; Gong, Siyu; Li, Xiang; Shen, Ge; Han, Gaorong
2016-08-16
In this work, single-crystal and single-domain PbTiO3 nanoplates are employed as substrates to prepare Ag2 O/PbTiO3 composite materials through a photodeposition method. It is revealed that silver oxide nanocrystals with an average size of 63 nm are selectively deposited on the positive polar surface of the ferroelectric substrate. The possible mechanism leading to the formation of silver oxide is that silver ions are first reduced to silver and then oxidized by oxygen generation. The composite shows an efficient photodegradation performance towards rhodamine B (RhB) and methyl orange (MO) under visible-light irradiation. Such highly efficient photoactivity can be attributed to the ferroelectric polarization effect of the substrate, which promotes the separation of photogenerated electrons and holes at the interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang
2016-01-01
Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486
Al Qaraghuli, Mohammed M; Ferro, Valerie A
2017-04-01
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kobayashi, Kurima; Nimura, You-ta; Urushibata, Kimiko; Hayakawa, Kazuo
2018-04-01
We prepared five Nd2Fe14B sintered magnets with similar saturation polarizations (Js) of 1.38-1.43 T and anisotropy fields (Ha) of 6.76-8.52 T, but different grain sizes (DAV) of 3.1-8.4 μm in diameter and obviously different coercivities (μ0Hc) of 0.8-1.6 T. The observed difference in coercivity could not be explained by the Kronmüller equation, because of the similar Ha values and similar chemical compositions and microstructures resulting from similar preparation method except DAV. The Hc values themselves, however, are inversely proportional to DAV. During demagnetization after magnetization in a 5 T pulse field, domain wall motion (DWM) was observed except in the sample with μ0Hc = 1.6 T by using our step method. The DWM was also confirmed by susceptibility measurements using a custom-built vibrating sample magnetometer, and DWM was generated in the reproduced multi-domain regions (RMDR) during demagnetization. The magnitude of DWM as a polarization change in the RMDR was inversely proportional to the coercivities of the samples. Therefore, it should be considered that the propagation of the nucleated region through the grain boundary, which corresponds to the expansion process in previous studies, was different caused by, first, the difference in DAV, and, second, in grain boundary state which was varied by difference in final annealing temperature.
Dodek, Peter M; Wong, Hubert; Jaswal, Danny; Heyland, Daren K; Cook, Deborah J; Rocker, Graeme M; Kutsogiannis, Demetrios J; Dale, Craig; Fowler, Robert; Ayas, Najib T
2012-02-01
The objectives of this study are to describe organizational and safety culture in Canadian intensive care units (ICUs), to correlate culture with the number of beds and physician management model in each ICU, and to correlate organizational culture and safety culture. In this cross-sectional study, surveys of organizational and safety culture were administered to 2374 clinical staff in 23 Canadian tertiary care and community ICUs. For the 1285 completed surveys, scores were calculated for each of 34 domains. Average domain scores for each ICU were correlated with number of ICU beds and with intensivist vs nonintensivist management model. Domain scores for organizational culture were correlated with domain scores for safety culture. Culture domain scores were generally favorable in all ICUs. There were moderately strong positive correlations between number of ICU beds and perceived effectiveness at recruiting/retaining physicians (r = 0.58; P < .01), relative technical quality of care (r = 0.66; P < .01), and medical director budgeting authority (r = 0.46; P = .03), and moderately strong negative correlations with frequency of events reported (r = -0.46; P = .03), and teamwork across hospital units (r = -0.51; P = .01). There were similar patterns for relationships with intensivist management. For most pairs of domains, there were weak correlations between organizational and safety culture. Differences in perceptions between staff in larger and smaller ICUs highlight the importance of teamwork across units in larger ICUs. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bose, Narayan; Dutta, Dripta; Mukherjee, Soumyajit
2018-07-01
Brittle Y- and P-planes exist in an exposure of greywacke in the Garhwal Lesser Himalaya, India. Although, Y-planes are well developed throughout, the P-planes are prominent only in some parts (domain-A), and not elsewhere (domain-B). To investigate why the P-planes developed selectively, the following studies were undertaken: 1. Clay-separated XRD analyses: clinochlore and illite are present in both the domains. 2. Strain analyses by Rf-φ method: it deduces strain magnitudes of ∼1.8 for the ductile deformed quartz grains from both the domains A and B. 3. Grain size analyses of quartz clasts: domain-A is mostly composed of finer grains (area up to 40,000 μm2), whereas domain-B consists of a population of coarser grains (area >45,000 μm2). A 2D finite element modeling of linear elastic material was performed using COMSOL software to investigate the control of grain-size variation on the generation brittle shear planes. The results of numerical modeling corroborate the known fact that an increase in grain-size reduces the elastic strain energy density. A broader grain-size distribution increases the effects of diffusion creep and resists the onset of dislocation creep. Thus, rocks with coarser grain population (domain B) tend to resist the generation of shear fractures, unlike their fine-grained counterpart (domain A).
Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats.
Brooks, Naomi E; Schuenke, M D; Hikida, R S
2009-09-01
In multinucleated skeletal muscle, a myonuclear domain is the region of cytoplasm governed by one nucleus, and myofibres are mosaics of overlapping myonuclear domains. Association of ageing and myonuclear domain is important in the understanding of sarcopenia and with prevention or combating age-related muscle declines. This study examined the effects of age, fibre type and muscle on nucleo-cytoplasmic (N/C) relationships as reflecting myonuclear domain size. The N/C was compared in fibre types of soleus and plantaris muscles from young (n = 6) and ageing (n = 8) male Fisher 344 rats. There were no significant differences in fibre type composition or cross-sectional area of the soleus across ages. The old soleus had significantly more myonuclei, resulting in a significantly smaller myonuclear domain size. The plantaris muscle showed a higher percentage of slow fibres in old compared with young fibres. There were no differences in the number of myonuclei or in myonuclear domain size between young and older animals. We found muscle-specific differences in the effects of ageing on myonuclear domain, possibly as a result of reduced efficiency of the myonuclei in the slow muscles.
Mittal, Anuradha; Holehouse, Alex S; Cohan, Megan C; Pappu, Rohit V
2018-05-12
Intrinsically disordered proteins and regions (IDPs / IDRs) are characterized by well-defined sequence-to-conformation relationships (SCRs). These relationships refer to the sequence-specific preferences for average sizes, shapes, residue-specific secondary structure propensities, and amplitudes of multiscale conformational fluctuations. SCRs are discerned from the sequence-specific conformational ensembles of IDPs. A vast majority of IDPs are actually tethered to folded domains (FDs). This raises the question of whether or not SCRs inferred for IDPs are applicable to IDRs tethered to folded domains. Here, we use atomistic simulations based on a well-established forcefield paradigm and an enhanced sampling method to obtain comparative assessments of SCRs for thirteen archetypal IDRs modeled as autonomous units, as C-terminal tails connected to folded domains, and as linkers between pairs of folded domains. Our studies uncover a set of general observations regarding context-independent versus context-dependent SCRs of IDRs. SCRs are minimally perturbed upon tethering to folded domains if the IDRs are deficient in charged residues and for polyampholytic IDRs where the oppositely charged residues within the sequence of the IDR are separated into distinct blocks. In contrast, the interplay between IDRs and tethered folded domains has a significant modulatory effect on SCRs if the IDRs have intermediate fractions of charged residues or if they have sequence-intrinsic conformational preferences for canonical random coils. Our findings suggest that IDRs with context-independent SCRs might be independent evolutionary modules whereas IDRs with context-dependent intrinsic SCRs might co-evolve with the FDs to which they are tethered. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.
Becker, Nathan; Scheel, J D; Cross, M C; Ahlers, Guenter
2006-06-01
Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects the domain-chaos state observed in rotating Rayleigh-Bénard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly stationary nearly radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f approximately epsilon(mu) with mu approximately equal to 1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, mu and the domain size were consistent with experiment.
Biometry and spectral domain optical coherence tomography parameters in children with large cupping.
Jung, Jong Jin; Baek, Seung-Hee; Kim, Ungsoo Samuel
2013-09-01
The purpose of this study is to investigate optic nerve head using spectral domain optical coherence tomography (SD-OCT) in children with large cupping. 111 eyes (4-10 years) were divided into three groups according to the cup to disc ratio: group 1, ≤0.3; group 2, 0.4-0.6; and group 3, ≥0.7. The rim area, disc area, average cup to disc ratio, vertical cup to disc ratio, and cup volume were investigated using SD-OCT (Cirrus HD-OCT, Carl Zeiss, Jena, Germany), and the axial length and anterior chamber depth (ACD) were measured by IOL master (IOL master 500, Carl Zeiss, Jena, Germany). Next, we compared ocular biometry and SD-OCT between the three groups. The mean age of group 1 was 6.48 ± 1.42 years, 7.00 ± 1.75 years in group 2, and 6.63 ± 1.82 years in group 3 (p = 0.370). A significant difference was seen in the spherical equivalent between the groups (p = 0.001). Group 2 had the most myopic refractive errors. As the cup to disc ratio increases, disc area, average cup to disc ratio, vertical cup to disc ratio, and cup volume increase significantly. When the results of ocular biometry and SD-OCT are adjusted for axial length, only disc area showed a significant correlation with cup to disc ratio (ACD: p = 0.473, rim area: p = 0.639, disc area: p = 0.005, and cup volume: p = 0.325). Axial length is the key factor determining disc size, which in turn is important for determining cup to disc ratio. Normal children with large cupping should be examined for axial length, myopic refractive errors, and disc size.
Mager, Diana R; Marcon, Margaret; Brill, Herbert; Liu, Amanda; Radmanovich, Kristin; Mileski, Heather; Nasser, Roseann; Alzaben, Abeer; Carroll, Matthew W; Yap, Jason; Persad, Rabin; Turner, Justine M
2018-06-01
Celiac disease (CD) is an autoimmune disease that requires lifelong adherence to a gluten-free diet (GFD). Adherence to the GFD in childhood may be poor and adversely influence health-related quality of life (HRQOL). The study purpose was to determine sociodemographic and socioeconomic factors influencing adherence to the GFD and HRQOL in a multiethnic cohort of youth with CD. A multisite (Edmonton, Hamilton, Toronto) study examining child-parent HRQOL in youth with CD (n = 243) and/or mild gastrointestinal complaints (GI-CON; n = 148) was conducted. Sociodemographic (age, child-parental age/education/ethnicity/place of birth), anthropometric (weight, height, body mass index), disease (diagnosis, age at diagnosis, duration, Marsh score, serology), household characteristics (income, family size, region, number of children/total household size), HRQOL (Peds TM/KINDL and Celiac Disease DUX), GI Complaints (PedsQL: Gastrointestinal Symptom Scale) and gluten intake were measured. Younger age (<10 years), non-Caucasian ethnicity (parent/child), and presence of GI symptoms were associated with the highest rates of adherence to the GFD in CD children (P < 0.05). CD children (parent/child) had higher HRQOL (average, composite domains) than GI-CON (P < 0.05), but CD children were comparable to healthy children. Lack of GI symptoms, non-Caucasian ethnicity and age (<10 years) were associated with increased HRQOL in composite/average domains for CD (P < 0.05). Child-parent perceptions of HRQOL in a multiethnic population with CD are comparable to healthy reference populations, but significantly higher than in parent/child GI-CON. Adherence to the GFD in ethnically diverse youth with CD was related to GI symptoms, age of the child, and ethnicity of the parent-child.
Tuti, Timothy; Nzinga, Jacinta; Njoroge, Martin; Brown, Benjamin; Peek, Niels; English, Mike; Paton, Chris; van der Veer, Sabine N
2017-05-12
Audit and feedback is a common intervention for supporting clinical behaviour change. Increasingly, health data are available in electronic format. Yet, little is known regarding if and how electronic audit and feedback (e-A&F) improves quality of care in practice. The study aimed to assess the effectiveness of e-A&F interventions in a primary care and hospital context and to identify theoretical mechanisms of behaviour change underlying these interventions. In August 2016, we searched five electronic databases, including MEDLINE and EMBASE via Ovid, and the Cochrane Central Register of Controlled Trials for published randomised controlled trials. We included studies that evaluated e-A&F interventions, defined as a summary of clinical performance delivered through an interactive computer interface to healthcare providers. Data on feedback characteristics, underlying theoretical domains, effect size and risk of bias were extracted by two independent review authors, who determined the domains within the Theoretical Domains Framework (TDF). We performed a meta-analysis of e-A&F effectiveness, and a narrative analysis of the nature and patterns of TDF domains and potential links with the intervention effect. We included seven studies comprising of 81,700 patients being cared for by 329 healthcare professionals/primary care facilities. Given the extremely high heterogeneity of the e-A&F interventions and five studies having a medium or high risk of bias, the average effect was deemed unreliable. Only two studies explicitly used theory to guide intervention design. The most frequent theoretical domains targeted by the e-A&F interventions included 'knowledge', 'social influences', 'goals' and 'behaviour regulation', with each intervention targeting a combination of at least three. None of the interventions addressed the domains 'social/professional role and identity' or 'emotion'. Analyses identified the number of different domains coded in control arm to have the biggest role in heterogeneity in e-A&F effect size. Given the high heterogeneity of identified studies, the effects of e-A&F were found to be highly variable. Additionally, e-A&F interventions tend to implicitly target only a fraction of known theoretical domains, even after omitting domains presumed not to be linked to e-A&F. Also, little evaluation of comparative effectiveness across trial arms was conducted. Future research should seek to further unpack the theoretical domains essential for effective e-A&F in order to better support strategic individual and team goals.
Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B
2016-02-01
Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P < 0.01). Myonuclear content increased significantly over time in both the type I (P < 0.01) and type II (P < 0.001) muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P < 0.001). Increases in myonuclear domain size do not appear to drive myonuclear accretion and muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Observations and simulations of the interactions between clouds, radiation, and precipitation
NASA Astrophysics Data System (ADS)
Naegele, Alexandra Claire
The first part of this study focuses on the radiative constraint on the hydrologic cycle as seen in observations. In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation are inversely related. We use precipitation data from the Global Precipitation Climatology Project and radiative flux data from the Clouds and the Earth's Radiant Energy System (CERES) project to investigate the radiative constraint on the hydrologic cycle and how it changes in both space and time. We find that the effect of clouds is to decrease the ARC in the tropics, and to increase the ARC in middle and higher latitudes. We find that, spatially, precipitation and the ARC are negatively correlated in the tropics, and positively correlated in middle and higher latitudes. In terms of the global mean, the precipitation rate and the ARC are temporally out-of-phase during the Northern Hemisphere winter. In the second part of this study, we use a cloud-resolving model to gain a deeper understanding of the relationship between precipitation and the ARC. In particular, we explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. We investigate the responses of the ARC and precipitation rate to changes in the sea surface temperature (SST), domain size, and microphysics parameterization. Both fields increase with increasing SST and the use of 2-moment microphysics. The precipitation and ARC show evidence of convective aggregation, and in the domain average, both fields increase as a result. While running these sensitivity tests, we observed a pulsation in the convective precipitation rate, once aggregation had occurred. The period of the pulsation is on the order of ten simulated hours for a domain size of 768 km. The sensitivity tests mentioned above were used to investigate the mechanism of the pulsation. We also performed an additional test with no evaporation of falling rain, which leads to no cold pools in the boundary layer. Our results show that the period of the pulsation is noticeably sensitive to microphysics and domain size. The pulsation disappears completely when cold pools are prevented from forming, which suggests a "discharge-recharge" mechanism.
Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk
2017-06-27
Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.
NASA Astrophysics Data System (ADS)
Dinh, Tra; Fueglistaler, Stephan
2016-04-01
Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chen, L. P.; Wang, X. J.
2016-02-01
High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.
Low voltage polymer network liquid crystal for infrared spatial light modulators.
Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson
2015-02-09
We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.
On the visible size and geometry of aggressively expanding civilizations at cosmological distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, S. Jay, E-mail: stephanolson@boisestate.edu
2016-04-01
If a subset of advanced civilizations in the universe choose to rapidly expand into unoccupied space, these civilizations would have the opportunity to grow to a cosmological scale over the course of billions of years. If such life also makes observable changes to the galaxies they inhabit, then it is possible that vast domains of life-saturated galaxies could be visible from the Earth. Here, we describe the shape and angular size of these domains as viewed from the Earth, and calculate median visible sizes for a variety of scenarios. We also calculate the total fraction of the sky that shouldmore » be covered by at least one domain. In each of the 27 scenarios we examine, the median angular size of the nearest domain is within an order of magnitude of a percent of the whole celestial sphere. Observing such a domain would likely require an analysis of galaxies on the order of a Gly from the Earth.« less
Femtosecond laser generated gold nanoparticles and their plasmonic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Rupali, E-mail: phz148121@iitd.ac.in; Navas, M. P.; Soni, R. K.
The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions weremore » investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.« less
A meta-analysis of decision-making and attention in adults with ADHD.
Mowinckel, Athanasia M; Pedersen, Mads Lund; Eilertsen, Espen; Biele, Guido
2015-05-01
Deficient reward processing has gained attention as an important aspect of ADHD, but little is known about reward-based decision-making (DM) in adults with ADHD. This article summarizes research on DM in adult ADHD and contextualizes DM deficits by comparing them to attention deficits. Meta-analytic methods were used to calculate average effect sizes for different DM domains and continuous performance task (CPT) measures. None of the 59 included studies (DM: 12 studies; CPT: 43; both: 4) had indications of publication bias. DM and CPT measures showed robust, small to medium effects. Large effect sizes were found for a drift diffusion model analysis of the CPT. The results support the existence of DM deficits in adults with ADHD, which are of similar magnitude as attention deficits. These findings warrant further examination of DM in adults with ADHD to improve the understanding of underlying neurocognitive mechanisms. © 2014 SAGE Publications.
Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence
NASA Astrophysics Data System (ADS)
Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub
2015-05-01
Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal.
Role of initial correlation in coarsening of a ferromagnet
NASA Astrophysics Data System (ADS)
Chakraborty, Saikat; Das, Subir K.
2015-06-01
We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches to various temperatures (Tf) below the critical one (Tc), from different initial temperatures Ti ≥ Tc. In long time limit, for Ti>Tc, the persistence probability exhibits power-law decay with exponents θ ≃ 0.22 and ≃ 0.18 in d = 2 and 3, respectively. For finite Ti, the early time behavior is a different power-law whose life-time diverges and exponent decreases as Ti → Tc. The two steps are connected via power-law as a function of domain length and the crossover to the second step occurs when this characteristic length exceeds the equilibrium correlation length at T = Ti. Ti = Tc is expected to provide a new universality class for which we obtain θ ≡ θc ≃ 0.035 in d = 2 and ≃0.105 in d = 3. The time dependence of the average domain size ℓ, however, is observed to be rather insensitive to the choice of Ti.
The Association between Deliberate Self-harm and College Student Subjective Quality of Life.
Zullig, Keith J
2016-03-01
The association between deliberate self-harm (DSH) and domain-based life satisfaction reports and health-related quality of life (HRQOL) was explored simultaneously among college students. Randomly selected participants (N = 723) completed an online survey. Relationships among DSH, 7 life satisfaction domains, and HRQOL (as assessed by mean good physical and mental health days, GHDs) were examined through correlational and general linear modeling procedures with post hoc analyses. DSH was a significant predictor for all life satisfaction domains, overall life satisfaction, and mean GHDs, even after controlling for covariates (p < .0001), with greatest dissatisfaction with friendships and selves. Effect sizes ranged from .42 (living environment) to 1.18 (overall). Students who engaged in DSH reported 15.2 mean GHDs during the past 30 days compared to 20.4 for the referent group (Cohen's d = .63). Those engaging in DSH report greatest dissatisfaction with friendships and selves compared to those not engaging in DSH. Surprisingly, DSH was only weakly associated with satisfaction with family, and behind that of satisfaction with physical appearance, school, and romantic relationships. Lastly, those engaging in DSH experience on average 60 fewer GHDs each year than those not engaging in DSH.
Veschgini, Mariam; Abuillan, Wasim; Inoue, Shigeto; Yamamoto, Akihisa; Mielke, Salomé; Liu, Xianhe; Konovalov, Oleg; Krafft, Marie Pierre; Tanaka, Motomu
2017-10-06
The shape and size of self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon (FnHm) diblocks and the lateral correlation between these domains were quantitatively determined from grazing incidence small-angle X-ray scattering (GISAXS). The full calculation of structure and form factors unravels the influence of fluorocarbon and hydrocarbon block lengths on the diameter and height of the domains, and provides the inter-domain correlation length. The diameter of the domains, as determined from the form factor analysis, exhibits a monotonic increase in response to the systematic lengthening of each block, which can be attributed to the increase in van der Waals attraction between molecules. The pair correlation function in real space calculated from the structure factor implies that the inter-domain correlation can reach a distance that is over 25 times larger than the domain's size. The full calculation of the GISAXS signals introduced here opens a potential towards the hierarchical design of mesoscale domains of self-assembled small organic molecules, covering several orders of magnitude in space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of anti-phase domain size on the ductility of a rapidly solidified Ni3Al-Cr alloy
NASA Technical Reports Server (NTRS)
Carro, G.; Bertero, G. A.; Wittig, J. E.; Flanagan, W. F.
1989-01-01
Tensile tests on splat-quenched Ni3Al-Cr alloys showed a sharp decrease in ductility with long-time annealing. The growth of the initially very-fine-size anti-phase domains showed a tenuous correlation with ductility up to a critical size, where ductility was lost. The grain size was relatively unaffected by these annealing treatments, but the grain-boundary curvature decreased, implying less toughness. An important observation was that, for the longest annealing time, a chromium-rich precipitate formed, which the data indicate could be a boride. Miniaturized tensile tests were performed on samples which were all obtained from the same splat-quenched foil, and the various domain sizes were controlled by subsequent annealing treatments.
Lee, Yoo-Jung; Seo, Tae Hoon; Lee, Seula; Jang, Wonhee; Kim, Myung Jong; Sung, Jung-Suk
2018-01-01
Graphene is a noncytotoxic monolayer platform with unique physical, chemical, and biological properties. It has been demonstrated that graphene substrate may provide a promising biocompatible scaffold for stem cell therapy. Because chemical vapor deposited graphene has a two dimensional polycrystalline structure, it is important to control the individual domain size to obtain desirable properties for nano-material. However, the biological effects mediated by differences in domain size of graphene have not yet been reported. On the basis of the control of graphene domain achieved by one-step growth (1step-G, small domain) and two-step growth (2step-G, large domain) process, we found that the neuronal differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) highly depended on the graphene domain size. The defects at the domain boundaries in 1step-G graphene was higher (×8.5) and had a relatively low (13% lower) contact angle of water droplet than 2step-G graphene, leading to enhanced cell-substrate adhesion and upregulated neuronal differentiation of hMSCs. We confirmed that the strong interactions between cells and defects at the domain boundaries in 1step-G graphene can be obtained due to their relatively high surface energy, which is stronger than interactions between cells and graphene surfaces. Our results may provide valuable information on the development of graphene-based scaffold by understanding which properties of graphene domain influence cell adhesion efficacy and stem cell differentiation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 43-51, 2018. © 2017 Wiley Periodicals, Inc.
Molsberry, Samantha A; Cheng, Yu; Kingsley, Lawrence; Jacobson, Lisa; Levine, Andrew J; Martin, Eileen; Miller, Eric N; Munro, Cynthia A; Ragin, Ann; Sacktor, Ned; Becker, James T
2018-05-11
Mild forms of HIV-associated neurocognitive disorder (HAND) remain prevalent in the combination anti-retroviral therapy (cART) era. This study's objective was to identify neuropsychological subgroups within the Multicenter AIDS Cohort Study (MACS) based on the participant-based latent structure of cognitive function and to identify factors associated with subgroups. The MACS is a four-site longitudinal study of the natural and treated history of HIV disease among gay and bisexual men. Using neuropsychological domain scores we used a cluster variable selection algorithm to identify the optimal subset of domains with cluster information. Latent profile analysis was applied using scores from identified domains. Exploratory and post-hoc analyses were conducted to identify factors associated with cluster membership and the drivers of the observed associations. Cluster variable selection identified all domains as containing cluster information except for Working Memory. A three-profile solution produced the best fit for the data. Profile 1 performed below average on all domains, Profile 2 performed average on executive functioning, motor, and speed and below average on learning and memory, Profile 3 performed at or above average across all domains. Several demographic, cognitive, and social factors were associated with profile membership; these associations were driven by differences between Profile 1 and the other profiles. There is an identifiable pattern of neuropsychological performance among MACS members determined by all domains except Working Memory. Neither HIV nor HIV-related biomarkers were related with cluster membership, consistent with other findings that cognitive performance patterns do not map directly onto HIV serostatus.
Brewster, Robert; Safran, Samuel A
2010-03-17
A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liliawati, W.; Utama, J. A.; Fauziah, H.
2016-08-01
The curriculum in Indonesia recommended that science teachers in the elementary and intermediate schools should have interdisciplinary ability in science. However, integrated learning still has not been implemented optimally. This research is designing and applying integrated learning with Susan Loucks-Horsley model in light pollution theme. It can be showed how the student's achievements based on new taxonomy of science education with five domains: knowing & understanding, science process skill, creativity, attitudinal and connecting & applying. This research use mixed methods with concurrent embedded design. The subject is grade 8 of junior high school students in Bandung as many as 27 students. The Instrument have been employed has 28 questions test mastery of concepts, observations sheet and moral dilemma test. The result shows that integrated learning with model Susan Loucks-Horsley is able to increase student's achievement and positive characters on light pollution theme. As the results are the average normalized gain of knowing and understanding domain reach in lower category, the average percentage of science process skill domain reach in good category, the average percentage of creativity and connecting domain reach respectively in good category and attitudinal domain the average percentage is over 75% in moral knowing and moral feeling.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Reynolds number effects in combustion noise
NASA Technical Reports Server (NTRS)
Seshan, P. K.
1981-01-01
Acoustic emission spectra have been obtained for non-premixed turbulent combustion from two small diameter laboratory gas burners, two commercial gas burners and a large gas burner in the firebox of a Babcock-Wilcox Boiler (50,000 lb steam/hr). The changes in burner size and firing rate represent changes in Reynolds number and changes in air/fuel ratio represent departure from stoichiometric proportions. The combustion efficiency was measured independently through gas analysis. The acoustic spectra obtained from the various burners exhibit a persistent shape over the Reynolds number range of 8200-82,000. The spectra were analyzed for identification of a predictable frequency domain that is most responsive to, and readily correlated with, combustion efficiency. A simple parameter (consisting of the ratio of the average acoustic power output in the most responsive frequency bandwidth to the acoustic power level of the loudest frequency) is proposed whose value increases significantly and unmistakably as combustion efficiency approaches 100%. The dependence of the most responsive frequency domain on the various Reynolds numbers associated with turbulent jets is discussed.
Neutron and proton electric dipole moments from N f=2+1 domain-wall fermion lattice QCD
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; ...
2016-05-05
We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with N f = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm 3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm 3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however themore » statistical errors on our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less
NASA Astrophysics Data System (ADS)
Varghese, Joffin; Jayakumar, J. S.
2017-09-01
Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.
Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji
2012-01-01
An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560
NASA Astrophysics Data System (ADS)
ter Maat, G. W.; Stange, M. F.; Church, N. S.; Fabian, K.; McEnroe, S. A.
2016-12-01
Understanding the nature and stability of magnetic minerals is of fundamental importance for mineral exploration using magnetic anomalies. When the remanence direction of the rock is close to that of the inducing field, a larger-than-expected anomaly can be found due to the addition of these components. However, strong anomalies are commonly attributed to coarse magnetite, thereby considering only the induced component, which potentially leads to inaccurate interpretations of subsurface features. Here we investigate the mineralogical causes of large remanent anomalies, and the microstructures within the magnetic oxides. Microstructures formed by processes such as exsolution change the shape, size, spacing, and composition of the magnetic carriers, with implications for stability and strength of remanence. An example of such a remanent anomaly is the Stardalur volcano (Iceland), which yields a large positive anomaly (27300 nT above background). The average NRM intensity is 61 A/m, 15 times stronger than similar Icelandic basalts (Kristjansson, 2002). Samples from a deep drill core have an average susceptibility of 0.07 SI and average Koenigsberger ratio of 23, indicating remanence controls the anomaly. Magnetite is the only remanence carrier (Kristjansson, 2002) and contains a pervasive oxy-exsolution microstructure which is studied here for its influence on remanence. To characterize the effect of the shape, size, and spacing of magnetic particles, 3D reconstructions of closely-spaced grains from the Stardalur basalts were acquired using the slice-and-view focused ion beam technique. These grain geometries were modeled using the MERRILL micromagnetics software to calculate realistic magnetization structures and infer the role of domain states and interactions between particles on bulk properties, including remanence. TEM studies will characterize these microstructures at the nanometer scale, acquire chemical maps, and quantify defects potentially associated with domain wall pinning and viscous magnetization. The examination of microstructures at all length scales will give insight into the processes that yield strong remanence. The better understanding of remanence and bulk properties informs paleo- and rock magnetic studies and promises improved interpretations of magnetic surveys.
Harmonic Domains and Synchronization in Typically and Atypically Developing Hebrew-Speaking Children
ERIC Educational Resources Information Center
Bat-El, Outi
2009-01-01
This paper presents a comparative study of typical and atypical consonant harmony (onset-onset place harmony), with emphasis on (i) the size of the harmonic domain, (ii) the position of the harmonic domain within the prosodic word, and (iii) the maximal size of the prosodic word that exhibits consonant harmony. The data, drawn from typically and…
Coiled-coil length: Size does matter.
Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B
2015-12-01
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.
Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.
Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam
2018-03-29
In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is considerably higher than that of the state-of the art.
Sizes of X-ray radiation coherent domains in thin SmS films and their visualization
NASA Astrophysics Data System (ADS)
Sharenkova, N. V.; Kaminskii, V. V.; Petrov, S. N.
2011-09-01
The size of X-ray radiation coherent domains (250 ± 20 Å) is determined in a thin polycrystalline SmS film using X-ray diffraction patterns (θ-2θ scanning, DRON-2 diffractometer, Cu K α radiation) and the Selyakov-Scherrer formula with allowance for the effect of microstrains. An image of this film is taken with a transmission electron microscope, and regions with a characteristic size of 240 Å are clearly visible in it. It is concluded that X-ray radiation coherent domains are visualized.
Small domain-size multiblock copolymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorino, Jonathan; Eitouni, Hany Basam
2016-09-20
New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.
Self-organization of the magnetization in ferromagnetic nanowires
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Orlov, V. A.
2017-10-01
In this work we demonstrate the occurrence of the characteristic spatial scale in the distribution of magnetization unrelated to the domain wall or crystallite size with using computer simulation of magnetization in a polycrystalline ferromagnetic nanowire. This is the stochastic domain size. We show that this length is included in the spectral density of the pinning force of domain wall on inhomogeneities of the crystallographic anisotropy. The constant and distribution of easy axes directions of the effective anisotropy of stochastic domain, are analytically calculated.
Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing
Gu, Kevin L.; Zhou, Yan; Gu, Xiaodan; ...
2016-11-01
Despite having achieved the long sought-after performance of 10% power conversion efficiency, high performance organic photovoltaics (OPVs) are still mostly constrained to lab scale devices fabricated by spin coating. Efforts to produce printed OPVs lag considerably behind, and the sensitivity to different fabrication methods highlights the need to develop a comprehensive understanding of the processing-morphology relationship in printing methods. Here we present a systematic experimental investigation of a model low bandgap polymer/fullerene system, poly-isoindigo thienothiophene/PC 61BM, using a lab-scale analogue to roll-to-roll coating as the fabrication tool in order to understand the impact of processing parameters on morphological evolution. Wemore » report that domain size and polymer crystallinity can be tuned by a factor of two by controlling the temperature and coating speed. Lower fabrication temperature simultaneously decreased the phase separation domain size and increased the relative degree of crystallinity in those domains, leading to improved photocurrent. We conclude that domain size in isoindigo/PCBM is dictated by spontaneous phase separation rather than crystal nucleation and growth. Moreover we present a model to describe the temperature dependence of domain size formation in our system, which demonstrates that morphology is not necessarily strictly dependent on the evaporation rate, but rather on the interplay between evaporation and diffusion during the printing process.« less
Ji, Chen; Zhang, Yongdeng; Xu, Pingyong; Xu, Tao; Lou, Xuelin
2015-01-01
Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale. PMID:26396197
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, B.; Eisenbach, M.; Burress, Timothy A.
2017-01-24
A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. In conclusion, the transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted andmore » experimentally measured values for Fe.« less
Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin
2013-01-01
Nanometer-scale domains in cholesterolrich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chainasymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniquesmore » to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.« less
NASA Astrophysics Data System (ADS)
Srinivasa Rao, K.; Ranga Nayakulu, S. V.; Chaitanya Varma, M.; Choudary, G. S. V. R. K.; Rao, K. H.
2018-04-01
The present investigation describes the development of cobalt ferrite nanoparticles having size less than 10 nm, by a sol-gel method using polyvinyl alcohol as chelating agent. X-ray results show all the samples, annealed above 700 °C have spinel structure. The information about phase evolution with reaction temperatures was obtained by subjecting the as-prepared powder for DSC/TGA study. High saturation magnetization of 84.63 emu/g has been observed for a particle size of 8.1 nm, a rare event reported till date. The dM/dH versus H curves suggest that the transition from single domain state to multi-domain state occurs with increasing annealing temperature and the critical size for the single domain nature of CoFe2O4 is around 6.5 nm. The estimated critical diameter for single domain particle (6.7 nm) is in good agreement with that (6.5 nm) obtained from Transmission Electron Micrographs. The highest coercivity (1645 Oe) has been found for a particle of size 6.5 nm.
Engineering plasmonic nanostructured surfaces by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea
2018-03-01
The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.
NASA Astrophysics Data System (ADS)
Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.
1990-02-01
Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.
Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films
NASA Astrophysics Data System (ADS)
Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.
2002-03-01
Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).
NASA Astrophysics Data System (ADS)
Sudharsanan, Subramania I.; Mahalanobis, Abhijit; Sundareshan, Malur K.
1990-12-01
Discrete frequency domain design of Minimum Average Correlation Energy filters for optical pattern recognition introduces an implementational limitation of circular correlation. An alternative methodology which uses space domain computations to overcome this problem is presented. The technique is generalized to construct an improved synthetic discriminant function which satisfies the conflicting requirements of reduced noise variance and sharp correlation peaks to facilitate ease of detection. A quantitative evaluation of the performance characteristics of the new filter is conducted and is shown to compare favorably with the well known Minimum Variance Synthetic Discriminant Function and the space domain Minimum Average Correlation Energy filter, which are special cases of the present design.
NASA Astrophysics Data System (ADS)
Feng Zengzhao; Zhang Yongsheng; Jin Zhenkui
1998-06-01
Dolostones are well developed in the Ordovician Majiagou Group in the Ordos area, North China Platform. These dolostones can be divided into four types: mud-sized to silt-sized crystalline dolostones not associated with gypsum and halite beds (type I), mud-sized to silt-sized crystalline dolostones associated with gypsum and halite beds (type II), mottled silt-sized to very fine sand-sized crystalline dolostones (fine saccharoidal dolostones) (type III), and mottled coarse silt-sized to fine sand-sized crystalline dolostones (coarse saccharoidal dolostones) (type IV). Type I dolostones consist of mud-sized to silt-sized dolomite crystals. Laminar stromatolites, ripple marks, mud cracks and birdseyes are common. Such dolostones are not associated with gypsum and halite beds, but lath-shaped pseudomorphs after gypsum are common. The ordering of dolomites averages 0.59, and molar concentration of CaCO 3 averages 51.44%. δ13C averages -0.8‰ (PDB Standard), δ18O averages -2.9‰, δCe averages 0.83. The above characteristics suggest that type I dolostones result from penecontemporaneous dolomitization of lime mud on supratidal flat environments by hypersaline sea water. Type II dolostones mainly consist of mud-sized to silt-sized dolomite crystals. They are commonly well laminated but show no desiccation structures. Such dolostones are intercalated within laminated gypsum and halite beds or are intermixed with them. Such dolostones resulted from dolomitization of lime mud by hypersaline sea water in gypsum and halite precipitating lagoons. Type III dolostones consist of coarse silt-sized to very fine sand-sized dolomite crystals. They commonly underlie type I dolostones and grade downwards to dolomite-mottled limestones and pure limestones. The ordering of dolomites averages 0.63, and molar concentration of CaCO 3 averages 55.64%. δ13C averages -0.2‰, δ18O averages -3.3‰, δCe averages 1.24. Such dolostones resulted from reflux dolomitization by hypersaline sea water. Type IV dolostones consist of coarse-silt-sized to fine-sand-sized dolomite crystals. In such dolostones, stylolites are cut by dolomite crystals. Fluid inclusions are present, and the homogenization temperature commonly ranges from 104°C to 203°C. The ordering of dolomites averages 0.85, and molar concentration of CaCO 3 averages 50.65%. δ13C averages 0.6‰, δ18O averages -7.4‰, and δCe averages 1.16. Such dolostones resulted from deep burial dolomitization. In the Ordos area, type I and II dolostones modified by palaeokarstification are the major gas reservoir rocks of the Ordos Gas Field at present. Type IV dolostones show good reservoir characteristics and may also be potential reservoir rocks.
Method for increasing thermostability in cellulase ennzymes
Adney, William S.; Thomas, Steven R.; Baker, John O.; Himmel, Michael E.; Chou, Yat-Chen
1998-01-01
The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in Pichia pastoris. A new modified E1 endoglucanase enzyme comprising the catalytic domain of the full size E1 enzyme demonstrates enhanced thermostability and is produced by two methods. The first method of producing the new modified E1 is proteolytic cleavage to remove the cellulose binding domain and linker peptide of the full size E1. The second method of producing the new modified E1 is genetic truncation of the gene encoding the full size E1 so that the catalytic domain is expressed in the expression product.
Structure and texture analysis of PVC foils by neutron diffraction.
Kalvoda, L; Dlouhá, M; Vratislav, S
2010-01-01
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed. Copyright 2009 Elsevier Ltd. All rights reserved.
Real time display Fourier-domain OCT using multi-thread parallel computing with data vectorization
NASA Astrophysics Data System (ADS)
Eom, Tae Joong; Kim, Hoon Seop; Kim, Chul Min; Lee, Yeung Lak; Choi, Eun-Seo
2011-03-01
We demonstrate a real-time display of processed OCT images using multi-thread parallel computing with a quad-core CPU of a personal computer. The data of each A-line are treated as one vector to maximize the data translation rate between the cores of the CPU and RAM stored image data. A display rate of 29.9 frames/sec for processed OCT data (4096 FFT-size x 500 A-scans) is achieved in our system using a wavelength swept source with 52-kHz swept frequency. The data processing times of the OCT image and a Doppler OCT image with a 4-time average are 23.8 msec and 91.4 msec.
Integration of color, orientation, and size functional domains in the ventral pathway
Ghose, Geoffrey M.; Ts’o, Daniel Y.
2017-01-01
Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155
Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.
2011-01-01
The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.
Wettability Patterning for Enhanced Dropwise Condensation
NASA Astrophysics Data System (ADS)
Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine
2014-11-01
Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.
NASA Astrophysics Data System (ADS)
Abdallah, Hafiz M. I.; Moyo, Thomas; Ngema, Nokwanda
2015-11-01
Nanocrystalline Co0.5Ni05Fe2O4 ferrite with average crystallite size of 7.6 nm and lattice constant of 0.8372 nm was synthesized via a glycol-thermal process. The structure parameters and morphology of the as-synthesized sample and annealed samples were characterized by XRD, EDX, FTIR, HRSEM and HRTEM. The hyperfine interactions, iron distribution on the tetrahedral and octahedral sites for the as-synthesized sample and samples annealed at 500 °C were deduced by Mössbauer spectroscopy measurements at 300 K. The magnetization measurements for the as-synthesized and annealed samples (300-900 °C) were obtained by a vibrating sample magnetometer on a cryogen free measurement system at different isothermal temperatures (4-300 K) in external applied magnetic fields of ±5 T. The temperature dependence of the magnetic properties such as coercive field, saturation magnetization, remanent magnetization and squareness of hysteresis loops were investigated. The sample transformed from single-domain to multi-domain configuration at particle size of about 31 nm. At 300 K, the sample annealed at 700 °C exhibits a maximum coercivity. The as-prepared sample shows a substantial increase in coercivity from 0.182 kOe at 300 K to 6.018 kOe at 4 K.
NASA Astrophysics Data System (ADS)
Bär, Markus; Bangia, Anil K.; Kevrekidis, Ioannis G.
2003-05-01
Recent experimental and model studies have revealed that the domain size may strongly influence the dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmann et al. [Phys. Rev. Lett. 76, 1384 (1996)], report a frequency increase of spirals in circular domains with diameters substantially smaller than the spiral wavelength in a large domain for the catalytic NO+CO reaction on a microstructured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigenvectors very close to those corresponding to infinite medium translational invariance are observed. Upon decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these eigenvalues from being neutrally stable (zero real part). The latter phenomenon indicates that the translation symmetry of the spiral solution is appreciably broken due to the interaction with the (now nearby) wall. Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves towards the center of the circular domain corresponding to a negative real part of the “translational” eigenvalues. This effect is noticeable at a domain radius of R
NASA Astrophysics Data System (ADS)
Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.
2011-12-01
River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu2Ga2B
NASA Astrophysics Data System (ADS)
Wulferding, D.; Kim, H.; Yang, I.; Jeong, J.; Barros, K.; Kato, Y.; Martin, I.; Ayala-Valenzuela, O. E.; Lee, M.; Choi, H. C.; Ronning, F.; Civale, L.; Baumbach, R. E.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.; Kim, Jeehoon
2017-04-01
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu2Ga2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu 2Ga 2B
Wulferding, Dirk; Kim, Hoon; Yang, Ilkyu; ...
2017-04-10
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu 2Ga 2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field asmore » well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.« less
Preoperative progressive pneumoperitoneum in patients with abdominal-wall hernias.
Mayagoitia, J C; Suárez, D; Arenas, J C; Díaz de León, V
2006-06-01
Induction of preoperative progressive pneumoperitoneum is an elective procedure in patients with hernias with loss of domain. A prospective study was carried out from June 2003 to May 2005 at the Hospital de Especialidades, Instituto Mexicano del Seguro Social, Leon, Mexico. Preoperative progressive pneumoperitoneum was induced using a double-lumen intraabdominal catheter inserted through a Veress needle and daily insufflation of ambient air. Variables analyzed were age, sex, body mass index, type, location and size of defective hernia, number of previous repairs, number of days pneumoperitoneum was maintained, type of hernioplasty, and incidence of complications. Of 12 patients, 2 were excluded because it was technically impossible to induce pneumoperitoneum. Of the remaining 10 patients, 60% were female and 40% were male. The patients' average age was 51.5 years, average body mass index was 34.7, and evolution time of their hernias ranged from 8 months to 23 years. Nine patients had ventral hernias and one had an inguinal hernia. Pneumoperitoneum was maintained for an average of 9.3 days and there were no serious complications relating to the puncture or the maintenance of the pneumoperitoneum. One patient who previously had undergone a mastectomy experienced minor complications. We were able to perform hernioplasty on all patients, eight with the Rives technique, one with supra-aponeurotic mesh, and one using the Lichtenstein method for inguinal hernia repair. One patient's wound became infected postoperatively. Preoperative progressive pneumoperitoneum is a safe procedure that is easy to perform and that facilitates surgical hernia repair in patients with hernia with loss of domain. Complications are infrequent, patient tolerability is adequate, and the proposed modification to the puncture technique makes the procedure even safer.
77 FR 72766 - Small Business Size Standards: Support Activities for Mining
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... its entirety for parties who have an interest in SBA's overall approach to establishing, evaluating....gov , Docket ID: SBA-2009- 0008. SBA continues to welcome comments on its methodology from interested.... Average firm size. SBA computes two measures of average firm size: simple average and weighted average...
Social cognitive functioning in prodromal psychosis: A meta-analysis.
Lee, Tae Young; Hong, Sang Bin; Shin, Na Young; Kwon, Jun Soo
2015-05-01
There is substantial evidence regarding a social cognitive deficit in schizophrenia, and it has been suggested to be a trait-marker of this disorder. However, a domain-by-domain analysis of social cognitive deficits in individuals at clinical high risk (CHR) for psychosis has not been performed. Electronic databases were searched for studies regarding social cognitive performance in individuals at CHR. The included social cognitive domains, which were classified based on the Social Cognition Psychometric Evaluation (SCOPE) initiative of the National Institute of Mental Health (NIMH), were as follows: theory of mind (ToM), social perception (SP), attributional bias (AB), and emotion processing (EP). Twenty studies that included 1229 individuals at CHR and 825 healthy controls met the inclusion criteria. The overall effect size for social cognition was medium (g=-0.477). The largest effect size was identified for AB (g=-0.708). A medium effect size was identified for EP (g=-0.446) and ToM (g=-0.425), and small effects were identified for SP (g=-0.383). This is the first quantitative domain-by-domain social cognitive meta-analysis regarding CHR individuals. The present study indicated that individuals at CHR exhibited significant impairments in all domains of social cognition compared with healthy controls, with the largest effect size identified for AB. The identification of social cognitive domains that reflect an increased risk for impending psychosis and of predictors of the conversion to psychosis via a longitudinal follow-up study is required. Copyright © 2015 Elsevier B.V. All rights reserved.
Torrao, G; Fontes, T; Coelho, M; Rouphail, N
2016-07-01
In general, car manufacturers face trade-offs between safety, efficiency and environmental performance when choosing between mass, length, engine power, and fuel efficiency. Moreover, the information available to the consumers makes difficult to assess all these components at once, especially when aiming to compare vehicles across different categories and/or to compare vehicles in the same category but across different model years. The main objective of this research was to develop an integrated tool able to assess vehicle's performance simultaneously for safety and environmental domains, leading to the research output of a Safety, Fuel Efficiency and Green Emissions (SEG) indicator able to evaluate and rank vehicle's performance across those three domains. For this purpose, crash data was gathered in Porto (Portugal) for the period 2006-2010 (N=1374). The crash database was analyzed and crash severity prediction models were developed using advanced logistic regression models. Following, the methodology for the SEG indicator was established combining the vehicle's safety and the environmental evaluation into an integrated analysis. The obtained results for the SEG indicator do not show any trade-off between vehicle's safety, fuel consumption and emissions. The best performance was achieved for newer gasoline passenger vehicles (<5year) with a smaller engine size (<1400cm(3)). According to the SEG indicator, a vehicle with these characteristics can be recommended for a safety-conscious profile user, as well as for a user more interested in fuel economy and/or in green performance. On the other hand, for larger engine size vehicles (>2000cm(3)) the combined score for safety user profile was in average more satisfactory than for vehicles in the smaller engine size group (<1400cm(3)), which suggests that in general, larger vehicles may offer extra protection. The achieved results demonstrate that the developed SEG integrated methodology can be a helpful tool for consumers to evaluate their vehicle selection through different domains (safety, fuel efficiency and green emissions). Furthermore, SEG indicator allows the comparison of vehicles across different categories and vehicle model years. Hence, this research is intended to support the decision-making process for transportation policy, safety and sustainable mobility, providing insights not only to policy makers, but also for general public guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Going from microscopic to macroscopic on nonuniform growing domains.
Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K
2012-08-01
Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.
Method for increasing thermostability in cellulase ennzymes
Adney, W.S.; Thomas, S.R.; Baker, J.O.; Himmel, M.E.; Chou, Y.C.
1998-01-27
The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in Pichia pastoris. A new modified E1 endoglucanase enzyme comprising the catalytic domain of the full size E1 enzyme demonstrates enhanced thermostability and is produced by two methods. The first method of producing the new modified E1 is proteolytic cleavage to remove the cellulose binding domain and linker peptide of the full size E1. The second method of producing the new modified E1 is genetic truncation of the gene encoding the full size E1 so that the catalytic domain is expressed in the expression product. 8 figs.
Waif goodbye! Average-size female models promote positive body image and appeal to consumers.
Diedrichs, Phillippa C; Lee, Christina
2011-10-01
Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.
Maize centromeres expand and adopt a uniform size in the genetic background of oat
Wang, Kai; Wu, Yufeng; Zhang, Wenli; Dawe, R. Kelly; Jiang, Jiming
2014-01-01
Most existing centromeres may have originated as neocentromeres that activated de novo from noncentromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of nine chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Two isolates of maize chromosome 3 proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9, and 10) were retained in the same area in both species. In all cases, the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (∼3.6 Mb) than the average centromere size in maize (∼1.8 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. These results provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene-poor regions. Our results suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations. PMID:24100079
Maize centromeres expand and adopt a uniform size in the genetic background of oat.
Wang, Kai; Wu, Yufeng; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming
2014-01-01
Most existing centromeres may have originated as neocentromeres that activated de novo from noncentromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of nine chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Two isolates of maize chromosome 3 proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9, and 10) were retained in the same area in both species. In all cases, the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (∼3.6 Mb) than the average centromere size in maize (∼1.8 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. These results provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene-poor regions. Our results suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations.
Dynamics of domain coverage of the protein sequence universe.
Rekapalli, Bhanu; Wuichet, Kristin; Peterson, Gregory D; Zhulin, Igor B
2012-11-16
The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its "dark matter". Here we suggest that true size of "dark matter" is much larger than stated by current definitions. We propose an approach to reducing the size of "dark matter" by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of "dark matter"; however, its absolute size increases substantially with the growth of sequence data.
Perception of the average size of multiple objects in chimpanzees (Pan troglodytes).
Imura, Tomoko; Kawakami, Fumito; Shirai, Nobu; Tomonaga, Masaki
2017-08-30
Humans can extract statistical information, such as the average size of a group of objects or the general emotion of faces in a crowd without paying attention to any individual object or face. To determine whether summary perception is unique to humans, we investigated the evolutional origins of this ability by assessing whether chimpanzees, which are closely related to humans, can also determine the average size of multiple visual objects. Five chimpanzees and 18 humans were able to choose the array in which the average size was larger, when presented with a pair of arrays, each containing 12 circles of different or the same sizes. Furthermore, both species were more accurate in judging the average size of arrays consisting of 12 circles of different or the same sizes than they were in judging the average size of arrays consisting of a single circle. Our findings could not be explained by the use of a strategy in which the chimpanzee detected the largest or smallest circle among those in the array. Our study provides the first evidence that chimpanzees can perceive the average size of multiple visual objects. This indicates that the ability to compute the statistical properties of a complex visual scene is not unique to humans, but is shared between both species. © 2017 The Authors.
Perception of the average size of multiple objects in chimpanzees (Pan troglodytes)
Kawakami, Fumito; Shirai, Nobu; Tomonaga, Masaki
2017-01-01
Humans can extract statistical information, such as the average size of a group of objects or the general emotion of faces in a crowd without paying attention to any individual object or face. To determine whether summary perception is unique to humans, we investigated the evolutional origins of this ability by assessing whether chimpanzees, which are closely related to humans, can also determine the average size of multiple visual objects. Five chimpanzees and 18 humans were able to choose the array in which the average size was larger, when presented with a pair of arrays, each containing 12 circles of different or the same sizes. Furthermore, both species were more accurate in judging the average size of arrays consisting of 12 circles of different or the same sizes than they were in judging the average size of arrays consisting of a single circle. Our findings could not be explained by the use of a strategy in which the chimpanzee detected the largest or smallest circle among those in the array. Our study provides the first evidence that chimpanzees can perceive the average size of multiple visual objects. This indicates that the ability to compute the statistical properties of a complex visual scene is not unique to humans, but is shared between both species. PMID:28835550
Collaboration Technology in Military Operations: Lessons Learned from the Corporate Domain
2006-02-01
Learned from the Corporate Domain Topics: Social Domain Issues, Cognitive Domain Issues, C2 Experimentation Authors: Stacey D. Scott, M. L. Cummings, David...AFRL-HE-WP-TP-2006-0029 AIR FORCE RESEARCH LABORATORY Collaboration Technology in Military Operations: Lessons Learned from the Corporate Domain...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response , including the time for
Unfolding grain size effects in barium titanate ferroelectric ceramics
Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue
2015-01-01
Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408
Socioeconomic inequality in domains of health: results from the World Health Surveys
2012-01-01
Background In all countries people of lower socioeconomic status evaluate their health more poorly. Yet in reporting overall health, individuals consider multiple domains that comprise their perceived health state. Considered alone, overall measures of self-reported health mask differences in the domains of health. The aim of this study is to compare and assess socioeconomic inequalities in each of the individual health domains and in a separate measure of overall health. Methods Data on 247,037 adults aged 18 or older were analyzed from 57 countries, drawn from all national income groups, participating in the World Health Survey 2002-2004. The analysis was repeated for lower- and higher-income countries. Prevalence estimates of poor self-rated health (SRH) were calculated for each domain and for overall health according to wealth quintiles and education levels. Relative socioeconomic inequalities in SRH were measured for each of the eight health domains and for overall health, according to wealth quintiles and education levels, using the relative index of inequality (RII). A RII value greater than one indicated greater prevalence of self-reported poor health among populations of lower socioeconomic status, called pro-rich inequality. Results There was a descending gradient in the prevalence of poor health, moving from the poorest wealth quintile to the richest, and moving from the lowest to the highest educated groups. Inequalities which favor groups who are advantaged either with respect to wealth or education, were consistently statistically significant in each of the individual domains of health, and in health overall. However the size of these inequalities differed between health domains. The prevalence of reporting poor health was higher in the lower-income country group. Relative socioeconomic inequalities in the health domains and overall health were higher in the higher-income country group than the lower-income country group. Conclusions Using a common measurement approach, inequalities in health, favoring the rich and the educated, were evident in overall health as well as in every health domain. Existent differences in averages and inequalities in health domains suggest that monitoring should not be limited only to overall health. This study carries important messages for policy-making in regard to tackling inequalities in specific domains of health. Targeting interventions towards individual domains of health such as mobility, self-care and vision, ought to be considered besides improving overall health. PMID:22429978
Diedrichs, Phillippa C; Lee, Christina
2010-06-01
Increasing body size and shape diversity in media imagery may promote positive body image. While research has largely focused on female models and women's body image, men may also be affected by unrealistic images. We examined the impact of average-size and muscular male fashion models on men's and women's body image and perceived advertisement effectiveness. A sample of 330 men and 289 women viewed one of four advertisement conditions: no models, muscular, average-slim or average-large models. Men and women rated average-size models as equally effective in advertisements as muscular models. For men, exposure to average-size models was associated with more positive body image in comparison to viewing no models, but no difference was found in comparison to muscular models. Similar results were found for women. Internalisation of beauty ideals did not moderate these effects. These findings suggest that average-size male models can promote positive body image and appeal to consumers. 2010 Elsevier Ltd. All rights reserved.
Goldstein, Judith E; Jackson, Mary Lou; Fox, Sandra M; Deremeik, James T; Massof, Robert W
2015-07-01
To facilitate comparative clinical outcome research in low vision rehabilitation, we must use patient-centered measurements that reflect clinically meaningful changes in visual ability. To quantify the effects of currently provided low vision rehabilitation (LVR) on patients who present for outpatient LVR services in the United States. Prospective, observational study of new patients seeking outpatient LVR services. From April 2008 through May 2011, 779 patients from 28 clinical centers in the United States were enrolled in the Low Vision Rehabilitation Outcomes Study. The Activity Inventory, a visual function questionnaire, was administered to measure overall visual ability and visual ability in 4 functional domains (reading, mobility, visual motor function, and visual information processing) at baseline and 6 to 9 months after usual LVR care. The Geriatric Depression Scale, Telephone Interview for Cognitive Status, and Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning questionnaires were also administered to measure patients' psychological, cognitive, and physical health states, respectively, and clinical findings of patients were provided by study centers. Mean changes in the study population and minimum clinically important differences in the individual in overall visual ability and in visual ability in 4 functional domains as measured by the Activity Inventory. Baseline and post-rehabilitation measures were obtained for 468 patients. Minimum clinically important differences (95% CIs) were observed in nearly half (47% [95% CI, 44%-50%]) of patients in overall visual ability. The prevalence rates of patients with minimum clinically important differences in visual ability in functional domains were reading (44% [95% CI, 42%-48%]), visual motor function (38% [95% CI, 36%-42%]), visual information processing (33% [95% CI, 31%-37%]), and mobility (27% [95% CI, 25%-31%]). The largest average effect size (Cohen d = 0.87) for the population was observed in overall visual ability. Age (P = .006) was an independent predictor of changes in overall visual ability, and logMAR visual acuity (P = .002) was predictive of changes in visual information processing. Forty-four to fifty percent of patients presenting for outpatient LVR show clinically meaningful differences in overall visual ability after LVR, and the average effect sizes in overall visual ability are large, close to 1 SD.
NASA Astrophysics Data System (ADS)
Patrizio, Casey
A three-dimensional cloud-resolving model (CRM) was used to investigate the preferred separation distance between humid, rainy regions formed by convective aggregation in radiative-convective equilibrium without rotation. We performed the simulations with doubly-periodic square domains of widths 768 km, 1536 km and 3072 km over a time period of about 200 days. The simulations in the larger domains were initialized using multiple copies of the results in the small domain at day 90, plus a small perturbation. With all three domain sizes, the simulations evolved to a single statistically steady convective cluster surrounded by a broader region of dry, subsiding air by about day 150. In the largest domain case, however, we found that an additional convective cluster formed when we the simulation was run for an extended period of time. Specifically, a smaller convective cluster formed at around day 185 at a maximum radial distance from the larger cluster and then re-merged with the larger cluster after about 10 days. We explored how the aggregated state was different in each domain case, before the smaller cluster formed in the large domain. In particular, we investigated changes in the radial structure of the aggregated state by calculating profiles for the water, dynamics and radiation as a function of distance from the center of the convective region. Changes in the vertical structure were also investigated by compositing on the convective region and dry, subsiding region at each height. We found that, with increasing domain size, the convective region boundary layer became more buoyant, the convective cores reached deeper into the troposphere, the mesoscale convective updraft became weaker, and the mesoscale convective region spread out. Additionally, as the domain size was increased, conditions in the remote environment became favorable for convection. We describe a physical mechanism for the weakening of the mesoscale convective updraft and associated broadening of the convective region with increasing domain size, which involves mid-level stable layer enhancement as a result of the deeper convection. Finally, a simple analytical model of the aggregated state was used to explore the dependency of the convective fractional area on the domain size. The simple model solutions that had net radiative cooling and surface evaporation in the convective region were consistent with the simulation results. In particular, the solutions captured the broadening of the convective region, the weakening of the convective region updraft, as well as the positive and declining gross moist stability (GMS) that occurred with increasing domain size in the simulations. Furthermore, the simple model transitioned from positive to negative GMS at a domain length of about 7000 km because the convective region boundary layer became progressively more humid with increasing domain size. This suggests that the spatial scale of the aggregated RCE state in the simulations would be limited to a length scale of about 7000 km, as convectively-active areas are commonly observed to have positive GMS. This work additionally suggests that the processes that influence the water vapor content in the convective region boundary layer, such as convectively-driven turbulent water vapor fluxes, are important for determining the spatial scale of the aggregated RCE state.
Estimation of Length-Scales in Soils by MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.
2004-01-01
Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.
Su, Yuanchang; Weng, Lianghao; Dong, Wenjun; Xi, Bin; Xiong, Rui; Hu, Jingguo
2017-10-17
By micromagnetic simulations, we study the current-driven 360° domain wall (360DW) motion in ferromagnetic nanostripe with an in-plane biaxial anisotropy. We observe the critical annihilation current of 360° domain wall can be enhanced through such a type of anisotropy, the reason of which is the suppression of out-of-plane magnetic moments generated simultaneously with domain-wall motion. In details, We have found that the domain-wall width is only related to K y - K x , with K x(y) the anisotropy constant in x(y) direction. Taking domain-wall width into consideration, a prior choice is to keep K y ≈ K x with large enough K. The mode of domain-wall motion has been investigated as well. The traveling-wave-motion region increases with K, while the average DW velocity is almost unchanged. Another noteworthy feature is that a Walker-breakdown-like motion exists before annihilation. In this region, though domain wall moves with an oscillating behavior, the average velocity does not reduce dramatically, but even rise again for a large K.
Itoh, Masumi; Nacher, Jose C; Kuma, Kei-ichi; Goto, Susumu; Kanehisa, Minoru
2007-01-01
In higher multicellular eukaryotes, complex protein domain combinations contribute to various cellular functions such as regulation of intercellular or intracellular signaling and interactions. To elucidate the characteristics and evolutionary mechanisms that underlie such domain combinations, it is essential to examine the different types of domains and their combinations among different groups of eukaryotes. We observed a large number of group-specific domain combinations in animals, especially in vertebrates. Examples include animal-specific combinations in tyrosine phosphorylation systems and vertebrate-specific combinations in complement and coagulation cascades. These systems apparently underwent extensive evolution in the ancestors of these groups. In extant animals, especially in vertebrates, animal-specific domains have greater connectivity than do other domains on average, and contribute to the varying number of combinations in each animal subgroup. In other groups, the connectivities of older domains were greater on average. To observe the global behavior of domain combinations during evolution, we traced the changes in domain combinations among animals and fungi in a network analysis. Our results indicate that there is a correlation between the differences in domain combinations among different phylogenetic groups and different global behaviors. Rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no such trends were observed in other clades of eukaryotes. We therefore suggest that the strategy for achieving complex multicellular systems in animals differs from that of other eukaryotes.
Joint scaling laws in functional and evolutionary categories in prokaryotic genomes
Grilli, J.; Bassetti, B.; Maslov, S.; Cosentino Lagomarsino, M.
2012-01-01
We propose and study a class-expansion/innovation/loss model of genome evolution taking into account biological roles of genes and their constituent domains. In our model, numbers of genes in different functional categories are coupled to each other. For example, an increase in the number of metabolic enzymes in a genome is usually accompanied by addition of new transcription factors regulating these enzymes. Such coupling can be thought of as a proportional ‘recipe’ for genome composition of the type ‘a spoonful of sugar for each egg yolk’. The model jointly reproduces two known empirical laws: the distribution of family sizes and the non-linear scaling of the number of genes in certain functional categories (e.g. transcription factors) with genome size. In addition, it allows us to derive a novel relation between the exponents characterizing these two scaling laws, establishing a direct quantitative connection between evolutionary and functional categories. It predicts that functional categories that grow faster-than-linearly with genome size to be characterized by flatter-than-average family size distributions. This relation is confirmed by our bioinformatics analysis of prokaryotic genomes. This proves that the joint quantitative trends of functional and evolutionary classes can be understood in terms of evolutionary growth with proportional recipes. PMID:21937509
The Association between Penis Size and Sexual Health among Men Who Have Sex with Men
Grov, Christian; Parsons, Jeffrey T.; Bimbi, David S.
2010-01-01
Larger penis size has been equated with a symbol of power, stamina, masculinity, and social status. Yet, there has been little research among men who have sex with men assessing the association between penis size and social-sexual health. Survey data from a diverse sample of 1,065 men who have sex with men were used to explore the association between perceived penis size and a variety of psychosocial outcomes. Seven percent of men felt their penis was “below average,” 53.9% “average,” and 35.5% “above average.” Penis size was positively related to satisfaction with size and inversely related to lying about penis size (all p < .01). Size was unrelated to condom use, frequency of sex partners, HIV status, or recent diagnoses of HBV, HCV, gonorrhea/Chlamydia/urinary tract infections, and syphilis. Men with above average penises were more likely to report HPV and HSV-2 (Fisher’s exact p ≤ .05). Men with below average penises were significantly more likely to identify as “bottoms” (anal receptive) and men with above average penises were significantly more likely to identify as tops (anal insertive). Finally, men with below average penises fared significantly worse than other men on three measures of psychosocial adjustment. Though most men felt their penis size was average, many fell outside this “norm.” The disproportionate number of viral skin-to-skin STIs (HSV-2 and HPV) suggest size may play a role in condom slippage/breakage. Further, size played a significant role in sexual positioning and psychosocial adjustment. These data highlight the need to better understand the real individual-level consequences of living in a penis-centered society. PMID:19139986
Firmin, Ruth L; Luther, Lauren; Lysaker, Paul H; Minor, Kyle S; Salyers, Michelle P
2016-08-01
To better understand how stigma resistance impacts functioning-related domains, we examined mean effect sizes between stigma resistance and: 1) symptoms (overall, positive, negative, and mood symptoms); 2) self-stigma; 3) self-efficacy; 4) quality of life; 5) recovery; 6) hope; 7) insight, and 8) overall outcomes (the average effect size across the constructs examined in each study). The mean effect size between stigma resistance and overall outcomes was significant and positive (r=0.46, p<0.001, k=48). A large, negative effect size was found between stigma resistance and self-stigma (r=-0.57, p<0.001, k=40). Large, positive effect sizes were found with self-efficacy (r=0.60, p<0.001, k=25), quality of life (r=0.51, p<0.001, k=17), hope (r=0.54, p<0.001, k=8), and recovery (r=0.60, p<0.001, k=7). Stigma resistance had a significant medium and small relationship with insight and symptoms, respectively. Race significantly moderated overall outcomes, self-stigma, mood symptoms, functioning, and hope associations. Education significantly moderated symptoms, functioning, and mood symptoms associations, and age significantly moderated self-stigma and negative symptom associations. Stigma resistance may be a key requirement for recovery. Individual characteristics influence resisting stigma and future work should prioritize cultural factors surrounding stigma resistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving cognitive outcomes for pediatric stroke.
Greenham, Mardee; Anderson, Vicki; Mackay, Mark T
2017-04-01
The past 20 years have seen a 35% increase in prevalence of pediatric stroke. Contrary to widely held views, children do not recover better than adults. This review explores the impact of pediatric stroke on cognitive domains, including intellectual and executive functions, memory and behavior, and the influence of age, lesion characteristics, and comorbidities on outcome. Cognitive problems occur in up to half of ischemic and hemorrhagic stroke survivors. Single-center studies have shown intelligence quotient scores skewed to the lower end of the average range, with greater impairment in performance than verbal domains. Executive function, such as attention and processing speed are particularly vulnerable to the effects of pediatric stroke. Age at stroke, larger infarct size, cortical/subcortical lesion location, epilepsy, and comorbid physical deficits are associated with poorer cognitive outcomes. Cognitive impairment occurs relatively frequently following pediatric stroke but the nature, severity, and predictors of specific deficits are not well defined. Improving understanding of outcomes following pediatric stroke is a key priority for families but a paucity of data limits the ability to develop targeted disease, and age-specific pediatric rehabilitation strategies to optimize cognitive outcomes following pediatric stroke.
Advanced Microwave Radiometer (AMR) for SWOT mission
NASA Astrophysics Data System (ADS)
Chae, C. S.
2015-12-01
The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.
Ferromagnetic resonance studies of granular materials (abstract)
NASA Astrophysics Data System (ADS)
Rubinstein, Mark; Das, Badri; Chrisey, D. B.; Horwitz, J.; Koon, N. C.
1994-05-01
We have investigated the ferromagnetic resonance (FMR) spectra of several granular alloys displaying giant magnetoresistance (GMR). For this task, we have produced melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80 by rapid quenching and thin films of Co80Cu20 by pulsed laser deposition. The salient feature of the FMR spectra is the increase of the resonance linewidth as a function of increasing annealing temperature. We have deconvoluted the FMR spectra to a single-domain powder pattern and a multidomain powder pattern. As a function of annealing temperature, the GMR of these samples attains a maximum value. Near the peak of the GMR curve, the FMR spectrum reveals that the ferromagnetic particles are half mono- and half multidomain. Since the maximum size of a single-domain particle is known, this enables us to estimate the spin diffusion length of the Cu conduction electrons. We have also demonstrated, theoretically and experimentally, that the appropriate demagnetizing field to apply to the ensemble of spherical magnetic particles that comprise our granular thin film is simply the field corresponding to the average magnetization.
Dynamics of domain coverage of the protein sequence universe
2012-01-01
Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data. PMID:23157439
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Algorithm-Dependent Generalization Bounds for Multi-Task Learning.
Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J
2017-02-01
Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.
Magnetic Force Microscopy Investigation of Magnetic Domains in Nd2Fe14B
NASA Astrophysics Data System (ADS)
Talari, Mahesh Kumar; Markandeyulu, G.; Rao, K. Prasad
2010-07-01
Remenance and coercivity in Nd2Fe14B materials are strongly dependent on the microstructural aspects like phases morphology and grain size. The coercivity (Hc) of a magnetic material varies inversely with the grain size (D) and there is a critical size below which Hc∝D6. Domain wall pinning by grain boundaries and foreign phases is the important mechanism in explaining the improvement in coercivity and remenance. Nd2Fe14B intermetallic compound with stochiometric composition was prepared from pure elements (Nd -99.5%, Fe—99.95%, B -99.99%) by arc melting in argon atmosphere. Magnetic Force Microscope (MFM) gives high-resolution magnetic domain structural information of ferromagnetic samples. DI-3100 Scanning Probe Microscope with MESP probes was used For MFM characterization of the samples. Magnetic domains observed in cast ingots were very long (up to 40 μm were observed) and approximately 1-5 μm wide due to high anisotropy of the compounds. Magnetic domains have displayed different image contrast and morphologies at different locations of the samples. The domain morphologies and image contrast obtained in this analysis were explained in this paper.
Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Asheesh, E-mail: asheeshk@barc.gov.in; Meena, S.S.; Banerjee, S.
Highlights: • Fe–Ni solid solution with nano-size dimensions were prepared and characterized. • Both as prepared and hydrogenated solid solutions have FCC structure of Ni. • Paramagnetic and ferromagnetic domains coexist in these samples. - Abstract: Nanoparticles of Ni{sub 0.50}Fe{sub 0.50} and Ni{sub 0.75}Fe{sub 0.25} alloys were prepared by chemical reduction in ethylene glycol medium. XRD and {sup 57}Fe Mössbauer studies have confirmed the formation of Fe–Ni solid solution in nano-size dimensions with FCC structure. These samples consist of both ferromagnetic and paramagnetic domains which have been attributed to the coexistence of large and small particles as confirmed by atomicmore » force microscopic (AFM) and {sup 57}Fe Mössbauer spectroscopic studies. Improved extent of Fe–Fe exchange interaction existing in Ni{sub 0.50}Fe{sub 0.50} alloy compared to Ni{sub 0.75}Fe{sub 0.25} alloy explains the observed increase in the relative extent of ferromagnetic domains compared to paramagnetic domains in the former sample. Increase in the relative extent of ferromagnetic domains for hydrogenated alloys is due to increase in particle size brought about by the high temperature activation prior to hydrogenation.« less
Setting initial conditions for inflation with reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Bagchi, Partha; Das, Arpan; Dave, Shreyansh S.; Sengupta, Srikumar; Srivastava, Ajit M.
2018-03-01
We discuss the issue of setting appropriate initial conditions for inflation. Specifically, we consider natural inflation model and discuss the fine tuning required for setting almost homogeneous initial conditions over a region of order several times the Hubble size which is orders of magnitude larger than any relevant correlation length for field fluctuations. We then propose to use the special propagating front solutions of reaction-diffusion equations for localized field domains of smaller sizes. Due to very small velocities of these propagating fronts we find that the inflaton field in such a field domain changes very slowly, contrary to naive expectation of rapid roll down to the true vacuum. Continued expansion leads to the energy density in the Hubble region being dominated by the vacuum energy, thereby beginning the inflationary phase. Our results show that inflation can occur even with a single localized field domain of size smaller than the Hubble size. We discuss possible extensions of our results for different inflationary models, as well as various limitations of our analysis (e.g. neglecting self gravity of the localized field domain).
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
NASA Astrophysics Data System (ADS)
Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng
2017-11-01
This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.
Nonrotating Convective Self-Aggregation in a Limited Area AGCM
NASA Astrophysics Data System (ADS)
Arnold, Nathan P.; Putman, William M.
2018-04-01
We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.
Rao, Mala V.; Campbell, Jabbar; Yuan, Aidong; Kumar, Asok; Gotow, Takahiro; Uchiyama, Yasuo; Nixon, Ralph A.
2003-01-01
The phosphorylated carboxyl-terminal “tail” domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681–693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail–deleted (NF-MtailΔ) mutant mice using an embryonic stem cell–mediated “gene knockin” approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailΔ mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail–mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M. PMID:14662746
Sensitivity of LES results from turbine rim seals to changes in grid resolution and sector size
NASA Astrophysics Data System (ADS)
O'Mahoney, T.; Hills, N.; Chew, J.
2012-07-01
Large-Eddy Simulations (LES) were carried out for a turbine rim seal and the sensitivity of the results to changes in grid resolution and the size of the computational domain are investigated. Ingestion of hot annulus gas into the rotor-stator cavity is compared between LES results and against experiments and Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations. The LES calculations show greater ingestion than the URANS calculation and show better agreement with experiments. Increased grid resolution shows a small improvement in ingestion predictions whereas increasing the sector model size has little effect on the results. The contrast between the different CFD models is most stark in the inner cavity, where the URANS shows almost no ingestion. Particular attention is also paid to the presence of low frequency oscillations in the disc cavity. URANS calculations show such low frequency oscillations at different frequencies than the LES. The oscillations also take a very long time to develop in the LES. The results show that the difficult problem of estimating ingestion through rim seals could be overcome by using LES but that the computational requirements were still restrictive.
Yokoyama, Takao; Miura, Fumihito; Araki, Hiromitsu; Okamura, Kohji; Ito, Takashi
2015-08-12
Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome. We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome. Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.
Medelnik, Jan-Philip; Roensch, Kathleen; Okawa, Satoshi; Del Sol, Antonio; Chara, Osvaldo; Mchedlishvili, Levan; Tanaka, Elly M
2018-06-05
In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Speckle size in optical Fourier domain imaging
NASA Astrophysics Data System (ADS)
Lamouche, G.; Vergnole, S.; Bisaillon, C.-E.; Dufour, M.; Maciejko, R.; Monchalin, J.-P.
2007-06-01
As in conventional time-domain optical coherence tomography (OCT), speckle is inherent to any Optical Fourier Domain Imaging (OFDI) of biological tissue. OFDI is also known as swept-source OCT (SS-OCT). The axial speckle size is mainly determined by the OCT resolution length and the transverse speckle size by the focusing optics illuminating the sample. There is also a contribution from the sample related to the number of scatterers contained within the probed volume. In the OFDI data processing, there is some liberty in selecting the range of wavelengths used and this allows variation in the OCT resolution length. Consequently the probed volume can be varied. By performing measurements on an optical phantom with a controlled density of discrete scatterers and by changing the probed volume with different range of wavelengths in the OFDI data processing, there is an obvious change in the axial speckle size, but we show that there is also a less obvious variation in the transverse speckle size. This work contributes to a better understanding of speckle in OCT.
The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime
NASA Astrophysics Data System (ADS)
Heilbronner, Renée; Kilian, Rüdiger
2017-10-01
General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).
Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles
NASA Astrophysics Data System (ADS)
Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi
2018-05-01
The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.
Chen, W. J.; Zheng, Yue; Wang, Biao
2012-01-01
Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769
Monomeric CH3: A Small, Stable Antibody Domain with Therapeutic Promise | Poster
By Ashley DeVine, Staff Writer Antibody domains are emerging as promising biopharmaceuticals because of their relatively small size compared to full-sized antibodies, which are too large to effectively penetrate tumors and bind to sterically restricted therapeutic targets. In an article published in The Journal of Biological Chemistry, Tianlei Ying, Ph.D., Dimiter Dimitrov,
Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J
2014-01-01
Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz
Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of themore » domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.« less
Practice of preventive dentistry for nursing staff in primary care.
Jiménez-Báez, María Valeria; Acuña-Reyes, Raquel; Cigarroa-Martínez, Didier; Ureña-Bogarín, Enrique; Orgaz-Fernández, Jose David
2014-01-01
Determine the domain of preventive dentistry in nursing personnel assigned to a primary care unit. Prospective descriptive study, questionnaire validation, and prevalence study. In the first stage, the questionnaire for the practice of preventive dentistry (CPEP, for the term in Spanish) was validated; consistency and reliability were measured by Cronbach's alpha, Pearson's correlation, factor analysis with intra-class correlation coefficient (ICC). In the second stage, the domain in preventive dental nurses was explored. The overall internal consistency of CPEP is α= 0.66, ICC= 0.64, CI95%: 0.29-0.87 (p >0.01). Twenty-one subjects in the study, average age 43, 81.0% female, average seniority of 12.5 were included. A total of 71.5% showed weak domain, 28.5% regular domain, and there was no questionnaire with good domain result. The older the subjects were, the smaller the domain; female nurses showed greater mastery of preventive dentistry (29%, CI95%: 0.1-15.1) than male nurses. Public health nurses showed greater mastery with respect to other categories (50%, CI95%: 0.56-2.8). The CDEP has enough consistency to explore the domain of preventive dentistry in health-care staff. The domain of preventive dentistry in primary care nursing is poor, required to strengthen to provide education in preventive dentistry to the insured population.
Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire
NASA Astrophysics Data System (ADS)
Moreno, R.; Carvalho-Santos, V. L.; Espejo, A. P.; Laroze, D.; Chubykalo-Fesenko, O.; Altbir, D.
2017-11-01
Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.
Monomeric CH3: A Small, Stable Antibody Domain with Therapeutic Promise | Poster
By Ashley DeVine, Staff Writer Antibody domains are emerging as promising biopharmaceuticals because of their relatively small size compared to full-sized antibodies, which are too large to effectively penetrate tumors and bind to sterically restricted therapeutic targets. In an article published in The Journal of Biological Chemistry, Tianlei Ying, Ph.D., Dimiter Dimitrov, Ph.D., and their colleagues in the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, reported their design of a novel antibody domain, monomeric CH3 (mCH3).
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
NASA Astrophysics Data System (ADS)
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
Food photography. I: The perception of food portion size from photographs.
Nelson, M; Atkinson, M; Darbyshire, S
1994-11-01
Fifty-one male and female volunteers aged 18-90 years from a wide variety of social and occupational backgrounds completed 7284 assessments of portion size in relation to food photographs. Subjects were shown six portion sizes (two small, two medium and two large) for each of six foods, and asked to compare the amount on the plate in front of them to (a) a series of eight photographs showing weights of portions from the 5th to the 95th centile of portion size (British Adult Dietary Survey), or (b) a single photograph of the average (median) portion size. Photographs were prepared either in colour or in black and white, and in two different sizes. The order of presentation of foods; use of black and white or colour; the size of photographs; and presentation of eight or average photographs were each randomized independently. On average, the mean differences between the portion size presented and the estimate of portion size using the photographs varied from -8 to +6 g (-4 to +5%) for the series of eight photographs, and from -34 to -1 g (-23 to +9%) for the single average photograph. Large portion sizes tended to be underestimated more than medium or small portion sizes, especially when using the average photograph (from -79 to -14 g, -37 to -13%). Being female, 65 years and over, or retired, or seeing photographs in colour, were all associated with small but statistically significant overestimations of portion size. Having a body mass index > or = 30 kg/m2 was associated with an 8% underestimate of portion size. We conclude that use of a series of eight photographs is associated with relatively small errors in portion size perception, whereas use of an average photograph is consistently associated with substantial underestimation across a variety of foods.
End-Stopping Predicts Curvature Tuning along the Ventral Stream.
Ponce, Carlos R; Hartmann, Till S; Livingstone, Margaret S
2017-01-18
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or "domains") acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. Copyright © 2017 the authors 0270-6474/17/370648-12$15.00/0.
De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario
2008-01-07
The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was collectively carried out on all model proteins.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
Zhang, Lin; Lin, Baojun; Hu, Bo; Xu, Xianbin; Ma, Wei
2018-04-17
Blade-coating serving as a prototype tool for slot-die coating can be very compatible with large-area roll-to-roll coating. Using blade-coating in an ambient environment, an average power conversion efficiency (PCE) of 10.03% is achieved in nonfullerene organic solar cells, which is higher than that of the optimal spin-coated device with a PCE of 9.41%. It is demonstrated that blade-coating can induce a higher degree of molecular packing for both conjugated polymer donors and small-molecular acceptors as it helps to produce a seeding film containing numerous crystal grains, subsequently providing nucleation sites for the residual solution when the motion of the blade exposes a liquid front. Due to this effect, blade-coating can partially replace the role of the additive 1,8-diiodooctane (DIO) and thus achieves the optimized morphology with fewer additives. Moreover, it is found that the blade-coated film with 0.25% DIO possesses not only a smaller domain size but also higher domain purity, suggesting more D/A (donor/acceptor) interfaces and a purer phase domain as compared to the spin-coated film with 1% DIO. Encouragingly, the blade-coated device with less DIO (0.25%) exhibits much better stability than the spin-coated device with 1% DIO, showing excellent prospects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Numerical Simulation of Automobile Cavity Tones
NASA Technical Reports Server (NTRS)
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W
2009-03-01
This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, I. K.; Jeong, Y. H., E-mail: yhj@postech.ac.kr; Kim, Jeehoon
2015-04-13
LuFe{sub 2}O{sub 4} is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below ∼230 K. The ferroelectric/charge order domains of LuFe{sub 2}O{sub 4} are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe{sub 2}O{sub 4} is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe{sub 2}O{sub 4} reveals that both domains havemore » irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 μm. We also demonstrate that the origin of the formation of irregular domains in LuFe{sub 2}O{sub 4} is not extrinsic but intrinsic.« less
Personality Factors in the Long Life Family Study
2013-01-01
Objectives. To evaluate personality profiles of Long Life Family Study participants relative to population norms and offspring of centenarians from the New England Centenarian Study. Method. Personality domains of agreeableness, conscientiousness, extraversion, neuroticism, and openness were assessed with the NEO Five-Factor Inventory in 4,937 participants from the Long Life Family Study (mean age 70 years). A linear mixed model of age and gender was implemented adjusting for other covariates. Results. A significant age trend was found in all five personality domains. On average, the offspring generation of long-lived families scored low in neuroticism, high in extraversion, and within average values for the other three domains. Older participants tended to score higher in neuroticism and lower in the other domains compared with younger participants, but the estimated scores generally remained within average population values. No significant differences were found between long-lived family members and their spouses. Discussion. Personality factors and more specifically low neuroticism and high extraversion may be important for achieving extreme old age. In addition, personality scores of family members were not significantly different from those of their spouses, suggesting that environmental factors may play a significant role in addition to genetic factors. PMID:23275497
Yarlas, Aaron; Yen, Linnette; Hodgkins, Paul
2015-03-01
Ulcerative colitis (UC) is associated with impaired health-related quality of life (HRQL) and work-related outcomes (WRO). This analysis examined correspondences among measures of HRQL and WRO in patients with UC, as well as the magnitude of each measure's responsiveness to disease activity and treatment. An open-label, prospective trial of delayed-release mesalamine tablets formulated with MMX(®) technology included 8 weeks of treatment for patients with active mild-to-moderate UC (n = 137) and 12 months of maintenance treatment for patients with quiescent UC (n = 206). Spearman correlations (ρ) measured inter-domain associations across measures of generic HRQL [12-item Short-Form Health Survey (SF-12v2)], disease-specific HRQL [Short Inflammatory Bowel Disease Questionnaire (SIBDQ)], and disease-specific WRO [Work Productivity and Activity Impairment for Specific Health Problems (WPAI:SHP)]. Responsiveness to disease activity and treatment was assessed for each instrument. Changes in scores from baseline to week 8 were moderately correlated across all instrument domains: 65 of 80 (81 %) between-instrument inter-domain correlations were of moderate magnitude (0.30 < ρ < 0.70), with an average magnitude of 0.42 [95 % confidence interval (CI) 0.38-0.46]. Associations between symptom measures were stronger for SIBDQ (|average ρ| = 0.41; 95 % CI 0.34-0.48) and WPAI:SHP (0.40; 0.30-0.47) than SF-12v2 (0.30; 0.27-0.34). SIBDQ was most sensitive to treatment [effect size (d z ) for change from baseline to week 8 = 0.62; 95 % CI 0.35-0.89], followed by WPAI:SHP (d z = 0.43; 0.32-0.54) and SF-12v2 (d z = 0.33; 0.27-0.39). While the SIBDQ showed the greatest overall responsiveness to disease activity and treatment, all three patient-reported outcomes instruments provided complementary interpretive information regarding the impact of UC treatment.
Underwater Advanced Time-Domain Electromagnetic System
2017-03-01
distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2016-09-01
We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.
Chhapola, Viswas; Tiwari, Soumya; Deepthi, Bobbity; Henry, Brandon Michael; Brar, Rekha; Kanwal, Sandeep Kumar
2018-06-01
A plethora of research is available on ultrasonographic kidney size standards. We performed a systematic review of methodological quality of ultrasound studies aimed at developing normative renal parameters in healthy children, by evaluating the risk of bias (ROB) using the 'Anatomical Quality Assessment (AQUA)' tool. We searched Medline, Scopus, CINAHL, and Google Scholar on June 04 2018, and observational studies measuring kidney size by ultrasonography in healthy children (0-18 years) were included. The ROB of each study was evaluated in five domains using a 20 item coding scheme based on AQUA tool framework. Fifty-four studies were included. Domain 1 (subject characteristics) had a high ROB in 63% of studies due to the unclear description of age, sex, and ethnicity. The performance in Domain 2 (study design) was the best with 85% of studies having a prospective design. Methodological characterization (Domain 3) was poor across the studies (< 10% compliance), with suboptimal performance in the description of patient positioning, operator experience, and assessment of intra/inter-observer reliability. About three-fourth of the studies had a low ROB in Domain 4 (descriptive anatomy). Domain 5 (reporting of results) had a high ROB in approximately half of the studies, the majority reporting results in the form of central tendency measures. Significant deficiencies and heterogeneity were observed in the methodological quality of USG studies performed to-date for measurement of kidney size in children. We hereby provide a framework for the conducting such studies in future. PROSPERO (CRD42017071601).
NASA Technical Reports Server (NTRS)
Kato, S.; Smith, G. L.; Barker, H. W.
2001-01-01
An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.
Comparison of university students' understanding of graphs in different contexts
NASA Astrophysics Data System (ADS)
Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka
2013-12-01
This study investigates university students’ understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was administered to 385 first year students at University of Zagreb who were either prospective physics or mathematics teachers or prospective physicists or mathematicians. Rasch analysis of data was conducted and linear measures for item difficulties were obtained. Average difficulties of items in three domains (mathematics, physics, and other contexts) and over two concepts (graph slope, area under the graph) were computed and compared. Analysis suggests that the variation of average difficulty among the three domains is much smaller for the concept of graph slope than for the concept of area under the graph. Most of the slope items are very close in difficulty, suggesting that students who have developed sufficient understanding of graph slope in mathematics are generally able to transfer it almost equally successfully to other contexts. A large difference was found between the difficulty of the concept of area under the graph in physics and other contexts on one side and mathematics on the other side. Comparison of average difficulty of the three domains suggests that mathematics without context is the easiest domain for students. Adding either physics or other context to mathematical items generally seems to increase item difficulty. No significant difference was found between the average item difficulty in physics and contexts other than physics, suggesting that physics (kinematics) remains a difficult context for most students despite the received instruction on kinematics in high school.
NASA Astrophysics Data System (ADS)
von Hippel, Georg; Rae, Thomas D.; Shintani, Eigo; Wittig, Hartmut
2017-01-01
We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in Nf = 2 lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink separations of ts ∼ 1.5 fm. Our results suggest that the axial charge is suffering from a significant amount (5-10%) of excited-state contamination at source-sink separations of up to ts ∼ 1.2 fm, whereas the excited-state contamination in the scalar and tensor charges seems to be small.
Influence of computational domain size on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.
Electrostatic attraction between overall neutral surfaces.
Adar, Ram M; Andelman, David; Diamant, Haim
2016-08-01
Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.
Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
NASA Astrophysics Data System (ADS)
Šachl, Radek; Bergstrand, Jan; Widengren, Jerker; Hof, Martin
2016-03-01
It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies.
Estimation of Cloud Fraction Profile in Shallow Convection Using a Scanning Cloud Radar
Oue, Mariko; Kollias, Pavlos; North, Kirk W.; ...
2016-10-18
Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain-averaged cloud fraction profiles (CFP). This issue is addressed using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of Scanning Cloud Radar (SCR), performing a sequence of cross-wind horizon-to-horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain-averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. Thismore » method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. Lastly, the proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.« less
Effect of particle size distribution on permeability in the randomly packed porous media
NASA Astrophysics Data System (ADS)
Markicevic, Bojan
2017-11-01
An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.
Little, Elizabeth A; Presseau, Justin; Eccles, Martin P
2015-06-17
Behavioural theory can be used to better understand the effects of behaviour change interventions targeting healthcare professional behaviour to improve quality of care. However, the explicit use of theory is rarely reported despite interventions inevitably involving at least an implicit idea of what factors to target to implement change. There is a quality of care gap in the post-fracture investigation (bone mineral density (BMD) scanning) and management (bisphosphonate prescription) of patients at risk of osteoporosis. We aimed to use the Theoretical Domains Framework (TDF) within a systematic review of interventions to improve quality of care in post-fracture investigation. Our objectives were to explore which theoretical factors the interventions in the review may have been targeting and how this might be related to the size of the effect on rates of BMD scanning and osteoporosis treatment with bisphosphonate medication. A behavioural scientist and a clinician independently coded TDF domains in intervention and control groups. Quantitative analyses explored the relationship between intervention effect size and total number of domains targeted, and as number of different domains targeted. Nine randomised controlled trials (RCTs) (10 interventions) were analysed. The five theoretical domains most frequently coded as being targeted by the interventions in the review included "memory, attention and decision processes", "knowledge", "environmental context and resources", "social influences" and "beliefs about consequences". Each intervention targeted a combination of at least four of these five domains. Analyses identified an inverse relationship between both number of times and number of different domains coded and the effect size for BMD scanning but not for bisphosphonate prescription, suggesting that the more domains the intervention targeted, the lower the observed effect size. When explicit use of theory to inform interventions is absent, it is possible to retrospectively identify the likely targeted factors using theoretical frameworks such as the TDF. In osteoporosis management, this suggested that several likely determinants of healthcare professional behaviour appear not yet to have been considered in implementation interventions. This approach may serve as a useful basis for using theory-based frameworks such as the TDF to retrospectively identify targeted factors within systematic reviews of implementation interventions in other implementation contexts.
Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang
2012-12-01
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.
Amstad, Fabienne T; Meier, Laurenz L; Fasel, Ursula; Elfering, Achim; Semmer, Norbert K
2011-04-01
A literature review of studies analyzing work-family conflict and its consequences was conducted, and 427 effect sizes were analyzed meta-analytically. Work-family conflict was analyzed bidirectionally in terms of work interference with family (WIF) and family interference with work (FIW). We assessed 3 categories of potential outcomes: work-related outcomes, family-related outcomes, and domain-unspecific outcomes. Results show that WIF and FIW are consistently related to all 3 types of outcomes. Both types of interrole conflict showed stronger relationships to same-domain outcomes than to cross-domain outcomes. Thus, WIF was more strongly associated with work-related than with family-related outcomes, and FIW was more strongly associated with family-related than with work-related outcomes. In moderator analyses, parenthood could not explain variability in effect sizes. However, time spent at work did moderate the relationships between WIF and family-related outcomes, as well as FIW and domain-unspecific outcomes.
Domain size and structure in exchange coupled [Co/Pt]/NiO/[Co/Pt] multilayers.
Baruth, A; Adenwalla, S
2011-09-21
We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and the interlayer exchange coupling, including the regions where interlayer coupling goes through zero. We see significant changes in domain structure based on the sign of coupling, and also show that magnetic domain size is directly related to the magnitude of the interlayer exchange coupling energy, which generally dominates over the magnetostatic interactions. When magnetostatic interactions become comparable to the interlayer exchange coupling, a delicate interplay between the differing energy contributions is apparent and energy scales are extracted. The results are of intense interest to the magnetic recording industry and also illustrate a relatively new avenue of undiscovered physics, primarily dealing with the delicate balance of energies in the formation of magnetic domains for coupled systems with PMA, defining limits on domain size as well as the interplay between roughness, domains and magnetic coupling.
On the role of the grain size in the magnetic behavior of sintered permanent magnets
NASA Astrophysics Data System (ADS)
Efthimiadis, K. G.; Ntallis, N.
2018-02-01
In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.
Tailoring magnetic domains in Gd-Fe thin films
NASA Astrophysics Data System (ADS)
Talapatra, A.; Chelvane, J. Arout; Mohanty, J.
2018-05-01
This paper presents the global modification of magnetic domains and magnetic properties in amorphous Gd19Fe81 thin films with rapid thermal processing at two distinct temperatures (250oC and 450oC), and with different time intervals viz., 2, 5, 10 and 20 minutes. 100 nm thick as-prepared films display nano-scale meandering stripe domains with high magnetic phase contrast which is the signature of perpendicular magnetic anisotropy. The films processed at 250oC for various time intervals show successive reduction in magnetic phase contrast and domain size. The domain pattern completely disappeared, and topography dominated mixed magnetic phase has been obtained for the films processed at 450oC for time intervals greater than 2 minutes. The magnetization measurements indicate the reduction in perpendicular magnetic anisotropy with increase in saturation magnetization for all the rapid thermal processed films. The experimental outputs have been used to simulate the domain pattern. Reduction in uniaxial anisotropy along with the increase in saturation magnetization successfully explain the experimental trend of decrease in domain size and magnetic contrast.
NASA Astrophysics Data System (ADS)
Skorobogatiy, Maksim; Sadasivan, Jayesh; Guerboukha, Hichem
2018-05-01
In this paper, we first discuss the main types of noise in a typical pump-probe system, and then focus specifically on terahertz time domain spectroscopy (THz-TDS) setups. We then introduce four statistical models for the noisy pulses obtained in such systems, and detail rigorous mathematical algorithms to de-noise such traces, find the proper averages and characterise various types of experimental noise. Finally, we perform a comparative analysis of the performance, advantages and limitations of the algorithms by testing them on the experimental data collected using a particular THz-TDS system available in our laboratories. We conclude that using advanced statistical models for trace averaging results in the fitting errors that are significantly smaller than those obtained when only a simple statistical average is used.
Weighed scalar averaging in LTB dust models: part II. A formalism of exact perturbations
NASA Astrophysics Data System (ADS)
Sussman, Roberto A.
2013-03-01
We examine the exact perturbations that arise from the q-average formalism that was applied in the preceding article (part I) to Lemaître-Tolman-Bondi (LTB) models. By introducing an initial value parametrization, we show that all LTB scalars that take an FLRW ‘look-alike’ form (frequently used in the literature dealing with LTB models) follow as q-averages of covariant scalars that are common to FLRW models. These q-scalars determine for every averaging domain a unique FLRW background state through Darmois matching conditions at the domain boundary, though the definition of this background does not require an actual matching with an FLRW region (Swiss cheese-type models). Local perturbations describe the deviation from the FLRW background state through the local gradients of covariant scalars at the boundary of every comoving domain, while non-local perturbations do so in terms of the intuitive notion of a ‘contrast’ of local scalars with respect to FLRW reference values that emerge from q-averages assigned to the whole domain or the whole time slice in the asymptotic limit. We derive fluid flow evolution equations that completely determine the dynamics of the models in terms of the q-scalars and both types of perturbations. A rigorous formalism of exact spherical nonlinear perturbations is defined over the FLRW background state associated with the q-scalars, recovering the standard results of linear perturbation theory in the appropriate limit. We examine the notion of the amplitude and illustrate the differences between local and non-local perturbations by qualitative diagrams and through an example of a cosmic density void that follows from the numeric solution of the evolution equations.
Practice of preventive dentistry for nursing staff in primary care
Acuña-Reyes, Raquel; Cigarroa-Martínez, Didier; Ureña-Bogarín, Enrique; Orgaz-Fernández, Jose David
2014-01-01
Objectives: Determine the domain of preventive dentistry in nursing personnel assigned to a primary care unit. Methods: Prospective descriptive study, questionnaire validation, and prevalence study. In the first stage, the questionnaire for the practice of preventive dentistry (CPEP, for the term in Spanish) was validated; consistency and reliability were measured by Cronbach's alpha, Pearson's correlation, factor analysis with intra-class correlation coefficient (ICC). In the second stage, the domain in preventive dental nurses was explored. Results: The overall internal consistency of CPEP is α= 0.66, ICC= 0.64, CI95%: 0.29-0.87 (p >0.01). Twenty-one subjects in the study, average age 43, 81.0% female, average seniority of 12.5 were included. A total of 71.5% showed weak domain, 28.5% regular domain, and there was no questionnaire with good domain result. The older the subjects were, the smaller the domain; female nurses showed greater mastery of preventive dentistry (29%, CI95%: 0.1-15.1) than male nurses. Public health nurses showed greater mastery with respect to other categories (50%, CI95%: 0.56-2.8). Conclusions: The CDEP has enough consistency to explore the domain of preventive dentistry in health-care staff. The domain of preventive dentistry in primary care nursing is poor, required to strengthen to provide education in preventive dentistry to the insured population. PMID:25386037
Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.
Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam
2016-11-01
Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Vrablecová, Petra; Šimko, Marián
2016-01-01
The domain model is an essential part of an adaptive learning system. For each educational course, it involves educational content and semantics, which is also viewed as a form of conceptual metadata about educational content. Due to the size of a domain model, manual domain model creation is a challenging and demanding task for teachers or…
Design of Functional Materials based on Liquid Crystalline Droplets.
Miller, Daniel S; Wang, Xiaoguang; Abbott, Nicholas L
2014-01-14
This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.
The reliability and stability of visual working memory capacity.
Xu, Z; Adam, K C S; Fang, X; Vogel, E K
2018-04-01
Because of the central role of working memory capacity in cognition, many studies have used short measures of working memory capacity to examine its relationship to other domains. Here, we measured the reliability and stability of visual working memory capacity, measured using a single-probe change detection task. In Experiment 1, the participants (N = 135) completed a large number of trials of a change detection task (540 in total, 180 each of set sizes 4, 6, and 8). With large numbers of both trials and participants, reliability estimates were high (α > .9). We then used an iterative down-sampling procedure to create a look-up table for expected reliability in experiments with small sample sizes. In Experiment 2, the participants (N = 79) completed 31 sessions of single-probe change detection. The first 30 sessions took place over 30 consecutive days, and the last session took place 30 days later. This unprecedented number of sessions allowed us to examine the effects of practice on stability and internal reliability. Even after much practice, individual differences were stable over time (average between-session r = .76).
Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Markovich, V.; Jung, G.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Kohn, A.; Wu, X. D.; Suzuki, K.; Gorodetsky, G.
2012-09-01
Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60 nm, prepared by the glycine-nitrate method, have been investigated in the temperature range 5-300 K and magnetic fields up to 90 kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T 3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T < 100 K.
On the evolution of antiferromagnetic nanodomains in NiO thin films: A LEEM study
NASA Astrophysics Data System (ADS)
Das, Jayanta; Menon, Krishnakumar S. R.
2018-03-01
Fractional order (1/2, 0) spots appear in the electron diffraction from NiO/Ag(0 0 1) films due to exchange scattering of low energy electrons by the antiferromagnetically ordered surface Ni moments. Utilizing these beams, imaging of the nanosized surface magnetic domains were carried out employing the high spatial resolution (∼ 10 nm) of the Low Energy Electron Microscopy (LEEM) in the dark-field (DF) mode. While selected through a contrast aperture, the four magnetic reflections produced by the p (2 × 2) antiferromagnetic sub-lattice lead to the visualization of the different magnetic twin domains. The intensity variations of different twin domains were measured as a function of electron beam energies via domain resolved LEEM I-V plots. The surface Néel temperatures (TN) of the films were measured using the temperature dependence of these half-order spot intensities. Detailed morphological studies of the size and shape of these nanodomains and their evolution as a function of the film thickness have been carried out with the help of pair-correlation function and fractal analysis. The size, shape and distribution of these magnetic domains are modified significantly by the strain relaxation mechanism beyond the critical film thickness. A method to estimate the relative domain sizes from a quantitative measure of the half-order spot intensities is manifested well below TN .
NASA Astrophysics Data System (ADS)
Valeriano, Márcio de Morisson; Rossetti, Dilce de Fátima
2017-03-01
This paper reports procedures to prepare locally derived geomorphometric data for geological mapping at regional scale in central Amazônia. The size of the study area, approximately 1.5 million km2, and the prevailing flat topography of the targeted environment were the constraints motivating the aims, at spatial and numerical synthesis of the detailed geomorphometric information derived from SRTM DEM. The developed approach consisted in assigning single (average) values to terrain patches, to represent the regional distribution of pixel-based geomorphometric information (slope, profile curvature and relative relief). In analogy to the nature of sedimentary packs, patches were established as contiguous elevation strata, constructed through a procedure combining segmentation, filterings and range compressions. For slope only, pre-processing of locally derived data with median filtering effectively avoided the typical flattening of the regionalized results due to input distribution characteristics. Profile curvature was transformed into absolute values and thus a different meaning from the original (pixel) variable was considered in the interpretation, also avoiding the compensation of original values (positive and negative) tending to zero value when averaged through a regionally flat extension. Examinations near major river valleys showed patched elevation to depict alluvial terraces. In the interfluves and floodplains, contrasting patterns in the averaged variables among patches of similar elevations allowed the recognition of important relief features. In addition to the reduction of the distribution ranges, the correlation between regionalized geomorphometric variables was higher than observed in the originally local data, due to the thematic synthesis following regionalization. Depth of dissection, claimed to be related to the relative age of sedimentary units, was the main factor to explain the overall variations of the geomorphometric results. The developed regionalization process improved the potential of local geomorphometric data for updating and revision of geological maps and for guiding future surveys in the sedimentary domain of Amazônia.
NASA Astrophysics Data System (ADS)
Long, Yin; Zhang, Xiao-Jun; Wang, Kui
2018-05-01
In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.
Pemp, Berthold; Kardon, Randy H; Kircher, Karl; Pernicka, Elisabeth; Schmidt-Erfurth, Ursula; Reitner, Andreas
2013-07-01
Automated detection of subtle changes in peripapillary retinal nerve fibre layer thickness (RNFLT) over time using optical coherence tomography (OCT) is limited by inherent image quality before layer segmentation, stabilization of the scan on the peripapillary retina and its precise placement on repeated scans. The present study evaluates image quality and reproducibility of spectral domain (SD)-OCT comparing different rates of automatic real-time tracking (ART). Peripapillary RNFLT was measured in 40 healthy eyes on six different days using SD-OCT with an eye-tracking system. Image brightness of OCT with unaveraged single frame B-scans was compared to images using ART of 16 B-scans and 100 averaged frames. Short-term and day-to-day reproducibility was evaluated by calculation of intraindividual coefficients of variation (CV) and intraclass correlation coefficients (ICC) for single measurements as well as for seven repeated measurements per study day. Image brightness, short-term reproducibility, and day-to-day reproducibility were significantly improved using ART of 100 frames compared to one and 16 frames. Short-term CV was reduced from 0.94 ± 0.31 % and 0.91 ± 0.54 % in scans of one and 16 frames to 0.56 ± 0.42 % in scans of 100 averaged frames (P ≤ 0.003 each). Day-to-day CV was reduced from 0.98 ± 0.86 % and 0.78 ± 0.56 % to 0.53 ± 0.43 % (P ≤ 0.022 each). The range of ICC was 0.94 to 0.99. Sample size calculations for detecting changes of RNFLT over time in the range of 2 to 5 μm were performed based on intraindividual variability. Image quality and reproducibility of mean peripapillary RNFLT measurements using SD-OCT is improved by averaging OCT images with eye-tracking compared to unaveraged single frame images. Further improvement is achieved by increasing the amount of frames per measurement, and by averaging values of repeated measurements per session. These strategies may allow a more accurate evaluation of RNFLT reduction in clinical trials observing optic nerve degeneration.
Statistics of opinion domains of the majority-vote model on a square lattice
NASA Astrophysics Data System (ADS)
Peres, Lucas R.; Fontanari, José F.
2010-10-01
The existence of juxtaposed regions of distinct cultures in spite of the fact that people’s beliefs have a tendency to become more similar to each other’s as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors’ opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2 whereas the size of the largest cluster grows with lnL2 . The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model—Axelrod’s model—we found that these opinion domains are unstable to the effect of a thermal-like noise.
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Submillisecond-response and scattering-free infrared liquid crystal phase modulators.
Sun, Jie; Chen, Yuan; Wu, Shin-Tson
2012-08-27
We demonstrate a submillisecond-response and scattering-free infrared phase modulator using a polymer network liquid crystal (PNLC). The required voltage for achieving 2π phase change at λ = 1.06 µm is 70V (or 5.8 V/μm) and the measured response time is ~200 µs at 25°C and 30 µs at 70°C. Opposite to our conventional understanding, a high viscosity LC helps to achieve small domain size during polymerization process, which in turn reduces the response time and light scattering. We use Rayleigh-Gans-Debye scattering model to analyze the voltage-on state transmission spectra. When the domain size is comparable to the wavelength, the model fits with experimental results well. But when the domain size is smaller than the wavelength, the simple Rayleigh model works well.
NASA Technical Reports Server (NTRS)
Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev
2011-01-01
The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west side of the domain. The displacement error was significantly reduced after the domain size from the western model boundary was decreased. Study results demonstrate the capability and need of a high-resolution mesoscale modeling framework for simulating the complex interactions that contribute to the formation of tropical cyclones over the Bay of Bengal region
NASA Astrophysics Data System (ADS)
Silvers, L. G.; Stevens, B. B.; Mauritsen, T.; Marco, G. A.
2015-12-01
The characteristics of clouds in General Circulation Models (GCMs) need to be constrained in a consistent manner with theory, observations, and high resolution models (HRMs). One way forward is to base improvements of parameterizations on high resolution studies which resolve more of the important dynamical motions and allow for less parameterizations. This is difficult because of the numerous differences between GCMs and HRMs, both technical and theoretical. Century long simulations at resolutions of 20-250 km on a global domain are typical of GCMs while HRMs often simulate hours at resolutions of 0.1km-5km on domains the size of a single GCM grid cell. The recently developed mode ICON provides a flexible framework which allows many of these difficulties to be overcome. This study uses the ICON model to compute SST perturbation simulations on multiple domains in a state of Radiative Convective Equilibrium (RCE) with parameterized convection. The domains used range from roughly the size of Texas to nearly half of Earth's surface area. All simulations use a doubly periodic domain with an effective distance between cell centers of 13 km and are integrated to a state of statistical stationarity. The primary analysis examines the mean characteristics of the cloud related fields and the feedback parameter of the simulations. It is shown that the simulated atmosphere of a GCM in RCE is sufficiently similar across a range of domain sizes to justify the use of RCE to study both a GCM and a HRM on the same domain with the goal of improved constraints on the parameterized clouds. The simulated atmospheres are comparable to what could be expected at midday in a typical region of Earth's tropics under calm conditions. In particular, the differences between the domains are smaller than differences which result from choosing different physics schemes. Significant convective organization is present on all domain sizes with a relatively high subsidence fraction. Notwithstanding the overall qualitative similarities of the simulations, quantitative differences lead to a surprisingly large sensitivity of the feedback parameter. This range of the feedback parameter is more than a factor of two and is similar to the range of feedbacks which were obtained by the CMIP5 models.
Numerical modeling of heat transfer in molten silicon during directional solidification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
2015-06-24
Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less
Genetic drift and selection in many-allele range expansions.
Weinstein, Bryan T; Lavrentovich, Maxim O; Möbius, Wolfram; Murray, Andrew W; Nelson, David R
2017-12-01
We experimentally and numerically investigate the evolutionary dynamics of four competing strains of E. coli with differing expansion velocities in radially expanding colonies. We compare experimental measurements of the average fraction, correlation functions between strains, and the relative rates of genetic domain wall annihilations and coalescences to simulations modeling the population as a one-dimensional ring of annihilating and coalescing random walkers with deterministic biases due to selection. The simulations reveal that the evolutionary dynamics can be collapsed onto master curves governed by three essential parameters: (1) an expansion length beyond which selection dominates over genetic drift; (2) a characteristic angular correlation describing the size of genetic domains; and (3) a dimensionless constant quantifying the interplay between a colony's curvature at the frontier and its selection length scale. We measure these parameters with a new technique that precisely measures small selective differences between spatially competing strains and show that our simulations accurately predict the dynamics without additional fitting. Our results suggest that the random walk model can act as a useful predictive tool for describing the evolutionary dynamics of range expansions composed of an arbitrary number of genotypes with different fitnesses.
The elimination of zero-order diffraction of 10.6 μm infrared digital holography
NASA Astrophysics Data System (ADS)
Liu, Ning; Yang, Chao
2017-05-01
A new method of eliminating the zero-order diffraction in infrared digital holography has been raised in this paper. Usually in the reconstruction of digital holography, the spatial frequency of the infrared thermal imager, such as microbolometer, cannot be compared to the common visible CCD or CMOS devices. The infrared imager suffers the problems of large pixel size and low spatial resolution, which cause the zero-order diffraction a severe influence of the reconstruction process of digital holograms. The zero-order diffraction has very large energy and occupies the central region in the spectrum domain. In this paper, we design a new filtering strategy to overcome this problem. This filtering strategy contains two kinds of filtering process which are the Gaussian low-frequency filter and the high-pass phase averaging filter. With the correct set of the calculating parameters, these filtering strategies can work effectively on the holograms and fully eliminate the zero-order diffraction, as well as the two crossover bars shown in the spectrum domain. Detailed explanation and discussion about the new method have been proposed in this paper, and the experiment results are also demonstrated to prove the performance of this method.
Carvalho, Paloma Aparecida; Göttems, Leila Bernarda Donato; Pires, Maria Raquel Gomes Maia; de Oliveira, Maria Liz Cunha
2015-01-01
Objective: to evaluate the perception of healthcare professionals about the safety culture in the operating room of a public hospital, large-sized, according to the domains of the Safety Attitudes Questionnaire (SAQ). Method: descriptive, cross-sectional and quantitative research, with the application of the SAQ to 226 professionals. Descriptive data analysis, instrument consistency and exploratory factor analysis. Results: participants were distributed homogeneously between females (49.6%) and males (50.4%); mean age of 39.6 (SD±9.9) years and length of professional experience of 9.9 (SD±9.2) years. And Cronbach's ( of 0.84. It was identified six domains proposed in the questionnaire: stress perception (74.5) and job satisfaction (70.7) showed satisfactory results; teamwork environment (59.1) and climate of security (48.9) presented scores below the minimum recommended (75); unit's management perceptions (44.5), hospital management perceptions (34.9) and working conditions (41.9) presented the lowest averages. Conclusions: the results showed that, from the perspective of the professionals, there is weakness in the values, attitudes, skills and behaviors that determine the safety culture in a healthcare organization. PMID:26625994
Smith, Ian O; McCabe, Laura R; Baumann, Melissa J
2006-01-01
Porous bone tissue engineering scaffolds were fabricated using both nano hydroxyapatite (nano HA) powder (20 nm average particle size) and micro HA powder (10 μm average particle size), resulting in sintered scaffolds of 59 vol% porosity and 8.6±1.9 μm average grain size and 72 vol% porosity and 588±55 nm average grain size, respectively. Scanning electron microscopy was used to measure both the grain size and pore size. MC3T3-E1 osteoblast (OB) attachment and proliferation on both nano HA and micro HA porous scaffolds were quantified. As expected, OB cell number was greater on nano HA scaffolds compared with similarly processed micro HA scaffolds 5 days after seeding, while OB attachment did not appear greater on the nano HA scaffolds (p<0.05). PMID:17722535
Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2017-01-01
Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking. PMID:28690608
End-Stopping Predicts Curvature Tuning along the Ventral Stream
Hartmann, Till S.; Livingstone, Margaret S.
2017-01-01
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. SIGNIFICANCE STATEMENT The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or “domains”) acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. PMID:28100746
Fesenko, Pavlo; Flauraud, Valentin; Xie, Shenqi; Kang, Enpu; Uemura, Takafumi; Brugger, Jürgen; Genoe, Jan; Heremans, Paul; Rolin, Cédric
2017-07-19
To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 μm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.
A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth
NASA Astrophysics Data System (ADS)
Crist, David J. D.
Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.
NASA Astrophysics Data System (ADS)
Noble, David R.; Georgiadis, John G.; Buckius, Richard O.
1996-07-01
The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and transverse velocity predictions agree to within 05% of the average streamwise velocity. The local shear on the surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the corners of the cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. Overall, a speed of 139 GFLOPS is obtained using 512 processors for a domain size of 2176×2176.
Carlson, J K; Hale, L F; Morgan, A; Burgess, G
2012-04-01
In the north-west Atlantic Ocean, stock assessments conducted for some commercially harvested coastal sharks indicate declines from 64 to 80% with respect to virgin population levels. While the status of commercially important species is available, abundance trend information for other coastal shark species in the north-west Atlantic Ocean are unavailable. Using a generalized linear modelling (GLM) approach, a relative abundance index was derived from 1994 to 2009 using observer data collected in a commercial bottom longline fishery. Trends in abundance and average size were estimated for bull shark Carcharhinus leucas, spinner shark Carcharhinus brevipinna, tiger shark Galeocerdo cuvier and lemon shark Negaprion brevirostris. Increases in relative abundance for all shark species ranged from 14% for C. brevipinna, 12% for C. leucas, 6% for N. brevirostris and 3% for G. cuvier. There was no significant change in the size at capture over the time period considered for all species. While the status of shark populations should not be based exclusively on abundance trend information, but ultimately on stock assessment models, results from this study provide some cause for optimism on the status of these coastal shark species. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang
2014-02-12
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.
Deposition and growth of domains in one dimension
NASA Astrophysics Data System (ADS)
Rodgers, G. J.; Tavassoli, Z.
1998-09-01
A model of deposition and growth in one dimension is studied in which finite sized domains are deposited by the random sequential adsorption process. The domains then grow with a time dependent growth rate. When the initial deposited domains are monomers and dimers the coverage is found exactly for a number of different growth rates. A continuum version of this model is also considered.
Birth and death of protein domains: A simple model of evolution explains power law behavior
Karev, Georgy P; Wolf, Yuri I; Rzhetsky, Andrey Y; Berezovskaya, Faina S; Koonin, Eugene V
2002-01-01
Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i) domain birth (duplication with divergence), ii) death (inactivation and/or deletion), and iii) innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer). This formalism can be described as a birth, death and innovation model (BDIM). The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational models, are considered in details and the distributions of the equilibrium frequencies of domain families of different size are determined for each case. We apply the BDIM formalism to the analysis of the domain family size distributions in prokaryotic and eukaryotic proteomes and show an excellent fit between these empirical data and a particular form of the model, the second-order balanced linear BDIM. Calculation of the parameters of these models suggests surprisingly high innovation rates, comparable to the total domain birth (duplication) and elimination rates, particularly for prokaryotic genomes. Conclusions We show that a straightforward model of genome evolution, which does not explicitly include selection, is sufficient to explain the observed distributions of domain family sizes, in which power laws appear as asymptotic. However, for the model to be compatible with the data, there has to be a precise balance between domain birth, death and innovation rates, and this is likely to be maintained by selection. The developed approach is oriented at a mathematical description of evolution of domain composition of proteomes, but a simple reformulation could be applied to models of other evolving networks with preferential attachment. PMID:12379152
Birth and death of protein domains: a simple model of evolution explains power law behavior.
Karev, Georgy P; Wolf, Yuri I; Rzhetsky, Andrey Y; Berezovskaya, Faina S; Koonin, Eugene V
2002-10-14
Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i) domain birth (duplication with divergence), ii) death (inactivation and/or deletion), and iii) innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer). This formalism can be described as a birth, death and innovation model (BDIM). The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational models, are considered in details and the distributions of the equilibrium frequencies of domain families of different size are determined for each case. We apply the BDIM formalism to the analysis of the domain family size distributions in prokaryotic and eukaryotic proteomes and show an excellent fit between these empirical data and a particular form of the model, the second-order balanced linear BDIM. Calculation of the parameters of these models suggests surprisingly high innovation rates, comparable to the total domain birth (duplication) and elimination rates, particularly for prokaryotic genomes. We show that a straightforward model of genome evolution, which does not explicitly include selection, is sufficient to explain the observed distributions of domain family sizes, in which power laws appear as asymptotic. However, for the model to be compatible with the data, there has to be a precise balance between domain birth, death and innovation rates, and this is likely to be maintained by selection. The developed approach is oriented at a mathematical description of evolution of domain composition of proteomes, but a simple reformulation could be applied to models of other evolving networks with preferential attachment.
Photoacoustic spectral characterization of perfluorocarbon droplets
NASA Astrophysics Data System (ADS)
Strohm, Eric; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael
2012-02-01
Perfluorocarbon droplets containing optical absorbing nanoparticles have been developed for use as theranostic agents (for both imaging and therapy) and as dual-mode contrast agents. Droplets can be used as photoacoustic contrast agents, vaporized via optical irradiation, then the resulting bubbles can be used as ultrasound imaging and therapeutic agents. The photoacoustic signals from micron-sized droplets containing silica coated gold nanospheres were measured using ultra-high frequencies (100-1000 MHz). The spectra of droplets embedded in a gelatin phantom were compared to a theoretical model which calculates the pressure wave from a spherical homogenous liquid undergoing thermoelastic expansion resulting from laser absorption. The location of the spectral features of the theoretical model and experimental spectra were in agreement after accounting for increases in the droplet sound speed with frequency. The agreement between experiment and model indicate that droplets (which have negligible optical absorption in the visible and infrared spectra by themselves) emitted pressure waves related to the droplet composition and size, and was independent of the physical characteristics of the optical absorbing nanoparticles. The diameter of individual droplets was calculated using three independent methods: the time domain photoacoustic signal, the time domain pulse echo ultrasound signal, and a fit to the photoacoustic model, then compared to the diameter as measured by optical microscopy. It was found the photoacoustic and ultrasound methods calculated diameters an average of 2.6% of each other, and 8.8% lower than that measured using optical microscopy. The discrepancy between the calculated diameters and the optical measurements may be due to the difficulty in resolving the droplet edges after being embedded in the translucent gelatin medium.
NASA Astrophysics Data System (ADS)
Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten
2016-05-01
Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.
Size and mobility of lipid domains tuned by geometrical constraints.
Schütte, Ole M; Mey, Ingo; Enderlein, Jörg; Savić, Filip; Geil, Burkhard; Janshoff, Andreas; Steinem, Claudia
2017-07-25
In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or "lipid rafts." Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered ( l o ) domains in the freestanding parts of the PSMs: ( i ) immobile domains that were attached to the pore rims and ( ii ) mobile, round-shaped l o domains within the center of the PSMs. Analysis of the diffusion of the mobile l o domains by video microscopy and particle tracking showed that the domains' mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms.
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
NASA Astrophysics Data System (ADS)
Pourkhorsandi, H.; Mirnejad, H.
2014-09-01
2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).
A Reaction-Diffusion Model for Synapse Growth and Long-Term Memory
NASA Astrophysics Data System (ADS)
Liu, Kang; Lisman, John; Hagan, Michael
Memory storage involves strengthening of synaptic transmission known as long-term potentiation (LTP). The late phase of LTP is associated with structural processes that enlarge the synapse. Yet, synapses must be stable, despite continual subunit turnover, over the lifetime of an encoded memory. These considerations suggest that synapses are variable-size stable structure (VSSS), meaning they can switch between multiple metastable structures with different sizes. The mechanisms underlying VSSS are poorly understood. While experiments and theory have suggested that the interplay between diffusion and receptor-scaffold interactions can lead to a preferred stable size for synaptic domains, such a mechanism cannot explain how synapses adopt widely different sizes. Here we develop a minimal reaction-diffusion model of VSSS for synapse growth, incorporating the recent observation from super-resolution microscopy that neural activity can build compositional heterogeneities within synaptic domains. We find that introducing such heterogeneities can change the stable domain size in a controlled manner. We discuss a potential connection between this model and experimental data on synapse sizes, and how it provides a possible mechanism to structurally encode graded long-term memory. We acknowledge the support from NSF INSPIRE Award number IOS-1526941 (KL, MFH, JL) and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR- 1420382 (MFH).
Fujiwara, Takahiro K.; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A.; Watanabe, Yusuke; Umemura, Yasuhiro M.; Murakoshi, Hideji; Suzuki, Kenichi G. N.; Nemoto, Yuri L.; Morone, Nobuhiro; Kusumi, Akihiro
2016-01-01
The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion. PMID:26864625
Palta, Priya; Schneider, Andrea L C; Biessels, Geert Jan; Touradji, Pegah; Hill-Briggs, Felicia
2014-03-01
The objectives were to conduct a meta-analysis in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards to determine effect sizes (Cohen's d) for cognitive dysfunction in adults with type 2 diabetes, relative to nondiabetic controls, and to obtain effect sizes for the most commonly reported neuropsychological tests within domains. Twenty-four studies, totaling 26,137 patients (n = 3351 with diabetes), met study inclusion criteria. Small to moderate effect sizes were obtained for five of six domains: motor function (3 studies, n = 2374; d = -0.36), executive function (12 studies, n = 1784; d = -0.33), processing speed (16 studies, n = 3076; d = -0.33), verbal memory (15 studies, n = 4,608; d = -0.28), and visual memory (6 studies, n = 1754; d = -0.26). Effect size was smallest for attention/concentration (14 studies, n = 23,143; d = -0.19). The following tests demonstrated the most notable performance decrements in diabetes samples: Grooved Pegboard (dominant hand) (d = -0.60), Rey Auditory Verbal Learning Test (immediate) (d = -0.40), Trails B (d = -0.39), Rey-Osterreith Complex Figure (delayed) (d = -0.38), Trails A (d = -0.34), and Stroop Part I (d = -0.28). This study provides effect sizes to power future epidemiological and clinical diabetes research studies examining cognitive function and to help inform the selection of neuropsychological tests.
NASA Technical Reports Server (NTRS)
Barlow, Douglas A.; Baird, James K.; Su, Ching-Hua
2003-01-01
More than 75 years ago, von Weimarn summarized his observations of the dependence of the average crystal size on the initial relative concentration supersaturation prevailing in a solution from which crystals were growing. Since then, his empirically derived rules have become part of the lore of crystal growth. The first of these rules asserts that the average crystal size measured at the end of a crystallization increases as the initial value of the relative supersaturation decreases. The second rule states that for a given crystallization time, the average crystal size passes through a maximum as a function of the initial relative supersaturation. Using a theory of nucleation and growth due to Buyevich and Mansurov, we calculate the average crystal size as a function of the initial relative supersaturation. We confirm the von Weimarn rules for the case where the nucleation rate is proportional to the third power or higher of the relative supersaturation.
Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.
2017-08-01
We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.
NASA Astrophysics Data System (ADS)
Watanabe, Koji; Matsuno, Kenichi
This paper presents a new method for simulating flows driven by a body traveling with neither restriction on motion nor a limit of a region size. In the present method named 'Moving Computational Domain Method', the whole of the computational domain including bodies inside moves in the physical space without the limit of region size. Since the whole of the grid of the computational domain moves according to the movement of the body, a flow solver of the method has to be constructed on the moving grid system and it is important for the flow solver to satisfy physical and geometric conservation laws simultaneously on moving grid. For this issue, the Moving-Grid Finite-Volume Method is employed as the flow solver. The present Moving Computational Domain Method makes it possible to simulate flow driven by any kind of motion of the body in any size of the region with satisfying physical and geometric conservation laws simultaneously. In this paper, the method is applied to the flow around a high-speed car passing through a hairpin curve. The distinctive flow field driven by the car at the hairpin curve has been demonstrated in detail. The results show the promising feature of the method.
Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng
2008-04-15
Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.; ...
2017-08-21
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.
2016-03-16
Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determinemore » whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models for improved environmental simulation and prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
Salerno, Paola; Larsson, Jessica; Bucca, Giselda; Laing, Emma; Smith, Colin P.; Flärdh, Klas
2009-01-01
Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUα and HUβ, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor. PMID:19717607
Correlational effect size benchmarks.
Bosco, Frank A; Aguinis, Herman; Singh, Kulraj; Field, James G; Pierce, Charles A
2015-03-01
Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.
Pandey, Prem C; Singh, Bhupendra
2008-12-01
Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.
Díez Rodriguez-Labajo, A; Castarlenas, E; Miró, J; Reinoso-Barbero, F
2017-03-01
Parental report on a child's secondary chronic pain is commonly requested by anesthesiologists when the child cannot directly provide information. Daily pain intensity is reported as highest, average and lowest. However, it is unclear whether the parents' score is a valid indicator of the child's pain experience. Nineteen children (aged 6-18years) with secondary chronic pain attending our anesthesiologist-run pediatric pain unit participated in this study. Identification of highest, average and lowest pain intensity levels were requested during initial screening interviews with the child and parents. Pain intensity was scored on a 0-10 numerical rating scale. Agreement was examined using: (i) intraclass correlation coefficient (ICC), and (ii) the Bland-Altman method. The ICC's between the children and the parents' pain intensity reports were: 0.92 for the highest, 0.68 for the average, and 0.50 for the lowest pain intensity domains. The limits of agreement set at 95% between child and parental reports were respectively +2.19 to -2.07, +3.17 to -3.88 and +5.15 to -5.50 for the highest, average and lowest pain domains. For the highest pain intensity domain, agreement between parents and children was excellent. If replicated this preliminary finding would suggest the highest pain intensity is the easiest domain for reporting pain intensity when a child cannot directly express him or herself. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.
Meinicke, Peter
2009-09-02
Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.
Tan, Zhengying; Lu, Senlin; Zhao, Hui; Kai, Xiao; Jiaxian, Peng; Win, Myat Sandar; Yu, Shang; Yonemochi, Shinich; Wang, Qingyue
2018-01-19
As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.
NASA Astrophysics Data System (ADS)
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann
2018-01-01
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; ...
2018-01-09
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Hilton, N Zoe; Harris, Grant T; Rice, Marnie E; Lang, Carol; Cormier, Catherine A; Lines, Kathryn J
2004-09-01
An actuarial assessment to predict male-to-female marital violence was constructed from a pool of potential predictors in a sample of 589 offenders identified in police records and followed up for an average of almost 5 years. Archival information in several domains (offender characteristics, domestic violence history, nondomestic criminal history, relationship characteristics, victim characteristics, index offense) and recidivism were subjected to setwise and stepwise logistic regression. The resulting 13-item scale, the Ontario Domestic Assault Risk Assessment (ODARA), showed a large effect size in predicting new assaults against legal or common-law wives or ex-wives (Cohen's d = 1.1, relative operating characteristic area =.77) and was associated with number and severity of new assaults and time until recidivism. Cross-validation and comparisons with other instruments are also reported.
Sample Size Bias in Judgments of Perceptual Averages
ERIC Educational Resources Information Center
Price, Paul C.; Kimura, Nicole M.; Smith, Andrew R.; Marshall, Lindsay D.
2014-01-01
Previous research has shown that people exhibit a sample size bias when judging the average of a set of stimuli on a single dimension. The more stimuli there are in the set, the greater people judge the average to be. This effect has been demonstrated reliably for judgments of the average likelihood that groups of people will experience negative,…
Dynamical Downscaling of Typhoon Vera (1959) and related Storm Surge based on JRA-55 Reanalysis
NASA Astrophysics Data System (ADS)
Ninomiya, J.; Takemi, T.; Mori, N.; Shibutani, Y.; Kim, S.
2015-12-01
Typhoon Vera in 1959 is historical extreme typhoon that caused severest typhoon damage mainly due to the storm surge up to 389 cm in Japan. Vera developed 895 hPa on offshore and landed with 929.2 hPa. There are many studies of the dynamical downscaling of Vera but it is difficult to simulate accurately because of the lack of the accuracy of global reanalysis data. This study carried out dynamical downscaling experiment of Vera using WRF downscaling forced by JRA-55 that are latest atmospheric model and reanalysis data. In this study, the reproducibility of five global reanalysis data for Typhoon Vera were compered. Comparison shows that reanalysis data doesn't have strong typhoon information except for JRA-55, so that downscaling with conventional reanalysis data goes wrong. The dynamical downscaling method for storm surge is studied very much (e.g. choice of physical model, nudging, 4D-VAR, bogus and so on). In this study, domain size and resolution of the coarse domain were considered. The coarse domain size influences the typhoon route and central pressure, and larger domain restrains the typhoon strength. The results of simulations with different domain size show that the threshold of developing restrain is whether the coarse domain fully includes the area of wind speed more than 15 m/s around the typhoon. The results of simulations with different resolution show that the resolution doesn't affect the typhoon route, and higher resolution gives stronger typhoon simulation.
On the Importance of Cycle Minimum in Sunspot Cycle Prediction
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.
1996-01-01
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.
2013-01-01
Background It is important to quickly and efficiently identify policies that are effective at changing behavior; therefore, we must be able to quantify and evaluate the effect of those policies and of changes to those policies. The purpose of this study was to develop state-level physical education (PE) and physical activity (PA) policy domain scores at the high-school level. Policy domain scores were developed with a focus on measuring policy change. Methods Exploratory factor analysis was used to group items from the state-level School Health Policies and Programs Study (SHPPS) into policy domains. Items that related to PA or PE at the High School level were identified from the 7 SHPPS health program surveys. Data from 2000 and 2006 were used in the factor analysis. RESULTS: From the 98 items identified, 17 policy domains were extracted. Average policy domain change scores were positive for 12 policy domains, with the largest increases for “Discouraging PA as Punishment”, “Collaboration”, and “Staff Development Opportunities”. On average, states increased scores in 4.94 ± 2.76 policy domains, decreased in 3.53 ± 2.03, and had no change in 7.69 ± 2.09 policy domains. Significant correlations were found between several policy domain scores. Conclusions Quantifying policy change and its impact is integral to the policy making and revision process. Our results build on previous research offering a way to examine changes in state-level policies related to PE and PA of high-school students and the faculty and staff who serve them. This work provides methods for combining state-level policies relevant to PE or PA in youth for studies of their impact. PMID:23815860
Size and emotion averaging: costs of dividing attention after all.
Brand, John; Oriet, Chris; Tottenham, Laurie Sykes
2012-03-01
Perceptual averaging is a process by which sets of similar items are represented by summary statistics such as their average size, luminance, or orientation. Researchers have argued that this process is automatic, able to be carried out without interference from concurrent processing. Here, we challenge this conclusion and demonstrate a reliable cost of computing the mean size of circles distinguished by colour (Experiments 1 and 2) and the mean emotionality of faces distinguished by sex (Experiment 3). We also test the viability of two strategies that could have allowed observers to guess the correct response without computing the average size or emotionality of both sets concurrently. We conclude that although two means can be computed concurrently, doing so incurs a cost of dividing attention.
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-02-27
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-01-01
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086
Size and mobility of lipid domains tuned by geometrical constraints
Schütte, Ole M.; Mey, Ingo; Savić, Filip; Geil, Burkhard; Janshoff, Andreas
2017-01-01
In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or “lipid rafts.” Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered (lo) domains in the freestanding parts of the PSMs: (i) immobile domains that were attached to the pore rims and (ii) mobile, round-shaped lo domains within the center of the PSMs. Analysis of the diffusion of the mobile lo domains by video microscopy and particle tracking showed that the domains’ mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms. PMID:28696315
NASA Astrophysics Data System (ADS)
Manjunatha, M.; Kumar, Rajeev; Sahoo, Balaram; Damle, Ramakrishna; Ramesh, K. P.
2018-05-01
The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is ∼ 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using 57Fe-IFNMR.
Huan, Yu; Wang, Xiaohui; Koruza, Jurij; Wang, Ke; Webber, Kyle G.; Hao, Yanan; Li, Longtu
2016-01-01
Miniaturization of domains to the nanometer scale has been previously reported in many piezoelectrics with two-phase coexistence. Despite the observation of nanoscale domain configuration near the polymorphic phase transition (PPT) regionin virgin (K0.5Na0.5)NbO3 (KNN) based ceramics, it remains unclear how this domain state responds to external loads and influences the macroscopic electro-mechanical properties. To this end, the electric-field-induced and stress-induced strain curves of KNN-based ceramics over a wide compositional range across PPT were characterized. It was found that the coercive field of the virgin samples was highest in PPT region, which was related to the inhibited domain wall motion due to the presence of nanodomains. However, the coercive field was found to be the lowest in the PPT region after electrical poling. This was related to the irreversible transformation of the nanodomains into micron-sized domains during the poling process. With the similar micron-sized domain configuration for all poled ceramics, the domains in the PPT region move more easily due to the additional polarization vectors. The results demonstrate that the poling process can give rise to the irreversible domain configuration transformation and then account for the inverted macroscopic piezoelectricity in the PPT region of KNN-based ceramics. PMID:26915972
Development of Activity and Participation Norms among General Adult Populations in Taiwan.
Yen, Chia-Feng; Chiu, Tzu-Ying; Liou, Tsan-Hon; Chi, Wen-Chou; Liao, Hua-Fang; Liang, Chung-Chao; Escorpizo, Reuben
2017-06-06
Based on the International Classification of Functioning, Disability, and Health (ICF) and the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), The Functioning Disability Evaluation Scale-Adult version (FUNDES-Adult) began development in 2011. The FUNDES-Adult was designed to assess the difficulty level of an individual's activities and participation in daily life. There is a lack of research regarding the profile of activity and participation for the general adult population. The purposes of this study were to establish activity and participation norms for the general adult population in Taiwan and to describe, discuss, and compare the activity and participation profile with other population. A population-based survey was administered in 2013 using a computer-assisted telephone interviewing system (CATI system). Using probability proportional to size (PPS) sampling and systematic sampling with random digit dialing (RDD), 1500 adults from Taiwan's general population were selected to participate in the survey. The FUNDES-Adult with six domains and two dimensions (performance and capability) was used to obtain data on activities and participation levels. A higher domain score indicated higher participation restriction. Approximately 50% of the respondents were male, and the average age of the respondents was 45.23 years. There were no significant differences in the demographic features between the sample and the population. Among the six domains, the self-care domain score was the lowest (least restriction) and the participation domain score was the highest (most restriction). Approximately 90% of the sample scored were less than 15, and only 0.1% scored more than 80. This is the first cross-national population-based survey to assess norms of activity and participation relevant to the general population of Taiwan. As such, the results of this survey can be used as a reference for comparing the activity and participation (AP) functioning of other countries and subgroups.
Eisele, Nico B.; Labokha, Aksana A.; Frey, Steffen; Görlich, Dirk; Richter, Ralf P.
2013-01-01
Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport. PMID:24138862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less
Genome size analyses of Pucciniales reveal the largest fungal genomes.
Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro
2014-01-01
Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.
Genome size analyses of Pucciniales reveal the largest fungal genomes
Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G.; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T.; Loureiro, João; Talhinhas, Pedro
2014-01-01
Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research. PMID:25206357
Dittmar, Helga; Howard, Sarah
2004-12-01
Previous experimental research indicates that the use of average-size women models in advertising prevents the well-documented negative effect of thin models on women's body image, while such adverts are perceived as equally effective (Halliwell & Dittmar, 2004). The current study extends this work by: (a) seeking to replicate the finding of no difference in advertising effectiveness between average-size and thin models (b) examining level of ideal-body internalization as an individual, internal factor that moderates women's vulnerability to thin media models, in the context of (c) comparing women in professions that differ radically in their focus on, and promotion of, the sociocultural ideal of thinness for women--employees in fashion advertising (n = 75) and teachers in secondary schools (n = 75). Adverts showing thin, average-size and no models were perceived as equally effective. High internalizers in both groups of women felt worse about their body image after exposure to thin models compared to other images. Profession affected responses to average-size models. Teachers reported significantly less body-focused anxiety after seeing average-size models compared to no models, while there was no difference for fashion advertisers. This suggests that women in professional environments with less focus on appearance-related ideals can experience increased body-esteem when exposed to average-size models, whereas women in appearance-focused professions report no such relief.
Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter
2015-01-14
Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.
Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity
NASA Astrophysics Data System (ADS)
Brown, Aidan; Rutenberg, Andrew
2015-03-01
Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.
Carlisle, John A.; Auciello, Orlando; Birrell, James
2006-10-31
An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.
Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.
2011-01-01
Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248
Closed membrane shapes with attached BAR domains subject to external force of actin filaments.
Mesarec, Luka; Góźdź, Wojciech; Iglič, Veronika Kralj; Kralj, Samo; Iglič, Aleš
2016-05-01
Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
The organization of domains in proteins obeys Menzerath-Altmann's law of language.
Shahzad, Khuram; Mittenthal, Jay E; Caetano-Anollés, Gustavo
2015-08-11
The combination of domains in multidomain proteins enhances their function and structure but lengthens the molecules and increases their cost at cellular level. The dependence of domain length on the number of domains a protein holds was surveyed for a set of 60 proteomes representing free-living organisms from all kingdoms of life. Distributions were fitted using non-linear functions and fitted parameters interpreted with a formulation of decreasing returns. We find that domain length decreases with increasing number of domains in proteins, following the Menzerath-Altmann (MA) law of language. Highly significant negative correlations exist for the set of proteomes examined. Mathematically, the MA law expresses as a power law relationship that unfolds when molecular persistence P is a function of domain accretion. P holds two terms, one reflecting the matter-energy cost of adding domains and extending their length, the other reflecting how domain length and number impinges on information and biophysics. The pattern of diminishing returns can therefore be explained as a frustrated interplay between the strategies of economy, flexibility and robustness, matching previously observed trade-offs in the domain makeup of proteomes. Proteomes of Archaea, Fungi and to a lesser degree Plants show the largest push towards molecular economy, each at their own economic stratum. Fungi increase domain size in single domain proteins while reinforcing the pattern of diminishing returns. In contrast, Metazoa, and to lesser degrees Protista and Bacteria, relax economy. Metazoa achieves maximum flexibility and robustness by harboring compact molecules and complex domain organization, offering a new functional vocabulary for molecular biology. The tendency of parts to decrease their size when systems enlarge is universal for language and music, and now for parts of macromolecules, extending the MA law to natural systems.
Perceptual Averaging in Individuals with Autism Spectrum Disorder.
Corbett, Jennifer E; Venuti, Paola; Melcher, David
2016-01-01
There is mounting evidence that observers rely on statistical summaries of visual information to maintain stable and coherent perception. Sensitivity to the mean (or other prototypical value) of a visual feature (e.g., mean size) appears to be a pervasive process in human visual perception. Previous studies in individuals diagnosed with Autism Spectrum Disorder (ASD) have uncovered characteristic patterns of visual processing that suggest they may rely more on enhanced local representations of individual objects instead of computing such perceptual averages. To further explore the fundamental nature of abstract statistical representation in visual perception, we investigated perceptual averaging of mean size in a group of 12 high-functioning individuals diagnosed with ASD using simplified versions of two identification and adaptation tasks that elicited characteristic perceptual averaging effects in a control group of neurotypical participants. In Experiment 1, participants performed with above chance accuracy in recalling the mean size of a set of circles ( mean task ) despite poor accuracy in recalling individual circle sizes ( member task ). In Experiment 2, their judgments of single circle size were biased by mean size adaptation. Overall, these results suggest that individuals with ASD perceptually average information about sets of objects in the surrounding environment. Our results underscore the fundamental nature of perceptual averaging in vision, and further our understanding of how autistic individuals make sense of the external environment.
Lattice-Rotation Vortex at the Charged Monoclinic Domain Boundary in a Relaxor Ferroelectric Crystal
NASA Astrophysics Data System (ADS)
Shao, Yu-Tsun; Zuo, Jian-Min
2017-04-01
We present evidence of lattice-rotation vortices having an average radius of ˜7 nm at the ferroelectric domain boundary of (1 -x )Pb (Zn1 /3Nb2 /3)O3-xPbTiO3 (x =0.08 ). Maps of crystal orientations and domain symmetry breaking are obtained using scanning convergent beam electron diffraction, which show fractional rotation vortices near the 50° monoclinic domain walls. The merging of 2D and 1D topological defects is consistent with inhomogeneous boundary charge and expected to have a large impact on the domain-switching mechanisms in relaxor ferroelectric crystals and ferroelectric devices.
Blokland, Gabriëlla A M; Mesholam-Gately, Raquelle I; Toulopoulou, Timothea; Del Re, Elisabetta C; Lam, Max; DeLisi, Lynn E; Donohoe, Gary; Walters, James T R; Seidman, Larry J; Petryshen, Tracey L
2017-07-01
Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%-40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average rg = -.58) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in well-powered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Gurling, Mark; Talavera, Karla; Garriga, Gian
2014-01-01
Neuroblast divisions in the nematode Caenorhabditis elegans often give rise to a larger neuron and a smaller cell that dies. We have previously identified genes that, when mutated, result in neuroblast divisions that generate daughter cells that are more equivalent in size. This effect correlates with the survival of daughter cells that would normally die. We now describe a role for the DEP domain-containing protein TOE-2 in promoting the apoptotic fate in the Q lineage. TOE-2 localized at the plasma membrane and accumulated in the cleavage furrow of the Q.a and Q.p neuroblasts, suggesting that TOE-2 might position the cleavage furrow asymmetrically to generate daughter cells of different sizes. This appears to be the case for Q.a divisions where loss of TOE-2 led to a more symmetric division and to survival of the smaller Q.a daughter. Localization of TOE-2 to the membrane is required for this asymmetry, but, surprisingly, the DEP domain is dispensable. By contrast, loss of TOE-2 led to loss of the apoptotic fate in the smaller Q.p daughter but did not affect the size asymmetry of the Q.p daughters. This function of TOE-2 required the DEP domain but not localization to the membrane. We propose that TOE-2 ensures an apoptotic fate for the small Q.a daughter by promoting asymmetry in the daughter cell sizes of the Q.a neuroblast division but by a mechanism that is independent of cell size in the Q.p division. PMID:24961802
ERIC Educational Resources Information Center
Obleton, Eddie V.
2010-01-01
The purpose of this study was to investigate the relationships between Georgia alternative school administrators' perceptions of student success factors and the three domains of essential elements of effective alternative schools. The success factors included: dropout rate, average grade point average (GPA), average absences per student,…
Direct-Comparison Judgments: When and Why above- and below-Average Effects Reverse
ERIC Educational Resources Information Center
Windschitl, Paul D.; Conybeare, Daniel; Krizan, Zlatan
2008-01-01
Above-average and below-average effects appear to be common and consistent across a variety of judgment domains. For example, several studies show that individual items from a high- (low-) quality set tend to be rated as better (worse) than the other items in the set (e.g., E. E. Giladi & Y. Klar, 2002). Experiments in this article demonstrate…
Dissolution Front Instabilities in Reacting Porous Media
NASA Astrophysics Data System (ADS)
Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid
2013-04-01
The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula
2018-04-01
A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.
Replacing dark energy by silent virialisation
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.
2018-02-01
Context. Standard cosmological N-body simulations have background scale factor evolution that is decoupled from non-linear structure formation. Prior to gravitational collapse, kinematical backreaction (𝒬𝒟) justifies this approach in a Newtonian context. Aims: However, the final stages of a gravitational collapse event are sudden; a globally imposed smooth expansion rate forces at least one expanding region to suddenly and instantaneously decelerate in compensation for the virialisation event. This is relativistically unrealistic. A more conservative hypothesis is to allow non-collapsed domains to continue their volume evolution according to the 𝒬𝒟 Zel'dovich approximation (QZA). We aim to study the inferred average expansion under this "silent" virialisation hypothesis. Methods: We set standard (MPGRAFIC) EdS 3-torus (T3) cosmological N-body initial conditions. Using RAMSES, we partitioned the volume into domains and called the DTFE library to estimate the per-domain initial values of the three invariants of the extrinsic curvature tensor that determine the QZA. We integrated the Raychaudhuri equation in each domain using the INHOMOG library, and adopted the stable clustering hypothesis to represent virialisation (VQZA). We spatially averaged to obtain the effective global scale factor. We adopted an early-epoch-normalised EdS reference-model Hubble constant H1EdS = 37.7 km s-1 /Mpc and an effective Hubble constant Heff,0 = 67.7 km s-1 /Mpc. Results: From 2000 simulations at resolution 2563, we find that reaching a unity effective scale factor at 13.8 Gyr (16% above EdS), occurs for an averaging scale of L13.813 = 2.5-0.1+0.1 Mpc/heff. Relativistically interpreted, this corresponds to strong average negative curvature evolution, with the mean (median) curvature functional Ωℛ𝒟 growing from zero to about 1.5-2 by the present. Over 100 realisations, the virialisation fraction and super-EdS expansion correlate strongly at fixed cosmological time. Conculsions. Thus, starting from EdS initial conditions and averaging on a typical non-linear structure formation scale, the VQZA dark-energy-free average expansion matches ΛCDM expansion to first order. The software packages used here are free-licensed.
Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes
Štefl, Martin; Šachl, Radek; Humpolíčková, Jana; Cebecauer, Marek; Macháň, Radek; Kolářová, Marie; Johansson, Lennart B.-Å.; Hof, Martin
2012-01-01
Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ∼8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation. PMID:22824274
Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm
NASA Astrophysics Data System (ADS)
Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas
2012-02-01
Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.
Ensemble representations: effects of set size and item heterogeneity on average size perception.
Marchant, Alexander P; Simons, Daniel J; de Fockert, Jan W
2013-02-01
Observers can accurately perceive and evaluate the statistical properties of a set of objects, forming what is now known as an ensemble representation. The accuracy and speed with which people can judge the mean size of a set of objects have led to the proposal that ensemble representations of average size can be computed in parallel when attention is distributed across the display. Consistent with this idea, judgments of mean size show little or no decrement in accuracy when the number of objects in the set increases. However, the lack of a set size effect might result from the regularity of the item sizes used in previous studies. Here, we replicate these previous findings, but show that judgments of mean set size become less accurate when set size increases and the heterogeneity of the item sizes increases. This pattern can be explained by assuming that average size judgments are computed using a limited capacity sampling strategy, and it does not necessitate an ensemble representation computed in parallel across all items in a display. Copyright © 2012 Elsevier B.V. All rights reserved.
Energy-efficient writing scheme for magnetic domain-wall motion memory
NASA Astrophysics Data System (ADS)
Kim, Kab-Jin; Yoshimura, Yoko; Ham, Woo Seung; Ernst, Rick; Hirata, Yuushou; Li, Tian; Kim, Sanghoon; Moriyama, Takahiro; Nakatani, Yoshinobu; Ono, Teruo
2017-04-01
We present an energy-efficient magnetic domain-writing scheme for domain wall (DW) motion-based memory devices. A cross-shaped nanowire is employed to inject a domain into the nanowire through current-induced DW propagation. The energy required for injecting the magnetic domain is more than one order of magnitude lower than that for the conventional field-based writing scheme. The proposed scheme is beneficial for device miniaturization because the threshold current for DW propagation scales with the device size, which cannot be achieved in the conventional field-based technique.
Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate
NASA Astrophysics Data System (ADS)
Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.
2009-06-01
Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.
The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model
NASA Astrophysics Data System (ADS)
Pham, S. V.
2016-02-01
Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Development of Technology for CO2 Marine Geological Storage". We also thank to the administrative supports of the Integrated Research Institute of Construction and Environmental Engineering of the Seoul National University.
Choi, Young-Sun; Lee, Jung-Sug; Kim, Hye-Young; Kwak, Tong-Kyung; Chung, Hae Rang; Kwon, Sehyug; Choi, Youn-Ju; Lee, Soon-Kyu
2012-01-01
This pilot study was performed to produce data of the Children's Dietary Life Safety (CDLS) Index which is required by the Special Act on Safety Management of Children's Dietary Life and to evaluate the CDLS Index for 7 metropolitan cities and 9 provinces in Korea. To calculate the CDLS Index score, data regarding the evaluation indicators in the children's food safety domain and children's nutrition safety domain were collected from the local governments in 2009. For data regarding the indicators in the children's perception & practice domain, a survey was conducted on 2,400 5th grade children selected by stratified sampling in 16 local areas. Relative scores of indicators in each domain were calculated using the data provided by local governments and the survey, the weights are applied on relative scores, and then the CDLS Index scores of local governments were produced by adding scores of the 3 domains. The national average scores of the food safety domain, the nutrition safety domain and the perception and practice domain were 23.74 (14.67-26.50 on a 40-point scale), 16.65 (12.25-19.60 on a 40-point scale), and 14.88 (14.16-15.30 on a 20-point scale), respectively. The national average score of the CDLS Index which was produced by adding the scores of the three domains was 55.27 ranging 46.44-58.94 among local governments. The CDLS Index scores produced in this study may provide the motivation for comparing relative accomplishment and for actively achieving the goals through establishment of the target value by local governments. Also, it can be used as useful data for the establishment and improvement of children's dietary life safety policy at the national level. PMID:23346305
Weighting by Inverse Variance or by Sample Size in Random-Effects Meta-Analysis
ERIC Educational Resources Information Center
Marin-Martinez, Fulgencio; Sanchez-Meca, Julio
2010-01-01
Most of the statistical procedures in meta-analysis are based on the estimation of average effect sizes from a set of primary studies. The optimal weight for averaging a set of independent effect sizes is the inverse variance of each effect size, but in practice these weights have to be estimated, being affected by sampling error. When assuming a…
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Analysis of spatial distribution of land cover maps accuracy
NASA Astrophysics Data System (ADS)
Khatami, R.; Mountrakis, G.; Stehman, S. V.
2017-12-01
Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.
Characteristics of ferroelectric-ferroelastic domains in Néel-type skyrmion host GaV4S8
NASA Astrophysics Data System (ADS)
Butykai, Ádám; Bordács, Sándor; Kézsmárki, István; Tsurkan, Vladimir; Loidl, Alois; Döring, Jonathan; Neuber, Erik; Milde, Peter; Kehr, Susanne C.; Eng, Lukas M.
2017-03-01
GaV4S8 is a multiferroic semiconductor hosting Néel-type magnetic skyrmions dressed with electric polarization. At Ts = 42 K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts, ferroelectric domains are formed with the electric polarization pointing along any of the four <111> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the Néel-type skyrmion lattice emerging below TC = 13 K, the characteristics of polar domains in GaV4S8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4S8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μm. Since the magnetic pattern, imaged by atomic force microscopy using a magnetically coated tip, abruptly changes at the domain boundaries, we expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manipulation of Néel-type skyrmions.
Effect of surface hydrophobicity on the function of the immobilized biomineralization protein Mms6
Liu, Xunpei; Zhang, Honghu; Nayak, Srikanth; ...
2015-08-13
Magnetotactic bacteria produce magnetic nanocrystals with uniform shapes and sizes in nature, which has inspired in vitro synthesis of uniformly sized magnetite nanocrystals under mild conditions. Mms6, a biomineralization protein from magnetotactic bacteria with a hydrophobic N-terminal domain and a hydrophilic C-terminal domain, can promote formation of magnetite nanocrystals in vitro with well-defined shape and size in gels under mild conditions. Here we investigate the role of surface hydrophobicity on the ability of Mms6 to template magnetite nanoparticle formation on surfaces. Our results confirmed that Mms6 can form a protein network structure on a monolayer of hydrophobic octadecanethiol (ODT)-coated goldmore » surfaces and facilitate magnetite nanocrystal formation with uniform sizes close to those seen in nature, in contrast to its behavior on more hydrophilic surfaces. We propose that this hydrophobicity effect might be due to the amphiphilic nature of the Mms6 protein and its tendency to incorporate the hydrophobic N-terminal domain into the hydrophobic lipid bilayer environment of the magnetosome membrane, exposing the hydrophilic C-terminal domain that promotes biomineralization. Supporting this hypothesis, the larger and well-formed magnetite nanoparticles were found to be preferentially located on ODT surfaces covered with Mms6 as compared to control samples, as characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy studies. A C-terminal domain mutant of this protein did not form the same network structure as wild-type Mms6, suggesting that the network structure is important for the magnetite nanocrystal formation. This article provides valuable insights into the role of surface hydrophilicity on the action of the biomineralization protein Mms6 to synthesize magnetic nanocrystals and provides a facile route to controlling bioinspired nanocrystal synthesis in vitro.« less
Bhatia, Triptish; Mazumdar, Sati; Wood, Joel; He, Fanyin; Gur, Raquel E; Gur, Ruben C; Nimgaonkar, Vishwajit L; Deshpande, Smita N
2017-04-01
Yoga and physical exercise have been used as adjunctive intervention for cognitive dysfunction in schizophrenia (SZ), but controlled comparisons are lacking. Aims A single-blind randomised controlled trial was designed to evaluate whether yoga training or physical exercise training enhance cognitive functions in SZ, based on a prior pilot study. Consenting, clinically stable, adult outpatients with SZ (n=286) completed baseline assessments and were randomised to treatment as usual (TAU), supervised yoga training with TAU (YT) or supervised physical exercise training with TAU (PE). Based on the pilot study, the primary outcome measure was speed index for the cognitive domain of 'attention' in the Penn computerised neurocognitive battery. Using mixed models and contrasts, cognitive functions at baseline, 21 days (end of training), 3 and 6 months post-training were evaluated with intention-to-treat paradigm. Speed index of attention domain in the YT group showed greater improvement than PE at 6 months follow-up (p<0.036, effect size 0.51). In the PE group, 'accuracy index of attention domain showed greater improvement than TAU alone at 6-month follow-up (p<0.025, effect size 0.61). For several other cognitive domains, significant improvements were observed with YT or PE compared with TAU alone (p<0.05, effect sizes 0.30-1.97). Both YT and PE improved attention and additional cognitive domains well past the training period, supporting our prior reported beneficial effect of YT on speed index of attention domain. As adjuncts, YT or PE can benefit individuals with SZ.
Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
2017-02-20
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
Lower Sensitivity to Happy and Angry Facial Emotions in Young Adults with Psychiatric Problems
Vrijen, Charlotte; Hartman, Catharina A.; Lodder, Gerine M. A.; Verhagen, Maaike; de Jonge, Peter; Oldehinkel, Albertine J.
2016-01-01
Many psychiatric problem domains have been associated with emotion-specific biases or general deficiencies in facial emotion identification. However, both within and between psychiatric problem domains, large variability exists in the types of emotion identification problems that were reported. Moreover, since the domain-specificity of the findings was often not addressed, it remains unclear whether patterns found for specific problem domains can be better explained by co-occurrence of other psychiatric problems or by more generic characteristics of psychopathology, for example, problem severity. In this study, we aimed to investigate associations between emotion identification biases and five psychiatric problem domains, and to determine the domain-specificity of these biases. Data were collected as part of the ‘No Fun No Glory’ study and involved 2,577 young adults. The study participants completed a dynamic facial emotion identification task involving happy, sad, angry, and fearful faces, and filled in the Adult Self-Report Questionnaire, of which we used the scales depressive problems, anxiety problems, avoidance problems, Attention-Deficit Hyperactivity Disorder (ADHD) problems and antisocial problems. Our results suggest that participants with antisocial problems were significantly less sensitive to happy facial emotions, participants with ADHD problems were less sensitive to angry emotions, and participants with avoidance problems were less sensitive to both angry and happy emotions. These effects could not be fully explained by co-occurring psychiatric problems. Whereas this seems to indicate domain-specificity, inspection of the overall pattern of effect sizes regardless of statistical significance reveals generic patterns as well, in that for all psychiatric problem domains the effect sizes for happy and angry emotions were larger than the effect sizes for sad and fearful emotions. As happy and angry emotions are strongly associated with approach and avoidance mechanisms in social interaction, these mechanisms may hold the key to understanding the associations between facial emotion identification and a wide range of psychiatric problems. PMID:27920735
Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus.
Wang, Yue; Li, Qingxia; Zheng, Yunhua; Li, Gang; Liu, Wei
2016-05-13
The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Terada, T.; Sato, M.; Mochizuki, N.; Yamamoto, Y.; Tsunakawa, H.
2013-12-01
Magnetic properties of ferromagnetic minerals generally depend on their chemical composition, crystal structure, size, and shape. In the usual paleomagnetic study, we use a bulk sample which is the assemblage of magnetic minerals showing broad distributions of various magnetic properties. Microscopic and Curie-point observations of the bulk sample enable us to identify the constituent magnetic minerals, while other measurements, for example, stepwise thermal and/or alternating field demagnetizations (ThD, AFD) make it possible to estimate size, shape and domain state of the constituent magnetic grains. However, estimation based on stepwise demagnetizations has a limitation that magnetic grains with the same coercivity Hc (or blocking temperature Tb) can be identified as the single population even though they could have different size and shape. Dunlop and West (1969) carried out mapping of grain size and coercivity (Hc) using pTRM. However, it is considered that their mapping method is basically applicable to natural rocks containing only SD grains, since the grain sizes are estimated on the basis of the single domain theory (Neel, 1949). In addition, it is impossible to check thermal alteration due to laboratory heating in their experiment. In the present study we propose a new experimental method which makes it possible to estimate distribution of size and shape of magnetic minerals in a bulk sample. The present method is composed of simple procedures: (1) imparting ARM to a bulk sample, (2) ThD at a certain temperature, (3) stepwise AFD on the remaining ARM, (4) repeating the steps (1) ~ (3) with ThD at elevating temperatures up to the Curie temperature of the sample. After completion of the whole procedures, ARM spectra are calculated and mapped on the HC-Tb plane (hereafter called HC-Tb diagram). We analyze the Hc-Tb diagrams as follows: (1) For uniaxial SD populations, theoretical curve for a certain grain size (or shape anisotropy) is drawn on the Hc-Tb diagram. The curves are calculated using the single domain theory, since coercivity and blocking temperature of uniaxial SD grains can be expressed as a function of size and shape. (2) Boundary between SD and MD grains are calculated and drawn on the Hc-Tb diagram according to the theory by Butler and Banerjee (1975). (3) Theoretical predictions by (1) and (2) are compared with the obtained ARM spectra to estimate quantitive distribution of size, shape and domain state of magnetic grains in the sample. This mapping method has been applied to three samples: Hawaiian basaltic lava extruded in 1995, Ueno basaltic lava formed during Matsuyama chron, and Oshima basaltic lava extruded in 1986. We will discuss physical states of magnetic grains (size, shape, domain state, etc.) and their possible origins.
2017-10-17
Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...University - Bakersfield Title: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB Report
Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David
2015-11-07
An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.
Anufriieva, Elena V.; Shadrin, Nickolai V.
2014-01-01
Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, asignificant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions. Individuals from environments with highly varying abiotic parameters, e.g. temporary reservoirs, had a larger body size than individuals from permanent water bodies. The changes in average body mass in populations were at 11.4 times, whereas, those in individual metabolic activities were at 6.2 times. Moreover, two size groups of A. salinus in the Crimean and the Siberian lakes were observed. The ratio of female length to male length fluctuatedbetween 1.02 and 1.30. The average size of A. salinus in populations and its variations were determined by both genetic and environmental factors. However, the paritiesof these factors were unequal in either spatial or temporal scales. PMID:24668656
Anufriieva, Elena V; Shadrin, Nickolai V
2014-03-01
Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, a significant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions. Individuals from environments with highly varying abiotic parameters, e.g. temporary reservoirs, had a larger body size than individuals from permanent water bodies. The changes in average body mass in populations were at 11.4 times, whereas, those in individual metabolic activities were at 6.2 times. Moreover, two size groups of A. salinus in the Crimean and the Siberian lakes were observed. The ratio of female length to male length fluctuated between 1.02 and 1.30. The average size of A. salinus in populations and its variations were determined by both genetic and environmental factors. However, the parities of these factors were unequal in either spatial or temporal scales.
Kerrigan, Elizabeth A.; Irwin, Andrew J.
2015-01-01
Climate change over the last two centuries has been associated with significant shifts in diatom community structure in lakes from the high arctic to temperate latitudes. To test the hypotheses that recent climate warming selects for species of smaller size within communities and a decrease in the average size of species within populations, we quantified the size of individual diatom valves from 10 depths in a sediment core covering the last ∼200 years from a pristine subarctic lake. Over the last ∼200 years, changes in the relative abundance of species of different average size and changes in the average valve size of populations of species contribute equally to the changes in community size structure, but are often opposite in sign, compensating for one another and moderating temporal changes in community size structure. In the surface sediments that correspond to the recent decades when air temperatures have warmed, the mean size of valves in the diatom community has significantly decreased due to an increase in the proportion of smaller-sized planktonic diatom species. PMID:26157637
Maloca, Peter; Gyger, Cyrill; Schoetzau, Andreas; Hasler, Pascal W
2016-04-01
Our purpose was to compare the tumor sizes of small choroidal nevi using ultra-widefield imaging (UWF) and different optical coherence tomography systems. Thirteen choroidal nevi were measured using automatic and manual segmentation techniques, including enhanced depth imaging spectral-domain optical coherence tomography (EDI-SDOCT) and 1050 nm swept source OCT (SSOCT), to compare to measurements obtained using the Optos projection ultra-widefield fundus (UWF) imaging technique. Segmentation artifacts were evaluated for all 13 cases, alongside an additional 12 choroidal nevi, using SSOCT. In tumor eyes, segmentation artifacts for the choroid-sclera interface were found in 42 % of SSOCT scans. EDI-SDOCT can underestimate tumor dimensions and differs up to -8.41 % compared to UWF imaging and by 1.25 % compared to SSOCT cases. The horizontal length of the nevi showed an average difference between EDI-SDOCT and SSOCT of ± 9.38 %. Measured markers showed an average difference in length of ± 12.51 %. The average tumor thickness showed a difference of ± 11.47 %. Comparisons between EDI-SDOCT/UWF, SSOCT/EDI-SDOCT, and marker EDI-SDOCT/SSOCT showed significant mean differences of -122 μm (CI: -212 to -31 μm, p = 0.013), 134 μm (CI: 65-203 μm, p = 0.0012), and -193 μm (CI: -345 to -41 μm, p = 0.017), whereas SSOCT/UWF showed no significant difference with a measurement of 13 μm (CI: -69-95 μm, p = 0.74). Automatic segmentation of nevi requires much caution, because a choroidal tumor can trigger many artifacts. It would be beneficial to monitor choroidal nevi using the same type of OCT technology, because a tumor is displayed differently.
Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Yee, Julie L; Hartman, C Alex
2016-06-01
Bird eggs are commonly used in contaminant monitoring programs and toxicological risk assessments, but intraclutch variation and sampling methodology could influence interpretability. The authors examined the influence of egg-laying sequence on egg mercury concentrations and burdens in American avocets, black-necked stilts, and Forster's terns. The average decline in mercury concentrations between the first and last eggs laid was 33% for stilts, 22% for terns, and 11% for avocets, and most of this decline occurred between the first and second eggs laid (24% for stilts, 18% for terns, and 9% for avocets). Trends in egg size with egg-laying order were inconsistent among species, and overall differences in egg volume, mass, length, and width were <3%. The authors summarized the literature, and among 17 species studied, mercury concentrations generally declined by 16% between the first and second eggs laid. Despite the strong effect of egg-laying sequence, most of the variance in egg mercury concentrations still occurred among clutches (75-91%) rather than within clutches (9%-25%). Using simulations, the authors determined that accurate estimation of a population's mean egg mercury concentration using only a single random egg from a subset of nests would require sampling >60 nests to represent a large population (10% accuracy) or ≥14 nests to represent a small colony that contained <100 nests (20% accuracy). Environ Toxicol Chem 2016;35:1458-1469. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Scahill, Lawrence; McDougle, Christopher J.; Aman, Michael G.; Johnson, Cynthia; Handen, Benjamin; Bearss, Karen; Dziura, James; Butter, Eric; Swiezy, Naomi B.; Arnold, L. Eugene; Stigler, Kimberly A.; Sukhodolsky, Denis D.; Lecavalier, Luc; Pozdol, Stacie L.; Nikolov, Roumen; Ritz, Louise; Hollway, Jill A.; Korzekwa, Patrcia; Gavaletz, Allison; Kohn, Arlene E.; Koenig, Kathleen; Grinnon, Stacie; Mulick, James A.; Yu, Sunkyung; Vitiello, Benedetto
2012-01-01
Objective Children with Pervasive Developmental Disorders (PDDs) have deficits in social interaction, delayed communication and repetitive behavior as well as impairments in adaptive functioning. Many children actually show decline in adaptive skills compared to age mates over time. Method This 24-week, three-site, controlled clinical trial randomized 124 children (4 through 13 years of age) with PDDs and serious behavior problems to medication alone (MED; N=49; risperidone 0.5 to 3.5 mg/day (if ineffective, switch to aripiprazole was permitted) or medication plus parent training (PT) (COMB; N=75). Parents of children in COMB received an average of 11.4 PT sessions. Standard scores and Age Equivalent scores on Vineland Adaptive Behavior Scales were the outcome measures of primary interest. Results Seventeen subjects did not have a post-randomization Vineland. Thus, we used a mixed model with outcome conditioned on the baseline Vineland scores. Both groups showed improvement over the 24-week trial on all Vineland domains. Compared to MED, Vineland Socialization and Adaptive Composite Standard scores showed greater improvement in the COMB group (p = 0.01 and 0.05; effect sizes = 0.35.and 0.22, respectively). On Age Equivalent scores, Socialization and Communication domains showed greater improvement in COMB versus MED (p=0.03, 0.05; effect sizes = 0.33 and 0.14 respectively). Using logistic regression, children in the COMB group were twice as likely to make at least 6 months gain (equal to the passage of time) in the Vineland Communication Age Equivalent score compared to MED (p = 0.02). After controlling for IQ, this difference was no longer significant. Conclusion Reduction of serious maladaptive behavior promotes improvement in adaptive behavior. Medication plus PT shows modest additional benefit over medication alone. PMID:22265360
Schomacker, Kevin T.; Basilavecchio, Lisa D.; Plugis, Jessica M.; Bhawalkar, Jayant D.
2015-01-01
Background and Objectives Although nanosecond‐domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q‐switched lasers that generate picosecond‐domain pulses. Study A picosecond‐domain, Nd:YAG laser with a KTP frequency‐doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. Results The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper‐ or hypo‐pigmentation by evaluation of photographs. Conclusion The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. 47:542–548, 2015. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:26175187
Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang
2015-05-01
Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.
Physical heterogeneity control on effective mineral dissolution rates
NASA Astrophysics Data System (ADS)
Jung, Heewon; Navarre-Sitchler, Alexis
2018-04-01
Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (<1% reduction from the corresponding homogeneous case) to explain several orders of magnitude reduction observed in many field studies. When multimodality in permeability distribution is approximated by high permeability variance in 400 m × 400 m domains, the reduction in effective dissolution rate increases due to the effect of long diffusion length scales through zones with very slow reaction rates. The observed scale dependence becomes complicated when pH dependent kinetics are compared to the results from pH independent rate constants. In small domains where the entire domain is reactive, faster anorthite dissolution rates and slower kaolinite precipitation rates relative to pH independent rates at far-from-equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher kaolinite precipitation rates in less reactive zones increase the effective anorthite dissolution rates relative to the rates observed in pH independent cases.
Superdiffusive motion of membrane-targeting C2 domains
NASA Astrophysics Data System (ADS)
Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego
2015-12-01
Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.
New particle formation leads to cloud dimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi
New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less
Infrared photometric behavior and opposition effect of Mars
NASA Technical Reports Server (NTRS)
Erard, S.; Bibring, J-P.; Drossart, P.
1992-01-01
Although the instrument wasn't designed for this purpose, data from the imaging spectrometer ISM may be used for studying photometric variations of Mars reflectance, that are related to the surface materials and aerosols physical properties. ISM flew aboard the Phobos-2 spacecraft which orbited Mars from January to March, 1989. About 40,000 spectra were acquired in 128 channels ranging from 0.76 to 3.16 micro-m, with a spatial resolution of 25 km and a signal-to-noise ratio ranging up to 1000. Analysis of the results leads to the following conclusions: width variations of the opposition surge can be related to differences in porosity or grain size distribution on the various domains, with little or no effect from suspended dust. As the biggest effects are observed on dark and bright materials, intermediate behaviors on average-bright regions cannot result from a mixing process, but are more likely to come from either cementation processes or modification of the grain size distribution under the influence of wind, which under Martian conditions preferentially removes the biggest particles. Thus, a surface dust consisting in big bright and small dark grains could explain the observations.
NASA Astrophysics Data System (ADS)
Bhatta, H.; Goldys, E. M.; Ma, J.
2006-02-01
We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.
NASA Astrophysics Data System (ADS)
Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam
2018-06-01
Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.
The growth process of first water layer and crystalline ice on the Rh(111) surface
NASA Astrophysics Data System (ADS)
Beniya, Atsushi; Sakaguchi, Yuji; Narushima, Tetsuya; Mukai, Kozo; Yamashita, Yoshiyuki; Yoshimoto, Shinya; Yoshinobu, Jun
2009-01-01
The adsorption states and growth process of the first layer and multilayer of water (D2O) on Rh(111) above 135K were investigated using infrared reflection absorption spectroscopy (IRAS), temperature programed desorption, spot-profile-analysis low-energy electron diffraction, and scanning tunneling microscopy (STM). At the initial stage, water molecules form commensurate (√3×√3)R30° islands, whose size is limited for several hexagonal units; the average diameter is ˜2.5nm. This two-dimensional (2D) island includes D-down species, and free OD species exist at the island edge. With increasing coverage, the D-up species starts to appear in IRAS. At higher coverages, the 2D islands are connected in STM images. By the titration of Xe adsorption we estimated that the D-down domain occupies about 55% on Rh(111) at the saturation coverage. Further adsorption of water molecules forms three-dimensional ice crystallites on the first water layer; thus, the growth mode of crystalline water layers on Rh(111) is a Stranski-Krastanov type. We have found that an ice crystallite starts to grow on D-down domains and the D-down species do not reorient upon the formation of a crystalline ice.
Self-Perceived Health, Functioning and Well-Being of Very Low Birth Weight Infants at Age 20 Years
Hack, Maureen; Cartar, Lydia; Schluchter, Mark; Klein, Nancy; Forrest, Christopher B.
2008-01-01
Objective To examine the self-perceived health of very low birth weight (VLBW; <1.5 kg) infants during young adulthood. Study design The population included 241 VLBW and 232 normal birth weight (NBW) controls who completed the Child Health and Illness Profile: Adolescent Edition (CHIP-AE) at 20 years of age. The CHIP-AE includes six domains: Satisfaction, Comfort, Resilience, Achievement, Risk Avoidance, and Disorders, and 13 profiles that characterize patterns of health. Results were compared between VLBW and NBW subjects adjusting for sex and sociodemographic status. Results VLBW subjects did not differ from NBW controls in the domains of Satisfaction or Comfort but reported less Resilience (effect size [ES] −0.19, P < .05), specifically in physical activity and family involvement. They reported better Achievement, specifically in work performance (ES 0.28, P < .05), more Risk Avoidance (ES 0.43, P < .001), and significantly more long-term medical, surgical, and psychosocial disorders. Similar proportions of VLBW and NBW subjects reported Excellent (15% vs 11%), Average (27% vs 34%), and Poor (12% vs 13%) profiles of health. Conclusions VLBW subjects report similar health, well-being, and functioning compared with NBW controls and greater risk avoidance. However, we are concerned that their lesser resilience may prove detrimental to their future adult health. PMID:18035144
Comparing supervised learning techniques on the task of physical activity recognition.
Dalton, A; OLaighin, G
2013-01-01
The objective of this study was to compare the performance of base-level and meta-level classifiers on the task of physical activity recognition. Five wireless kinematic sensors were attached to each subject (n = 25) while they completed a range of basic physical activities in a controlled laboratory setting. Subjects were then asked to carry out similar self-annotated physical activities in a random order and in an unsupervised environment. A combination of time-domain and frequency-domain features were extracted from the sensor data including the first four central moments, zero-crossing rate, average magnitude, sensor cross-correlation, sensor auto-correlation, spectral entropy and dominant frequency components. A reduced feature set was generated using a wrapper subset evaluation technique with a linear forward search and this feature set was employed for classifier comparison. The meta-level classifier AdaBoostM1 with C4.5 Graft as its base-level classifier achieved an overall accuracy of 95%. Equal sized datasets of subject independent data and subject dependent data were used to train this classifier and high recognition rates could be achieved without the need for user specific training. Furthermore, it was found that an accuracy of 88% could be achieved using data from the ankle and wrist sensors only.
Pattern formation by curvature-inducing proteins on spherical membranes
NASA Astrophysics Data System (ADS)
Agudo-Canalejo, Jaime; Golestanian, Ramin
2017-12-01
Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the interplay between curvature energy, entropic forces, and the geometric constraints on the membrane can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-poor domains on the membrane. The spontaneous formation of such patterns can be triggered either by an increase in the average density of curvature-inducing proteins, or by a relaxation of the geometric constraints on the membrane imposed by the membrane tension or by the tethering of the membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and number of the protein-rich domains that arise upon pattern formation. The very general mechanism presented here could be related to protein self-organisation in many biological processes, ranging from (proto)cell division to the formation of membrane rafts.
ERIC Educational Resources Information Center
Duffy, Karen G.; And Others
1982-01-01
Investigated the effects of experimenter status and sex and instructional set on the size of "sexy" and "average" human figure drawings by students. Results showed no effects for experimenter status or sex. "Sexy" drawings were consistently drawn larger than "average" drawings and male figures were drawn…
Rainier Mesa CAU Infiltration Model using INFILv3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, Daniel G.; Kwicklis, Edward M.
The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3)more » ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.« less
Francisco, E; Martín Pendás, A; Blanco, M A
2009-09-28
We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Omega of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Omega, Omega(')=R(3)-Omega, and R(3). We also show how the interfragment (shared electron) delocalization index, delta(Omega,Omega(')), transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Omega or Omega(') can be simply ignored in computing the EDFs and/or delta(Omega,Omega(')), and thus do not contribute to the chemical bonding between the two fragments.
Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale
Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.
2015-01-01
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaysset, Adrien; Manfrini, Mauricio; Pourtois, Geoffrey
The functionality of a cross-shaped Spin Torque Majority Gate is explored by means of micromagnetic simulations. The different input combinations are simulated varying material parameters, current density and size. The main failure mode is identified: above a critical size, a domain wall can be pinned at the center of the cross, preventing further propagation of the information. By simulating several phase diagrams, the key parameters are obtained and the operating condition is deduced. A simple relation between the domain wall width and the size of the Spin Torque Majority Gate determines the working range. Finally, a correlation is found betweenmore » the energy landscape and the main failure mode. We demonstrate that a macrospin behavior ensures a reliable majority gate operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alden, D.; Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin; Guo, W.
Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with amore » root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.« less
Functional advantages of dynamic protein disorder.
Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E
2015-09-14
Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Semova, Natalia; Kapanadze, Bagrat; Corcoran, Martin; Kutsenko, Alexei; Baranova, Ancha; Semov, Alexandre
2003-09-01
IRLB was originally identified as a partial cDNA clone, encoding a 191-aa protein binding the interferon-stimulated response element (ISRE) in the P2 promoter of human MYC. Here, we cloned the full-size IRLB using different bioinformatics tools and an RT-PCR approach. The full-size gene encompasses 131 kb within chromosome 15q22 and consists of 32 exons. IRLB is transcribed as a 6.6-kb mRNA encoding a protein of 1865 aa. IRLB is ubiquitously expressed and its expression is regulated in a growth- and cell cycle-dependent manner. In addition to the ISRE-binding domain IRLB contains a tripartite DENN domain, a nuclear localization signal, two PPRs, and a calmodulin-binding domain. The presence of DENN domains predicts possible interactions of IRLB with GTPases from the Rab family or regulation of growth-induced MAPKs. Strongly homologous proteins were identified in all available vertebrate genomes as well as in Caenorhabditis elegans and Drosophila melanogaster. In human and mouse a family of IRLB proteins exists, consisting of at least three members.
Yang, Yi; Tokita, Midori; Ishiguchi, Akira
2018-01-01
A number of studies revealed that our visual system can extract different types of summary statistics, such as the mean and variance, from sets of items. Although the extraction of such summary statistics has been studied well in isolation, the relationship between these statistics remains unclear. In this study, we explored this issue using an individual differences approach. Observers viewed illustrations of strawberries and lollypops varying in size or orientation and performed four tasks in a within-subject design, namely mean and variance discrimination tasks with size and orientation domains. We found that the performances in the mean and variance discrimination tasks were not correlated with each other and demonstrated that extractions of the mean and variance are mediated by different representation mechanisms. In addition, we tested the relationship between performances in size and orientation domains for each summary statistic (i.e. mean and variance) and examined whether each summary statistic has distinct processes across perceptual domains. The results illustrated that statistical summary representations of size and orientation may share a common mechanism for representing the mean and possibly for representing variance. Introspections for each observer performing the tasks were also examined and discussed.
NASA Astrophysics Data System (ADS)
Cheng, Li-Chen; Bai, Wubin; Fernandez Martin, Eduardo; Tu, Kun-Hua; Ntetsikas, Konstantinos; Liontos, George; Avgeropoulos, Apostolos; Ross, C. A.
2017-04-01
The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.
Cell separations and the demixing of aqueous two phase polymer solutions in microgravity
NASA Technical Reports Server (NTRS)
Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.
1991-01-01
Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.
Superparamagnetic behavior in Sn0.95Mg0.05O2 nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.
2018-04-01
We have studied structural, optical and magnetic properties of Sn0.95Mg0.05O2 nanoparticles synthesized by sol-gel process. Single phase tetragonal structure of Mg doped SnO2 nanoparticles (NPs) have been inferred by X-ray diffraction, which involves Rietveld refinement analysis and average crystallite size is found to be 20.4 nm. Energy dispersive X -ray analysis confirmed the presence of Mg into host SnO2 lattice. The energy band gap is found to be wider (Eg = 3.73 eV) compared to the bulk (3.6 eV) which is due to the quantum confinement effect. The observed defects due to oxygen vacancies are studied by the photoluminescence study. The SQUID magnetometer measurements shows superparamagnetic behavior of Mg-doped SnO2 NPs at room temperature and they are single domain NPs. Our results suggest that it is possible to control the superparamagnetic properties through chemical composition.
Understanding self ion damage in FCC Ni-Cr-Fe based alloy using X-ray diffraction techniques
NASA Astrophysics Data System (ADS)
Halder Banerjee, R.; Sengupta, P.; Chatterjee, A.; Mishra, S. C.; Bhukta, A.; Satyam, P. V.; Samajdar, I.; Dey, G. K.
2018-04-01
Using X-ray diffraction line profile analysis (XRDLPA) approach the radiation response of FCC Ni-Cr-Fe based alloy 690 to 1.5 and 3 MeV Ni2+ ion damage was quantified in terms of its microstructural parameters. These microstructural parameters viz. average domain size, microstrain and dislocation density were found to vary anisotropically with fluence. The anisotropic behaviour is mainly attributable to presence of twins in pre-irradiated microstructure. After irradiation, surface roughness increases as a function of fluence attributable to change in surface and sub-surface morphology caused by displacement cascade, defects and sputtered atoms created by incident energetic ion. The radiation hardening in case of 1.5 MeV Ni2+ irradiated specimens too is a consequence of the increase in dislocation density formed by interaction of radiation induced defects with pre-existing dislocations. At highest fluence there is an initiation of saturation.
Adaptive bit plane quadtree-based block truncation coding for image compression
NASA Astrophysics Data System (ADS)
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
Some Applications of the Model of the Partion Points on a One Dimensional Lattice
NASA Astrophysics Data System (ADS)
Mejdani, R.; Huseini, H.
1996-02-01
We have shown that by using a model of gas of partition points on a one-dimensional lattice, we can find some results about the saturation curves for enzyme kinetics or the average domain-size, which we have obtained before by using a correlated walks' theory or a probabilistic (combinatoric) way. We have studied, using the same model and the same technique, the denaturation process, i.e., the breaking of the hydrogen bonds connecting the two strands, under treatment by heat. Also, we have discussed, without entering in details, the problem related to the spread of an infections disease and the stochastic model of partition points. We think that this model, being simple and mathematically transparent, can be advantageous for the other theoratical investigations in chemistry or modern biology. PACS NOS.: 05.50. + q; 05.70.Ce; 64.10.+h; 87.10. +e; 87.15.Rn
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V
2017-04-01
Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Complex roles of hybrid lipids in the composition, order, and size of lipid membrane domains.
Hassan-Zadeh, Ebrahim; Baykal-Caglar, Eda; Alwarawrah, Mohammad; Huang, Juyang
2014-02-11
Hybrid lipids (HL) are phospholipids with one saturated chain and one unsaturated chain. HL are hypothesized to act as linactants (i.e., 2D surfactants) in cell membranes, reducing line tension and creating nanoscopic lipid domains. Here we compare three hybrid lipids of different chain unsaturation (16:0-18:1PC (POPC), 16:0-18:2PC (PLPC), and 16:0-20:4PC (PAPC)) in their abilities to alter the composition, line tension, order, and compactness of lipid domains. We found that the liquid-ordered (Lo) and liquid-disordered (Ld) lipid domains in PAPC/di18:0PC(DSPC)/cholesterol and PLPC/DSPC/cholesterol mixtures are micrometer-sized, and only the POPC/DSPC/cholesterol system has nanoscopic domains. The results indicate that some HLs with polyunsaturated chains are not linactants, and the monounsaturated POPC displays both properties of weak linactants and "Ld-phase" lipids such as di18:1PC (DOPC). The obtained phase boundaries from giant unilamellar vesicles (GUV) show that both POPC and PLPC partition well in the Lo phases. Our MD simulations reveal that these hybrid lipids decrease the order and compactness of Lo domains. Thus, hybrid lipids distinguish themselves from other lipid groups in this combined "partitioning and loosening" ability, which could explain why the Lo domains of GUVs, which often do not contain HL, are more compact than the raft domains in cell membranes. Our line tension measurement and Monte Carlo simulation both show that even the monounsaturated POPC is a weak linactant with only modest ability to occupy domain boundaries and reduce line tension. A more important property of HLs is that they can reduce physical property differences of Lo and Ld bulk domains, which also reduces line tension at domain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, W; Niu, T; Xing, L
2015-06-15
Purpose: To significantly improve dual energy CT (DECT) imaging by establishing a new theoretical framework of image-domain material decomposition with incorporation of edge-preserving techniques. Methods: The proposed algorithm, HYPR-NLM, combines the edge-preserving non-local mean filter (NLM) with the HYPR-LR (Local HighlY constrained backPRojection Reconstruction) framework. Image denoising using HYPR-LR framework depends on the noise level of the composite image which is the average of the different energy images. For DECT, the composite image is the average of high- and low-energy images. To further reduce noise, one may want to increase the window size of the filter of the HYPR-LR, leadingmore » resolution degradation. By incorporating the NLM filtering and the HYPR-LR framework, HYPR-NLM reduces the boost material decomposition noise using energy information redundancies as well as the non-local mean. We demonstrate the noise reduction and resolution preservation of the algorithm with both iodine concentration numerical phantom and clinical patient data by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). Results: The results show iterative material decomposition method reduces noise to the lowest level and provides improved DECT images. HYPR-NLM significantly reduces noise while preserving the accuracy of quantitative measurement and resolution. For the iodine concentration numerical phantom, the averaged noise levels are about 2.0, 0.7, 0.2 and 0.4 for direct inversion, HYPR-LR, Iter- DECT and HYPR-NLM, respectively. For the patient data, the noise levels of the water images are about 0.36, 0.16, 0.12 and 0.13 for direct inversion, HYPR-LR, Iter-DECT and HYPR-NLM, respectively. Difference images of both HYPR-LR and Iter-DECT show edge effect, while no significant edge effect is shown for HYPR-NLM, suggesting spatial resolution is well preserved for HYPR-NLM. Conclusion: HYPR-NLM provides an effective way to reduce the generic magnified image noise of dual–energy material decomposition while preserving resolution. This work is supported in part by NIH grants 7R01HL111141 and 1R01-EB016777. This work is also supported by the Natural Science Foundation of China (NSFC Grant No. 81201091), Fundamental Research Funds for the Central Universities in China, and Fund Project for Excellent Abroad Scholar Personnel in Science and Technology.« less
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A
2012-07-20
The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. Copyright © 2012. Published by Elsevier Ltd.
Resolving the Origin of Pseudo-Single Domain Magnetic Behavior
NASA Astrophysics Data System (ADS)
Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang
2017-12-01
The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.
Effects of mutation, truncation and temperature on the folding kinetics of a WW domain
Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.
2013-01-01
The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.; Quevedo, H. J.; Bernstein, A. C.
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
NASA Astrophysics Data System (ADS)
Burye, Theodore E.; Nicholas, Jason D.
2015-02-01
Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.
Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...
2014-12-10
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
Signal-averaged P wave in patients with paroxysmal atrial fibrillation.
Rosenheck, S
1997-10-01
The theoretical and experimental rational of atrial signal-averaged ECG in patients with AF is delay in the intra-atrial and interatrial conduction. Similar to the ventricular signal-averaged ECG, the atrial signal-averaged ECG is an averaging of a high number of consecutive P waves that match the template created earlier P wave triggering is preferred over QRS triggering because of more accurate aligning. However, the small amplitude of the atrial ECG and its gradual increase from the isoelectric line may create difficulties in defining the start point if P wave triggering is used. Studies using P wave triggering and those using QRS triggering demonstrate a prolonged P wave duration in patients with paroxysmal AF. The negative predictive value of this test is relatively high at 60%-80%. The positive predictive value of atrial signal-averaged ECGs in predicting the risk of AF is considerably lower than the negative predictive value. All the data accumulated prospectively on the predictive value of P wave signal-averaging was determined only in patients undergoing coronary bypass surgery or following MI; its value in other patients with paroxysmal AF is still not determined. The clinical role of frequency-domain analysis (alone or added to time-domain analysis) remains undefined. Because of this limited knowledge on the predictive value of P wave signal-averaging, it is still not clinical medicine, and further research is needed before atrial signal-averaged ECG will be part of clinical testing.
Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.
2017-02-01
Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.
Palmes-Saloma, C; Saloma, C
2000-07-01
Long-depth imaging of specific gene expression in the midgestation whole-mount mouse embryo (WME) is demonstrated with single-photon excitation (1PE) confocal fluorescence microscopy and fluorescence in situ hybridization. Expression domains of Pax-6 mRNA transcripts were labeled with an in situ hybridization probe that is a RNA sequence complementary to the cloned gene fragment and were rendered visible using two fluorochrome-conjugated antibodies that fluoresce at peak wavelengths of lambda(F) = 0.525 microm and lambda(F) = 0. 580 microm, respectively. Distributions of Pax-6 mRNA domains as deep as 1000 microm in the day 9.5 WME were imaged with a long-working-distance (13.6 mm) objective lens (magnification 5x). The scattering problem posed by the optically thick WME sample is alleviated by careful control of the detector pinhole size and the application of simple but fast postdetection image enhancement techniques, such as space and wavelength averaging to produce high-quality fluorescence images. A three-dimensional reconstruction that clearly shows the Pax-6 mRNA expression domains in the forebrain, diencephalon, optic cup, and spinal cord of the day 9.5 WME is obtained. The advantages of 1PE confocal fluorescence imaging over two-photon excitation fluorescence imaging are discussed for the case of long-depth imaging in highly scattering media. Imaging in midgestation WMEs at optical depths of more than 350 microm has not yet been realized with two-photon fluorescence excitation. Copyright 2000 Academic Press.
Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.
Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y
2010-09-01
To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.
2017-09-30
AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b
Lagrangian averaging with geodesic mean
NASA Astrophysics Data System (ADS)
Oliver, Marcel
2017-11-01
This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.
Lagrangian averaging with geodesic mean.
Oliver, Marcel
2017-11-01
This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.
A frequency averaging framework for the solution of complex dynamic systems
Lecomte, Christophe
2014-01-01
A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
A longitudinal study of quality of life of earthquake survivors in L'Aquila, Italy.
Valenti, Marco; Masedu, Francesco; Mazza, Monica; Tiberti, Sergio; Di Giovanni, Chiara; Calvarese, Anna; Pirro, Roberta; Sconci, Vittorio
2013-12-07
People's well-being after loss resulting from an earthquake is a concern in countries prone to natural disasters. Most studies on post-earthquake subjective quality of life (QOL) have focused on the effects of psychological impairment and post-traumatic stress disorder (PTSD) on the psychological dimension of QOL. However, there is a need for studies focusing on QOL in populations not affected by PTSD or psychological impairment. The aim of this study was to estimate QOL changes over an 18-month period in an adult population sample after the L'Aquila 2009 earthquake. The study was designed as a longitudinal survey with four repeated measurements performed at six monthly intervals. The setting was the general population of an urban environment after a disruptive earthquake. Participants included 397 healthy adult subjects. Exclusion criteria were comorbidities such as physical, psychological, psychiatric or neurodegenerative diseases at the beginning of the study. The primary outcome measure was QOL, as assessed by the WHOQOL-BREF instrument. A generalised estimating equation model was run for each WHOQOL-BREF domain. Overall, QOL scores were observed to be significantly higher 18 months after the earthquake in all WHOQOL-BREF domains. The model detected an average increase in the physical QOL scores (from 66.6 ± 5.2 to 69.3 ± 4.7), indicating a better overall physical QOL for men. Psychological domain scores (from 64.9 ± 5.1 to 71.5 ± 6.5) were observed to be worse in men than in women. Levels at the WHOQOL domain for psychological health increased from the second assessment onwards in women, indicating higher resiliency. Men averaged higher scores than women in terms of social relationships and the environmental domain. Regarding the physical, psychological and social domains of QOL, scores in the elderly group (age > 60) were observed to be similar to each other regardless of the significant covariates used. WHOQOL-BREF scores of the psychological domain displayed trends conditioned by age and education: older subjects experienced less satisfaction with psychological health on average. Less-educated subjects always demonstrated the worst QOL scores. Gender, age and education impacted the variability of QOL in the environmental dimension in the elderly.
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
Knifsend, Casey A; Graham, Sandra
2012-03-01
Although adolescents often participate in multiple extracurricular activities, little research has examined how the breadth of activities in which an adolescent is involved relates to school-related affect and academic performance. Relying on a large, multi-ethnic sample (N = 864; 55.9% female), the current study investigated linear and non-linear relationships of 11th grade activity participation in four activity domains (academic/leadership groups, arts activities, clubs, and sports) to adolescents' sense of belonging at school, academic engagement, and grade point average, contemporarily and in 12th grade. Results of multiple regression models revealed curvilinear relationships for sense of belonging at school in 11th and 12th grade, grade point average in 11th grade, and academic engagement in 12th grade. Adolescents who were moderately involved (i.e., in two domains) reported a greater sense of belonging at school in 11th and 12th grade, a higher grade point average in 11th grade, and greater academic engagement in 12th grade, relative to those who were more or less involved. Furthermore, adolescents' sense of belonging at school in 11th grade mediated the relationship of domain participation in 11th grade to academic engagement in 12th grade. This study suggests that involvement in a moderate number of activity domains promotes positive school-related affect and greater academic performance. School policy implications and recommendations are discussed.
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
ERIC Educational Resources Information Center
Bond, Nancy J.
2013-01-01
The purpose of this study was to determine the effect of senior high school counselors' domain specializations--academic, advanced education, career, and personal/social--from two urban high schools, on alphabetically assigned graduating seniors' with low, mid-range, and high Grade Point Averages documented college and career readiness milestone…
Ferroelectric Self-Poling, Switching, and Monoclinic Domain Configuration in BiFeO 3 Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beekman, C.; Siemons, W.; Chi, M.
2016-05-23
Self-poling of ferroelectric films, i.e., a preferred, uniform direction of the ferroelectric polarization in as-grown samples is often observed yet poorly understood despite its importance for device applications. The multiferroic perovskite BiFeO 3, which crystallizes in two distinct structural polymorphs depending on applied epitaxial strain, is well known to exhibit self-poling. This study investigates the effect of self-poling on the monoclinic domain configuration and the switching properties of the two polymorphs of BiFeO 3 (R' and T') in thin films grown on LaAlO 3 substrates with slightly different La 0.3Sr 0.7MnO 3 buffer layers. Our study shows that the polarizationmore » state formed during the growth acts as “imprint” on the polarization and that switching the polarization away from this self-poled direction can only be done at the expense of the sample's monoclinic domain configuration. We observed reduction of the monoclinic domain size and found that it was largely reversible; hence, the domain size is restored when the polarization is switched back to its original orientation. This is a direct consequence of the growth taking place in the polar phase (below T c). Finally, switching the polarization away from the preferred configuration, in which defects and domain patterns synergistically minimize the system's energy, leads to a domain state with smaller (and more highly strained and distorted) monoclinic domains.« less
Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Xu, Ben; Hu, Shenyang Y.
2015-09-25
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.
2008-03-01
This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org
NASA Astrophysics Data System (ADS)
Taheriniya, Shabnam; Parhizgar, Sara Sadat; Sari, Amir Hossein
2018-06-01
To study the alumina template pore size distribution as a function of Al thin film grain size distribution, porous alumina templates were prepared by anodizing sputtered aluminum thin films. To control the grain size the aluminum samples were sputtered with the rate of 0.5, 1 and 2 Å/s and the substrate temperature was either 25, 75 or 125 °C. All samples were anodized for 120 s in 1 M sulfuric acid solution kept at 1 °C while a 15 V potential was being applied. The standard deviation value for samples deposited at room temperature but with different rates is roughly 2 nm in both thin film and porous template form but it rises to approximately 4 nm with substrate temperature. Samples with the average grain size of 13, 14, 18.5 and 21 nm respectively produce alumina templates with an average pore size of 8.5, 10, 15 and 16 nm in that order which shows the average grain size limits the average pore diameter in the resulting template. Lateral correlation length and grain boundary effect are other factors that affect the pore formation process and pore size distribution by limiting the initial current density.
Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François
2016-01-01
There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and "others"). We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and "true" effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. The differences in reliability between biological psychiatry, neurology and somatic diseases suggest that there is room for improvement, at least in some subdomains.
Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François
2016-01-01
Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability between biological psychiatry, neurology and somatic diseases suggest that there is room for improvement, at least in some subdomains. PMID:27336301
Sanders, Dirk; Vogel, Esther; Knop, Eva
2015-01-01
The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Reconstituting protein interaction networks using parameter-dependent domain-domain interactions
2013-01-01
Background We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain interactions (DDIs) that mediate the physical interactions between proteins. Experimental data confirm that DDIs are more consistent than their corresponding PPIs, lending support to the notion that analyses of DDIs may improve our understanding of PPIs and lead to further insights into cellular function, disease, and evolution. However, currently available experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of structural data, determining which particular DDI mediates any given PPI is a challenge. Results We present two contributions to the field of domain interaction analysis. First, we introduce a novel computational strategy to merge domain annotation data from multiple databases. We show that when we merged yeast domain annotations from six annotation databases we increased the average number of domains per protein from 1.05 to 2.44, bringing it closer to the estimated average value of 3. Second, we introduce a novel computational method, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set of domain pairs that can reconstruct the original set of protein interactions, while attempting to minimize false positives. Based on a set of PPIs from multiple organisms, our method extracted 27% more experimentally detected DDIs than existing computational approaches. Conclusions We have provided a method to merge domain annotation data from multiple sources, ensuring large and consistent domain annotation for any given organism. Moreover, we provided a method to extract a small set of DDIs from the underlying set of PPIs and we showed that, in contrast to existing approaches, our method was not biased towards DDIs with low or high occurrence counts. Finally, we used these two methods to highlight the influence of the underlying annotation density on the characteristics of extracted DDIs. Although increased annotations greatly expanded the possible DDIs, the lack of knowledge of the true biological false positive interactions still prevents an unambiguous assignment of domain interactions responsible for all protein network interactions. Executable files and examples are given at: http://www.bhsai.org/downloads/padds/ PMID:23651452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woźniak-Braszak, A., E-mail: abraszak@amu.edu.pl; Baranowski, M.; Jurga, K.
2014-05-28
A comprehensive study of molecular dynamics and structure in new heterogenous nanocomposites based on poly(butylene terephthalate) and nanoparticles C{sub 60} modified by n-decylamine or tetracyanoethylene oxide has been performed. The domain structure of new nanocomposites has been investigated by Fourier transform infrared spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry techniques. Solid-state {sup 1}H NMR techniques were used to study molecular dynamics and domain sizes in new nanocomposites. Information about the electronic properties of these nanocomposites was obtained by means of electron paramagnetic resonance method. It was shown that the structure and molecular dynamics of new nanocomposites were strongly dependentmore » on the properties and concentration of fullerene derivates.« less
ERIC Educational Resources Information Center
Turgut, Sedat; Temur, Özlem Dogan
2017-01-01
In this research, the effects of using game in mathematics teaching process on academic achievement in Turkey were examined by metaanalysis method. For this purpose, the average effect size value and the average effect size values of the moderator variables (education level, the field of education, game type, implementation period and sample size)…
Switching behavior and novel stable states of magnetic hexagonal nanorings
NASA Astrophysics Data System (ADS)
Yasir Rafique, M.; Pan, Liqing; Guo, Zhengang
2017-06-01
Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named "tri-domain state". The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new "tri-domain" state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and "states size" are discussed in term of geometrical parameter of ring.
Effects of epidemic threshold definition on disease spread statistics
NASA Astrophysics Data System (ADS)
Lagorio, C.; Migueles, M. V.; Braunstein, L. A.; López, E.; Macri, P. A.
2009-03-01
We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size
NASA Astrophysics Data System (ADS)
Colin, Jeanne; Déqué, Michel; Radu, Raluca; Somot, Samuel
2010-10-01
We assess the impact of two sources of uncertainties in a limited area model (LAM) on the representation of intense precipitation: the size of the domain of integration and the use of the spectral nudging technique (driving of the large-scale within the domain of integration). We work in a perfect-model approach where the LAM is driven by a general circulation model (GCM) run at the same resolution and sharing the same physics and dynamics as the LAM. A set of three 50 km resolution simulations run over Western Europe with the LAM ALADIN-Climate and the GCM ARPEGE-Climate are performed to address this issue. Results are consistent with previous studies regarding the seasonal-mean fields. Furthermore, they show that neither the use of the spectral nudging nor the choice of a small domain are detrimental to the modelling of heavy precipitation in the present experiment.
NASA Astrophysics Data System (ADS)
Pope, Michael; Waldrip, Matthew; Ferron, Thomas; Collins, Brian
Increased solar power conversion efficiencies to 12% in bulk heterojunction organic photovoltaics (OPVs) continue to brighten their prospects as an economically viable source of solar energy. It is known that OPV performance can be enhanced through processing additives that change the nanostructure. We track these critical structure-property relationships in the OPV system PCPDTBT:PC70BM while varying the amount of DIO additive. Resonant Soft X-ray Scattering reveals domain purity, domain size, and molecular orientation to highlight the system's complex dependence on DIO concentration. We will show the effect the resulting structure has on charge generation and recombination via in-situ transient and steady state optoelectronic measurements. By measuring structure, excited state dynamics and device performance all on the same sample enables direct relationships to be measured. We show that the appropriate balance of crystallinity, domain size and domain purity are important for optimized excited state dynamics and device performance.
Genome size variation in the genus Avena.
Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A
2016-03-01
Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.
The geometry of proliferating dicot cells.
Korn, R W
2001-02-01
The distributions of cell size and cell cycle duration were studied in two-dimensional expanding plant tissues. Plastic imprints of the leaf epidermis of three dicot plants, jade (Crassula argentae), impatiens (Impatiens wallerana), and the common begonia (Begonia semperflorens) were made and cell outlines analysed. The average, standard deviation and coefficient of variance (CV = 100 x standard deviation/average) of cell size were determined with the CV of mother cells less than the CV for daughter cells and both are less than that for all cells. An equation was devised as a simple description of the probability distribution of sizes for all cells of a tissue. Cell cycle durations as measured in arbitrary time units were determined by reconstructing the initial and final sizes of cells and they collectively give the expected asymmetric bell-shaped probability distribution. Given the features of unequal cell division (an average of 11.6% difference in size of daughter cells) and the size variation of dividing cells, it appears that the range of cell size is more critically regulated than the size of a cell at any particular time.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
NASA Astrophysics Data System (ADS)
Kim, Youn-Jea; Kim, Dong-Won
The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the turbo-compressor with circular and single volute casings from the inlet to a discharge nozzle. The optimum design for each element is important to develop the small-size turbo-compressor using alternative refrigerant as a working fluid. Typically, the rotating speed of the compressor is in the range of 40000-45000rpm because of the small size of an impeller diameter. A blade of an impeller has backswept two-dimensional shape due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside the entire impeller, the vaneless diffuser and the casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and time-averaged three-dimensional Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around the casing and pressure difference between the inlet and the outlet of the compressor are performed for the circular casing. The comparison of experimental and numerical results is conducted, and reasonable agreement is obtained.
Simons, Claire L; Rivero-Arias, Oliver; Yu, Ly-Mee; Simon, Judit
2015-04-01
Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidance on whether MI for multi-attribute questionnaires, such as the EQ-5D-3L, should be carried out at domain or at summary score level. In this paper, we evaluated the impact of imputing individual domains versus imputing index values to deal with missing EQ-5D-3L data using a simulation study and developed recommendations for future practice. We simulated missing data in a patient-level dataset with complete EQ-5D-3L data at one point in time from a large multinational clinical trial (n = 1,814). Different proportions of missing data were generated using a missing at random (MAR) mechanism and three different scenarios were studied. The performance of using each method was evaluated using root mean squared error and mean absolute error of the actual versus predicted EQ-5D-3L indices. In large sample sizes (n > 500) and a missing data pattern that follows mainly unit non-response, imputing domains or the index produced similar results. However, domain imputation became more accurate than index imputation with pattern of missingness following an item non-response. For smaller sample sizes (n < 100), index imputation was more accurate. When MI models were misspecified, both domain and index imputations were inaccurate for any proportion of missing data. The decision between imputing the domains or the EQ-5D-3L index scores depends on the observed missing data pattern and the sample size available for analysis. Analysts conducting this type of exercises should also evaluate the sensitivity of the analysis to the MAR assumption and whether the imputation model is correctly specified.
Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching
2014-02-01
Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.
Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth
2012-01-01
Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809
Predicting academic performance of medical students: the first three years.
Höschl, C; Kozený, J
1997-06-01
The purpose of this exploratory study was to identify a cluster of variables that would most economically explain variations in the grade point averages of medical students during the first 3 years of study. Data were derived from a study of 92 students admitted to the 3rd Faculty of Medicine in 1992-1993 academic year and who were still in the medical school at the end of the sixth semester (third year). Stepwise regression analysis was used to build models for predicting log-transformed changes in grade point average after six semesters of study-at the end of the first, second, and third years. Predictor variables were chosen from four domains: 1) high school grade point averages in physics, mathematics, and the Czech language over 4 years of study, 2) results of admission tests in biology, chemistry, and physics, 3) admission committee's assessment of the applicant's ability to reproduce a text, motivation to study medicine, and social maturity, and 4) scores on the sentimentality and attachment scales of the Tridimensional Personality Questionnaire. The regression model, which included performance in high school physics, results of the admission test in physics, assessment of the applicant's motivation to study medicine, and attachment scale score, accounted for 32% of the change in grade point average over six semesters of study. The regression models using the first-, second-, and third-year grade point averages as the dependent variables showed slightly decreasing amounts of explained variance toward the end of the third year of study and within domains, changing the structure of predictor variables. The results suggest that variables chosen from the assessment domains of high school performance, written entrance examination, admission interview, and personality traits may be significant predictors of academic success during the first 3 years of medical study.
Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers
2011-03-07
plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in
Emergence of domains and nonlinear transport in the zero-resistance state.
Dmitriev, I A; Khodas, M; Mirlin, A D; Polyakov, D G
2013-11-15
We study transport in the domain state, the so-called zero-resistance state, that emerges in a two-dimensional electron system in which the combined action of microwave radiation and magnetic field produces a negative absolute conductivity. We show that the voltage-biased system has a rich phase diagram in the system size and voltage plane, with second- and first-order transitions between the domain and homogeneous states for small and large voltages, respectively. We find the residual negative dissipative resistance in the stable domain state.
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
Cheong, Jean Ne; Mirhosseini, Hamed; Tan, Chin Ping
2010-06-01
The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
2010-01-01
Background Previous studies have shown favourable results with intensive behavioural treatment for children with autism: evidence has emerged that treatment can be successfully implemented in a community setting and in adolescent participants. The aim of this study was to describe the 2-year adaptive functioning outcome of children and adolescents with autism treated intensively within the context of special autism centres, as well as to evaluate family satisfaction with the activity of the centres. Methods Sixty participants with autism (20 females and 40 males, aged between 4 and 18 years) attending the semi-residential rehabilitation centres for autism located in the Abruzzo region (Central Italy) were followed up and their adaptive functioning was evaluated both at baseline and after one and two years using the Vineland Adaptive Behaviour Scales (VABS). Parents' satisfaction with the service was evaluated using the Orbetello Satisfaction Scale for Children and Adolescent Mental Health. Results The increase in VABS scores was significant on several domains in the different gender and age categories. It is worth noting that male children had improved a great deal (roughly, an effect size >0.20) in the domains of communication, daily living and motor skills (effect sizes 0.34, 0.45 and 0.27 respectively) whereas in male adolescents, a notable increase in VABS scores was recorded in the domain of socialization only (effect size 0.23). On the other hand, adaptive behaviour in female children increased in the domains of socialization and motor skills (effect sizes 0.27 and 0.42 respectively) whereas in female adolescents, good results were achieved in the domains of daily living, socialization and motor skills (effect sizes 0.22, 0.26 and 0.20 respectively). The level of satisfaction of users of the service over time was found to be substantial, even when they had recently started the program. Conclusions Our results support the implementation of special autism treatment community centres, based on a parent co-directed rehabilitative, intensive and early intervention. Further experimental research designed to document the effectiveness of services provided to children and adolescents with autism in the community is recommended. PMID:20809976
Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction
NASA Astrophysics Data System (ADS)
Gayathri, N.; Mukherjee, Paramita
2018-04-01
The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.
NASA Astrophysics Data System (ADS)
Bambina, Alexandre; Yamaguchi, Shuhei; Iwai, Akinori; Miyagi, Shigeyuki; Sakai, Osamu
2018-01-01
Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD) method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex.
Mattheyses, Alexa L; Kampmann, Martin; Atkinson, Claire E; Simon, Sanford M
2010-09-22
We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
Löwe, H.; Helbig, N.
2012-04-01
We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.
Formation and stability of synaptic receptor domains.
Haselwandter, Christoph A; Calamai, Martino; Kardar, Mehran; Triller, Antoine; da Silveira, Rava Azeredo
2011-06-10
Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Combining experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptors and scaffolds, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors, and suggests novel mechanisms for a form of short-term, postsynaptic plasticity.
Interconnected magnetic tunnel junctions for spin-logic applications
NASA Astrophysics Data System (ADS)
Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.
Lisabeth G. Thygesen; Thomas Elder
2008-01-01
Using time domain NMR, the moisture in Norway spruce (Picea abies (L.) Karst.) sapwood subjected to four different treatments (never-dried, dried and remoistened, acetylated, and furfurylated) was studied during drying at 40°C, at sample average moisture contents above fiber saturation. Spin-spin relaxation time distributions were derived from CPMG...
NASA Astrophysics Data System (ADS)
Shu, Di; Guo, Lei; Yin, Liang; Chen, Zhaoyang; Chen, Juan; Qi, Xin
2015-11-01
The average volume of magnetic Barkhausen jump (AVMBJ) v bar generated by magnetic domain wall irreversible displacement under the effect of the incentive magnetic field H for ferromagnetic materials and the relationship between irreversible magnetic susceptibility χirr and stress σ are adopted in this paper to study the theoretical relationship among AVMBJ v bar(magneto-elasticity noise) and the incentive magnetic field H. Then the numerical relationship among AVMBJ v bar, stress σ and the incentive magnetic field H is deduced. Utilizing this numerical relationship, the displacement process of magnetic domain wall for single crystal is analyzed and the effect of the incentive magnetic field H and the stress σ on the AVMBJ v bar (magneto-elasticity noise) is explained from experimental and theoretical perspectives. The saturation velocity of Barkhausen jump characteristic value curve is different when tensile or compressive stress is applied on ferromagnetic materials, because the resistance of magnetic domain wall displacement is different. The idea of critical magnetic field in the process of magnetic domain wall displacement is introduced in this paper, which solves the supersaturated calibration problem of AVMBJ - σ calibration curve.
Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R
2017-11-17
This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing driving performance compared to time domain analyses.
Wang, W; Zhang, W; Jiang, R; Luan, Y
2010-05-01
It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.
Domain-wall excitations in the two-dimensional Ising spin glass
NASA Astrophysics Data System (ADS)
Khoshbakht, Hamid; Weigel, Martin
2018-02-01
The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to 10 000 ×10 000 spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with unprecedented accuracy, our best estimates being θ =-0.2793 (3 ) and df=1.273 19 (9 ) for Gaussian couplings. For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension, finding df=1.279 (2 ) . Additionally, we also investigate the distributions of ground-state energies, of domain-wall energies, and domain-wall lengths.
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng
2012-01-28
Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.
Yang, Yi; Tokita, Midori; Ishiguchi, Akira
2018-01-01
A number of studies revealed that our visual system can extract different types of summary statistics, such as the mean and variance, from sets of items. Although the extraction of such summary statistics has been studied well in isolation, the relationship between these statistics remains unclear. In this study, we explored this issue using an individual differences approach. Observers viewed illustrations of strawberries and lollypops varying in size or orientation and performed four tasks in a within-subject design, namely mean and variance discrimination tasks with size and orientation domains. We found that the performances in the mean and variance discrimination tasks were not correlated with each other and demonstrated that extractions of the mean and variance are mediated by different representation mechanisms. In addition, we tested the relationship between performances in size and orientation domains for each summary statistic (i.e. mean and variance) and examined whether each summary statistic has distinct processes across perceptual domains. The results illustrated that statistical summary representations of size and orientation may share a common mechanism for representing the mean and possibly for representing variance. Introspections for each observer performing the tasks were also examined and discussed. PMID:29399318
Colloidal crystal grain boundary formation and motion
Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.
2014-01-01
The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760
Formation of surface nanobubbles on nanostructured substrates.
Wang, Lei; Wang, Xingya; Wang, Liansheng; Hu, Jun; Wang, Chun Lei; Zhao, Binyu; Zhang, Xuehua; Tai, Renzhong; He, Mengdong; Chen, Liqun; Zhang, Lijuan
2017-01-19
The nucleation and stability of nanoscale gas bubbles located at a solid/liquid interface are attracting significant research interest. It is known that the physical and chemical properties of the solid surface are crucial for the formation and properties of the surface nanobubbles. Herein, we experimentally and numerically investigated the formation of nanobubbles on nanostructured substrates. Two kinds of nanopatterned surfaces, namely, nanotrenches and nanopores, were fabricated using an electron beam lithography technique and used as substrates for the formation of nanobubbles. Atomic force microscopy images showed that all nanobubbles were selectively located on the hydrophobic domains but not on the hydrophilic domains. The sizes and contact angles of the nanobubbles became smaller with a decrease in the size of the hydrophobic domains. The results indicated that the formation and stability of the nanobubbles could be controlled by regulating the sizes and periods of confinement of the hydrophobic nanopatterns. The experimental results were also supported by molecular dynamics simulations. The present study will be very helpful for understanding the effects of surface features on the nucleation and stability of nanobubbles/nanodroplets at a solid/liquid interface.
Aerosol studies during the ESCOMPTE experiment: an overview
NASA Astrophysics Data System (ADS)
Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne
2005-03-01
The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts satisfactorily for the measured aerosol concentrations. The formation of secondary particles in the model is currently underway; initial encouraging results show that the model accounts for the formation of secondary species, such as sulphate and organic particles. Finally, radiative calculations suggest that the role of the fine aerosol fraction is predominant mostly due to the presence of black carbon (BC) particles, which could induce a regional atmospheric heating.
Lee, Sook-Kyung; Cheng, Nancy; Hull-Ryde, Emily; Potempa, Marc; Schiffer, Celia A; Janzen, William; Swanstrom, Ronald
2013-07-23
The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), we were able to measure significant differences in polarization values as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 protease inhibitor, which resulted in a gradual decrease in the fluorescence polarization values demonstrating that the assay is sensitive in discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z' value of 0.79 and average coefficient of variation values of <3%. The robustness and reproducibility of the assay were further validated using the LOPAC(1280) compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein.
NASA Astrophysics Data System (ADS)
Paul, D.; Biswas, R.
2018-05-01
We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Takegawa, Nobuyuki
The new particle formation (NPF)-explicit version of the WRF-chem model, which we developed recently, can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol size bins from 1 nm to 10 μm. In this study, the model is used to understand spatial and temporal variations of the frequency of NPF events and the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) within the boundary layer in East Asia in spring 2009. Model simulations show distinct north-south contrast in the frequency and mechanism of NPF in East Asia. NPF mostly occurred over limited periods andmore » regions between 30° and 45°N, such as northeast China, Korea, and Japan, including regions around active volcanoes (Miyakejima and Sakurajima). At these latitudes, NPF was considerably suppressed by high concentrations of preexisting particles under stagnant air conditions associated with high-pressure systems, while nucleation occurred more extensively on most days during the simulation period. Conversely, neither nucleation nor NPF occurred frequently south of 30°N because of lower SO2 emissions and H2SO4 concentrations. The period-averaged NPF frequency was 3 times higher at latitudes of 30° - 45°N than at latitudes of 20° - 30°N. The north-south contrast of NPF frequency is validated by surface measurements in outflow regions in East Asia. The period- and domain-averaged contribution of secondary particles is estimated to be 44% for CN (> 10 nm) and 26% for CCN at a supersaturation of 1.0% in our simulation, though the contribution is highly sensitive to the magnitudes and size distributions of primary aerosol emissions and the coefficients in the nucleation parameterizations.« less
Smal, Clara; Alonso, Leonardo G.; Wetzler, Diana E.; Heer, Angeles; de Prat Gay, Gonzalo
2012-01-01
Background Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. Methodology/Principal Findings Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric “Z-nucleus” after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a “conformation editing” mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. Conclusion We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the basis for the development of a promising therapeutic vaccine candidate for treating HPV cancerous lesions. PMID:22590549
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Chengshan
2017-10-01
The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS) magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx) varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm) are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δ z or Δ x, for example, 1 or 2 mm, can be generally caused a large deviation.
NASA Astrophysics Data System (ADS)
Fan, Shu-Kai S.; Tsai, Du-Ming; Chuang, Wei-Che
2017-04-01
Solar power has become an attractive alternative source of energy. The multi-crystalline solar cell has been widely accepted in the market because it has a relatively low manufacturing cost. Multi-crystalline solar wafers with larger grain sizes and fewer grain boundaries are higher quality and convert energy more efficiently than mono-crystalline solar cells. In this article, a new image processing method is proposed for assessing the wafer quality. An adaptive segmentation algorithm based on region growing is developed to separate the closed regions of individual grains. Using the proposed method, the shape and size of each grain in the wafer image can be precisely evaluated. Two measures of average grain size are taken from the literature and modified to estimate the average grain size. The resulting average grain size estimate dictates the quality of the crystalline solar wafers and can be considered a viable quantitative indicator of conversion efficiency.
Lawson, C.A.; Nord, G.L.; Champion, D.E.
1987-01-01
Detailed mineralogical analyses and rock magnetic experiments have made it possible to directly identify the FeTi oxide phases responsible for the normal and reverse magnetic components of two dacitic pumice blocks from Mt. Shasta, California. Both samples contain a normal component carried by 100 ??m size multi-domain (MD) titanomagnetite (Usp11-24). One sample also contains a second normal component carried by < 10 ??m size pseudo-single domain (PSD) or single domain (SD) Ti-free magnetite (Usp1) found in the dacitic glass. The MD titanomagnetite and PSD or SD magnetite dominate the strong field magnetic signal, but only the PSD or SD magnetite has any influence on the remanence signal. Unlike the strong field signal, the remanence signal of both samples is dominated by a reverse NRM component. This reverse component is carried by 100 ??m size ferrian ilmenite (Ilm53-65). The compositions of the ilmenites in both samples are within the range of compositions (Ilm50-75) known to have the ability to acquire self-reversing thermoremanent magnetizations (TRM). The results of the Lowric-Fuller test indicate that the remanence signal is dominated by PSD or SD carriers. Because one sample contains only large MD titanomagnetite and no SD Ti-free magnetite (in addition to ferrian ilmenite), the ferrian ilmenite must be a PSD or SD carrier. Oxide and pyroxene geothermometry indicate the FeTi oxides in the pumice crystallized at temperatures between 880 and 945??C. This temperature range is within the disordered region of the ilmenite-hematite phase diagram for Ilm53-65. Previous work on synthetic Ilm70 and Ilm80 has shown that cooling through the order-disorder transition into the ordered region develops a transformation-induced microstructure consisting of cation-ordered domains with disordered domain boundaries. An Ilm58-59 grain from one of the Mt. Shasta samples was examined in the transmission electron microscope and was found to contain 100-200 A?? diameter cation-ordered domains. These domains arose during cooling through the transition temperature, which is estimated at 800??C for Ilm58-59. The presence of the disordered domain boundaries provides an explanation for the magnetic behavior of the ferrian ilmenite. (1) The disordered boundaries are the higher Curie point phase necessary for the operation of the self-reversal mechanism. (2) The disordered domain boundaries either inhibit the formation of magnetic domain walls or restrict magnetic domain wall movement accounting for the PSD or SD behavior of the ferrian ilmenite. ?? 1987.
NASA Astrophysics Data System (ADS)
Ramirez, N.; Afshari, Afshin; Norford, L.
2018-07-01
A steady-state Reynolds-averaged Navier-Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349-1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald's empirical formulations (Boundary-Layer Meteorol 97:25-45, 2000), Coceal and Belcher's mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131-151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.
Foreshock Patterns Preceding Great Earthquakes in the Subduction Zone of Chile
NASA Astrophysics Data System (ADS)
Papadopoulos, G. A.; Minadakis, G.
2016-10-01
Foreshock activity is considered as one of the most promising precursory changes for the main shock prediction in the short term. Averaging over several foreshock sequences has shown that foreshocks are characterized by distinct 3D patterns: their epicenters move towards the main shock epicenter, event count accelerates, and b-value drops. However, these space-time-size patterns were verified so far only in a very few individual cases mainly due to inadequate seismicity catalogue data. We have investigated 3D foreshock patterns before the M w 8.8 Maule in 27 February 2010, M w 8.1 Iquique in 1 April 2014, and M w 8.4 Illapel in 16 September 2015 great earthquakes in the Chile subduction zone. To avoid biased results, no a priori spatiotemporal definitions of foreshocks were inserted. The procedure was based on pattern recognition from statistically significant seismicity changes in the three domains. The pattern recognition in one domain was independent of the pattern recognition in another domain. We found and verified with two independent catalogue data sets (CSN, IPOC) that within a critical area of ca. 65 km from the main shock epicenter, the 2014 event was preceded by distinct foreshock 3D patterns. A nearly weak foreshock stage (20 January-14 March 2014) was followed by a main-strong stage (15 March-1 April 2014) highly significant in all domains, although foreshock activity slightly decreased in about the last 5 days. Seismic moment release also accelerated in the last stage due to the occurrence of a cluster of very strong foreshock events. Foreshock activity very likely occurred in the hanging-wall fault domain on the South American Plate overriding Nazca Plate. The 2014 foreshock activity was quite similar to the one preceding the 6 Apr. 2009 L' Aquila (Italy) M w 6.3 earthquake associated with normal faulting. Using the 2014 earthquake as a reference event, we observed that similar foreshock 3D patterns preceded the 2010 and 2015 earthquakes within critical distances of about 170 and 50 km, respectively. However, the foreshock activities were only weak in both the cases likely because of poor catalogue completeness.
Family Correlates of Adjustment Profiles in Mexican-Origin Female Adolescents
Bámaca-Colbert, Mayra Y.; Gayles, Jochebed G.; Lara, Rebecca
2013-01-01
This study used a person-centered approach to examine patterns of adjustment along psychological (i.e., depression, self-esteem, anxiety) and academic (i.e., academic motivation) domains in a sample (N = 338) of Mexican-origin female adolescents. Four adjustment profiles were identified. A High Functioning (n = 173) group, which exhibited high positive adjustment and academic functioning, an Average Functioning (n = 83) group, who exhibited average psychological and academic functioning, an Academically Oriented and Stressed (n = 19) group, who exhibited high academic motivation, but poor psychological functioning in anxiety and negative affect, and a Low Functioning” (n = 25) group, who exhibited poor adjustment overall. Further, paternal and maternal parenting characteristics (i.e., autonomy granting, parent-adolescent conflict, and supportive parenting) were differentially related to Mexican-origin female adolescents’ profiles, providing further evidence for the existence of the profiles. Results contribute to the current literature on Latino adolescents and highlight the importance of examining psychological and academic domains concurrently to determine how these two domains of adjustment are linked among this population. PMID:23678230
A frequency domain analysis of respiratory variations in the seismocardiogram signal.
Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A
2013-01-01
The seismocardiogram (SCG) signal traditionally measured using a chest-mounted accelerometer contains low-frequency (0-100 Hz) cardiac vibrations that can be used to derive diagnostically relevant information about cardiovascular and cardiopulmonary health. This work is aimed at investigating the effects of respiration on the frequency domain characteristics of SCG signals measured from 18 healthy subjects. Toward this end, the 0-100 Hz SCG signal bandwidth of interest was sub-divided into 5 Hz and 10 Hz frequency bins to compare the spectral energy in corresponding frequency bins of the SCG signal measured during three key conditions of respiration--inspiration, expiration, and apnea. Statistically significant differences were observed between the power in ensemble averaged inspiratory and expiratory SCG beats and between ensemble averaged inspiratory and apneaic beats across the 18 subjects for multiple frequency bins in the 10-40 Hz frequency range. Accordingly, the spectral analysis methods described in this paper could provide complementary and improved classification of respiratory modulations in the SCG signal over and above time-domain SCG analysis methods.
Crystal structure of a shark single-domain antibody V region in complex with lysozyme.
Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A
2004-09-17
Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.
Domain-Specific and Domain-General Changes in Children's Development of Number Comparison
ERIC Educational Resources Information Center
Holloway, Ian D.; Ansari, Daniel
2008-01-01
The numerical distance effect (inverse relationship between numerical distance and reaction time in relative number comparison tasks) has frequently been used to characterize the mental representation of number. The size of the distance effect decreases over developmental time. However, it is unclear whether this reduction simply reflects…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Gihan; Kokhan, Oleksandr; Han, Ali
Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less
Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...
2015-12-01
Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less
Kohli, Puja; Pinto-Plata, Victor; Divo, Miguel; Malhotra, Atul; Harris, Scott; Lazaar, Aili; Flynn, Aiden; Tal-Singer, Ruth; Panettieri, Reynold A.; Celli, Bartolome
2015-01-01
Purpose Prior research has shown a significant relationship between six minute walking distances (6MWD) and health related quality of life (HRQL) in patients with chronic obstructive pulmonary disease (COPD). However, few have examined this relationship above and below the 350 meters (m) threshold that prognosticates survival. We further investigated whether serum biomarkers could provide insight into the causes of quality of life differences above and below this threshold. Methods Measures of lung function, 6MWD, HRQL (SGRQ and SF-36) were compared in patients with COPD. Differences in HRQL domains and serum biomarkers were compared in patients whose 6MWD were > or < 350m. Results In patients walking <350m, scores in the physical domains of the SF-36 and SGRQ were significantly different than their counterparts with greater 6MWD. However, there was no association between any biomarkers and the physical domains of the SF-36 and the SGRQ. In patients walking <350m, only the Il-8 levels were associated with lower scores in SF-36 domains of emotional role, pain, vitality and mental health (average r=−0.702, p=0.01). In contrast, in patients walking >350m, surfactant protein D (SP-D) levels were associated with higher SF-36 scores in general pain, vitality and social functioning (average r = 0.42, p=0.04). Conclusions In COPD, there is an association between 6MWD and the physical domains of the SF-36 and SGRQ in those patients walking < 350m. The physical differences between patients walking less or more than 350m are not related to systemic inflammation. The association between IL-8 with nonphysical domains in patients with 6MWD < 350m suggests that inflammation may play a larger role in the perceptive domain than previously recognized. PMID:26309192
Parental investment in the chicken turtle (Deirochelys reticularia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.D.; Gibbons, J.W.; Greene, J.L.
1983-01-01
Eggs of the chicken turtle (Deirochelys reticularia) were collected in South Carolina from clutches laid in the spring and fall. Clutch size averaged 8.0 eggs (2 SE = 1.6; n = 15) and was weakly correlated with body size of the female. Wet mass of the clutch averaged 72.4 g (2 SE = 11.6, n = 15). There were no significant differences in clutch size or wet mass between spring and fall nesting seasons. Individual eggs laid in the fall (anti x = 10.7 g) were significantly larger than those laid in the spring (anti x = 8.5 g). Fifteenmore » eggs laid in the spring and incubated at 29/sup 0/ +- 2/sup 0/C averaged 152 d to hatching. Hatchling plastron length averaged 24.3 mm, and body wet mass was 6.7 g. Hatchlings (dry mass) contained 27.4% lipid, and the lipids remaining in the neonate at hatching represented 61% of the lipids originally present in the egg. The wet mass of a hatchling is highly correlated with wet mass of the egg. In contrast to clutch size, egg size had a strong positive relationship to body size. A morphological constraint, the width of the pelvic canal, is proposed as having an influence on this relationship. The negative relationship between an optimized egg size and clutch size was not evident, so current optimality models do not appear to be applicable to Deirochelys.« less
The Whole Warps the Sum of Its Parts.
Corbett, Jennifer E
2017-01-01
The efficiency of averaging properties of sets without encoding redundant details is analogous to gestalt proposals that perception is parsimoniously organized as a function of recurrent order in the world. This similarity suggests that grouping and averaging are part of a broader set of strategies allowing the visual system to circumvent capacity limitations. To examine how gestalt grouping affects the manner in which information is averaged and remembered, I compared the error in observers' adjustments of remembered sizes of individual circles in two different mean-size sets defined by similarity, proximity, connectedness, or a common region. Overall, errors were more similar within the same gestalt-defined groups than between different gestalt-defined groups, such that the remembered sizes of individual circles were biased toward the mean size of their respective gestalt-defined groups. These results imply that gestalt grouping facilitates perceptual averaging to minimize the error with which individual items are encoded, thereby optimizing the efficiency of visual short-term memory.
NASA Astrophysics Data System (ADS)
Onufer, Jozef; Ziman, Ján; Duranka, Peter; Kladivová, Mária
2018-07-01
The effect of gradual annealing on the domain wall mobility (velocity), nucleation, critical depinning and propagation fields in amorphous FeSiB microwires has been studied. A new experimental set-up, presented in this paper, allows measurement of average domain wall velocity for four different conditions and detection of the presence of unidirectional effect in wall propagation without manipulation of the microwire. The proposed interpretation is that a domain wall is considered as a relatively long object which can change its axial dimension due to inhomogeneity of damping forces acting on the wall during its propagation. It is demonstrated that unidirectional effect in domain wall propagation can be strongly reduced by annealing the wire at temperatures higher than 350 °C.
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-14
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.