Science.gov

Sample records for average effective dose

  1. From cellular doses to average lung dose.

    PubMed

    Hofmann, W; Winkler-Heil, R

    2015-11-01

    Sensitive basal and secretory cells receive a wide range of doses in human bronchial and bronchiolar airways. Variations of cellular doses arise from the location of target cells in the bronchial epithelium of a given airway and the asymmetry and variability of airway dimensions of the lung among airways in a given airway generation and among bronchial and bronchiolar airway generations. To derive a single value for the average lung dose which can be related to epidemiologically observed lung cancer risk, appropriate weighting scenarios have to be applied. Potential biological weighting parameters are the relative frequency of target cells, the number of progenitor cells, the contribution of dose enhancement at airway bifurcations, the promotional effect of cigarette smoking and, finally, the application of appropriate regional apportionment factors. Depending on the choice of weighting parameters, detriment-weighted average lung doses can vary by a factor of up to 4 for given radon progeny exposure conditions.

  2. Effect of anode/filter combination on average glandular dose in mammography.

    PubMed

    Biegała, Michał; Jakubowska, Teresa; Markowska, Karolina

    2015-01-01

    A comparative analysis of the mean glandular doses was conducted in 100 female patients who underwent screening mammography in 2011 and 2013. Siemens Mammomat Novation with the application of the W/Rh anode/filter combination was used in 2011, whereas in 2013 anode/filter combination was Mo/Mo or Mo/Rh. The functioning of mammography was checked and the effectiveness of the automatic exposure control (AEC) system was verified by measuring compensation of changes in the phantom thickness and measuring tube voltage. On the base of exposure parameters, an average glandular dose for each of 100 female patients was estimated. The images obtained by using AEC system had the acceptable threshold contrast visibility irrespective of the applied anode/filter combination. Mean glandular doses in the females, examined with the application of the W/Rh anode/filter combination, were on average 23.6% lower than that of the Mo/Mo or Mo/Rh anode/filter combinations. It is recommended to use a combination of the W/Rh anode /filter which exhibited lower mean glandular doses.

  3. Effect of filter on average glandular dose and image quality in digital mammography

    NASA Astrophysics Data System (ADS)

    Songsaeng, C.; Krisanachinda, A.; Theerakul, K.

    2016-03-01

    To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.

  4. Effect of low dose sotalol on the signal averaged P wave in patients with paroxysmal atrial fibrillation.

    PubMed Central

    Stafford, P. J.; Cooper, J.; de Bono, D. P.; Vincent, R.; Garratt, C. J.

    1995-01-01

    OBJECTIVE--To investigate the effects of low dose sotalol on the signal averaged surface P wave in patients with paroxysmal atrial fibrillation. DESIGN--A longitudinal within patient crossover study. SETTING--Cardiac departments of a regional cardiothoracic centre and a district general hospital. PATIENTS--Sixteen patients with documented paroxysmal atrial fibrillation. The median (range) age of the patients was 65.5 (36-70) years; 11 were men. MAIN OUTCOME MEASURES--Analysis of the signal averaged P wave recorded from patients not receiving antiarrhythmic medication and after 4-6 weeks' treatment with sotalol. P wave limits were defined automatically by a computer algorithm. Filtered P wave duration and energies contained in frequency bands from 20, 30, 40, 60, and 80 to 150 Hz of the P wave spectrum expressed as absolute values (P20, P30, etc) and as ratios of high to low frequency energy (PR20, PR30, etc) were measured. RESULTS--No difference in P wave duration was observed between the groups studied (mean (SEM) 149 (4) without medication and 152 (3) ms with sotalol). Significant decreases in high frequency P wave energy (for example P60: 4.3 (0.4) v 3.3 (0.3) microV2.s, P = 0.003) and energy ratio (PR60: 5.6 (0.5) v 4.7 (0.6), P = 0.03) were observed during sotalol treatment. These changes were independent of heart rate. CONCLUSIONS--Treatment with low dose sotalol reduces high frequency P wave energy but does not change P wave duration. These results are consistent with the class III effect of the drug and suggest that signal averaging of the surface P wave may be a useful non-invasive measure of drug induced changes in atrial electrophysiology. PMID:8541169

  5. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  6. Averaged particle dose conversion coefficients in air crew dosimetry.

    PubMed

    Mares, V; Roesler, S; Schraube, H

    2004-01-01

    The MCNPX Monte Carlo code was used to calculate energy-dependent fluence-to-effective dose conversion coefficients for neutrons, protons, electrons, photons, charged pions and muons. The FLUKA Monte Carlo code was used to calculate the spectral particle fluences of secondary cosmic rays for different altitudes, and for different combinations of solar modulation and vertical cut-off rigidity parameters. The energy-averaged fluence-to-dose conversion coefficients were obtained by folding the particle fluence spectra with the conversion coefficients for effective dose and ambient dose equivalent. They show a slight dependence on altitude, solar activity and location in the geomagnetic field.

  7. Averaged particle dose conversion coefficients in air crew dosimetry.

    PubMed

    Mares, V; Roesler, S; Schraube, H

    2004-01-01

    The MCNPX Monte Carlo code was used to calculate energy-dependent fluence-to-effective dose conversion coefficients for neutrons, protons, electrons, photons, charged pions and muons. The FLUKA Monte Carlo code was used to calculate the spectral particle fluences of secondary cosmic rays for different altitudes, and for different combinations of solar modulation and vertical cut-off rigidity parameters. The energy-averaged fluence-to-dose conversion coefficients were obtained by folding the particle fluence spectra with the conversion coefficients for effective dose and ambient dose equivalent. They show a slight dependence on altitude, solar activity and location in the geomagnetic field. PMID:15353676

  8. Model selection versus model averaging in dose finding studies.

    PubMed

    Schorning, Kirsten; Bornkamp, Björn; Bretz, Frank; Dette, Holger

    2016-09-30

    A key objective of Phase II dose finding studies in clinical drug development is to adequately characterize the dose response relationship of a new drug. An important decision is then on the choice of a suitable dose response function to support dose selection for the subsequent Phase III studies. In this paper, we compare different approaches for model selection and model averaging using mathematical properties as well as simulations. We review and illustrate asymptotic properties of model selection criteria and investigate their behavior when changing the sample size but keeping the effect size constant. In a simulation study, we investigate how the various approaches perform in realistically chosen settings. Finally, the different methods are illustrated with a recently conducted Phase II dose finding study in patients with chronic obstructive pulmonary disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27226147

  9. AVERAGE ANNUAL SOLAR UV DOSE OF THE CONTINENTAL US CITIZEN

    EPA Science Inventory

    The average annual solar UV dose of US citizens is not known, but is required for relative risk assessments of skin cancer from UV-emitting devices. We solved this problem using a novel approach. The EPA's "National Human Activity Pattern Survey" recorded the daily ou...

  10. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  11. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  12. Statistical strategies for averaging EC50 from multiple dose-response experiments.

    PubMed

    Jiang, Xiaoqi; Kopp-Schneider, Annette

    2015-11-01

    In most dose-response studies, repeated experiments are conducted to determine the EC50 value for a chemical, requiring averaging EC50 estimates from a series of experiments. Two statistical strategies, the mixed-effect modeling and the meta-analysis approach, can be applied to estimate average behavior of EC50 values over all experiments by considering the variabilities within and among experiments. We investigated these two strategies in two common cases of multiple dose-response experiments in (a) complete and explicit dose-response relationships are observed in all experiments and in (b) only in a subset of experiments. In case (a), the meta-analysis strategy is a simple and robust method to average EC50 estimates. In case (b), all experimental data sets can be first screened using the dose-response screening plot, which allows visualization and comparison of multiple dose-response experimental results. As long as more than three experiments provide information about complete dose-response relationships, the experiments that cover incomplete relationships can be excluded from the meta-analysis strategy of averaging EC50 estimates. If there are only two experiments containing complete dose-response information, the mixed-effects model approach is suggested. We subsequently provided a web application for non-statisticians to implement the proposed meta-analysis strategy of averaging EC50 estimates from multiple dose-response experiments.

  13. Average glandular dose and phantom image quality in mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Nogueira, M. S.; Guedes, E.; Andrade, M. C.; Peixoto, J. E.; Joana, G. S.; Castro, J. G.

    2007-09-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed for early detection of the breast cancer. The breast is composed of tissues with very close composition and densities. It increases the difficulty to detect small changes in the normal anatomical structures which may be associated with breast cancer. To achieve the standards of definition and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film-screen system, and the film processing have to be in optimal operational conditions. This study sought to evaluate average glandular dose (AGD) and image quality on a standard phantom in 134 mammography units in the state of Minas Gerais, Brazil, between December 2004 and May 2006. AGDs were obtained by means of entrance kerma measured with TL LiF100 dosimeters on phantom surface. Phantom images were obtained with automatic exposure technique, fixed 28 kV and molybdenum anode-filter combination. The phantom used contained structures simulating tumoral masses, microcalcifications, fibers and low contrast areas. High-resolution metallic meshes to assess image definition and a stepwedge to measure image contrast index were also inserted in the phantom. The visualization of simulated structures, the mean optical density and the contrast index allowed to classify the phantom image quality in a seven-point scale. The results showed that 54.5% of the facilities did not achieve the minimum performance level for image quality. It is mainly due to insufficient film processing observed in 61.2% of the units. AGD varied from 0.41 to 2.73 mGy with a mean value of 1.32±0.44 mGy. In all optimal quality phantom images, AGDs were in this range. Additionally, in 7.3% of the mammography units, the AGD constraint of 2 mGy was exceeded. One may conclude that dose level to patient and image quality are not in conformity to regulations in most of the facilities. This

  14. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  15. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  16. Considerations for applying VARSKIN mod 2 to skin dose calculations averaged over 10 cm2.

    PubMed

    Durham, James S

    2004-02-01

    VARSKIN Mod 2 is a DOS-based computer program that calculates the dose to skin from beta and gamma contamination either directly on skin or on material in contact with skin. The default area for calculating the dose is 1 cm2. Recently, the U.S. Nuclear Regulatory Commission issued new guidelines for calculating shallow dose equivalent from skin contamination that requires the dose be averaged over 10 cm2. VARSKIN Mod 2 was not filly designed to calculate beta or gamma dose estimates averaged over 10 cm2, even though the program allows the user to calculate doses averaged over 10 cm2. This article explains why VARSKIN Mod 2 overestimates the beta dose when applied to 10 cm2 areas, describes a manual method for correcting the overestimate, and explains how to perform reasonable gamma dose calculations averaged over 10 cm2. The article also describes upgrades underway in Varskin 3. PMID:14744063

  17. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800

  18. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group.

  19. Average radiation doses in a standard head examination for 250 CT systems

    SciTech Connect

    McCrohan, J.L.; Patterson, J.F.; Gagne, R.M.; Goldstein, H.A.

    1987-04-01

    Approximately 250 computed tomography (CT) systems were surveyed in a nationwide study to determine the average radiation dose resulting from a typical adult head procedure. The multiple scan average dose (MSAD) was selected as the dose descriptor. For the typical adult CT head procedure, the MSAD was generally within 2.2-6.8 rads (22-68 mGy). Variations in dose by a factor of two or more were often seen for a given manufacturer and model. These dose ranges indicate a potential to reduce dose by carefully selecting imaging techniques. Overall, variations in dose can result from differences in the user's choice of technique (desired image quality) or from actual differences in scanner performance (caused by differences in collimation, filtration, or geometry). To use CT appropriately, a facility should consider dose as well as image quality in selecting optimal techniques for typical modes of operation.

  20. Average radiation doses in a standard head examination for 250 CT systems.

    PubMed

    McCrohan, J L; Patterson, J F; Gagne, R M; Goldstein, H A

    1987-04-01

    Approximately 250 computed tomography (CT) systems were surveyed in a nationwide study to determine the average radiation dose resulting from a typical adult head procedure. The multiple scan average dose (MSAD) was selected as the dose descriptor. For the typical adult CT head procedure, the MSAD was generally within 2.2-6.8 rads (22-68 mGy). Variations in dose by a factor of two or more were often seen for a given manufacturer and model. These dose ranges indicate a potential to reduce dose by carefully selecting imaging techniques. Overall, variations in dose can result from differences in the user's choice of technique (desired image quality) or from actual differences in scanner performance (caused by differences in collimation, filtration, or geometry). To use CT appropriately, a facility should consider dose as well as image quality in selecting optimal techniques for typical modes of operation.

  1. Novel brachytherapy treatment planning system utilizing dose rate dependent average cell survival, CT-simulator, and dose-volume histogram

    SciTech Connect

    Mayer, R.; Fong, W.; Frankel, T.

    1995-12-31

    This report describes a new brachytherapy planning program that provides an evaluation of a given low or high dose rate treatment taking into account spatial dose heterogeneity and cell response to radiation. This brachytherapy scheme uses the images from a CT-Simulator (AcQSim, Picker International, Cleveland, Ohio) to simultaneously localize the seed positions and to axially scan the patient. This procedure helps to ensure accurate registration of the putative seed positions with the patient tissues and organs. The seed positions are determined by back-projecting positions of seeds or dummy seeds from the CT-Simulator setup scout images. Physicians delineate the tissues of interest on the axial slices. Dose is computed after assigning activity (low dose rate) of dwell times (high dose rate) to the Ir{sup 192} or I{sup 125} seed. The planar isodose distribution is superimposed onto axial cuts of the tissues and onto coronal or sagital views of the tissues following image reconstruction. Areal or volumetric calculations of the dose distribution within a given tissue are computed from the tissue outlines. The treatment plan computes (1) volume differential and cummulative dose histograms of the dose delivered to individual tissues, (2) the average, standard deviation, and coefficient of skewness of the dose distribution delivered to the individual tissues, (3) the average survival probability for a given radiation treatment.

  2. Comparisons of point and average organ dose within an anthropomorphic physical phantom and a computational model of the newborn patient.

    PubMed

    Sessions, J B; Roshau, J N; Tressler, M A; Hintenlang, D E; Arreola, M M; Williams, J L; Bouchet, L G; Bolch, W E

    2002-06-01

    Pediatric radiographic examinations yield medical benefits and/or diagnostic information that must be balanced against potential risk from patient radiation exposure. Consequently, clinical tools for measuring internal organ dose are needed for medical risk assessment. In this study, a physical phantom and Monte Carlo simulation model of the newborn patient were developed based upon their stylized mathematical expressions (ORNL and MIRD model series). The physical phantom was constructed using tissue equivalent substitutes for soft tissue, lung, and skeleton. Twenty metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters were then inserted at three-dimensional positions representing the centroids of organs assigned in the ICRP's definition of the effective dose. MOSFET-derived point estimates of organ dose were shown to be in reasonable agreement with Monte Carlo estimates for representative newborn head, chest, and abdomen radiographic exams. Ratios of average organ dose assessed via MCNP simulations to the MOSFET-derived point doses (point-to-organ dose scaling factors, SF(POD)) are tabulated for subsequent use in clinical irradiations of the newborn phantom/MOSFET system. Values of SF(POD) indicate that MOSFET measurements of point dose for in-field exposures need to be adjusted only to within 10% to report volume-averaged organ dose. Larger adjustments to point doses are noted for organs out-of-field. For walled organs, point estimates of organ dose at the content centroid are shown to underestimate the average wall dose when the organ is within the primary field: SF(POD) of 1.19 for the stomach (AP chest exam), and SF(POD) of 1.15 for the urinary bladder (AP abdomen exam).

  3. Clarifying the Relationship between Average Excesses and Average Effects of Allele Substitutions.

    PubMed

    Alvarez-Castro, José M; Yang, Rong-Cai

    2012-01-01

    Fisher's concepts of average effects and average excesses are at the core of the quantitative genetics theory. Their meaning and relationship have regularly been discussed and clarified. Here we develop a generalized set of one locus two-allele orthogonal contrasts for average excesses and average effects, based on the concept of the effective gene content of alleles. Our developments help understand the average excesses of alleles for the biallelic case. We dissect how average excesses relate to the average effects and to the decomposition of the genetic variance. PMID:22509178

  4. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    PubMed

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups <70, 70-79, and >80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (P<0.001). In addition, older patients of African ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (P<0.01). The higher doses required by older patients of African ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk.

  5. Average radiation dose in standard CT examinations of the head: results of the 1990 NEXT survey.

    PubMed

    Conway, B J; McCrohan, J L; Antonsen, R G; Rueter, F G; Slayton, R J; Suleiman, O H

    1992-07-01

    In 1990, as part of the Nationwide Evaluation of X-ray Trends (NEXT) program, 252 computed tomographic (CT) systems were evaluated to measure radiation doses associated with standard head CT in adults. The multiple-scan average dose (MSAD) was used as the dose descriptor. For most of the systems, the MSAD at the midpoint on the central axis of a standard dosimetry phantom was between 34 and 55 mGy. Doses were as high as 140 mGy, and dose sometimes varied by a factor of two or more for identical CT units. This range indicates that dose can potentially be reduced by careful selection of standard CT techniques. Users of CT systems should be aware of radiation dose delivered with CT, dose ranges associated with different systems, and doses delivered with their particular unit, which requires that dose performance of CT systems be assessed by means of a protocol that allows comparison of data collected for identical and/or different units.

  6. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  7. Optimizing the anode-filter combination in the sense of image quality and average glandular dose in digital mammography

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Strömmer, Pekka

    2008-03-01

    This paper presents the optimized image quality and average glandular dose in digital mammography, and provides recommendations concerning anode-filter combinations in digital mammography, which is based on amorphous selenium (a-Se) detector technology. The full field digital mammography (FFDM) system based on a-Se technology, which is also a platform of tomosynthesis prototype, was used in this study. X-ray tube anode-filter combinations, which we studied, were tungsten (W) - rhodium (Rh) and tungsten (W) - silver (Ag). Anatomically adaptable fully automatic exposure control (AAEC) was used. The average glandular doses (AGD) were calculated using a specific program developed by Planmed, which automates the method described by Dance et al. Image quality was evaluated in two different ways: a subjective image quality evaluation, and contrast and noise analysis. By using W-Rh and W-Ag anode-filter combinations can be achieved a significantly lower average glandular dose compared with molybdenum (Mo) - molybdenum (Mo) or Mo-Rh. The average glandular dose reduction was achieved from 25 % to 60 %. In the future, the evaluation will concentrate to study more filter combinations and the effect of higher kV (>35 kV) values, which seems be useful while optimizing the dose in digital mammography.

  8. Analysis of Mass Averaged Tissue Doses in CAM, CAF, MAX, and FAX

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Qualls, Garry D.; Clowdsley, Martha S.; Blattnig, Steve R.; Simonsen, Lisa C.; Walker, Steven A.; Singleterry, Robert C.

    2009-01-01

    To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.

  9. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients.

  10. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients. PMID:27211083

  11. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity.

    PubMed

    Geeraert, N; Klausz, R; Muller, S; Bloch, I; Bosmans, H

    2015-07-01

    The radiation risk in mammography is traditionally evaluated using the average glandular dose. This quantity for the average breast has proven to be useful for population statistics and to compare exposure techniques and systems. However it is not indicating the individual radiation risk based on the individual glandular amount and distribution. Simulations of exposures were performed for six appropriate virtual phantoms with varying glandular amount and distribution. The individualised average glandular dose (iAGD), i.e. the individual glandular absorbed energy divided by the mass of the gland, and the glandular imparted energy (GIE), i.e. the glandular absorbed energy, were computed. Both quantities were evaluated for their capability to take into account the glandular amount and distribution. As expected, the results have demonstrated that iAGD reflects only the distribution, while GIE reflects both the glandular amount and distribution. Therefore GIE is a good candidate for individual radiation risk assessment.

  12. Information-theoretic model-averaged benchmark dose analysis in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; An, Lingling; Wickens, Alissa A.; West, R. Webster; Peña, Edsel A.; Wu, Wensong

    2013-01-01

    An important objective in environmental risk assessment is estimation of minimum exposure levels, called Benchmark Doses (BMDs), that induce a pre-specified Benchmark Response (BMR) in a dose-response experiment. In such settings, representations of the risk are traditionally based on a specified parametric model. It is a well-known concern, however, that existing parametric estimation techniques are sensitive to the form employed for modeling the dose response. If the chosen parametric model is in fact misspecified, this can lead to inaccurate low-dose inferences. Indeed, avoiding the impact of model selection was one early motivating issue behind development of the BMD technology. Here, we apply a frequentist model averaging approach for estimating benchmark doses, based on information-theoretic weights. We explore how the strategy can be used to build one-sided lower confidence limits on the BMD, and we study the confidence limits’ small-sample properties via a simulation study. An example from environmental carcinogenicity testing illustrates the calculations. It is seen that application of this information-theoretic, model averaging methodology to benchmark analysis can improve environmental health planning and risk regulation when dealing with low-level exposures to hazardous agents. PMID:24039461

  13. Geomagnetic effects on the average surface temperature

    NASA Astrophysics Data System (ADS)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  14. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT

    SciTech Connect

    Pan Tinsu; Mawlawi, Osama; Luo, Dershan; Liu, Hui H.; Chi Paichun, M.; Mar, Martha V.; Gladish, Gregory; Truong, Mylene; Erasmus, Jeremy Jr.; Liao Zhongxing; Macapinlac, H. A.

    2006-10-15

    We proposed a low-dose average computer tomography (ACT) for attenuation correction (AC) of the PET cardiac data in PET/CT. The ACT was obtained from a cine CT scan of over one breath cycle per couch position while the patient was free breathing. We applied this technique on four patients who underwent tumor imaging with {sup 18}F-FDG in PET/CT, whose PET data showed high uptake of {sup 18}F-FDG in the heart and whose CT and PET data had misregistration. All four patients did not have known myocardiac infarction or ischemia. The patients were injected with 555-740 MBq of {sup 18}F-FDG and scanned 1 h after injection. The helical CT (HCT) data were acquired in 16 s for the coverage of 100 cm. The PET acquisition was 3 min per bed of 15 cm. The duration of cine CT acquisition per 2 cm was 5.9 s. We used a fast gantry rotation cycle time of 0.5 s to minimize motion induced reconstruction artifacts in the cine CT images, which were averaged to become the ACT images for AC of the PET data. The radiation dose was about 5 mGy for 5.9 s cine duration. The selection of 5.9 s was based on our analysis of the respiratory signals of 600 patients; 87% of the patients had average breath cycles of less than 6 s and 90% had standard deviations of less than 1 s in the period of breath cycle. In all four patient studies, registrations between the CT and the PET data were improved. An increase of average uptake in the anterior and the lateral walls up to 48% and a decrease of average uptake in the septal and the inferior walls up to 16% with ACT were observed. We also compared ACT and conventional slow scan CT (SSCT) of 4 s duration in one patient study and found ACT was better than SSCT in depicting average respiratory motion and the SSCT images showed motion-induced reconstruction artifacts. In conclusion, low-dose ACT improved registration of the CT and the PET data in the heart region in our study of four patients. ACT was superior than SSCT for depicting average respiration

  15. 27 CFR 19.37 - Average effective tax rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Average effective tax rate..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Taxes Effective Tax Rates § 19.37 Average effective tax rate. (a) The proprietor may establish an average effective tax rate for any...

  16. Method for the evaluation of a average glandular dose in mammography

    SciTech Connect

    Okunade, Akintunde Akangbe

    2006-04-15

    This paper concerns a method for accurate evaluation of average glandular dose (AGD) in mammography. At different energies, the interactions of photons with tissue are not uniform. Thus, optimal accuracy in the estimation of AGD is achievable when the evaluation is carried out using the normalized glandular dose values, g(x,E), that are determined for each (monoenergetic) x-ray photon energy, E, compressed breast thickness (CBT), x, breast glandular composition, and data on photon energy distribution of the exact x-ray beam used in breast imaging. A generalized model for the values of g(x,E) that is for any arbitrary CBT ranging from 2 to 9 cm (with values that are not whole numbers inclusive, say, 4.2 cm) was developed. Along with other dosimetry formulations, this was integrated into a computer software program, GDOSE.FOR, that was developed for the evaluation of AGD received from any x-ray tube/equipment (irrespective of target-filter combination) of up to 50 kVp. Results are presented which show that the implementation of GDOSE.FOR yields values of normalized glandular dose that are in good agreement with values obtained from methodologies reported earlier in the literature. With the availability of a portable device for real-time acquisition of spectra, the model and computer software reported in this work provide for the routine evaluation of AGD received by a specific woman of known age and CBT.

  17. Biosphere Dose Conversion Factors for Reasonably Maximally Exposed Individual and Average Member of Critical Group

    SciTech Connect

    K. Montague

    2000-02-23

    The purpose of this calculation is to develop additional Biosphere Dose Conversion Factors (BDCFs) for a reasonably maximally exposed individual (RMEI) for the periods 10,000 years and 1,000,000 years after the repository closure. In addition, Biosphere Dose Conversion Factors for the average member of a critical group are calculated for those additional radionuclides postulated to reach the environment during the period after 10,000 years and up to 1,000,000 years. After the permanent closure of the repository, the engineered systems within the repository will eventually lose their abilities to contain radionuclide inventory, and the radionuclides will migrate through the geosphere and eventually enter the local water table moving toward inhabited areas. The primary release scenario is a groundwater well used for drinking water supply and irrigation, and this calculation takes these postulated releases and follows them through various pathways until they result in a dose to either a member of critical group or a reasonably maximally exposed individual. The pathways considered in this calculation include inhalation, ingestion, and direct exposure.

  18. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NASA Astrophysics Data System (ADS)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-10-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83-1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms.

  19. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; den Heeten, G J; Broeders, M J M; Schopphoven, S; Jeukens, C R L P N; Veldkamp, W J H; Dance, D R

    2015-10-21

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83-1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms. PMID:26407015

  20. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; den Heeten, G J; Broeders, M J M; Schopphoven, S; Jeukens, C R L P N; Veldkamp, W J H; Dance, D R

    2015-10-21

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83-1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms.

  1. Determination of the absorbed dose and the average LET of space radiation in dependence on shielding conditions.

    PubMed

    Vana, N; Schoner, W; Noll, M; Fugger, M; Akatov, Y; Shurshakov, V

    1999-01-01

    The HTR method, developed for determination of absorbed dose and average LET of mixed radiation fields in space, was applied during several space missions on space station MIR, space shuttles and satellites. The method utilises the changes of peak height ratios in the glow curves in dependence on the linear energy transfer LET. Due to the small size of the dosemeters the evaluation of the variation of absorbed dose and average LET in dependence on the position of the dosemeters inside the space station is possible. The dose and LET distribution was determined during the experiment ADLET where dosemeters were exposed in two positions with different shielding conditions and during two following experiments (MIR-95, MIR-96) using six positions inside the space station. The results were compared with the shielding conditions of the positions. Calculations of the absorbed dose were carried out for comparison. Results have shown that the average LET increases with increasing absorbing thickness while the absorbed dose decreases.

  2. 27 CFR 19.613 - Average effective tax rate records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Average effective tax rate records. 19.613 Section 19.613 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Tax Records § 19.613 Average effective tax rate...

  3. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  4. Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2011-01-01

    In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This article uses a causal inference and instrumental variables framework to examine the…

  5. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data

    EPA Science Inventory

    The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose-response models. Current approa...

  6. Effective doses, guidelines & regulations.

    PubMed

    Burch, Michael D

    2008-01-01

    A number of countries have developed regulations or guidelines for cyanotoxins and cyanobacteria in drinking water, and in some cases in water used for recreational activity and agriculture. The main focus internationally has been upon microcystin toxins, produced predominantly by Microcystis aeruginosa. This is because microcystins are widely regarded as the most significant potential source of human injury from cyanobacteria on a world-wide scale. Many international guidelines have taken their lead from the World Health Organization's (WHO) provisional guideline of 1 microg L(-1) for microcystin-LR in drinking-water released in 1998 (WHO 2004). The WHO guideline value is stated as being 'provisional', because it covers only microcystin-LR, for reasons that the toxicology is limited and new data for toxicity of cyanobacterial toxins are being generated. The derivation of this guideline is based upon data that there is reported human injury related to consumption of drinking water containing cyanobacteria, or from limited work with experimental animals. It was also recognised that at present the human evidence for microcystin tumor promotion is inadequate and animal evidence is limited. As a result the guideline is based upon the model of deriving a Tolerable Daily intake (TDI) from an animal study No Observed Adverse Effects Level (NOAEL), with the application of appropriate safety or uncertainty factors. The resultant WHO guideline by definition is the concentration of a toxin that does not result in any significant risk to health of the consumer over a lifetime of consumption. Following the release of this WHO provisional guideline many countries have either adopted it directly (e.g., Czech Republic, France, Japan, Korea, New Zealand, Norway, Poland, Brazil and Spain), or have adopted the same animal studies, TDI and derivation convention to arrive at slight variants based upon local requirements (e.g., Australia, Canada). Brazil currently has the most

  7. The causal meaning of Fisher’s average effect

    PubMed Central

    LEE, JAMES J.; CHOW, CARSON C.

    2013-01-01

    Summary In order to formulate the Fundamental Theorem of Natural Selection, Fisher defined the average excess and average effect of a gene substitution. Finding these notions to be somewhat opaque, some authors have recommended reformulating Fisher’s ideas in terms of covariance and regression, which are classical concepts of statistics. We argue that Fisher intended his two averages to express a distinction between correlation and causation. On this view, the average effect is a specific weighted average of the actual phenotypic changes that result from physically changing the allelic states of homologous genes. We show that the statistical and causal conceptions of the average effect, perceived as inconsistent by Falconer, can be reconciled if certain relationships between the genotype frequencies and non-additive residuals are conserved. There are certain theory-internal considerations favouring Fisher’s original formulation in terms of causality; for example, the frequency-weighted mean of the average effects equaling zero at each locus becomes a derivable consequence rather than an arbitrary constraint. More broadly, Fisher’s distinction between correlation and causation is of critical importance to gene-trait mapping studies and the foundations of evolutionary biology. PMID:23938113

  8. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  9. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  10. The Health Effects of Income Inequality: Averages and Disparities.

    PubMed

    Truesdale, Beth C; Jencks, Christopher

    2016-01-01

    Much research has investigated the association of income inequality with average life expectancy, usually finding negative correlations that are not very robust. A smaller body of work has investigated socioeconomic disparities in life expectancy, which have widened in many countries since 1980. These two lines of work should be seen as complementary because changes in average life expectancy are unlikely to affect all socioeconomic groups equally. Although most theories imply long and variable lags between changes in income inequality and changes in health, empirical evidence is confined largely to short-term effects. Rising income inequality can affect individuals in two ways. Direct effects change individuals' own income. Indirect effects change other people's income, which can then change a society's politics, customs, and ideals, altering the behavior even of those whose own income remains unchanged. Indirect effects can thus change both average health and the slope of the relationship between individual income and health.

  11. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    SciTech Connect

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-02-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body.

  12. Variations in environmental tritium doses due to meteorological data averaging and uncertainties in pathway model parameters

    SciTech Connect

    Kock, A.

    1996-05-01

    The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies.

  13. 27 CFR 19.249 - Average effective tax rate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Average effective tax rate. 19.249 Section 19.249 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits Taxes Effective Tax Rates §...

  14. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    PubMed Central

    Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A. R.

    2012-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. PMID:20726731

  15. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    SciTech Connect

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  16. Effect of brotizolam on the averaged photopalpebral reflex in man

    PubMed Central

    Tanaka, M.; Isozaki, H.; Mizuki, Y.; Inanaga, K.

    1983-01-01

    1 The photopalpebral reflex (PPR) is a useful method to assess level of arousal. Healthy males were given either brotizolam (0.0625, 0.125, 0.25 or 0.5 mg) or placebo within a double-blind, crossover design. Changes in PPR and subjective assessments were observed for 5 h after medication. 2 Prolongation of the latencies of PPR were dose dependent, and the amplitude tended to be reduced. These effects appeared within 30 min, and lasted about 4 h. 3 The dose-response curve of the maximum prolongation of the latencies was linear. 4 Sleepiness and slight ataxia were observed after drug ingestion. Sleepiness was correlated with the prolongation of the PPR latencies. 5 Brotizolam could be a potent hypnotic, with rapid onset and moderate duration of action, and it has no severe side-effects. PMID:6661378

  17. SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition

    SciTech Connect

    Supanich, MP

    2015-06-15

    Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in the central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.

  18. Collision and average velocity effects on the ratchet pinch

    SciTech Connect

    Vlad, M.; Benkadda, S.

    2008-03-15

    A ratchet-type average velocity V{sup R} appears for test particles moving in a stochastic potential and a magnetic field that is space dependent. This model is developed by including particle collisions and an average velocity. We show that these components of the motion can destroy the ratchet velocity but they also can produce significant increase of V{sup R}, depending on the parameters. The amplification of the ratchet pinch is a nonlinear effect that appears in the presence of trajectory eddying.

  19. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code

    PubMed Central

    Guan, Fada; Peeler, Christopher; Bronk, Lawrence; Geng, Changran; Taleei, Reza; Randeniya, Sharmalee; Ge, Shuaiping; Mirkovic, Dragan; Grosshans, David; Mohan, Radhe; Titt, Uwe

    2015-01-01

    Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the geant 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from geant 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LETt and dose-averaged LET, LETd) using geant 4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LETt and LETd of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LETt but significant for LETd. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in geant 4 can result in incorrect LETd calculation results in the dose plateau region for small step limits. The erroneous LETd results can be attributed to the algorithm to determine fluctuations in energy deposition along the

  20. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  1. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    SciTech Connect

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A{sub 1}) was set in the range of 0.0-12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of {gamma} index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within {+-} 0.7%. From the dose area histograms on the film, the mean {+-} standard deviation of the dose covering 100% of the cross section of the target was 102.32 {+-} 1.20% (range, 100.59-103.49%). By contrast, the irradiated areas receiving more than 95% dose for A{sub 1} = 12 mm were 1.46 and 1.33 times larger than those for A{sub 1} = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  2. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  3. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  4. Effective dose from direct and indirect digital panoramic units

    PubMed Central

    Lee, Gun-Sun; Kim, Jin-Soo; Seo, Yo-Seob

    2013-01-01

    Purpose This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Materials and Methods Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. Results The effective doses of the 4 digital panoramic units ranged between 8.9 µSv and 37.8 µSv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 µSv, 27.6 µSv) were higher than those from the indirect units (8.9 µSv, 15.9 µSv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. Conclusion To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom. PMID:23807930

  5. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    SciTech Connect

    Uselmann, Adam J. Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling. Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.

  6. Note on scaling arguments in the effective average action formalism

    NASA Astrophysics Data System (ADS)

    Pagani, Carlo

    2016-08-01

    The effective average action (EAA) is a scale-dependent effective action where a scale k is introduced via an infrared regulator. The k dependence of the EAA is governed by an exact flow equation to which one associates a boundary condition at a scale μ . We show that the μ dependence of the EAA is controlled by an equation fully analogous to the Callan-Symanzik equation which allows one to define scaling quantities straightforwardly. Particular attention is paid to composite operators which are introduced along with new sources. We discuss some simple solutions to the flow equation for composite operators and comment on their implications in the case of a local potential approximation.

  7. Dose and dose rate effectiveness of space radiation.

    PubMed

    Schimmerling, W; Cucinotta, F A

    2006-01-01

    Dose and dose rate effectiveness factors (DDREF), in conjunction with other weighting factors, are commonly used to scale atomic bomb survivor data in order to establish limits for occupational radiation exposure, including radiation exposure in space. We use some well-known facts about the microscopic pattern of energy deposition of high-energy heavy ions, and about the dose rate dependence of chemical reactions initiated by radiation, to show that DDREF are likely to vary significantly as a function of particle type and energy, cell, tissue, and organ type, and biological end point. As a consequence, we argue that validation of DDREF by conventional methods, e.g. irradiating animal colonies and compiling statistics of cancer mortality, is not appropriate. However, the use of approaches derived from information theory and thermodynamics is a very wide field, and the present work can only be understood as a contribution to an ongoing discussion. PMID:17169950

  8. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the GEANT4 Monte Carlo code

    SciTech Connect

    Guan, Fada; Peeler, Christopher; Taleei, Reza; Randeniya, Sharmalee; Ge, Shuaiping; Mirkovic, Dragan; Mohan, Radhe; Titt, Uwe; Bronk, Lawrence; Geng, Changran; Grosshans, David

    2015-11-15

    Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the GEANT 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from GEANT 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LET{sub t} and dose-averaged LET, LET{sub d}) using GEANT 4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LET{sub t} and LET{sub d} of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LET{sub t} but significant for LET{sub d}. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in GEANT 4 can result in incorrect LET{sub d} calculation results in the dose plateau region for small step limits. The erroneous LET{sub d} results can be attributed to the algorithm to

  9. Digital breast tomosynthesis and digital mammography: A comparison of figures of merit for various average glandular doses

    NASA Astrophysics Data System (ADS)

    Kim, Ye-seul; Park, Hye-Suk; Park, SuJin; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook; Park, Jun-Ho; Lee, Jae-Jun

    2013-05-01

    Previous studies on the application of tomosynthesis to breast imaging have demonstrated the potential of digital breast tomosynthesis (DBT). DBT can improve the specificity of digital mammography (DM) through improved marginal visibility of lesions and early breast cancer detection for women with dense breasts. To investigate possible improvements in the accuracy of lesion detection with DBT systems as compared to DM, we conducted a quantitative evaluation by using simulated lesions embedded in a breast phantom. A prototype DBT and dedicated DM system were used in this study. For the DBT system, the average glandular dose (AGD) was calculated using a formalism that was a simple extension of mammography dosimetry. The DBT and the DM images were acquired with average glandular doses (AGDs) ranging from 1 to 4 mGy. To analyze the results objectively, we calculated metrics for in-plane lesion visibility in the form of the contrast-to-noise ratio for the in-focus plane from the DBT reconstruction image and from the craniocaudal (CC) image from the DM system. The imaging performance of DBT was quantitatively compared with that of DM in terms of the figure of merit. Although the DM showed better results in terms of the contrast-to-noise ratio (CNR) of the mass due to the reduced overlapping of tissue and lesion, an increase in breast thickness of over 3 cm increased the CNR of the mass with the DBT system. For microcalcification detection, the DBT system showed significantly higher CNR than the DM system and gave better predictions of the microcalcification size. We compared the performances of the DM and the DBT systems for various AGDs and breast thicknesses. In conclusion, the results indicate that the DBT systems can play an important role in the detection of masses or microcalcifications without severe compression.

  10. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  11. Technical Methods Report: Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs. NCEE 2009-4040

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley

    2009-01-01

    In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This report uses a causal inference and instrumental variables framework to examine the…

  12. A Monte Carlo estimation of effective dose in chest tomosynthesis

    SciTech Connect

    Sabol, John M.

    2009-12-15

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  13. Estimates of Average Glandular Dose with Auto-modes of X-ray Exposures in Digital Breast Tomosynthesis

    PubMed Central

    Kamal, Izdihar; Chelliah, Kanaga K.; Mustafa, Nawal

    2015-01-01

    Objectives: The aim of this research was to examine the average glandular dose (AGD) of radiation among different breast compositions of glandular and adipose tissue with auto-modes of exposure factor selection in digital breast tomosynthesis. Methods: This experimental study was carried out in the National Cancer Society, Kuala Lumpur, Malaysia, between February 2012 and February 2013 using a tomosynthesis digital mammography X-ray machine. The entrance surface air kerma and the half-value layer were determined using a 100H thermoluminescent dosimeter on 50% glandular and 50% adipose tissue (50/50) and 20% glandular and 80% adipose tissue (20/80) commercially available breast phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, Virginia, USA) with auto-time, auto-filter and auto-kilovolt modes. Results: The lowest AGD for the 20/80 phantom with auto-time was 2.28 milliGray (mGy) for two dimension (2D) and 2.48 mGy for three dimensional (3D) images. The lowest AGD for the 50/50 phantom with auto-time was 0.97 mGy for 2D and 1.0 mGy for 3D. Conclusion: The AGD values for both phantoms were lower against a high kilovolt peak and the use of auto-filter mode was more practical for quick acquisition while limiting the probability of operator error. PMID:26052465

  14. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    NASA Astrophysics Data System (ADS)

    Armpilia, C.; Dale, R. G.; Sandilos, P.; Vlachos, L.

    2006-09-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BEDeq) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component.

  15. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  16. A new definition of biological effective dose: The dose distribution effects.

    PubMed

    Zhang, Qinghui; Tian, Suqing; Borasi, Giovanni

    2015-12-01

    A new biological effective dose (BED) is proposed in this note. This new BED definition takes into account the fact that dose distribution is non-uniform for tumors in patients' treatments. This new BED can be calculated from the dose distribution within a tumor, making it practical and useful for clinical applications.

  17. The Lake Wobegon Effect: Are All Cancer Patients above Average?

    PubMed Central

    Wolf, Jacqueline H; Wolf, Kevin S

    2013-01-01

    Context When elderly patients face a terminal illness such as lung cancer, most are unaware that what we term in this article “the Lake Wobegon effect” taints the treatment advice imparted to them by their oncologists. In framing treatment plans, cancer specialists tend to intimate that elderly patients are like the children living in Garrison Keillor's mythical Lake Wobegon: above average and thus likely to exceed expectations. In this article, we use the story of our mother's death from lung cancer to investigate the consequences of elderly people's inability to reconcile the grave reality of their illness with the overly optimistic predictions of their physicians. Methods In this narrative analysis, we examine the routine treatment of elderly, terminally ill cancer patients through alternating lenses: the lens of a historian of medicine who also teaches ethics to medical students and the lens of an actuary who is able to assess physicians’ claims for the outcome of medical treatments. Findings We recognize that a desire to instill hope in patients shapes physicians’ messages. We argue, however, that the automatic optimism conveyed to elderly, dying patients by cancer specialists prompts those patients to choose treatment that is ineffective and debilitating. Rather than primarily prolong life, treatments most notably diminish patients’ quality of life, weaken the ability of patients and their families to prepare for their deaths, and contribute significantly to the unsustainable costs of the U.S. health care system. Conclusions The case described in this article suggests how physicians can better help elderly, terminally ill patients make medical decisions that are less damaging to them and less costly to the health care system. PMID:24320166

  18. Use of effective dose in medicine.

    PubMed

    Harrison, J; Lopez, P O

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. The protection quantity 'effective dose' was developed by the International Commission on Radiological Protection (ICRP) for use in the radiological protection of workers and the public. In this context, it is used as a risk-adjusted dosimetric quantity to optimise protection, comparing received or planned doses with constraints, reference levels, and limits expressed in the same quantity. Considering exposures incurred during medical procedures, effective dose can be of practical value for comparing: doses from different diagnostic examinations and interventional procedures; the use of similar technologies and procedures in different hospitals and countries; and the use of different technologies for the same medical examination, provided that the representative patients or patient populations for which the effective doses are derived are similar with regard to age and sex. However, as stated in ICRP Publication 103, '… risk assessment for medical diagnosis and treatment… is best evaluated using appropriate risk values for the individual tissues at risk and for the age and sex distribution of the individuals undergoing the medical procedures'. This topic was explored in a session of the First ICRP Symposium with arguments for and against the use of a new quantity referred to as 'effective risk', and examination of variations in estimated risk for different diagnostic procedures according to the age and sex of the exposed individuals. This paper restates the primary purposes of effective dose, and summarises estimates of variation in individual risk from medical procedures. The authors support the judicious use of effective dose as an indicator of possible risk, but caution against the use of effective risk as compared with the calculation of scientific best estimates of risk with consideration of associated uncertainties.

  19. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NASA Astrophysics Data System (ADS)

    Noutsos, A.; Sobey, C.; Kondratiev, V. I.; Weltevrede, P.; Verbiest, J. P. W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R. P.; Bilous, A. V.; Cooper, S.; Falcke, H.; Grießmeier, J.-M.; Hassall, T. E.; Hessels, J. W. T.; Keane, E. F.; Osłowski, S.; Pilia, M.; Serylak, M.; Stappers, B. W.; ter Veen, S.; van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, J.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; van der Horst, A.

    2015-04-01

    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. Methods: The polarisation data presented in this paper have been calibrated for the geometric-projection and beam-shape effects that distort the polarised information as detected with the LOFAR antennas. We have used RM Synthesis to determine the amount of Faraday rotation in the data at the time of the observations. The ionospheric contribution to the measured Faraday rotation was estimated using a model of the ionosphere. To study the propagation effects, we have compared our low-frequency polarisation observations with archival data at 240, 400, 600, and 1400 MHz. Results: The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possibly an artefact of scattering. These variations are typically two orders of magnitude smaller than that observed at 1400 MHz by Noutsos et al. (2009), for a different sample of southern pulsars. In this paper we present a possible explanation for the difference in magnitude of this effect between the two frequencies, based on scattering. Finally, we have estimated the magnetospheric

  20. Adaptive fractionation therapy: II. Biological effective dose

    NASA Astrophysics Data System (ADS)

    Chen, Mingli; Lu, Weiguo; Chen, Quan; Ruchala, Kenneth; Olivera, Gustavo

    2008-10-01

    Radiation therapy is fractionized to differentiate the cell killing between the tumor and organ at risk (OAR). Conventionally, fractionation is done by dividing the total dose into equal fraction sizes. However, as the relative positions (configurations) between OAR and the tumor vary from fractions to fractions, intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. Adaptive fractionation accounts for variations of configurations between OAR and the tumor. In part I of this series, the adaptation minimizes the OAR (physical) dose and maintains the total tumor (physical) dose. In this work, instead, the adaptation is based on the biological effective dose (BED). Unlike the linear programming approach in part I, we build a fraction size lookup table using mathematical induction. The lookup table essentially describes the fraction size as a function of the remaining tumor BED, the OAR/tumor dose ratio and the remaining number of fractions. The lookup table is calculated by maximizing the expected survival of OAR and preserving the tumor cell kill. Immediately before the treatment of each fraction, the OAR-tumor configuration and thus the dose ratio can be obtained from the daily setup image, and then the fraction size can be determined by the lookup table. Extensive simulations demonstrate the effectiveness of our method compared with the conventional fractionation method.

  1. Ceria co-doping: synergistic or average effect?

    PubMed

    Burbano, Mario; Nadin, Sian; Marrocchelli, Dario; Salanne, Mathieu; Watson, Graeme W

    2014-05-14

    Ceria (CeO2) co-doping has been suggested as a means to achieve ionic conductivities that are significantly higher than those in singly doped systems. Rekindled interest in this topic over the last decade has given rise to claims of much improved performance. The present study makes use of computer simulations to investigate the bulk ionic conductivity of rare earth (RE) doped ceria, where RE = Sc, Gd, Sm, Nd and La. The results from the singly doped systems are compared to those from ceria co-doped with Nd/Sm and Sc/La. The pattern that emerges from the conductivity data is consistent with the dominance of local lattice strains from individual defects, rather than the synergistic co-doping effect reported recently, and as a result, no enhancement in the conductivity of co-doped samples is observed. PMID:24658460

  2. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    SciTech Connect

    Park, J; Park, H; Lee, J; Kang, S; Lee, M; Suh, T; Lee, B

    2014-06-01

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea

  3. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  4. 21 years of Biologically Effective Dose

    PubMed Central

    Fowler, J F

    2010-01-01

    In 1989 the British Journal of Radiology published a review proposing the term biologically effective dose (BED), based on linear quadratic cell survival in radiobiology. It aimed to indicate quantitatively the biological effect of any radiotherapy treatment, taking account of changes in dose-per-fraction or dose rate, total dose and (the new factor) overall time. How has it done so far? Acceptable clinical results have been generally reported using BED, and it is in increasing use, although sometimes mistaken for “biologically equivalent dose”, from which it differs by large factors, as explained here. The continuously bending nature of the linear quadratic curve has been questioned but BED has worked well for comparing treatments in many modalities, including some with large fractions. Two important improvements occurred in the BED formula. First, in 1999, high linear energy transfer (LET) radiation was included; second, in 2003, when time parameters for acute mucosal tolerance were proposed, optimum overall times could then be “triangulated” to optimise tumour BED and cell kill. This occurs only when both early and late BEDs meet their full constraints simultaneously. New methods of dose delivery (intensity modulated radiation therapy, stereotactic body radiation therapy, protons, tomotherapy, rapid arc and cyberknife) use a few large fractions and obviously oppose well-known fractionation schedules. Careful biological modelling is required to balance the differing trends of fraction size and local dose gradient, as explained in the discussion “How Fractionation Really Works”. BED is now used for dose escalation studies, radiochemotherapy, brachytherapy, high-LET particle beams, radionuclide-targeted therapy, and for quantifying any treatments using ionising radiation. PMID:20603408

  5. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  6. The EffectLiteR Approach for Analyzing Average and Conditional Effects.

    PubMed

    Mayer, Axel; Dietzfelbinger, Lisa; Rosseel, Yves; Steyer, Rolf

    2016-01-01

    We present a framework for estimating average and conditional effects of a discrete treatment variable on a continuous outcome variable, conditioning on categorical and continuous covariates. Using the new approach, termed the EffectLiteR approach, researchers can consider conditional treatment effects given values of all covariates in the analysis and various aggregates of these conditional treatment effects such as average effects, effects on the treated, or aggregated conditional effects given values of a subset of covariates. Building on structural equation modeling, key advantages of the new approach are (1) It allows for latent covariates and outcome variables; (2) it permits (higher order) interactions between the treatment variable and categorical and (latent) continuous covariates; and (3) covariates can be treated as stochastic or fixed. The approach is illustrated by an example, and open source software EffectLiteR is provided, which makes a detailed analysis of effects conveniently accessible for applied researchers.

  7. Low Dose Effects: Benefit or Harm?

    PubMed

    Woloschak, Gayle E

    2016-03-01

    This forum article discusses issues related to the effects of low dose radiation, an area that is under intense study but difficult to assess. Experiments with large-scale animal studies are included in this paper; these studies point to the need for international consortia to examine and balance the results of these large-scale studies and databases. PMID:26808889

  8. A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams.

    PubMed

    Cortés-Giraldo, M A; Carabe, A

    2015-04-01

    We compare unrestricted dose average linear energy transfer (LET) maps calculated with three different Monte Carlo scoring methods in voxelized geometries irradiated with proton therapy beams with three different Monte Carlo scoring methods. Simulations were done with the Geant4 (Geometry ANd Tracking) toolkit. The first method corresponds to a step-by-step computation of LET which has been reported previously in the literature. We found that this scoring strategy is influenced by spurious high LET components, which relative contribution in the dose average LET calculations significantly increases as the voxel size becomes smaller. Dose average LET values calculated for primary protons in water with voxel size of 0.2 mm were a factor ~1.8 higher than those obtained with a size of 2.0 mm at the plateau region for a 160 MeV beam. Such high LET components are a consequence of proton steps in which the condensed-history algorithm determines an energy transfer to an electron of the material close to the maximum value, while the step length remains limited due to voxel boundary crossing. Two alternative methods were derived to overcome this problem. The second scores LET along the entire path described by each proton within the voxel. The third followed the same approach of the first method, but the LET was evaluated at each step from stopping power tables according to the proton kinetic energy value. We carried out microdosimetry calculations with the aim of deriving reference dose average LET values from microdosimetric quantities. Significant differences between the methods were reported either with pristine or spread-out Bragg peaks (SOBPs). The first method reported values systematically higher than the other two at depths proximal to SOBP by about 15% for a 5.9 cm wide SOBP and about 30% for a 11.0 cm one. At distal SOBP, the second method gave values about 15% lower than the others. Overall, we found that the third method gave the most consistent

  9. Effects of neurosurgical titanium mesh on radiation dose

    SciTech Connect

    Patone, Hassisen . E-mail: hash.patone@mail.mcgill.ca; Barker, Jennifer; Roberge, David

    2006-01-01

    The purpose of this study was to determine the dosimetric impact of a neurosurgical titanium mesh in patients treated with 6- and 18-MV photon beams. The effects of a 0.4-mm-thick titanium mesh on the dose profile at 3 regions within a solid water phantom were measured using extended dose range-2 (EDR2) film for 6- and 18-MV photon beams. All measurements were performed with the titanium mesh placed at a depth of 1.5 cm in the phantom. Films were exposed immediately above the mesh, immediately below the mesh, and at a depth of 5 cm from the surface of the phantom. The films were scanned using a scanning densitometer. In the region directly above the titanium mesh, there was an increase in dose of 7.1% for 6-MV photons and 4.9% for 18-MV photons. Directly below the titanium mesh, there was an average decrease in dose of 1.5% for 6-MV photons and an increase of 1.0% for 18-MV photons. At 5-cm depth, for 6- and 18-MV photons, there was a decrease in dose of 2.2% and 0.6%, respectively. We concluded that for cranial irradiation with high-energy photons, the dosimetric impact of a 0.4-mm titanium mesh is small and does not require modification in treatment parameters.

  10. Estimation of effective imaging dose for kilovoltage intratreatment monitoring of the prostate position during cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Ng, J. A.; Booth, J.; Poulsen, P.; Kuncic, Z.; Keall, P. J.

    2013-09-01

    Kilovoltage intratreatment monitoring (KIM) is a novel real-time localization modality where the tumor position is continuously measured during intensity modulated radiation therapy (IMRT) or intensity modulated arc therapy (IMAT) by a kilovoltage (kV) x-ray imager. Adding kV imaging during therapy adds radiation dose. The additional effective dose is quantified for prostate radiotherapy and compared to dose from other localization modalities. The software PCXMC 2.0 was used to calculate the effective dose delivered to a phantom as a function of imager angle and field size for a Varian On-Board Imager. The average angular effective dose was calculated for a field size of 6 cm × 6 cm. The average angular effective dose was used in calculations for different treatment scenarios. Treatment scenarios considered were treatment type and fractionation. For all treatment scenarios, (i.e. conventionally fractionated and stereotactic body radiotherapy (SBRT), IMRT and IMAT), the total KIM dose at 1 Hz ranged from 2-10 mSv. This imaging dose is less than the Navotek radioactive implant dose (64 mSv) and a standard SBRT cone beam computed tomography pretreatment scan dose (22 mSv) over an entire treatment regime. KIM delivers an acceptably low effective dose for daily use as a real-time image-guidance method for prostate radiotherapy.

  11. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  12. Comparison of internal doses calculated using the specific absorbed fractions of the average adult Japanese male phantom with those of the reference computational phantom-adult male of ICRP publication 110

    NASA Astrophysics Data System (ADS)

    Manabe, Kentaro; Sato, Kaoru; Endo, Akira

    2014-03-01

    In order to study the effects of body sizes and masses of organs and tissues on internal dose assessment, the values corresponding to effective dose coefficients for intakes of radionuclides were calculated using the specific absorbed fractions (SAFs) of two phantoms: the average adult Japanese male phantom (JM-103) and the reference computational phantom-adult male (RCP-AM) of the International Commission on Radiological Protection. SAFs were evaluated using the phantoms and Monte Carlo radiation transport code MCNPX or were taken from published data. As a result of a comparison for 2894 cases of 923 radionuclides, the maximum discrepancy in the effective dose coefficients between the JM-103 and RCP-AM was about 40%. However, the discrepancies were smaller than 10% in 97% of all cases.

  13. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation

    PubMed Central

    Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-01-01

    Objective: To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume–dose model. Methods: Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. Results: For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Conclusion: Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. Advances in knowledge: The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position. PMID:25189417

  14. GENERAL CONSIDERATIONS OF DOSE-EFFECT AND DOSE-RESPONSE RELATIONSHIPS

    EPA Science Inventory

    ABSTRACT In 2003, the International Union of Pure and Applied chemistry (IUPAC) issued a glossary of terms that included the defi nition of dose-effect and doseresponse relationships (Nordberg et al., 2004). Dose effect relationship is defined as an association between dose and...

  15. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms.

    PubMed

    Wang, Jeng-Ning; Lee, Kuo-Wei; Jiang, Shiang-Huei

    2014-06-01

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2-1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3-1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51Sv and the average absorbed dose for eye lenses was 1.07Gy.

  16. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    SciTech Connect

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  17. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described.

  18. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  19. Thermal effects on EXAFS: Ensemble averages and real-space approach

    SciTech Connect

    Vaccari, M.; Fornasini, P.

    2005-09-01

    Thermal effects on EXAFS are considered from a general perspective. The equivalence between canonical average and real space average is demonstrated without approximations in both classical and quantum regimes. The link between distribution of interatomic distances and the Hamiltonian of the system is clarified. The role of the one-dimensional effective potential is critically discussed.

  20. 27 CFR 19.763 - Record of average effective tax rates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of average effective tax rates. 19.763 Section 19.763 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Records § 19.763 Record of average effective tax rates. (a) For each distilled spirits product to be...

  1. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  2. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.

    PubMed

    Vandenberg, Laura N; Colborn, Theo; Hayes, Tyrone B; Heindel, Jerrold J; Jacobs, David R; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M; vom Saal, Frederick S; Welshons, Wade V; Zoeller, R Thomas; Myers, John Peterson

    2012-06-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  3. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.

    PubMed

    Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Wesensten, Nancy J; Kamimori, Gary H; Balkin, Thomas J; Reifman, Jaques

    2014-10-01

    Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of caffeine in the body is well-understood, its alertness-restoring effects are still not well characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of vigilance are not available. In this paper, we describe a phenomenological model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill equation to model the effects of single and repeated caffeine doses. We developed and validated the model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two separate laboratory studies. At the population-average level, the model captured the effects of a range of caffeine doses (50-300 mg), yielding up to a 90% improvement over the two-process model. Individual-specific caffeine models, on average, predicted the effects up to 23% better than population-average caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining caffeine doses that optimize the timing and duration of peak performance.

  4. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.

    PubMed

    Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Wesensten, Nancy J; Kamimori, Gary H; Balkin, Thomas J; Reifman, Jaques

    2014-10-01

    Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of caffeine in the body is well-understood, its alertness-restoring effects are still not well characterized. In fact, mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of vigilance are not available. In this paper, we describe a phenomenological model of the dose-dependent effects of caffeine on psychomotor vigilance task (PVT) performance of sleep-deprived subjects. We used the two-process model of sleep regulation to quantify performance during sleep loss in the absence of caffeine and a dose-dependent multiplier factor derived from the Hill equation to model the effects of single and repeated caffeine doses. We developed and validated the model fits and predictions on PVT lapse (number of reaction times exceeding 500 ms) data from two separate laboratory studies. At the population-average level, the model captured the effects of a range of caffeine doses (50-300 mg), yielding up to a 90% improvement over the two-process model. Individual-specific caffeine models, on average, predicted the effects up to 23% better than population-average caffeine models. The proposed model serves as a useful tool for predicting the dose-dependent effects of caffeine on the PVT performance of sleep-deprived subjects and, therefore, can be used for determining caffeine doses that optimize the timing and duration of peak performance. PMID:24859426

  5. The Effect of Handwriting and Related Skills upon the Spelling Score of Above Average and Below Average Readers in the Fifth Grade.

    ERIC Educational Resources Information Center

    Strickling, Cloria Ann

    The purpose of this study was to determine the effect of handwriting and related skills upon the written spelling scores of fifth graders. Comparisons were made between above average and below average readers and between boys and girls in performance on the oral and written spelling tests and tests of handwriting and related skills. The study…

  6. Dose and dose averaged LET comparison of {sup 1}H, {sup 4}He, {sup 6}Li, {sup 8}Be, {sup 10}B, {sup 12}C, {sup 14}N, and {sup 16}O ion beams forming a spread-out Bragg peak

    SciTech Connect

    Kantemiris, I.; Karaiskos, P.; Papagiannis, P.; Angelopoulos, A.

    2011-12-15

    Purpose: Modern clinical accelerators are capable of producing ion beams from protons up to neon. This work compares the depth dose distribution and corresponding dose averaged linear energy transfer (LET) distribution, which is related to the biological effectiveness, for different ion beams ({sup 1}H, {sup 4}He, {sup 6}Li, {sup 8}Be, {sup 10}B, {sup 12}C, {sup 14}N, and {sup 16}O) using multi-energetic spectra in order to configure spread-out Bragg peaks (SOBP). Methods: Monte Carlo simulations were performed in order to configure a 5 cm SOBP at 8 cm depth in water for all the different ion beams. Physical dose and dose averaged LET distributions as a function of depth were then calculated and compared. The superposition of dose distribution of all ions is also presented for a two opposing fields configuration. Additional simulations were performed for {sup 12}C beams to investigate the dependence of dose and dose averaged LET distributions on target depth and size, as well as beam configuration. These included simulations for a 3 cm SOBP at 7, 10, and 13 cm depth in water, a 6 cm SOBP at 7 depth in water, and two opposing fields of 6 cm SOBP. Results: Alpha particles and protons present superior physical depth dose distributions relative to the rest of the beams studied. Dose averaged LET distributions results suggest higher biological effectiveness in the target volume for carbon, nitrogen and oxygen ions. This is coupled, however, with relatively high LET values--especially for the last two ion species--outside the SOBP where healthy tissue would be located. Dose averaged LET distributions for {sup 8}Be and {sup 10}B beams show that they could be attractive alternatives to {sup 12}C for the treatment of small, not deeply seated lesions. The potential therapeutic effect of different ion beams studied in this work depends on target volume and position, as well as the number of beams used. Conclusions: The optimization of beam modality for specific tumor cites

  7. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  8. Analysis of average density difference effect in a new two-lane lattice model

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Sun, Di-Hua; Zhao, Min; Liu, Wei-Ning; Cheng, Sen-Lin

    2015-11-01

    A new lattice model is proposed by taking the average density difference effect into account for two-lane traffic system according to Transportation Cyber-physical Systems. The influence of average density difference effect on the stability of traffic flow is investigated through linear stability theory and nonlinear reductive perturbation method. The linear analysis results reveal that the unstable region would be reduced by considering the average density difference effect. The nonlinear kink-antikink soliton solution derived from the mKdV equation is analyzed to describe the properties of traffic jamming transition near the critical point. Numerical simulations confirm the analytical results showing that traffic jam can be suppressed efficiently by considering the average density difference effect for two-lane traffic system.

  9. SU-E-T-78: Comparison of Dose-Averaged Linear Energy Transfer Calculation Methods Used in Monte Carlo Simulations of Clinical Proton Beams

    SciTech Connect

    Cortes-Giraldo, M A; Carabe-Fernandez, A

    2014-06-01

    Purpose: To evaluate the differences in dose-averaged linear energy transfer (LETd) maps calculated in water by means of different strategies found in the literature in proton therapy Monte Carlo simulations and to compare their values with dose-mean lineal energy microdosimetry calculations. Methods: The Geant4 toolkit (version 9.6.2) was used. Dose and LETd maps in water were scored for primary protons with cylindrical voxels defined around the beam axis. Three LETd calculation methods were implemented. First, the LETd values were computed by calculating the unrestricted linear energy transfer (LET) associated to each single step weighted by the energy deposition (including delta-rays) along the step. Second, the LETd was obtained for each voxel by computing the LET along all the steps simulated for each proton track within the voxel, weighted by the energy deposition of those steps. Third, the LETd was scored as the quotient between the second momentum of the LET distribution, calculated per proton track, over the first momentum. These calculations were made with various voxel thicknesses (0.2 – 2.0 mm) for a 160 MeV proton beamlet and spread-out Bragg Peaks (SOBP). The dose-mean lineal energy was calculated in a uniformly-irradiated water sphere, 0.005 mm radius. Results: The value of the LETd changed systematically with the voxel thickness due to delta-ray emission and the enlargement of the LET distribution spread, especially at shallow depths. Differences of up to a factor 1.8 were found at the depth of maximum dose, leading to similar differences at the central and distal depths of the SOBPs. The third LETd calculation method gave better agreement with microdosimetry calculations around the Bragg Peak. Conclusion: Significant differences were found between LETd map Monte Carlo calculations due to both the calculation strategy and the voxel thickness used. This could have a significant impact in radiobiologically-optimized proton therapy treatments.

  10. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  11. The Better-than-Average Effect and 1 Corinthians 13: A Classroom Exercise

    ERIC Educational Resources Information Center

    Swenson, John Eric, III; Schneller, Gregory R.; Henderson, Joy Ann

    2014-01-01

    People tend to evaluate themselves more favorably than they evaluate others, a tendency that is known as the better-than-average effect (BTA effect; Alicke, 1985; Brown, 1986). In an attempt to demonstrate the concept of the BTA effect, a classroom exercise was conducted with 78 undergraduate students in an "Introduction to Psychology"…

  12. TOLUENE DOSE-EFFECT META ANALYSIS AND IMPORTANCE OF EFFECTS

    EPA Science Inventory

    TOLUENE DOSE-EFFECT META ANALYSES AND IMPORTANCE OF EFFECTS
    Benignus, V.A., Research Psychologist, ORD, NHEERL, Human Studies Division,
    919-966-6242, benignus.vernon@epa.gov
    Boyes, W.K., Supervisory Health Scientist, ORD, NHEERL, Neurotoxicology Division
    919-541-...

  13. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor. PMID:27082045

  14. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.

  15. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-12-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms.

  16. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  17. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    NASA Astrophysics Data System (ADS)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  18. Comparison of effects of unsteady lift and spanwise averaging in flight through turbulence

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.; Lichtenstein, J. H.

    1977-01-01

    Gust loads on aircraft flying through random atmospheric turbulence are attenuated at high frequencies by the effects of unsteady lift and spanwise averaging. Previously derived theoretical results for these two effects are placed in a form which makes direct comparison possible. The attenuation effects from each cause are found to be of approximately equal magnitude for unswept wings of moderate aspect ratio. For small values of the ratio of wingspan to scale of turbulence, the attenuation due to spanwise averaging is a function only of reduced frequency based on wingspan and is independent of the ratio of wingspan to scale of turbulence.

  19. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  20. The relative biological effectiveness of out-of-field dose

    NASA Astrophysics Data System (ADS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions.

  1. Multi-Institution Prospective Trial of Reduced-Dose Craniospinal Irradiation (23.4 Gy) Followed by Conformal Posterior Fossa (36 Gy) and Primary Site Irradiation (55.8 Gy) and Dose-Intensive Chemotherapy for Average-Risk Medulloblastoma

    SciTech Connect

    Merchant, Thomas E. Kun, Larry E.; Krasin, Matthew J.; Wallace, Dana; Chintagumpala, Murali M.; Woo, Shiao Y.; Ashley, David M.; Sexton, Maree; Kellie, Stewart J.; Ahern, Verity M.B.B.S.; Gajjar, Amar

    2008-03-01

    Purpose: Limiting the neurocognitive sequelae of radiotherapy (RT) has been an objective in the treatment of medulloblastoma. Conformal RT to less than the entire posterior fossa (PF) after craniospinal irradiation might reduce neurocognitive sequelae and requires evaluation. Methods and Materials: Between October 1996 and August 2003, 86 patients, 3-21 years of age, with newly diagnosed, average-risk medulloblastoma were treated in a prospective, institutional review board-approved, multi-institution trial of risk-adapted RT and dose-intensive chemotherapy. RT began within 28 days of definitive surgery and consisted of craniospinal irradiation (23.4 Gy), conformal PF RT (36.0 Gy), and primary site RT (55.8 Gy). The planning target volume for the primary site included the postoperative tumor bed surrounded by an anatomically confined margin of 2 cm that was then expanded with a geometric margin of 0.3-0.5 cm. Chemotherapy was initiated 6 weeks after RT and included four cycles of high-dose cyclophosphamide, cisplatin, and vincristine. Results: At a median follow-up of 61.2 months (range, 5.2-115.0 months), the estimated 5-year event-free survival and cumulative incidence of PF failure rate was 83.0% {+-} 5.3% and 4.9% {+-} 2.4% ({+-} standard error), respectively. The targeting guidelines used in this study resulted in a mean reduction of 13% in the volume of the PF receiving doses >55 Gy compared with conventionally planned RT. The reductions in the dose to the temporal lobes, cochleae, and hypothalamus were statistically significant. Conclusion: This prospective trial has demonstrated that irradiation of less than the entire PF after 23.4 Gy craniospinal irradiation for average-risk medulloblastoma results in disease control comparable to that after treatment of the entire PF.

  2. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    NASA Astrophysics Data System (ADS)

    Song, Dao-jun; Wu, Li-fang; Wu, Li-jun; Yu, Zeng-liang

    2001-02-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+, N+(20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  3. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    SciTech Connect

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-07-15

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  4. The effect of sensor sheltering and averaging techniques on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.

  5. Effect of Aperture Averaging Upon Tropospheric Phase Fluctuations Seen with a Radio Antenna

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.

    1998-01-01

    The spectrum of tropospheric phase fluctuations expected for a radio antenna at timescales < 100s on a space to ground link has been calculated. A new feature included in these calculations is the effect of aperture averaging, which causes a reduction in delay fluctuations on timescales less that the antenna windspeed crossing time, D/(8m/s) (D is the antenna diameter).

  6. Raven's Test Performance of Sub-Saharan Africans: Average Performance, Psychometric Properties, and the Flynn Effect

    ERIC Educational Resources Information Center

    Wicherts, Jelte M.; Dolan, Conor V.; Carlson, Jerry S.; van der Maas, Han L. J.

    2010-01-01

    This paper presents a systematic review of published data on the performance of sub-Saharan Africans on Raven's Progressive Matrices. The specific goals were to estimate the average level of performance, to study the Flynn Effect in African samples, and to examine the psychometric meaning of Raven's test scores as measures of general intelligence.…

  7. Estimating the average treatment effects of nutritional label use using subclassification with regression adjustment.

    PubMed

    Lopez, Michael J; Gutman, Roee

    2014-11-28

    Propensity score methods are common for estimating a binary treatment effect when treatment assignment is not randomized. When exposure is measured on an ordinal scale (i.e. low-medium-high), however, propensity score inference requires extensions which have received limited attention. Estimands of possible interest with an ordinal exposure are the average treatment effects between each pair of exposure levels. Using these estimands, it is possible to determine an optimal exposure level. Traditional methods, including dichotomization of the exposure or a series of binary propensity score comparisons across exposure pairs, are generally inadequate for identification of optimal levels. We combine subclassification with regression adjustment to estimate transitive, unbiased average causal effects across an ordered exposure, and apply our method on the 2005-2006 National Health and Nutrition Examination Survey to estimate the effects of nutritional label use on body mass index.

  8. DEPTH-AVERAGING EFFECTS ON HYDRAULIC HEAD FOR MEDIA WITH STOCHASTIC HYDRAULIC CONDUCTIVITY.

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1987-01-01

    Hydraulic conductivity of a porous medium frequently is considered to be a single realization of a three-dimensional spatial stochastic process. The most common observation of flow in porous media are hydraulic-head measurements obtained from wells which are screened over extensive sections of the medium. These measurements represent, approximately, a one-dimensional spatial average of the actual three-dimensional head distribution, the actual head distribution being a stochastic process resulting from flow through a random hydraulic-conductivity field. This paper examines, via ensemble averages, the effect of such spatial averages of groundwater flow on the spatial autocovariance function for a simple, yet viable, stochastic model of a bounded medium. The model is taken to be three-dimensional flow in a medium that is bounded above and below and in which the hydraulic conductivity is a second-order stationary stochastic process.

  9. On the Correlation of Effective Terahertz Refractive Index and Average Surface Roughness of Pharmaceutical Tablets

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mousumi; Bawuah, Prince; Tan, Nicholas; Ervasti, Tuomas; Pääkkönen, Pertti; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-08-01

    In this paper, we have studied terahertz (THz) pulse time delay of porous pharmaceutical microcrystalline compacts and also pharmaceutical tablets that contain indomethacin (painkiller) as an active pharmaceutical ingredient (API) and microcrystalline cellulose as the matrix of the tablet. The porosity of a pharmaceutical tablet is important because it affects the release of drug substance. In addition, surface roughness of the tablet has much importance regarding dissolution of the tablet and hence the rate of drug release. Here, we show, using a training set of tablets containing API and with a priori known tablet's quality parameters, that the effective refractive index (obtained from THz time delay data) of such porous tablets correlates with the average surface roughness of a tablet. Hence, THz pulse time delay measurement in the transmission mode provides information on both porosity and the average surface roughness of a compact. This is demonstrated for two different sets of pharmaceutical tablets having different porosity and average surface roughness values.

  10. Cognitive Capitalism: Economic Freedom Moderates the Effects of Intellectual and Average Classes on Economic Productivity.

    PubMed

    Coyle, Thomas R; Rindermann, Heiner; Hancock, Dale

    2016-10-01

    Cognitive ability stimulates economic productivity. However, the effects of cognitive ability may be stronger in free and open economies, where competition rewards merit and achievement. To test this hypothesis, ability levels of intellectual classes (top 5%) and average classes (country averages) were estimated using international student assessments (Programme for International Student Assessment; Trends in International Mathematics and Science Study; and Progress in International Reading Literacy Study) (N = 99 countries). The ability levels were correlated with indicators of economic freedom (Fraser Institute), scientific achievement (patent rates), innovation (Global Innovation Index), competitiveness (Global Competitiveness Index), and wealth (gross domestic product). Ability levels of intellectual and average classes strongly predicted all economic criteria. In addition, economic freedom moderated the effects of cognitive ability (for both classes), with stronger effects at higher levels of freedom. Effects were particularly robust for scientific achievements when the full range of freedom was analyzed. The results support cognitive capitalism theory: cognitive ability stimulates economic productivity, and its effects are enhanced by economic freedom. PMID:27458006

  11. Cognitive Capitalism: Economic Freedom Moderates the Effects of Intellectual and Average Classes on Economic Productivity.

    PubMed

    Coyle, Thomas R; Rindermann, Heiner; Hancock, Dale

    2016-10-01

    Cognitive ability stimulates economic productivity. However, the effects of cognitive ability may be stronger in free and open economies, where competition rewards merit and achievement. To test this hypothesis, ability levels of intellectual classes (top 5%) and average classes (country averages) were estimated using international student assessments (Programme for International Student Assessment; Trends in International Mathematics and Science Study; and Progress in International Reading Literacy Study) (N = 99 countries). The ability levels were correlated with indicators of economic freedom (Fraser Institute), scientific achievement (patent rates), innovation (Global Innovation Index), competitiveness (Global Competitiveness Index), and wealth (gross domestic product). Ability levels of intellectual and average classes strongly predicted all economic criteria. In addition, economic freedom moderated the effects of cognitive ability (for both classes), with stronger effects at higher levels of freedom. Effects were particularly robust for scientific achievements when the full range of freedom was analyzed. The results support cognitive capitalism theory: cognitive ability stimulates economic productivity, and its effects are enhanced by economic freedom.

  12. Spatial averaging effects of hydrophone on field characterization of planar transducer using Fresnel approximation.

    PubMed

    Xing, Guangzhen; Yang, Ping; He, Longbiao; Feng, Xiujuan

    2016-09-01

    The purpose of this work was to improve the existing models that allow spatial averaging effects of piezoelectric hydrophones to be accounted for. The model derived in the present study is valid for a planar source and was verified using transducers operating at 5 and 20MHz. It is based on Fresnel approximation and enables corrections for both on-axis and off-axis measurements. A single-integral approximate formula for the axial acoustic pressure was derived, and the validity of the Fresnel approximation in the near field of the planar transducer was examined. The numerical results obtained using 5 and 20MHz planar transmitters with an effective diameter of 12.7mm showed that the derived model could account for spatial averaging effects to within 0.2% with Beissner's exact integral (Beissner, 1981), for k(a+b)2≫π (where k is the circular wavenumber, and a and b are the effective radii of the transmitter and hydrophone, respectively). The field distributions along the acoustic axis and the beam directivity patterns are also included in the model. The spatial averaging effects of the hydrophone were generally observed to cause underestimation of the absolute pressure amplitudes of the acoustic beam, and overestimation of the cross-sectional size of the beam directivity pattern. However, the cross-sectional size of the directivity pattern was also found to be underestimated in the "far zone" (beyond Y0=a(2)/λ) of the transmitter. The results of this study indicate that the spatial averaging effect on the beam directivity pattern is negligible for π(γ(2)+4γ)s≪1 (where γ=b/a, and s is the normalized distance to the planar transducer). PMID:27268164

  13. Temporal compartmental dosing effects for robotic prostate stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Shiao, Stephen L.; Sahgal, Arjun; Hu, Weigang; Jabbari, Siavash; Chuang, Cynthia; Descovich, Martina; Hsu, I.-Chow; Gottschalk, Alexander R.; Roach, Mack, III; Ma, Lijun

    2011-12-01

    The rate of dose accumulation within a given area of a target volume tends to vary significantly for non-isocentric delivery systems such as Cyberknife stereotactic body radiotherapy. In this study, we investigated whether intra-target temporal dose distributions produce significant variations in the biological equivalent dose. For the study, time courses of ten patients were reconstructed and calculation of a biologically equivalent uniform dose (EUD) was performed using a formula derived from the linear quadratic model (α/β = 3 for prostate cancer cells). The calculated EUD values obtained for the actual patient treatments were then compared with theoretical EUD values for delivering the same physical dose distribution except that the whole target being irradiated continuously (e.g. large-field ‘dose-bathing’ type of delivery). For all the case, the EUDs for the actual treatment delivery were found to correlate strongly with the EUDs for the large-field delivery: a linear correlation coefficient of R2 = 0.98 was obtained and the average EUD for the actual Cyberknife delivery was somewhat higher (5.0 ± 4.7%) than that for the large-field delivery. However, no statistical significance was detected between the two types of delivery (p = 0.21). We concluded that non-isocentric small-field Cyberknife delivery produced consistent biological dosing that tracked well with the constant-dose-rate, large-field-type delivery for prostate stereotactic body radiotherapy.

  14. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  15. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  16. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  17. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  18. Radon effective dose from TENORM waste associated with petroleum industries.

    PubMed

    Abo-Elmagd, M; Soliman, H A; Daif, Manal M

    2009-09-01

    Technically enhanced naturally occurring radioactive material (TENORM) associated with petroleum industries can be accumulated with elevated quantities and therefore can threat the workers through external and internal exposure. Measurements of radon-related parameters give information about the radioactivity levels in the TENORM waste using the well-established correlation. Also, it is useful to calculate the internal exposure due to radon inhalation in terms of effective radon dose. Among radon-related parameters, areal exhalation rate is the most suitable for characterising land and objects with only upper surface contamination in the case of petroleum waste. The TENORM in this study is collected from waste storage areas located near oilfields at south Sinai governorate, Egypt. The average values of exhalation rates as measured by Lucas cell based on delay count method are 273 +/- 144 and 38 +/- 8 Bq m(-2) h(-1) for scale and sludge, respectively. Whereas, two count method gives results with 18 and 20 % lower values for scale and sludge, respectively with good correlation coefficient of 0.999 and 0.852, respectively. Sealed cup fitted with CR-39 gives results compatible with Lucas cell with minor deviation in case of scale due to its thoron content. The results of CR-39 are qualified by taking into consideration the correction for back diffusion effect. The effective radon dose was calculated for different simulated radioactive waste storage areas with different contaminated areas and air ventilation rate. Minimising the contaminated areas and building up efficient ventilation systems can reduce the internal exposure even in the case of RWSA-containing TENORM with elevated radioactivity. PMID:19706722

  19. Evidence-Based Medicine, Heterogeneity of Treatment Effects, and the Trouble with Averages

    PubMed Central

    Kravitz, Richard L; Duan, Naihua; Braslow, Joel

    2004-01-01

    Evidence-based medicine is the application of scientific evidence to clinical practice. This article discusses the difficulties of applying global evidence (“average effects” measured as population means) to local problems (individual patients or groups who might depart from the population average). It argues that the benefit or harm of most treatments in clinical trials can be misleading and fail to reveal the potentially complex mixture of substantial benefits for some, little benefit for many, and harm for a few. Heterogeneity of treatment effects reflects patient diversity in risk of disease, responsiveness to treatment, vulnerability to adverse effects, and utility for different outcomes. Recognizing these factors, researchers can design studies that better characterize who will benefit from medical treatments, and clinicians and policymakers can make better use of the results. PMID:15595946

  20. Double robust estimator of average causal treatment effect for censored medical cost data.

    PubMed

    Wang, Xuan; Beste, Lauren A; Maier, Marissa M; Zhou, Xiao-Hua

    2016-08-15

    In observational studies, estimation of average causal treatment effect on a patient's response should adjust for confounders that are associated with both treatment exposure and response. In addition, the response, such as medical cost, may have incomplete follow-up. In this article, a double robust estimator is proposed for average causal treatment effect for right censored medical cost data. The estimator is double robust in the sense that it remains consistent when either the model for the treatment assignment or the regression model for the response is correctly specified. Double robust estimators increase the likelihood the results will represent a valid inference. Asymptotic normality is obtained for the proposed estimator, and an estimator for the asymptotic variance is also derived. Simulation studies show good finite sample performance of the proposed estimator and a real data analysis using the proposed method is provided as illustration. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Double robust estimator of average causal treatment effect for censored medical cost data.

    PubMed

    Wang, Xuan; Beste, Lauren A; Maier, Marissa M; Zhou, Xiao-Hua

    2016-08-15

    In observational studies, estimation of average causal treatment effect on a patient's response should adjust for confounders that are associated with both treatment exposure and response. In addition, the response, such as medical cost, may have incomplete follow-up. In this article, a double robust estimator is proposed for average causal treatment effect for right censored medical cost data. The estimator is double robust in the sense that it remains consistent when either the model for the treatment assignment or the regression model for the response is correctly specified. Double robust estimators increase the likelihood the results will represent a valid inference. Asymptotic normality is obtained for the proposed estimator, and an estimator for the asymptotic variance is also derived. Simulation studies show good finite sample performance of the proposed estimator and a real data analysis using the proposed method is provided as illustration. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26818601

  2. Aspects of the relationship between drug dose and drug effect.

    PubMed

    Peper, Abraham

    2009-02-09

    It is generally assumed that there exists a well-defined relationship between drug dose and drug effect and that this can be expressed by a dose-response curve. This paper argues that there is no such clear relation and that the dose-response curve provides only limited information about the drug effect. It is demonstrated that tolerance development during the measurement of the dose-response curve may cause major distortion of the curve and it is argued that the curve may only be used to indicate the response to the first administration of a drug, before tolerance has developed. The precise effect of a drug on an individual depends on the dynamic relation between several variables, particularly the level of tolerance, the dose anticipated by the organism and the actual drug dose. Simulations with a previously published mathematical model of drug tolerance demonstrate that the effect of a dose smaller than the dose the organism has developed tolerance to is difficult to predict and may be opposite to the action of the usual dose.

  3. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  4. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    SciTech Connect

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  5. Committed effective dose from naturally occuring radionuclides in shellfish

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  6. Leading multiple teams: average and relative external leadership influences on team empowerment and effectiveness.

    PubMed

    Luciano, Margaret M; Mathieu, John E; Ruddy, Thomas M

    2014-03-01

    External leaders continue to be an important source of influence even when teams are empowered, but it is not always clear how they do so. Extending research on structurally empowered teams, we recognize that teams' external leaders are often responsible for multiple teams. We adopt a multilevel approach to model external leader influences at both the team level and the external leader level of analysis. In doing so, we distinguish the influence of general external leader behaviors (i.e., average external leadership) from those that are directed differently toward the teams that they lead (i.e., relative external leadership). Analysis of data collected from 451 individuals, in 101 teams, reporting to 25 external leaders, revealed that both relative and average external leadership related positively to team empowerment. In turn, team empowerment related positively to team performance and member job satisfaction. However, while the indirect effects were all positive, we found that relative external leadership was not directly related to team performance, and average external leadership evidenced a significant negative direct influence. Additionally, relative external leadership exhibited a significant direct positive influence on member job satisfaction as anticipated, whereas average external leadership did not. These findings attest to the value in distinguishing external leaders' behaviors that are exhibited consistently versus differentially across empowered teams. Implications and future directions for the study and management of external leaders overseeing multiple teams are discussed.

  7. Leading multiple teams: average and relative external leadership influences on team empowerment and effectiveness.

    PubMed

    Luciano, Margaret M; Mathieu, John E; Ruddy, Thomas M

    2014-03-01

    External leaders continue to be an important source of influence even when teams are empowered, but it is not always clear how they do so. Extending research on structurally empowered teams, we recognize that teams' external leaders are often responsible for multiple teams. We adopt a multilevel approach to model external leader influences at both the team level and the external leader level of analysis. In doing so, we distinguish the influence of general external leader behaviors (i.e., average external leadership) from those that are directed differently toward the teams that they lead (i.e., relative external leadership). Analysis of data collected from 451 individuals, in 101 teams, reporting to 25 external leaders, revealed that both relative and average external leadership related positively to team empowerment. In turn, team empowerment related positively to team performance and member job satisfaction. However, while the indirect effects were all positive, we found that relative external leadership was not directly related to team performance, and average external leadership evidenced a significant negative direct influence. Additionally, relative external leadership exhibited a significant direct positive influence on member job satisfaction as anticipated, whereas average external leadership did not. These findings attest to the value in distinguishing external leaders' behaviors that are exhibited consistently versus differentially across empowered teams. Implications and future directions for the study and management of external leaders overseeing multiple teams are discussed. PMID:24274582

  8. Effects of time-averaging climate parameters on predicted multicompartmental fate of pesticides and POPs.

    PubMed

    Lammel, Gerhard

    2004-01-01

    With the aim to investigate the justification of time-averaging of climate parameters in multicompartment modelling the effects of various climate parameters and different modes of entry on the predicted substances' total environmental burdens and the compartmental fractions were studied. A simple, non-steady state zero-dimensional (box) mass-balance model of intercompartmental mass exchange which comprises four compartments was used for this purpose. Each two runs were performed, one temporally unresolved (time-averaged conditions) and a time-resolved (hourly or higher) control run. In many cases significant discrepancies are predicted, depending on the substance and on the parameter. We find discrepancies exceeding 10% relative to the control run and up to an order of magnitude for prediction of the total environmental burden from neglecting seasonalities of the soil and ocean temperatures and the hydroxyl radical concentration in the atmosphere and diurnalities of atmospheric mixing depth and the hydroxyl radical concentration in the atmosphere. Under some conditions it was indicated that substance sensitivity could be explained by the magnitude of the sink terms in the compartment(s) with parameters varying. In general, however, any key for understanding substance sensitivity seems not be linked in an easy manner to the properties of the substance, to the fractions of its burden or to the sink terms in either of the compartments with parameters varying. Averaging of diurnal variability was found to cause errors of total environmental residence time of different sign for different substances. The effects of time-averaging of several parameters are in general not additive but synergistic as well as compensatory effects occur. An implication of these findings is that the ranking of substances according to persistence is sensitive to time resolution on the scale of hours to months. As a conclusion it is recommended to use high temporal resolution in multi

  9. Averaging period effects on the turbulent flux and transport efficiency during haze pollution in Beijing, China

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Yang, Ting; Sun, Yele

    2015-08-01

    Based on observations at the heights of 140 and 280 m on the Beijing 325-m meteorological tower, this study presents an assessment of the averaging period effects on eddy-covariance measurements of the momentum/scalar flux and transport efficiency during wintertime haze pollution. The study period, namely from January 6 to February 28 2013, is divided into different episodes of particulate pollution, as featured by varied amounts of the turbulent exchange and conditions of the atmospheric stability. Overall, turbulent fluxes of the momentum and scalars (heat, water vapor, and CO2) increase with the averaging period, namely from 5, 15, and 30 up to 60 min, an outcome most evident during the `transient' episodes (each lasting for 2-3 days, i.e., preceded and followed by clean-air days with mean concentrations of PM1 less than 40 μg m-3). The conventional choice of 30 min is deemed to be appropriate for calculating the momentum flux and its transport efficiency. By comparison, scalar fluxes and their transport efficiencies appear more sensitive to the choice of an averaging period, particularly at the upper level (i.e., 280 m). It is presupposed that, for urban environments, calculating the momentum and scalar fluxes could invoke separate averaging periods, rather than relying on a single prescription (e.g., 30 min). Furthermore, certain characteristics of urban turbulence are found less sensitive to the choice of an averaging period, such as the relationship between the heat-to-momentum transport efficiency and the local stability parameter.

  10. Dose-effect relationships, epidemiological analysis and the derivation of low dose risk.

    PubMed

    Leenhouts, H P; Chadwick, K H

    2011-03-01

    This paper expands on our recent comments in a letter to this journal about the analysis of epidemiological studies and the determination of low dose RBE of low LET radiation (Chadwick and Leenhouts 2009 J. Radiol. Prot. 29 445-7). Using the assumption that radiation induced cancer arises from a somatic mutation (Chadwick and Leenhouts 2011 J. Radiol. Prot. 31 41-8) a model equation is derived to describe cancer induction as a function of dose. The model is described briefly, evidence is provided in support of it, and it is applied to a set of experimental animal data. The results are compared with a linear fit to the data as has often been done in epidemiological studies. The article presents arguments to support several related messages which are relevant to epidemiological analysis, the derivation of low dose risk and the weighting factor of sparsely ionising radiations. The messages are: (a) cancer incidence following acute exposure should, in principle, be fitted to a linear-quadratic curve with cell killing using all the data available; (b) the acute data are dominated by the quadratic component of dose; (c) the linear fit of any acute data will essentially be dependent on the quadratic component and will be unrelated to the effectiveness of the radiation at low doses; consequently, (d) the method used by ICRP to derive low dose risk from the atomic bomb survivor data means that it is unrelated to the effectiveness of the hard gamma radiation at low radiation doses; (e) the low dose risk value should, therefore, not be used as if it were representative for hard gamma rays to argue for an increased weighting factor for tritium and soft x-rays even though there are mechanistic reasons to expect this; (f) epidemiological studies of chronically exposed populations supported by appropriate cellular radiobiological studies have the best chance of revealing different RBE values for different sparsely ionising radiations. PMID:21346287

  11. CT effective dose per dose length product using ICRP 103 weighting factors

    SciTech Connect

    Huda, Walter; Magill, Dennise; He Wenjun

    2011-03-15

    Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

  12. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; Romeo, V. D.; Behl, C. R.

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  13. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  14. Total dose dependency and ELDRS effects on bipolar linear devices

    NASA Technical Reports Server (NTRS)

    Yui, C. C.; McClure, S. S.; Rax, B. G.; Lehman, J. M.; Minto, T. D.; Wiedeman, M.

    2002-01-01

    The use of bipolar linear devices is prevalent in most satellite and some space applications. However, degradation as a result of low dose irradiations known as ELDERS (effects of enhanced low dose rate sensitivity) is a major concern when selecting flight hardware. Many studies and reports have been conducted on this possible phenomenon as well as their responsible physical mechanisms.

  15. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  16. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  17. Effects of surface roughness on the average heat transfer of an impinging air jet

    SciTech Connect

    Beitelmal, A.H.; Saad, M.A.; Patel, C.D.

    2000-01-01

    Localized cooling by impinging flow has been used in many industrial applications such as in cooling of gas turbine blades and drying processes. Here, effect of surface roughness of a uniformly heated plate on the average heat transfer characteristics of an impinging air jet was experimentally investigated. Two aluminum plates, one with a flat surface and the second with some roughness added to the surface were fabricated. The roughness took the shape of a circular array of protrusions of 0.5mm base and 0.5mm height. A circular Kapton heater of the same diameter as the plates (70mm) supplied the necessary power. The surfaces of the plates were polished to reduce radiation heat losses and the back and sides insulated to reduce conduction heat losses. temperatures were measured over a Reynolds number ranging from 9,600 to 38,500 based on flow rate through a 6.85mm diameter nozzle. The temperature measurements were repeated for nozzle exit-to-plate spacing, z/d, ranging from 1 to 10. The average Nusselt number for both cases was plotted versus the Reynolds number and their functional correlation was determined. The results indicate an increase of up to 6.0% of the average Nusselt number due to surface roughness. This modest increase provides evidence to encourage further investigation and characterization of the surface roughness as a parameter for enhancing heat transfer.

  18. Effects of Time Averaging on Optical Scintillation in a Ground-to-Satellite Atmospheric Propagation

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Araki, Kenichi

    2000-04-01

    Temporal natures for a variance of turbulence-induced log-intensity fluctuations are obtained. The variance of the optical fluctuation is reduced when the optical signals are integrated in a photodetector, and we express the index of reduction (called the time-averaging factor) by using an autocovariance function of the optical fluctuation. The optical fluctuations for a ground-to-satellite path are caused by both atmospheric turbulence and the beam-pointing jitter error of the optical transmitter. The turbulence-induced optical scintillation can be discriminated from the fluctuation that is due to the beam-pointing jitter error. The compared result from the probability density function of the optical signal reveals good agreement. The temporal autocovariance functions of optical scintillation are obtained and used to calculate the time-averaging factor. The analytically expected effects of time averaging are verified by the experimental results. The estimations contribute to the link budget design for the optical tracking channel through atmospheric turbulence.

  19. Effects of time averaging on optical scintillation in a ground-to-satellite atmospheric propagation.

    PubMed

    Toyoshima, M; Araki, K

    2000-04-20

    Temporal natures for a variance of turbulence-induced log-intensity fluctuations are obtained. The variance of the optical fluctuation is reduced when the optical signals are integrated in a photodetector, and we express the index of reduction (called the time-averaging factor) by using an autocovariance function of the optical fluctuation. The optical fluctuations for a ground-to-satellite path are caused by both atmospheric turbulence and the beam-pointing jitter error of the optical transmitter. The turbulence-induced optical scintillation can be discriminated from the fluctuation that is due to the beam-pointing jitter error. The compared result from the probability density function of the optical signal reveals good agreement. The temporal autocovariance functions of optical scintillation are obtained and used to calculate the time-averaging factor. The analytically expected effects of time averaging are verified by the experimental results. The estimations contribute to the link budget design for the optical tracking channel through atmospheric turbulence. PMID:18345087

  20. Mental health care and average happiness: strong effect in developed nations.

    PubMed

    Touburg, Giorgio; Veenhoven, Ruut

    2015-07-01

    Mental disorder is a main cause of unhappiness in modern society and investment in mental health care is therefore likely to add to average happiness. This prediction was checked in a comparison of 143 nations around 2005. Absolute investment in mental health care was measured using the per capita number of psychiatrists and psychologists working in mental health care. Relative investment was measured using the share of mental health care in the total health budget. Average happiness in nations was measured with responses to survey questions about life-satisfaction. Average happiness appeared to be higher in countries that invest more in mental health care, both absolutely and relative to investment in somatic medicine. A data split by level of development shows that this difference exists only among developed nations. Among these nations the link between mental health care and happiness is quite strong, both in an absolute sense and compared to other known societal determinants of happiness. The correlation between happiness and share of mental health care in the total health budget is twice as strong as the correlation between happiness and size of the health budget. A causal effect is likely, but cannot be proved in this cross-sectional analysis.

  1. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    PubMed

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-10-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  2. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    PubMed Central

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  3. Radioactive Doses - Predicted and Actual - and Likely Health Effects.

    PubMed

    Nagataki, S; Takamura, N

    2016-04-01

    Five years have passed since the nuclear accident at Fukushima Daiichi Nuclear Power Stations on 11 March 2011. Here we refer to reports from international organisations as sources of predicted values obtained from environmental monitoring and dose estimation models, and reports from various institutes in Japan are used as sources of individual actual values. The World Health Organization, based on information available up to 11 September 2011 (and published in 2012), reported that characteristic effective doses in the first year after the accident, to all age groups, were estimated to be in the 10-50 mSv dose band in example locations in evacuation areas. Estimated characteristic thyroid doses to infants in Namie Town were within the 100-200 mSv dose band. A report from the United Nations Scientific Committee on the Effects of Atomic Radiation published in 2014 shows that the effective dose received by adults in evacuation areas during the first year after the accident was 1.1-13 mSv. The absorbed dose to the thyroid in evacuated settlements was 7.2-35 mSv in adults and 15-83 mSv in 1-year-old infants. Individual external radiation exposure in the initial 4 months after the accident, estimated by superimposing individual behaviour data on to a daily dose rate map, was less than 3 mSv in 93.9% of residents (maximum 15 mSv) in evacuation areas. Actual individual thyroid equivalent doses were less than 15 mSv in 98.8% of children (maximum 25 mSv) in evacuation areas. When uncertainty exists in dose estimation models, it may be sensible to err on the side of caution, and final estimated doses are often much greater than actual radiation doses. However, overestimation of the dose at the time of an accident has a great influence on the psychology of residents. More than 100 000 residents have not returned to the evacuation areas 5 years after the Fukushima accident because of the social and mental effects during the initial period of the disaster. Estimates of

  4. Radioactive Doses - Predicted and Actual - and Likely Health Effects.

    PubMed

    Nagataki, S; Takamura, N

    2016-04-01

    Five years have passed since the nuclear accident at Fukushima Daiichi Nuclear Power Stations on 11 March 2011. Here we refer to reports from international organisations as sources of predicted values obtained from environmental monitoring and dose estimation models, and reports from various institutes in Japan are used as sources of individual actual values. The World Health Organization, based on information available up to 11 September 2011 (and published in 2012), reported that characteristic effective doses in the first year after the accident, to all age groups, were estimated to be in the 10-50 mSv dose band in example locations in evacuation areas. Estimated characteristic thyroid doses to infants in Namie Town were within the 100-200 mSv dose band. A report from the United Nations Scientific Committee on the Effects of Atomic Radiation published in 2014 shows that the effective dose received by adults in evacuation areas during the first year after the accident was 1.1-13 mSv. The absorbed dose to the thyroid in evacuated settlements was 7.2-35 mSv in adults and 15-83 mSv in 1-year-old infants. Individual external radiation exposure in the initial 4 months after the accident, estimated by superimposing individual behaviour data on to a daily dose rate map, was less than 3 mSv in 93.9% of residents (maximum 15 mSv) in evacuation areas. Actual individual thyroid equivalent doses were less than 15 mSv in 98.8% of children (maximum 25 mSv) in evacuation areas. When uncertainty exists in dose estimation models, it may be sensible to err on the side of caution, and final estimated doses are often much greater than actual radiation doses. However, overestimation of the dose at the time of an accident has a great influence on the psychology of residents. More than 100 000 residents have not returned to the evacuation areas 5 years after the Fukushima accident because of the social and mental effects during the initial period of the disaster. Estimates of

  5. Time-averages for Plane Travelling Waves—The Effect of Attenuation: I, Adiabatic Approach

    NASA Astrophysics Data System (ADS)

    Makarov, S. N.

    1993-05-01

    The analysis of the effect of attenuation on the time-averages for a plane travelling wave is presented. The barotropic equation of state is considered: i.e., acoustic heating is assumed to be negligible. The problem statement consists of calculating means in a finite region bounded by a transducer surface as well as by a perfectly absorbing surface, respectively. Although the simple wave approximation cannot be used throughout the field it is still valid near the perfect absorber. The result for radiation pressure is different from the conclusions given previously by Beyer and Livett, Emery and Leeman.

  6. The effect of three-dimensional fields on bounce averaged particle drifts in a tokamak

    SciTech Connect

    Hegna, C. C.

    2015-07-15

    The impact of applied 3D magnetic fields on the bounce-averaged precessional drifts in a tokamak plasma are calculated. Local 3D MHD equilibrium theory is used to construct solutions to the equilibrium equations in the vicinity of a magnetic surface for a large aspect ratio circular tokamak perturbed by applied 3D fields. Due to modulations of the local shear caused by near-resonant Pfirsch-Schlüter currents, relatively weak applied 3D fields can have a large effect on trapped particle precessional drifts.

  7. SU-E-J-89: Motion Effects On Organ Dose in Respiratory Gated Stereotactic Body Radiation Therapy

    SciTech Connect

    Wang, T; Zhu, L; Khan, M; Landry, J; Rajpara, R; Hawk, N

    2014-06-01

    Purpose: Existing reports on gated radiation therapy focus mainly on optimizing dose delivery to the target structure. This work investigates the motion effects on radiation dose delivered to organs at risk (OAR) in respiratory gated stereotactic body radiation therapy (SBRT). A new algorithmic tool of dose analysis is developed to evaluate the optimality of gating phase for dose sparing on OARs while ensuring adequate target coverage. Methods: Eight patients with pancreatic cancer were treated on a phase I prospective study employing 4DCT-based SBRT. For each patient, 4DCT scans are acquired and sorted into 10 respiratory phases (inhale-exhale- inhale). Treatment planning is performed on the average CT image. The average CT is spatially registered to other phases. The resultant displacement field is then applied on the plan dose map to estimate the actual dose map for each phase. Dose values of each voxel are fitted to a sinusoidal function. Fitting parameters of dose variation, mean delivered dose and optimal gating phase for each voxel over respiration cycle are mapped on the dose volume. Results: The sinusoidal function accurately models the dose change during respiratory motion (mean fitting error 4.6%). In the eight patients, mean dose variation is 3.3 Gy on OARs with maximum of 13.7 Gy. Two patients have about 100cm{sup 3} volumes covered by more than 5 Gy deviation. The mean delivered dose maps are similar to plan dose with slight deformation. The optimal gating phase highly varies across the patient, with phase 5 or 6 on about 60% of the volume, and phase 0 on most of the rest. Conclusion: A new algorithmic tool is developed to conveniently quantify dose deviation on OARs from plan dose during the respiratory cycle. The proposed software facilitates the treatment planning process by providing the optimal respiratory gating phase for dose sparing on each OAR.

  8. The Population Effective Dose of Medical Computed Tomography Examinations in Taiwan for 2013

    PubMed Central

    Yeh, Da-Ming; Tsai, Hui-Yu; Tyan, Yen-Sheng; Chang, Yu-Cheng; Pan, Lung-Kwang

    2016-01-01

    Purpose To evaluate the annual effective dose per capita attributed to computed tomography (CT) examinations in 2013 and to predict the population effective dose from 2000 to 2013 in Taiwan. Methods A CT examination database collected from 30 hospitals was divided into 22 procedures and classified into six regions: head, neck, chest, abdomen, pelvis, and other, respectively. The effective doses in different regions were evaluated by dose-length product (DLP) multiplied by conversion factors. Results The CT scan dose parameters were collected from 4,407 patients. For the six scanned regions, the percentages of patients scanned were: head (39.8%), neck (3.9%), chest (23.3%), abdomen (26.7%), pelvis (4.8%), and other (1.6%), respectively. The DLPs per patient (mGy·cm/patient) were head (1,071±225), neck (1,103±615), chest (724±509), abdomen (1,315±550), pelvis (1,231±620) and other (1,407±937), respectively. The number of CT examinations increased rapidly, with an average annual growth rate of 7.6%. The number of CT examinations in 2013 was 2.6 times that in 2000. The population effective dose was 0.30 mSv per capita in 2000 and increased to 0.74 mSv per capita in 2013, with an annual growth rate of 7.2%. The growth trend indicates that the effective dose will continue to rise in Taiwan. Conclusion Some strategies should be applied to cope with this growth. Defining the CT dose reference level stipulated in official recommendations and encouraging the use of iterative reconstruction imaging instead of filtered back-projection imaging could be a useful method for optimizing the effective dose and image quality. PMID:27788231

  9. Correlation between effective dose and radiological risk: general concepts.

    PubMed

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza

    2016-01-01

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose mgnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation.

  10. Correlation between effective dose and radiological risk: general concepts*

    PubMed Central

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza

    2016-01-01

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose mgnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. PMID:27403018

  11. [Effect of inherent optical parameters on average penetration depth of photon flux and the integral average cosine of underwater light field in lake Taihu during summer].

    PubMed

    Zhao, Qiao-Hua; Zhang, Yun-Lin

    2010-10-01

    Based on the inherent optical parameters of the water and water quality data in lake Taihu from 2006-07-29 to 2006-08-01, the effect of scattering on the penetration path along the original direction of the flux and the Integral average cosine of underwater light field were study by the radiative transfer theory, and the possible mechanism was analyzed. There were increasing trend from northwest to southeast of them. There were a nonlinear relation between them and concentration of Chl-a, suspended matter, inorganism matter, organism matter. The relation was described by logarithmic function. The study was helpful for bio-optical model and the environmental effects of photosynthetic active radiation in waters.

  12. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    PubMed

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-04-14

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  13. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    PubMed Central

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  14. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  15. Radon level and radon effective dose rate determination using SSNTDs in Sannur cave, Eastern desert of Egypt.

    PubMed

    Amin, Rafat M; Eissa, M F

    2008-08-01

    For the assessment of inhalation doses due to radon and its progeny to cavern workers and visitors, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) is the best suited for this purpose in wadi Sannur cave, Beni Suef, Egypt. The average radon concentration measurements for the cave are 836 +/- 150 Bq m(-3) by CR-39 detectors and for equilibrium factor an overall average of all measured values was used 0.687. The effective dose for cave workers is 3.65 mSv/year while for visitors is 23 muSv/year. Comparing these values to the Ionizing Radiation Regulations (IRR) values which indicate that the estimated effective doses for workers and visitors in this cave are less than the average overall radon dose.

  16. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  17. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  18. Marijuana's dose-dependent effects in daily marijuana smokers.

    PubMed

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D

    2013-08-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose-response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ⁹-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana "strength," "high," "liking," "good effect," and "take again" were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana's cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose.

  19. Marijuana's dose-dependent effects in daily marijuana smokers.

    PubMed

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D

    2013-08-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose-response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ⁹-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana "strength," "high," "liking," "good effect," and "take again" were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana's cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose. PMID:23937597

  20. Effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1978-01-01

    Four separable effects of atmospheric turbulence on average refraction angles in occultation experiments are derived from a simplified analysis, and related to more general formulations by B. S. Haugstad. The major contributors are shown to be due to gradients in height of the strength of the turbulence, and the sense of the resulting changes in refraction angles is explained in terms of Fermat's principle. Because the results of analyses of such gradient effects by W. B. Hubbard and J. R. Jokipii are expressed in other ways, a special effort is made to compare all of the predictions on a common basis. We conclude that there are fundamental differences, and use arguments based on energy conservation and Fermat's principle to help characterize the discrepancies.

  1. Effect of Body Habitus on Radiation Dose During CT Fluoroscopy-Guided Spine Injections.

    PubMed

    Viola, Ronald J; Nguyen, Giao B; Yoshizumi, Terry T; Stinnett, Sandra S; Hoang, Jenny K; Kranz, Peter G

    2014-10-31

    This study investigated the degree to which body habitus influences radiation dose during CT fluoroscopy (CTF)-guided lumbar epidural steroid injections (ESI). An anthropomorphic phantom containing metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned at two transverse levels to simulate upper and lower lumbar CTF-guided ESI. Circumferential layers of adipose-equivalent material were sequentially added to model patients of three sizes: small (cross-sectional dimensions 25×30 cm), average (34×39 cm), and oversize (43×48 cm). Point dose rates to skin and internal organs within the CTF beam were measured. Scattered point dose rates 5 cm from the radiation beam were also measured. Direct point dose rates to the internal organs ranged from 0.05-0.11 mGy/10mAs in the oversized phantom, and from 0.18-0.43 mGy/10mAs in the small phantom. Skin direct point dose rates ranged from 0.69-0.71 mGy/10mAs in the oversized phantom and 0.88-0.94 mGy/10mAs in the small phantom. This represents a 180-310% increase in organ point dose rates and 24-36% increase in skin point dose rates in the small habitus compared with the oversize habitus. Scatter point dose rates increased by 83-117% for the small compared to the oversize phantom. Decreasing body habitus results in substantial increases in direct organ and skin point doses as well as scattered dose during simulated CTF-guided procedures. Failure to account for individual variations in body habitus will result in inaccurate dose estimation and inappropriate choice of tube current in CTF-guided procedures.

  2. Effect of Body Habitus on Radiation Dose During CT Fluoroscopy-Guided Spine Injections.

    PubMed

    Viola, Ronald J; Nguyen, Giao B; Yoshizumi, Terry T; Stinnett, Sandra S; Hoang, Jenny K; Kranz, Peter G

    2014-10-31

    This study investigated the degree to which body habitus influences radiation dose during CT fluoroscopy (CTF)-guided lumbar epidural steroid injections (ESI). An anthropomorphic phantom containing metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned at two transverse levels to simulate upper and lower lumbar CTF-guided ESI. Circumferential layers of adipose-equivalent material were sequentially added to model patients of three sizes: small (cross-sectional dimensions 25×30 cm), average (34×39 cm), and oversize (43×48 cm). Point dose rates to skin and internal organs within the CTF beam were measured. Scattered point dose rates 5 cm from the radiation beam were also measured. Direct point dose rates to the internal organs ranged from 0.05-0.11 mGy/10mAs in the oversized phantom, and from 0.18-0.43 mGy/10mAs in the small phantom. Skin direct point dose rates ranged from 0.69-0.71 mGy/10mAs in the oversized phantom and 0.88-0.94 mGy/10mAs in the small phantom. This represents a 180-310% increase in organ point dose rates and 24-36% increase in skin point dose rates in the small habitus compared with the oversize habitus. Scatter point dose rates increased by 83-117% for the small compared to the oversize phantom. Decreasing body habitus results in substantial increases in direct organ and skin point doses as well as scattered dose during simulated CTF-guided procedures. Failure to account for individual variations in body habitus will result in inaccurate dose estimation and inappropriate choice of tube current in CTF-guided procedures. PMID:25363254

  3. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect

    PubMed Central

    Lee, Anthony J.; Mitchem, Dorian G.; Wright, Margaret J.; Martin, Nicholas G.; Keller, Matthew C.; Zietsch, Brendan P.

    2015-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample (N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the ‘genetic benefits’ account of facial averageness, but cast doubt on others. PMID:26858521

  4. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms

    PubMed Central

    Theodorakou, C; Walker, A; Horner, K; Pauwels, R; Bogaerts, R; Jacobs Dds, R

    2012-01-01

    Objectives Cone beam CT (CBCT) is an emerging X-ray technology applied in dentomaxillofacial imaging. Previous published studies have estimated the effective dose and radiation risks using adult anthropomorphic phantoms for a wide range of CBCT units and imaging protocols. Methods Measurements were made five dental CBCT units for a range of imaging protocols, using 10-year-old and adolescent phantoms and thermoluminescent dosimeters. The purpose of the study was to estimate paediatric organ and effective doses from dental CBCT. Results The average effective doses to the 10-year-old and adolescent phantoms were 116 μSv and 79 μSv, respectively, which are similar to adult doses. The salivary glands received the highest organ dose and there was a fourfold increase in the thyroid dose of the 10-year-old relative to that of the adolescent because of its smaller size. The remainder tissues and salivary and thyroid glands contributed most significantly to the effective dose for a 10-year-old, whereas for an adolescent the remainder tissues and the salivary glands contributed the most significantly. It was found that the percentage attributable lifetime mortality risks were 0.002% and 0.001% for a 10-year-old and an adolescent patient, respectively, which are considerably higher than the risk to an adult having received the same doses. Conclusion It is therefore imperative that dental CBCT examinations on children should be fully justified over conventional X-ray imaging and that dose optimisation by field of view collimation is particularly important in young children. PMID:22308220

  5. Parotid Glands Dose-Effect Relationships Based on Their Actually Delivered Doses: Implications for Adaptive Re-Planning in Radiotherapy of Head and Neck Cancer

    PubMed Central

    Hunter, Klaudia U.; Fernandes, Laura; Vineberg, Karen A.; McShan, Daniel; Antonuk, Alan E.; Cornwall, Craig; Feng, Mary; Schipper, Mathew; Balter, James; Eisbruch, Avraham

    2013-01-01

    Purpose Doses actually delivered to the parotid glands during radiotherapy often exceed planned doses. We hypothesized that the delivered doses correlate better with parotid salivary output than the planned doses, used in all previous studies, and that determining these correlations will help decisions regarding adaptive re-planning (ART) aimed at reducing the delivered doses. Methods and Materials Prospective study: oropharyngeal cancer patients treated definitively with chemo-irradiation underwent daily cone beam CT (CBCT) with clinical set-up alignment based on C2 posterior edge. Parotid glands in the CBCTs were aligned by deformable registration to calculate cumulative delivered doses. Stimulated salivary flow rates were measured separately from each parotid gland pretherapy and periodically posttherapy. Results 36 parotid glands of 18 patients were analyzed. Average mean planned doses was 32 Gy and differences from planned to delivered mean gland doses were −4.9 to +8.4 Gy, median difference +2.2 Gy in glands whose delivered doses increased relative to planned. Both planned and delivered mean doses were significantly correlated with post-treatment salivary outputs at almost all post-therapy time points, without statistically significant differences in the correlations. Large dispersions [on average, standard deviation (SD) 3.6 Gy] characterized the dose/effect relationships for both. The differences between the cumulative delivered doses and planned doses were evident already at first fraction (r=0.92, p<0.0001) due to complex set-up deviations, e.g. rotations and neck articulations, uncorrected by the translational clinical alignments. Conclusions After daily translational set-up corrections, differences between planned and delivered doses in most glands were small relative to the SDs of the dose/saliva data, suggesting that ART is not likely to gain measurable salivary output improvement in most cases. These differences were observed already at first

  6. Microsieving in primary treatment: effect of chemical dosing.

    PubMed

    Väänänen, J; Cimbritz, M; la Cour Jansen, J

    2016-01-01

    Primary and chemically enhanced primary wastewater treatment with microsieving (disc or drum filtration) was studied at the large pilot scale at seven municipal wastewater treatment plants in Europe. Without chemical dosing, the reduction of suspended solids (SS) was (on average) 50% (20-65%). By introducing chemically enhanced primary treatment and dosing with cationic polymer only, SS removal could be controlled and increased to >80%. A maximum SS removal of >90% was achieved with a chemical dosing of >0.007 mg polymer/mg influent SS and 20 mg Al(3+)/L or 30 mg Fe(3+)/L. When comparing sieve pore sizes of 30-40 μm with 100 μm, the effluent SS was comparable, indicating that the larger sieve pore size could be used due to the higher loading capacity for the solids. Phosphorus removal was adjusted with the coagulant dose, and a removal of 95-97% was achieved. Moreover, microsieving offers favourable conditions for automated dosing control due to the low retention time in the filter. PMID:27438249

  7. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction

    PubMed Central

    Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-01-01

    Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322

  8. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  9. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices.

    PubMed

    Dhesi, G S; Ausloos, M

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N×N matrices to order 1/N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression. PMID:27415216

  10. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  11. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dhesi, G. S.; Ausloos, M.

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

  12. Averaging to minimize or eliminate regression toward the mean to measure pure experimental effects.

    PubMed

    Toh, Rex S; Hu, Michael Y

    2008-06-01

    This paper explains how regression toward the mean can contaminate diary data, making it difficult to measure the pure effects of an experimental variable over time. Using a large scale real-life database collected by AT&T, a method of measuring this mathematical artifact is advanced. It is shown to manifest very quickly as a result of a spontaneous reaction toward happenstance, with the most extreme initial values gravitating most toward the mean. Then averaging over longer and longer periods of time to define use categories is shown to dilute happenstance increasingly, and therefore progressively minimizes or eliminates regression toward the mean. Finally, regression toward the mean is very pervasive and very persistent.

  13. On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect.

    PubMed

    Volokin, Den; ReLlez, Lark

    2014-01-01

    The presence of atmosphere can appreciably warm a planet's surface above the temperature of an airless environment. Known as a natural Greenhouse Effect (GE), this near-surface Atmospheric Thermal Enhancement (ATE) as named herein is presently entirely attributed to the absorption of up-welling long-wave radiation by greenhouse gases. Often quoted as 33 K for Earth, GE is estimated as a difference between planet's observed mean surface temperature and an effective radiating temperature calculated from the globally averaged absorbed solar flux using the Stefan-Boltzmann (SB) radiation law. This approach equates a planet's average temperature in the absence of greenhouse gases or atmosphere to an effective emission temperature assuming ATE ≡ GE. The SB law is also routinely employed to estimating the mean temperatures of airless bodies. We demonstrate that this formula as applied to spherical objects is mathematically incorrect owing to Hölder's inequality between integrals and leads to biased results such as a significant underestimation of Earth's ATE. We derive a new expression for the mean physical temperature of airless bodies based on an analytic integration of the SB law over a sphere that accounts for effects of regolith heat storage and cosmic background radiation on nighttime temperatures. Upon verifying our model against Moon surface temperature data provided by the NASA Diviner Lunar Radiometer Experiment, we propose it as a new analytic standard for evaluating the thermal environment of airless bodies. Physical evidence is presented that Earth's ATE should be assessed against the temperature of an equivalent airless body such as the Moon rather than a hypothetical atmosphere devoid of greenhouse gases. Employing the new temperature formula we show that Earth's total ATE is ~90 K, not 33 K, and that ATE = GE + TE, where GE is the thermal effect of greenhouse gases, while TE > 15 K is a thermodynamic enhancement independent of the

  14. On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect.

    PubMed

    Volokin, Den; ReLlez, Lark

    2014-01-01

    The presence of atmosphere can appreciably warm a planet's surface above the temperature of an airless environment. Known as a natural Greenhouse Effect (GE), this near-surface Atmospheric Thermal Enhancement (ATE) as named herein is presently entirely attributed to the absorption of up-welling long-wave radiation by greenhouse gases. Often quoted as 33 K for Earth, GE is estimated as a difference between planet's observed mean surface temperature and an effective radiating temperature calculated from the globally averaged absorbed solar flux using the Stefan-Boltzmann (SB) radiation law. This approach equates a planet's average temperature in the absence of greenhouse gases or atmosphere to an effective emission temperature assuming ATE ≡ GE. The SB law is also routinely employed to estimating the mean temperatures of airless bodies. We demonstrate that this formula as applied to spherical objects is mathematically incorrect owing to Hölder's inequality between integrals and leads to biased results such as a significant underestimation of Earth's ATE. We derive a new expression for the mean physical temperature of airless bodies based on an analytic integration of the SB law over a sphere that accounts for effects of regolith heat storage and cosmic background radiation on nighttime temperatures. Upon verifying our model against Moon surface temperature data provided by the NASA Diviner Lunar Radiometer Experiment, we propose it as a new analytic standard for evaluating the thermal environment of airless bodies. Physical evidence is presented that Earth's ATE should be assessed against the temperature of an equivalent airless body such as the Moon rather than a hypothetical atmosphere devoid of greenhouse gases. Employing the new temperature formula we show that Earth's total ATE is ~90 K, not 33 K, and that ATE = GE + TE, where GE is the thermal effect of greenhouse gases, while TE > 15 K is a thermodynamic enhancement independent of the

  15. Effect of low dose rate radiation on cell growth kinetics.

    PubMed Central

    Gregg, E C; Yau, T M; Kim, S C

    1979-01-01

    Experimental determinations were made of cell number as a function of time for two strains of L5178Y mammalian cells maintained continuously in various environments of radiation. One strain possessed a shoulder in its dose response curve whereas the other did not. Neither strain showed any significant difference in growth rate for interdivision doses on the order of the median lethal dose or less delivered continuously at a low dose rate or pulsed every 4 h at a high instantaneous dose rate. It was also shown that large numbers of dead cells have little effect on growth rate and that these dead cells last as discrete entities for many days. A simple theory of growth rate in the presence of radiation is presented, and the agreement with the observations implies that there is no effect of any sublethal low dose rate radiation received in one generation on the growth rate or radiation sensitivity of the succeeding generation. Further analysis of the data also showed that for the no-shoulder cells at 37 degrees C, tritiated water had a relative biological effect close to unity for cell sterilization. PMID:262446

  16. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units

    PubMed Central

    Timothy, R; Walker, C; Hunter, R; Benavides, E; Samuelson, D B; Scheske, M J

    2015-01-01

    Objectives: This article analyses dose measurement and effective dose estimation of dental CBCT examinations. Challenges to accurate calculation of dose are discussed and the use of dose–height product (DHP) as an alternative to dose–area product (DAP) is explored. Methods: The English literature on effective dose was reviewed. Data from these studies together with additional data for nine CBCT units were analysed. Descriptive statistics, ANOVA and paired analysis are used to characterize the data. Results: PubMed and EMBASE searches yielded 519 and 743 publications, respectively, which were reduced to 20 following review. Reported adult effective doses for any protocol ranged from 46 to 1073 µSv for large fields of view (FOVs), 9–560 µSv for medium FOVs and 5–652 µSv for small FOVs. Child effective doses from any protocol ranged from 13 to 769 µSv for large or medium FOVs and 7–521 µSv for small FOVs. Effective doses from standard or default exposure protocols were available for 167 adult and 52 child exposures. Mean adult effective doses grouped by FOV size were 212 µSv (large), 177 µSv (medium) and 84 µSv (small). Mean child doses were 175 µSv (combined large and medium) and 103 µSv (small). Large differences were seen between different CBCT units. Additional low-dose and high-definition protocols available for many units extend the range of doses. DHP was found to reduce average absolute error for calculation of dose by 45% in comparison with DAP. Conclusions: Large exposure ranges make CBCT doses difficult to generalize. Use of DHP as a metric for estimating effective dose warrants further investigation. PMID:25224586

  17. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-08

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  18. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  19. Conditional averaging of the Cloud Radiative Effect as a higher order test of GCM radiation budgets

    NASA Astrophysics Data System (ADS)

    Oreopoulos, L.

    2010-12-01

    Global Climate Models (GCMs) are quite capable in producing temporally and spatially averaged radiative fluxes that are close to observed values. Closer examination however of clear-sky fluxes and Cloud Radiative Effects (CREs) reveal that the agreement is often the result of numerous error cancellations in the spatiotemporal and spectral domains. One manifestation of this phenomenon is canceling CRE errors among different cloud types. Recent approaches of cloud retrieval analysis from satellites allow us to determine the contribution to the total CRE of various cloud types, information that can be used as a diagnostic of the quality of cloud-radiation simulations in GCMs. In this presentation we apply such conditional averaging to CREs and cloud types provided by the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D1 gridded cloud product contains the joint distribution of cloud top pressure and cloud optical depth at 280 km grid cells observed daily every 3-hours. The patterns of these joint distributions can be used to identify, via cluster analysis, distinct states of the atmosphere at the mesoscale, which ISCCP terms "weather states". The spatiotemporal distribution of distinct weather states is now available as a separate ISCCP D1 product for various geographical zones. We identify the relative contribution to the total CRE (shortwave, longwave, and net; both top of the atmosphere and surface) of these weather states separately for the extended low latitudes, northern midlatitudes and southern midlatitudes for the period 1984-2007 by conditionally averaging the CREs of the ISCCP FD data set according to weather state. Results from such a CRE breakdown that can be used as higher order GCM diagnostics include: (a) The seasonal cycle of CRE of the various weather states and the relationship between their relative strength and their frequency of occurrence; b) the identification of the most dominant weather states in terms of their relative

  20. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  1. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.

  2. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    PubMed

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  3. The Assessment of Effective Dose Equivalent Using Personnel Dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Xie

    From January 1994, U.S. nuclear plants must develop a technically rigorous approach for determining the effective dose equivalent for their work forces. This dissertation explains concepts associated with effective dose equivalent and describes how to assess effective dose equivalent by using conventional personnel dosimetry measurements. A Monte Carlo computer code, MCNP, was used to calculate photon transport through a model of the human body. Published mathematical phantoms of the human adult male and female were used to simulate irradiation from a variety of external radiation sources in order to calculate organ and tissue doses, as well as effective dose equivalent using weighting factors from ICRP Publication 26. The radiation sources considered were broad parallel photon beams incident on the body from 91 different angles and isotropic point sources located at 234 different locations in contact with or near the body. Monoenergetic photons of 0.08, 0.3, and 1.0 MeV were considered for both sources. Personnel dosimeters were simulated on the surface of the body and exposed to with the same sources. From these data, the influence of dosimeter position on dosimeter response was investigated. Different algorithms for assessing effective dose equivalent from personnel dosimeter responses were proposed and evaluated. The results indicate that the current single-badge approach is satisfactory for most common exposure situations encountered in nuclear plants, but additional conversion factors may be used when more accurate results become desirable. For uncommon exposures involving source situated at the back of the body or source located overhead, the current approach of using multi-badges and assigning the highest dose is overly conservative and unnecessarily expensive. For these uncommon exposures, a new algorithm, based on two dosimeters, one on the front of the body and another one on the back of the body, has been shown to yield conservative assessment of

  4. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    PubMed

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  5. Endothelial Effect of Statin Therapy at a High Dose Versus Low Dose Associated with Ezetimibe

    PubMed Central

    Garcia, Maristela Magnavita Oliveira; Varela, Carolina Garcez; Silva, Patricia Fontes; Lima, Paulo Roberto Passos; Góes, Paulo Meira; Rodrigues, Marilia Galeffi; Silva, Maria de Lourdes Lima Souza e; Ladeia, Ana Marice Teixeira; Guimarães, Armênio Costa; Correia, Luis Claudio Lemos

    2016-01-01

    Background The effect of statins on the endothelial function in humans remains under discussion. Particularly, it is still unclear if the improvement in endothelial function is due to a reduction in LDL-cholesterol or to an arterial pleiotropic effect. Objective To test the hypothesis that modulation of the endothelial function promoted by statins is primarily mediated by the degree of reduction in LDL-cholesterol, independent of the dose of statin administered. Methods Randomized clinical trial with two groups of lipid-lowering treatment (16 patients/each) and one placebo group (14 patients). The two active groups were designed to promote a similar degree of reduction in LDL-cholesterol: the first used statin at a high dose (80 mg, simvastatin 80 group) and the second used statin at a low dose (10 mg) associated with ezetimibe (10 mg, simvastatin 10/ezetimibe group) to optimize the hypolipidemic effect. The endothelial function was assessed by flow-mediated vasodilation (FMV) before and 8 weeks after treatment. Results The decrease in LDL-cholesterol was similar between the groups simvastatin 80 and simvastatin 10/ezetimibe (27% ± 31% and 30% ± 29%, respectively, p = 0.75). The simvastatin 80 group presented an increase in FMV from 8.4% ± 4.3% at baseline to 11% ± 4.2% after 8 weeks (p = 0.02). Similarly, the group simvastatin 10/ezetimibe showed improvement in FMV from 7.3% ± 3.9% to 12% ± 4.4% (p = 0.001). The placebo group showed no variation in LDL-cholesterol level or endothelial function. Conclusion The improvement in endothelial function with statin seems to depend more on a reduction in LDL-cholesterol levels, independent of the dose of statin administered, than on pleiotropic mechanisms. PMID:27142792

  6. Soil biochar amendments: type and dose effects

    NASA Astrophysics Data System (ADS)

    Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.

    2012-04-01

    Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar

  7. The dose delivery effect of the different Beam ON interval in FFF SBRT: TrueBEAM

    NASA Astrophysics Data System (ADS)

    Tawonwong, T.; Suriyapee, S.; Oonsiri, S.; Sanghangthum, T.; Oonsiri, P.

    2016-03-01

    The purpose of this study is to determine the dose delivery effect of the different Beam ON interval in Flattening Filter Free Stereotactic Body Radiation Therapy (FFF-SBRT). The three 10MV-FFF SBRT plans (2 half rotating Rapid Arc, 9 to10 Gray/Fraction) were selected and irradiated in three different intervals (100%, 50% and 25%) using the RPM gating system. The plan verification was performed by the ArcCHECK for gamma analysis and the ionization chamber for point dose measurement. The dose delivery time of each interval were observed. For gamma analysis (2%&2mm criteria), the average percent pass of all plans for 100%, 50% and 25% intervals were 86.1±3.3%, 86.0±3.0% and 86.1±3.3%, respectively. For point dose measurement, the average ratios of each interval to the treatment planning were 1.012±0.015, 1.011±0.014 and 1.011±0.013 for 100%, 50% and 25% interval, respectively. The average dose delivery time was increasing from 74.3±5.0 second for 100% interval to 154.3±12.6 and 347.9±20.3 second for 50% and 25% interval, respectively. The same quality of the dose delivery from different Beam ON intervals in FFF-SBRT by TrueBEAM was illustrated. While the 100% interval represents the breath-hold treatment technique, the differences for the free-breathing using RPM gating system can be treated confidently.

  8. Extracurricular Activities and Their Effect on the Student's Grade Point Average: Statistical Study

    ERIC Educational Resources Information Center

    Bakoban, R. A.; Aljarallah, S. A.

    2015-01-01

    Extracurricular activities (ECA) are part of students' everyday life; they play important roles in students' lives. Few studies have addressed the question of how student engagements to ECA affect student's grade point average (GPA). This research was conducted to know whether the students' grade point average in King Abdulaziz University,…

  9. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    SciTech Connect

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Barendsen, Gerrit W.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different

  10. Extrapyramidal side effects with low doses of amisulpride.

    PubMed

    Mandal, Nikhiles; Singh, Om P; Sen, Subrata

    2014-04-01

    Amisulpride, the newly introduced antipsychotic in India, is claimed to be effective in both positive and negative symptom schizophrenia and related disorders, though it has little or no action on serotonergic receptors. Limbic selectivity and lower striatal dopaminergic receptor binding capacity causes very low incidence of EPS. But, in clinical practice, we are getting EPS with this drug even at lower doses. We have reported three cases of akathisia, acute dystonia, and drug-induced Parkinsonism with low doses of amisulpride. So, we should keep this side effect in mind when using amisulpride. In fact, more studies are required in our country to find out the incidence of EPS and other associated mechanism.

  11. The effects of open throat technique on long term average spectra (LTAS) of female classical voices.

    PubMed

    Mitchell, Helen F; Kenny, Dianna T

    2004-01-01

    In the third of a series of studies on open throat technique, we compared long term average spectra (LTAS) of six advanced singing students under three conditions: 'optimal' (O), representing maximal open throat, 'sub-optimal' (SO), using reduced open throat, and loud sub-optimal (LSO) to control for the effect of loudness. Using a series of univariate repeated measures ANOVAs with planned orthogonal contrasts, we tested the hypotheses that sound pressure level (SPL) and the ratio of spectral energy in peaks and areas between 0-2 kHz and 2-4 kHz would be reduced in SO and LSO compared to O. There were significant differences between SO and LSO but hypotheses were not confirmed for O. These findings do not accord with differences in vibrato extent and onset between O and SO/LSO (Mitchell and Kenny, in press). These results suggest that while LTAS provides information on energy distribution, measuring spectral energy areas appears to be the most sensitive measure of energy distribution between conditions. Plotting the differences between O and SO/LSO pairs of LTAS clearly indicates the areas of spectral change. The findings from this study also indicate that LTAS are not sufficiently sensitive to measure vocal timbre as they were not consistent with perceptual or other acoustic studies of the same samples. PMID:15370642

  12. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    SciTech Connect

    Whicker, Jeffrey J; Mcnaughton, Michael W

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in contrast to the 0.1 mSv yr-! air

  13. Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2006-01-01

    Annual effective dose equivalent due to natural gamma radiation from (238)U, (232)Th and (40)K have been evaluated from granites in Turkey. Forty samples were taken for spectrometric analysis. Specific concentrations of (238)U, (232)Th and (40)K in granite samples were determined. Spectroscopy system was used with 1.8 keV (FWHM) coaxial high purity germanium (HPGe) detector. Average values of concentrations of (238)U, (232)Th and (40)K were detected at 15.85, 33.76 and 359 Bq kg(-1), respectively. The average value of radon varies from 0.073 to 0.185 Bq m(-2) h(-1) exhalation depends on the specific concentration of uranium. The dose rate due to this highest activity which have been evaluated by a Monte Carlo transport calculations does not exceed 0.4 mSv a(-1).

  14. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality

    PubMed Central

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-01-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure

  15. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased

  16. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  17. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.

    PubMed

    Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew

    2015-09-01

    Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661-671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797-2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100-150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.

  18. Accounting for Uncertainty in Confounder and Effect Modifier Selection when Estimating Average Causal Effects in Generalized Linear Models

    PubMed Central

    Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew

    2015-01-01

    Summary Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012) and Lefebvre et al. (2014), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to non-collapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100 to 150 observations and 50 covariates. The method is applied to data on 15060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within thirty days of diagnosis. PMID:25899155

  19. Effects of Prostate-Rectum Separation on Rectal Dose From External Beam Radiotherapy

    SciTech Connect

    Susil, Robert C.; McNutt, Todd R.; DeWeese, Theodore L.; Song, Danny

    2010-03-15

    Purpose: In radiotherapy for prostate cancer, the rectum is the major dose-limiting structure. Physically separating the rectum from the prostate (e.g., by injecting a spacer) can reduce the rectal radiation dose. Despite pilot clinical studies, no careful analysis has been done of the risks, benefits, and dosimetric effects of this practice. Methods and Materials: Using cadaveric specimens, 20 mL of a hydrogel was injected between the prostate and rectum using a transperineal approach. Imaging was performed before and after spacer placement, and the cadavers were subsequently dissected. Ten intensity-modulated radiotherapy plans were generated (five before and five after separation), allowing for characterization of the rectal dose reduction. To quantify the amount of prostate-rectum separation needed for effective rectal dose reduction, simulations were performed using nine clinically generated intensity-modulated radiotherapy plans. Results: In the cadaveric studies, an average of 12.5 mm of prostate-rectum separation was generated with the 20-mL hydrogel injections (the seminal vesicles were also separated from the rectum). The average rectal volume receiving 70 Gy decreased from 19.9% to 4.5% (p < .05). In the simulation studies, a prostate-rectum separation of 10 mm was sufficient to reduce the mean rectal volume receiving 70 Gy by 83.1% (p <.05). No additional reduction in the average rectal volume receiving 70 Gy was noted after 15 mm of separation. In addition, spacer placement allowed for increased planning target volume margins without exceeding the rectal dose tolerance. Conclusion: Prostate-rectum spacers can allow for reduced rectal toxicity rates, treatment intensification, and/or reduced dependence on complex planning and treatment delivery techniques.

  20. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  1. Effective biological dose from occupational exposure during nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Demou, Evangelia; Tran, Lang; Housiadas, Christos

    2009-02-01

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08#/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  2. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    SciTech Connect

    Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel; Moreno-Jiménez, Sergio; García-Garduño, Olivia Amanda; Celis, Miguel Angel

    2013-07-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.

  3. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    PubMed

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  4. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons.

    PubMed

    Veinot, K G; Eckerman, K F; Hertel, N E

    2016-02-01

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater. PMID:25935016

  5. Effective doses from cone beam CT investigation of the jaws

    PubMed Central

    Davies, J; Johnson, B; Drage, NA

    2012-01-01

    Objectives The purpose of the study was to calculate the effective dose delivered to the patient undergoing cone beam (CB) CT of the jaws and maxillofacial complex using the i-CAT Next Generation CBCT scanner (Imaging Sciences International, Hatfield, PA). Methods A RANDO® phantom (The Phantom Laboratory, Salem, NY) containing thermoluminence dosemeters were scanned 10 times for each of the 6 imaging protocols. Effective doses for each protocol were calculated using the 1990 and approved 2007 International Commission on Radiological Protection (ICRP) recommended tissue weighting factors (E1990, E2007). Results The effective dose for E1990 and E2007, respectively, were: full field of view (FOV) of the head, 47 μSv and 78 μSv; 13 cm scan of the jaws, 44 μSv and 77 μSv; 6 cm standard mandible, 35 μSv and 58 μSv; 6 cm high resolution mandible, 69 μSv and 113 μSv; 6 cm standard maxilla, 18 μSv and 32 μSv; and 6 cm high resolution maxilla, 35 μSv and 60 μSv. Conclusions Using the new generation of CBCT scanner, the effective dose is lower than the original generation machine for a similar FOV using the ICRP 2007 tissue weighting factors. PMID:22184626

  6. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Calculation of Annual Committed Effective Dose I. Equivalent Dose The calculation of the committed effective dose (CED) begins with the determination of the equivalent dose, HT, to a tissue or organ, T, listed in... is the radiation weighting factor which is given in Table B.1 below. The unit of equivalent dose...

  7. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  8. Effect of Temporal Residual Correlation on Estimation of Model Averaging Weights

    NASA Astrophysics Data System (ADS)

    Ye, M.; Lu, D.; Curtis, G. P.; Meyer, P. D.; Yabusaki, S.

    2010-12-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are always calculated using model selection criteria such as AIC, AICc, BIC, and KIC. However, this method sometimes leads to an unrealistic situation in which one model receives overwhelmingly high averaging weight (even 100%), which cannot be justified by available data and knowledge. It is found in this study that the unrealistic situation is due partly, if not solely, to ignorance of residual correlation when estimating the negative log-likelihood function common to all the model selection criteria. In the context of maximum-likelihood or least-square inverse modeling, the residual correlation is accounted for in the full covariance matrix; when the full covariance matrix is replaced by its diagonal counterpart, it assumes data independence and ignores the correlation. As a result, treating the correlated residuals as independent distorts the distance between observations and simulations of alternative models. As a result, it may lead to incorrect estimation of model selection criteria and model averaging weights. This is illustrated for a set of surface complexation models developed to simulate uranium transport based on a series of column experiments. The residuals are correlated in time, and the time correlation is addressed using a second-order autoregressive model. The modeling results reveal importance of considering residual correlation in the estimation of model averaging weights.

  9. Study of total dose effect on semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kanno, Toru

    1993-10-01

    This memorandum describes single event phenomena of power MOS (Metal Oxide Semiconductor) - FET (Field Effect Transistor) and SRAM (Static Random Access Memory), and total dose resistance of 256 k bit EEPROM (Electrically Erasable and Programmable Read Only Memory). The single event is a phenomenon that causes permanent failure and malfunction by a single high energy heavy atom entering into a semiconductor device. This study evaluated power MOS-FET and SRAM for Single Event Burnout (SEB) and Single Event Latchup (SEL) using newly developed Energetic Particle Induced Charge Spectroscopy (EPICS). As a result, influence of LET (Linear Energy Transfer) on avalanche effect and phenomena relating with nuclear reaction/recoil were observed, and mechanism of SEB was suggested. In addition, SEL occurrence probability was determined in wide range of LET using an accelerator of heavy ions. This study evaluated total dose effect of EEPROM, and malfunction site and the total dose mechanism were proposed. However, the total dose resistance was not sufficient to be used in outer space. Because it will require enormous change of processes to improve this device, and because degeneration of peripheral circuits were too fast to be evaluated, development of space ROM (Read Only Memory) seems to be difficult in this stage.

  10. Committed effective dose determination in southern Brazilian cereal flours.

    PubMed

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.

  11. Committed effective dose determination in southern Brazilian cereal flours.

    PubMed

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure. PMID:23511708

  12. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    SciTech Connect

    Lehmann, J; Stern, R L; Daly, T P; Schwieter, C W; Jones, G E; Arnold, M L; Hartmann-Siantar, C L; Goldberg, Z

    2004-04-20

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface.

  13. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    SciTech Connect

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan

    2012-06-15

    male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.

  14. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    SciTech Connect

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-04-15

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters ({alpha}=0.15 Gy{sup -1} and {alpha}/{beta}=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD{sub 2}) with respect to three effects: edema, RBE, and dose heterogeneity for {sup 125}I and {sup 103}Pd implants. The EUD{sub 2} analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V{sub 100} (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D{sub 90} (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for {sup 125}I and {sup 103}Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for {sup 125}I and 1.3-1.6 for {sup 103}Pd implants. These RBE values are consistent with the RBE data published in the

  15. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  16. Using National Data to Estimate Average Cost Effectiveness of EFNEP Outcomes by State/Territory

    ERIC Educational Resources Information Center

    Baral, Ranju; Davis, George C.; Blake, Stephanie; You, Wen; Serrano, Elena

    2013-01-01

    This report demonstrates how existing national data can be used to first calculate upper limits on the average cost per participant and per outcome per state/territory for the Expanded Food and Nutrition Education Program (EFNEP). These upper limits can then be used by state EFNEP administrators to obtain more precise estimates for their states,…

  17. The effects of sampling and internal noise on the representation of ensemble average size.

    PubMed

    Im, Hee Yeon; Halberda, Justin

    2013-02-01

    Increasing numbers of studies have explored human observers' ability to rapidly extract statistical descriptions from collections of similar items (e.g., the average size and orientation of a group of tilted Gabor patches). Determining whether these descriptions are generated by mechanisms that are independent from object-based sampling procedures requires that we investigate how internal noise, external noise, and sampling affect subjects' performance. Here we systematically manipulated the external variability of ensembles and used variance summation modeling to estimate both the internal noise and the number of samples that affected the representation of ensemble average size. The results suggest that humans sample many more than one or two items from an array when forming an estimate of the average size, and that the internal noise that affects ensemble processing is lower than the noise that affects the processing of single objects. These results are discussed in light of other recent modeling efforts and suggest that ensemble processing of average size relies on a mechanism that is distinct from segmenting individual items. This ensemble process may be more similar to texture processing.

  18. Renal dysfunction after total body irradiation: Dose-effect relationship

    SciTech Connect

    Kal, Henk B. . E-mail: H.B.Kal@UMCUtrecht.nl; Kempen-Harteveld, M. Loes van

    2006-07-15

    Purpose: Late complications related to total body irradiation (TBI) as part of the conditioning regimen for hematopoietic stem cell transplantation have been increasingly noted. We reviewed and compared the results of treatments with various TBI regimens and tried to derive a dose-effect relationship for the endpoint of late renal dysfunction. The aim was to find the tolerance dose for the kidney when TBI is performed. Methods and Materials: A literature search was performed using PubMed for articles reporting late renal dysfunction. For intercomparison, the various TBI regimens were normalized using the linear-quadratic model, and biologically effective doses (BEDs) were calculated. Results: Eleven reports were found describing the frequency of renal dysfunction after TBI. The frequency of renal dysfunction as a function of the BED was obtained. For BED >16 Gy an increase in the frequency of dysfunction was observed. Conclusions: The tolerance BED for kidney tissue undergoing TBI is about 16 Gy. This BED can be realized with highly fractionated TBI (e.g., 6 x 1.7 Gy or 9 x 1.2 Gy at dose rates >5 cGy/min). To prevent late renal dysfunction, the TBI regimens with BED values >16 Gy (almost all found in published reports) should be applied with appropriate shielding of the kidneys.

  19. Radiation Dose-Volume Effects in the Brain

    SciTech Connect

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-03-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of <2.5 Gy, an incidence of radiation necrosis of 5% and 10% is predicted to occur at a biologically effective dose of 120 Gy (range, 100-140) and 150 Gy (range, 140-170), respectively. For twice-daily fractionation, a steep increase in toxicity appears to occur when the biologically effective dose is >80 Gy. For large fraction sizes (>=2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of >=18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  20. Dose- and time-dependent antiplatelet effects of aspirin.

    PubMed

    Perneby, Christina; Wallén, N Håkan; Rooney, Cathy; Fitzgerald, Desmond; Hjemdahl, Paul

    2006-04-01

    Aspirin is widely used, but dosages in different clinical situations and the possible importance of "aspirin resistance" are debated. We performed an open cross-over study comparing no treatment (baseline) with three aspirin dosage regimens--37.5 mg/day for 10 days, 320 mg/day for 7 days, and, finally, a single 640 mg dose (cumulative dose 960 mg)--in 15 healthy male volunteers. Platelet aggregability was assessed in whole blood (WB) and platelet rich plasma (PRP). The urinary excretions of stable thromboxane (TxM) and prostacyclin (PGI-M) metabolites, and bleeding time were also measured. Platelet COX inhibition was nearly complete already at 37.5 mg aspirin daily, as evidenced by >98% suppression of serum thromboxane B2 and almost abolished arachidonic acid (AA) induced aggregation in PRP 2-6 h after dosing. Bleeding time was similarly prolonged by all dosages of aspirin. Once daily dosing was associated with considerable recovery of AA induced platelet aggregation in WB after 24 hours, even after 960 mg aspirin. Collagen induced aggregation in WB with normal extracellular calcium levels (hirudin anticoagulated) was inhibited <40% at all dosages. TxM excretion was incompletely suppressed, and increased <24 hours after the cumulative 960 mg dose. Aspirin treatment reduced PGI-M already at the lowest dosage (by approximately 25%), but PGI-M excretion and platelet aggregability were not correlated. Antiplatelet effects of aspirin are limited in WB with normal calcium levels. Since recovery of COX-dependent platelet aggregation occurred within 24 hours, once daily dosing of aspirin might be insufficient in patients with increased platelet turnover. PMID:16601836

  1. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies.

    PubMed

    Ras, Rouyanne T; Geleijnse, Johanna M; Trautwein, Elke A

    2014-07-28

    Phytosterols (PS, comprising plant sterols and plant stanols) have been proven to lower LDL-cholesterol concentrations. The dose-response relationship for this effect has been evaluated in several meta-analyses by calculating averages for different dose ranges or by applying continuous dose-response functions. Both approaches have advantages and disadvantages. So far, the calculation of averages for different dose ranges has not been done for plant sterols and stanols separately. The objective of the present meta-analysis was to investigate the combined and separate effects of plant sterols and stanols when classified into different dose ranges. Studies were searched and selected based on predefined criteria. Relevant data were extracted. Average LDL-cholesterol effects were calculated when studies were categorised by dose, according to random-effects models while using the variance as weighing factor. This was done for plant sterols and stanols combined and separately. In total, 124 studies (201 strata) were included. Plant sterols and stanols were administered in 129 and fifty-nine strata, respectively; the remaining used a mix of both. The average PS dose was 2.1 (range 0.2-9.0) g/d. PS intakes of 0.6-3.3 g/d were found to gradually reduce LDL-cholesterol concentrations by, on average, 6-12%. When plant sterols and stanols were analysed separately, clear and comparable dose-response relationships were observed. Studies carried out with PS doses exceeding 4 g/d were not pooled, as these were scarce and scattered across a wide range of doses. In conclusion, the LDL-cholesterol-lowering effect of both plant sterols and stanols continues to increase up to intakes of approximately 3 g/d to an average effect of 12%.

  2. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements.

  3. Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination

    SciTech Connect

    Lee, Choonik; Lee, Choonsik; Staton, Robert J.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2007-05-15

    As multidetector computed tomography (CT) serves as an increasingly frequent diagnostic modality, radiation risks to patients became a greater concern, especially for children due to their inherently higher radiosensitivity to stochastic radiation damage. Current dose evaluation protocols include the computed tomography dose index (CTDI) or point detector measurements using anthropomorphic phantoms that do not sufficiently provide accurate information of the organ-averaged absorbed dose and corresponding effective dose to pediatric patients. In this study, organ and effective doses to pediatric patients under helical multislice computed tomography (MSCT) examinations were evaluated using an extensive series of anthropomorphic computational phantoms and Monte Carlo radiation transport simulations. Ten pediatric phantoms, five stylized (equation-based) ORNL phantoms (newborn, 1-year, 5-year, 10-year, and 15-year) and five tomographic (voxel-based) UF phantoms (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) were implemented into MCNPX for simulation, where a source subroutine was written to explicitly simulate the helical motion of the CT x-ray source and the fan beam angle and collimator width. Ionization chamber measurements were performed and used to normalize the Monte Carlo simulation results. On average, for the same tube current setting, a tube potential of 100 kVp resulted in effective doses that were 105% higher than seen at 80 kVp, and 210% higher at 120 kVp regardless of phantom type. Overall, the ORNL phantom series was shown to yield values of effective dose that were reasonably consistent with those of the gender-specific UF phantom series for CT examinations of the head, pelvis, and torso. However, the ORNL phantoms consistently overestimated values of the effective dose as seen in the UF phantom for MSCT scans of the chest, and underestimated values of the effective dose for abdominal CT scans. These discrepancies increased

  4. [Doses-related effects of lynestrenol on ovulation (author's transl)].

    PubMed

    Pizarro, M A; Thomas, K; Ferin, J

    1976-01-01

    8 women, aged 22-28, with normal, ovulatory menstrual cycles, volunteered to take different doses of Lynestrenol to determine its effects on Luteineizing Hormone (LH) secretion, and on plasma progesterone levels. Blood samples were taken in the morning and plasma was immediately separated. Results showed that body temperature varied unpredictably during the cycle, and therefore could not be considered a reliable parameter of ovulation. 0.35 mg of Lynestrenol administered daily was enough to suppress ovulation, as evidenced by the absence of LH during midcycle. Although differences exists in individual reactions, administration of Lynestrenol beyond 0.6 mg. daily always suppresses ovulation because of hypothalamo-pituitary inhibition, while doses below 0.5mg. daily can bring about episodic peaks. It is still not clear how Lynestrenol influences gonadotropins, especially LH, while intermittent bleeding seems to be the only sure side effect.

  5. Numerical model for computation of effective and ambient dose equivalent at flight altitudes. Application for dose assessment during GLEs

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Usoskin, Ilya

    2015-05-01

    A numerical model for assessment of the effective dose and ambient dose equivalent produced by secondary cosmic ray particles of galactic and solar origin at commercial aircraft altitudes is presented. The model represents a full chain analysis based on ground-based measurements of cosmic rays, from particle spectral and angular characteristics to dose estimation. The model is based on newly numerically computed yield functions and realistic propagation of cosmic ray in the Earth magnetosphere. The yield functions are computed using a straightforward full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α-particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose or the ambient dose equivalent. The ambient dose equivalent is compared with reference data at various conditions such as rigidity cut-off and level of solar activity. The method is applied for computation of the effective dose rate at flight altitude during the ground level enhancement of 13 December 2006. The solar proton spectra are derived using neutron monitor data. The computation of the effective dose rate during the event explicitly considers the derived anisotropy i.e. the pitch angle distribution as well as the propagation of the solar protons in the magnetosphere of the Earth.

  6. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    SciTech Connect

    Whicker, Jeffrey J; Mcnaughton, Michael

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  7. Compelling Issues Compounding the Understanding of Low Dose Radiation Effects: But Do They Matter?

    PubMed

    Morgan, William F

    2016-03-01

    Recent advances in low dose radiation research have raised a number of compelling issues that have compounded the understanding of low dose radiation effects. Here some of them are outlined: the linear no-threshold model for predicting effects at low radiation doses, dose rate effectiveness factor, attributability, and public perception of low dose radiation effects. The impact of changes in any of these hotly debated issues on radiation protection is considered.

  8. Biologically effective doses in radiotherapy of cervical carcinoma*.

    PubMed

    Urbanski, K; Gasinska, A; Pudelek, J; Fowler, J F; Lind, B; Brahme, A

    2004-01-01

    Presented study evaluates biologically effective dose (BED) in patients receiving low-medium dose-rate (LDR/MDR) brachytherapy (BRT) plus external beam radiotherapy (XRT) based on tumor cell proliferation values in cancer of the cervix patients. This study includes 229 patients treated entirely by radiotherapy at the Centre Oncology in Krakow. Doses to Point A were estimated for total treatment for each brachytherapy insertion. BED3 were calculated for reference points in the rectum. The linear quadratic equation was used to calculate BED, which is proportional to log cell kill, and the normalized total dose (NTD), that is, equivalent to a 2 Gy fraction schedule. In BEDs 10 calculation overall treatment time for each patient. Tumor proliferation rate was based on Bromodeoxyuridine labeling index (BrdUrdLI) assessed on biopsy material before beginning the radiotherapy. Total BED at those points was summed for each patient. The medium overall treatment time was 90 days (range 30--210). The mean calculated total BED for point A for tumour and "early reactions" was equal to 104.0 Gy10 and 229.0 Gy3 for the rectum, equivalent to NTD=86.6 Gy and 137.4 Gy in 2 Gy fractions, respectively. Kaplan-Meier analysis revealed that age >50 years, higher than mean BRBEDs and totBEDs doses, gaps in treatments shorter than 40 days and disease free survival (DFS) was significant prognostic factor for overall survival. In the multivariate Cox anaysis age >50 years, BRBED10 >77 Gy and gaps ?40 days appeared to be significant for overall survival. None of the examined parameters was significant for tumor control. However, patientś age and shorter gaps in the treatment were predictive for DFS. PMID:15254678

  9. Effect of low-dose gaseous ozone on pathogenic bacteria

    PubMed Central

    2012-01-01

    Background Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 μg/mL ozone/oxygen (1:99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (105 bacteria/dish). The cultures were divided into 3 groups: 1- ozone-oxygen gaseous mixture containing 20 μg of O3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents. PMID:23249441

  10. Bladder dose-surface maps and urinary toxicity: Robustness with respect to motion in assessing local dose effects.

    PubMed

    Palorini, F; Botti, A; Carillo, V; Gianolini, S; Improta, I; Iotti, C; Rancati, T; Cozzarini, C; Fiorino, C

    2016-03-01

    The purpose of this study was to quantify the impact of inter-fraction modifications of bladder during RT of prostate cancer on bladder dose surface maps (DSM). Eighteen patients treated with daily image-guided Tomotherapy and moderate hypofractionation (70-72.8Gy at 2.5-2.6Gy/fr in 28 fractions and full bladder) were considered. Bladder contours were delineated on co-registered daily Megavoltage CT (MVCT) by a single observer and copied on the planning CT to generate dose-volume/surface histograms (DVH/DSH) and bladder DSMs. Discrepancies between planned and daily absorbed doses were analyzed through the average of individual systematic errors, the population systematic errors and the population random errors for the DVH/DSHs and DSMs. In total, 477 DVH/DSH and 472 DSM were available. DSH and DVH showed small population systematic errors of absolute surfaces (<3.4cm(2)) and volumes (<8.4cm(3)) at the highest doses. The dose to the posterior bladder base assessed on DSMs showed a mean systematic error below 1Gy, with population systematic and random errors within 4 and 3Gy, respectively. The region surrounding this area shows higher mean systematic errors (1-3Gy), population systematic (8-11Gy) and random (5-7Gy) errors. In conclusion, DVH/DSH and DSMs are quite stable with respect to inter-fraction variations in the high-dose region, within about 2cm from bladder base. Larger systematic variations occur in the anterior portion and cranially 2.5-3.5cm from the base. Results suggest that dose predictors related to the high dose area (including the trigone dose) are likely to be sufficiently reliable with respect to the expected variations due to variable bladder filling.

  11. Pathology effects at radiation doses below those causing increased mortality

    NASA Technical Reports Server (NTRS)

    Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas

    2002-01-01

    Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.

  12. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    SciTech Connect

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.; Wilke, Christopher T.; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K.

    2013-11-15

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.

  13. Peripheral dose heterogeneity due to the thread effect in total marrow irradiation with helical tomotherapy

    PubMed Central

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn; Wilke, Christopher; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K

    2013-01-01

    Purpose To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect, and provide possible solutions to reduce this effect. Methods and Materials Nine cases were divided into two groups based on patientsize, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (> 47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the DVH parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (e.g. bones of the arm, or femur), at the central axis (e.g. vertebrae), and PTV, defined as the entire skeleton plus 1 cm margin. Results Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95, and V107, respectively) between large and small mLRD groups were 4.2% (p=0.016), and 16% (p=0.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=0.965), mLRD and V95 (rs=−0.742), and mLRD and V107 (rs=0.870) of bones of the arm. Conclusions Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced. PMID:24011657

  14. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  15. The latitude dependence of the variance of zonally averaged quantities. [in polar meteorology with attention to geometrical effects of earth

    NASA Technical Reports Server (NTRS)

    North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.

    1982-01-01

    Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.

  16. 241Am INGROWTH AND ITS EFFECT ON INTERNAL DOSE.

    PubMed

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons, and reactor fuel. This work focuses on three typical plutonium mixtures while observing the potential of Am ingrowth and its effect on internal dose. The term "ingrowth" is used to describe Am production due solely to the decay of Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for Am ingrowth unless the Pu quantity is specified. This work suggested that Am ingrowth be considered in bioassay analysis when there is a potential of a 10% increase to the individual's committed effective dose. It was determined that plutonium fuel mixtures, initially absent of Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 y; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. Although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel. PMID:27218291

  17. 241Am INGROWTH AND ITS EFFECT ON INTERNAL DOSE.

    PubMed

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons, and reactor fuel. This work focuses on three typical plutonium mixtures while observing the potential of Am ingrowth and its effect on internal dose. The term "ingrowth" is used to describe Am production due solely to the decay of Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for Am ingrowth unless the Pu quantity is specified. This work suggested that Am ingrowth be considered in bioassay analysis when there is a potential of a 10% increase to the individual's committed effective dose. It was determined that plutonium fuel mixtures, initially absent of Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 y; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. Although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.

  18. Thermal Dose and the Probability of Adverse Effects from HIFU

    NASA Astrophysics Data System (ADS)

    Church, Charles C.

    2007-05-01

    The absorption of high-intensity, focused ultrasound (HIFU) by the body results in brief, intense heating capable of killing cells, tissues or entire organisms, thereby providing the basis for many applications in medical therapy. The object of such therapy is in assuring the destruction of diseased tissue while sparing adjacent, healthy tissue. However, even moderate heating to a few degrees above normal physiological temperatures can perturb biological systems, e.g., by altering normal metabolic processes. In modeling the bioeffects produced by ultrasound-induced heating, the physicist typically relies on bulk tissue properties and ultrasound exposure parameters to calculate the thermal `dose' delivered to the tissue. Although thermal dose is currently given in units of time rather than energy, the concept is quite useful, and its use in quantifying the probability and extent of biological effects expected from therapeutic exposures is demonstrated. The results demonstrate the need for additional experimental data to validate and advance existing theoretical approaches for HIFU exposures.

  19. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  20. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  1. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PMID:21587191

  2. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  3. Anti-angiogenic effect of high doses of ascorbic acid

    PubMed Central

    Mikirova, Nina A; Ichim, Thomas E; Riordan, Neil H

    2008-01-01

    Pharmaceutical doses of ascorbic acid (AA, vitamin C, or its salts) have been reported to exert anticancer activity in vitro and in vivo. One proposed mechanism involves direct cytotoxicity mediated by accumulation of ascorbic acid radicals and hydrogen peroxide in the extracellular environment of tumor cells. However, therapeutic effects have been reported at concentrations insufficient to induce direct tumor cell death. We hypothesized that AA may exert anti-angiogenic effects. To test this, we expanded endothelial progenitor cells (EPCs) from peripheral blood and assessed, whether or not high dose AA would inhibit EPC ability to migrate, change energy metabolism, and tube formation ability. We also evaluated the effects of high dose AA on angiogenic activities of HUVECs (human umbilical vein endothelial cells) and HUAECs (human umbilical arterial endothelial cells). According to our data, concentrations of AA higher than 100 mg/dl suppressed capillary-like tube formation on Matrigel for all cells tested and the effect was more pronounced for progenitor cells in comparison with mature cells. Co-culture of differentiated endothelial cells with progenitor cells showed that there was incorporation of EPCs in vessels formed by HUVECs and HUAECs. Cell migration was assessed using an in vitro wound healing model. The results of these experiments showed an inverse correlation between AA concentrations relative to both cell migration and gap filling capacity. Suppression of NO (nitric oxide) generation appeared to be one of the mechanisms by which AA mediated angiostatic effects. This study supports further investigation into non-cytotoxic antitumor activities of AA. PMID:18789157

  4. Modeling Effective Dosages in Hormetic Dose-Response Studies

    PubMed Central

    Belz, Regina G.; Piepho, Hans-Peter

    2012-01-01

    Background Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. Methodology/Principal Findings The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0–1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0–26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. Conclusions/Significance The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy. PMID

  5. Under What Assumptions Do Site-by-Treatment Instruments Identify Average Causal Effects?

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Raudenbush, Stephen W.

    2013-01-01

    The increasing availability of data from multi-site randomized trials provides a potential opportunity to use instrumental variables methods to study the effects of multiple hypothesized mediators of the effect of a treatment. We derive nine assumptions needed to identify the effects of multiple mediators when using site-by-treatment interactions…

  6. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites.

    PubMed Central

    Henderson, R F; Sabourin, P J; Bechtold, W E; Griffith, W C; Medinsky, M A; Birnbaum, L S; Lucier, G W

    1989-01-01

    Studies were completed in F344/N rats and B6C3F1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studies performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated. PMID:2792053

  7. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran

    PubMed Central

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  8. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link.

    PubMed

    Li, Ye; Zhang, Yixin; Zhu, Yun; Chen, Minyu

    2016-07-01

    Based on the spatial power spectrum of the refractive index of anisotropic turbulence, the average polarizability of the Gaussian Schell-model quantized beams and lateral coherence length of the spherical wave propagating through the ocean water channel are derived. Numerical results show that, in strong temperature fluctuation, the depolarization effects of anisotropic turbulence are inferior to isotropic turbulence, as the other parameters of two links are the same. The depolarization effects of salinity fluctuation are less than the effects of the temperature fluctuation; the average polarizability of beams increases when increasing the inner scale of turbulence and the source's transverse size; and the larger rate of dissipation of kinetic energy per unit mass of fluid enhances the average polarizability of beams. The region of the receiving radius is smaller than the characteristic radius and the average polarizability of beams in isotropy turbulence is smaller than that of beams in anisotropy turbulence. However, the receiving radius region is larger than a characteristic radius and the average polarizability of beams in isotropy turbulence is larger than that of beams in anisotropy turbulence.

  9. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link.

    PubMed

    Li, Ye; Zhang, Yixin; Zhu, Yun; Chen, Minyu

    2016-07-01

    Based on the spatial power spectrum of the refractive index of anisotropic turbulence, the average polarizability of the Gaussian Schell-model quantized beams and lateral coherence length of the spherical wave propagating through the ocean water channel are derived. Numerical results show that, in strong temperature fluctuation, the depolarization effects of anisotropic turbulence are inferior to isotropic turbulence, as the other parameters of two links are the same. The depolarization effects of salinity fluctuation are less than the effects of the temperature fluctuation; the average polarizability of beams increases when increasing the inner scale of turbulence and the source's transverse size; and the larger rate of dissipation of kinetic energy per unit mass of fluid enhances the average polarizability of beams. The region of the receiving radius is smaller than the characteristic radius and the average polarizability of beams in isotropy turbulence is smaller than that of beams in anisotropy turbulence. However, the receiving radius region is larger than a characteristic radius and the average polarizability of beams in isotropy turbulence is larger than that of beams in anisotropy turbulence. PMID:27409215

  10. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-01-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their Technical Guidance for Hazards Analysis'', December 1987.

  11. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-09-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their ``Technical Guidance for Hazards Analysis``, December 1987.

  12. Collective effective dose in Europe from X-ray and nuclear medicine procedures.

    PubMed

    Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S

    2015-07-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput.

  13. Underestimating Calorie Content When Healthy Foods Are Present: An Averaging Effect or a Reference-Dependent Anchoring Effect?

    PubMed Central

    Forwood, Suzanna E.; Ahern, Amy; Hollands, Gareth J.; Fletcher, Paul C.; Marteau, Theresa M.

    2013-01-01

    Objective Previous studies have shown that estimations of the calorie content of an unhealthy main meal food tend to be lower when the food is shown alongside a healthy item (e.g. fruit or vegetables) than when shown alone. This effect has been called the negative calorie illusion and has been attributed to averaging the unhealthy (vice) and healthy (virtue) foods leading to increased perceived healthiness and reduced calorie estimates. The current study aimed to replicate and extend these findings to test the hypothesized mediating effect of ratings of healthiness of foods on calorie estimates. Methods In three online studies, participants were invited to make calorie estimates of combinations of foods. Healthiness ratings of the food were also assessed. Results The first two studies failed to replicate the negative calorie illusion. In a final study, the use of a reference food, closely following a procedure from a previously published study, did elicit a negative calorie illusion. No evidence was found for a mediating role of healthiness estimates. Conclusion The negative calorie illusion appears to be a function of the contrast between a food being judged and a reference, supporting the hypothesis that the negative calorie illusion arises from the use of a reference-dependent anchoring and adjustment heuristic and not from an ‘averaging’ effect, as initially proposed. This finding is consistent with existing data on sequential calorie estimates, and highlights a significant impact of the order in which foods are viewed on how foods are evaluated. PMID:23967216

  14. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.

    PubMed

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A; Møller, Anders Pape

    2015-11-16

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h(-1)), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  15. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.

    PubMed

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A; Møller, Anders Pape

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h(-1)), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. PMID:26567770

  16. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    NASA Astrophysics Data System (ADS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-11-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  17. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    PubMed Central

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011–2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h−1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h−1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011–2014. The data also suggest a significant positive relationship between total dose and species diversity. PMID:26567770

  18. Effects of voxelization on dose volume histogram accuracy

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects metrics, such as DVH. METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage between the DVH. RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We found that there were large DVH variation from the baseline for small structures or for structures located in regions with a high dose gradient, potentially leading to the creation of suboptimal treatment plans. CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH accuracy, which must be accounted for in order to ensure the development of accurate treatment plans.

  19. Interface effects on dose distributions in irradiated media

    SciTech Connect

    Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1980-01-01

    It has long been recognized that nonuniformities in dose distributions may occur in the immediate vicinity of a boundary between two different media. Considerable work has been done to determine interface effects in media irradiated by photons or in media containing ..beta..- or ..cap alpha..-particle emitters. More recently interface effects have become of interest in additional problems, including pion radiotherapy and radiation effects in electronic microcircuits in space vehicles. These problems arise when pion capture stars or proton-nucleus interactions produce a spectrum of charged nuclear fragments near an interface. The purpose of this paper is to examine interface effects in detail as to their specific origin. We have made Monte Carlo calculations of dose distributions near an interface in a systematic way for a number of idealized cases in order to indicate the separate influences of several factors including different stopping powers of the two media, nonconstancy (e.g., Bragg peak) in the energy loss curve for the particles, different particle spectra in the two media, and curvature of the boundary between the two media.

  20. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  1. The Averaged Face Growth Rates of lysozyme Crystals: The Effect of Temperature

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1995-01-01

    Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4-22 C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high super-saturations the growth rates attain a maximum and then start decreasing. No 'dead zone' was observed but the growth rates were found to approach zero asymptotically at very low super-saturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the super-saturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth.

  2. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  3. Effects of single-dose and fractionated cranial irradiation on rat brain accumulation of methotrexate

    SciTech Connect

    Kamen, B.A.; Moulder, J.E.; Kun, L.E.; Ring, B.J.; Adams, S.M.; Fish, B.L.; Holcenberg, J.S.

    1984-11-01

    The effects of single-dose and fractionated whole-brain irradiation on brain methotrexate (MTX) has been studied in a rat model. The amount of MTX present in the brain 24 hr after a single i.p. dose (100 mg/kg) was the same whether animals were sham irradiated or given a single dose of 2000 rads 6 or 48 hr prior to the drug (6.9, 8.3, and 6.8 pmol MTX/g, wet weight, respectively). Animals sham irradiated or given 2000 rads in 10 fractions over 11 days and treated with an average dose of 1.2 mg MTX/kg i.p. twice a week for 24 weeks did not differ significantly in their brain MTX concentration (7.9 and 8.3 pmol MTX/g, wet weight, respectively). Chronically MTX-treated animals became folate deficient whether they were irradiated or not (450 and 670 pmol folate/g, wet weight, brain in MTX-treated and control animals). Thus, MTX accumulates in the brain with acute or chronic administration, and this accumulation is not altered by this amount of brain irradiation.

  4. Ventilatory effects of low-dose paraoxon result from central muscarinic effects

    SciTech Connect

    Houze, Pascal; Pronzola, Laetita; Kayouka, Maya; Villa, Antoine; Debray, Marcel; Baud, Frederic J.

    2008-12-01

    Paraoxon induces respiratory toxicity. Atropine completely reversed parathion- and paraoxon-induced respiratory toxicity. The aim of this study was to assess the peripheral or central origin of ventilatory effects of low-dose paraoxon. Male Sprague-Dawley rats were given paraoxon 0.215 mg/kg subcutaneously and treated with either atropine (10 mg/kg sc) or ascending doses of methylatropine of 5.42 (equimolar to that of atropine), 54.2, and 542 mg/kg administered subcutaneously 30 min after paraoxon. Ventilation at rest was assessed using whole-body plethysmography and rat temperature using infra-red telemetry. Results are expressed as mean {+-} SE. Statistical analysis used two-way ANOVA for repeated measurements. Paraoxon induced a significant decrease in temperature 30 min after injection lasting the 90 min of the study period. This effect was partially corrected by atropine, but not by methylatropine whatever the dose. Paraoxon induced a decrease in respiratory rate resulting from an increase in expiratory time associated with an increase in tidal volume. Atropine completely reversed the ventilatory effects of low-dose paraoxon while the equimolar dose of methylatropine had no significant effects. The 54.2 and 542 mg/kg doses of methylatropine had no significant effects. Atropine crosses the blood-brain barrier and reverses peripheral and central muscarinic effects. In contrast, methylatropine does not cross the blood-brain barrier. Atropine completely reversed the ventilatory effects of low-dose paraoxon, while methylatropine had no significant effects at doses up to 100-fold the equimolar dose of atropine. We conclude that the ventilatory effects of low-dose paraoxon are mediated by disrupted muscarinic signaling in the central nervous system.

  5. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  6. Effects of moderate-dose versus high-dose trimethoprim on serum creatinine and creatinine clearance and adverse reactions.

    PubMed Central

    Naderer, O; Nafziger, A N; Bertino, J S

    1997-01-01

    The effects of a 10-day course of moderate-dose (10 mg/kg/day) or high-dose (20 mg/kg/day) trimethoprim therapy on serum creatinine, measured creatinine clearance, urinary creatinine excretion, and serum folate were studied in 20 healthy volunteers. Serum creatinine concentrations increased significantly during trimethoprim therapy, began to decrease near day 10, and returned to baseline during the washout phase at both dosage levels. At the same time, measured creatinine clearance and urine creatinine changed in the opposite direction. No clinical or statistical differences were noted between changes in the moderate- versus the high-dose phases. Serum folate concentration decreases during high-dose trimethoprim therapy were statistically significant. Adverse drug reactions in the two groups were statistically different during the first study period, with the high-dose group having a 75% incidence rate and the moderate-dose group having an 11% incidence rate (P < 0.02). Serum creatinine, measured creatinine clearance, and urinary creatinine excretion demonstrated statistically, but not clinically, significant changes during trimethoprim therapy. In addition, high-dose trimethoprim caused significantly more adverse drug reactions than moderate-dose trimethoprim in normal volunteers. PMID:9371351

  7. Effective doses of cisatracurium in the adult and the elderly

    PubMed Central

    Lee, Yoon Chan; Lee, Soo Il; Park, Sang Yoong; Choi, So Ron; Lee, Jong Hwan; Chung, Chan Jong

    2016-01-01

    Background There are few information about the differences of the effective dose (ED) of cisatracurium between the adult and the elderly. We investigated the ED and the onset time of cisatracurium in the adults and the elderly. Methods We studied two hundred patients of the adults aged 20 through 64 years and the elderly aged ≥ 65 years, with American Society of Anesthesiologists physical status I or II. Each 100 patients with 20 patients of each dose group, randomly selected from 30, 40, 50, 60 or 70 µg/kg of cisatracurium, were randomly allocated to the adults and the elderly groups. We recorded the 0.1 Hz single twitch responses of the adductor pollicis and the onset times to maximal blockade. The magnitude of muscle relaxation was recorded by using an acceleromyography. The effect of cisatracurium on single twitch was calculated as percent reduction. After converting each drug dose into logarithm and percent reduction of the muscle reduction into probit, the EDs representing the muscle relaxation effects of 5%, 25%, 50%, 75% and 95% were estimated using the linear regression analysis. Results No significant differences were found in age, weight, height, or body mass index within or between the groups. The ED50 and ED95 of the adult group were 35.39 and 59.58 µg/kg. The ED50 and ED95 of the elderly group were 34.89 and 55.50 µg/kg, respectively. The onset times were 375.4 ± 76.9 seconds in the adult group and 369.1 ± 70.0 seconds in the elderly group. Conclusions The ED and the onset time were not significantly different between the adult and the elderly. PMID:27703625

  8. Radiation Dose-Volume Effects of Optic Nerves and Chiasm

    SciTech Connect

    Mayo, Charles; Martel, Mary K.; Marks, Lawrence B.; Flickinger, John; Nam, Jiho; Kirkpatrick, John

    2010-03-01

    Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose-volume measures were reviewed. Few studies have adequate data for dose-volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at {approx}1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.

  9. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    SciTech Connect

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS

  10. Doppler broadening effect on collision cross section functions - Deconvolution of the thermal averaging

    NASA Technical Reports Server (NTRS)

    Bernstein, R. B.

    1973-01-01

    The surprising feature of the Doppler problem in threshold determination is the 'amplification effect' of the target's thermal energy spread. The small thermal energy spread of the target molecules results in a large dispersion in relative kinetic energy. The Doppler broadening effect in connection with thermal energy beam experiments is discussed, and a procedure is recommended for the deconvolution of molecular scattering cross-section functions whose dominant dependence upon relative velocity is approximately that of the standard low-energy form.

  11. Effective, single-dose treatment or porcine cysticercosis with oxfendazole.

    PubMed

    Gonzales, A E; Garcia, H H; Gilman, R H; Gavidia, C M; Tsang, V C; Bernal, T; Falcon, N; Romero, M; Lopez-Urbina, M T

    1996-04-01

    The pig is a vital link in the transmission cycle of Taenia solium, the cestode responsible for human-porcine cysticercosis. Infected pigs also represent an important source of economic loss to farmers in developing countries. Past efforts to find an adequate therapeutic regimen to treat this parasite disease in swine have failed because of low efficacy, high cost, side effects, or the need for multiple doses. In this randomized, no treatment-controlled study, the efficacy and safety of oxfendazole and praziquantel for the treatment of porcine cysticercosis were evaluated in 16 naturally infected pigs. Four groups of four pigs were treated with oxfendazole, praziquantel, oxfendazole plus praziquantel, or untreated. The pigs were humanely killed 12 weeks post-treatment, the number of cyst was counted, and parasite viability was assessed by cyst evagination. No detectable side effects were seen in any of the pigs. Praziquantel treatment alone appeared to reduce the number of cysts, but did not decrease the viability of the remaining parasites. Treatment with oxfendazole alone or oxfendazole plus praziquantel killed all of the parasites, and left only microcalcifications in the meat. Oxfendazole provides, for the first time, a practical, effective, inexpensive, and single-dose therapy for porcine cysticercosis.

  12. A group's physical attractiveness is greater than the average attractiveness of its members: the group attractiveness effect.

    PubMed

    van Osch, Yvette; Blanken, Irene; Meijs, Maartje H J; van Wolferen, Job

    2015-04-01

    We tested whether the perceived physical attractiveness of a group is greater than the average attractiveness of its members. In nine studies, we find evidence for the so-called group attractiveness effect (GA-effect), using female, male, and mixed-gender groups, indicating that group impressions of physical attractiveness are more positive than the average ratings of the group members. A meta-analysis on 33 comparisons reveals that the effect is medium to large (Cohen's d = 0.60) and moderated by group size. We explored two explanations for the GA-effect: (a) selective attention to attractive group members, and (b) the Gestalt principle of similarity. The results of our studies are in favor of the selective attention account: People selectively attend to the most attractive members of a group and their attractiveness has a greater influence on the evaluation of the group.

  13. Effects of Social Interactions on Empirical Responses to Selection for Average Daily Gain of Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of competition on responses to selection for ADG were examined with records of 9,720 boars from dam lines (1 and 2) and sire lines (3 and 4) provided by Pig Improvement Company. Each line was analyzed separately. Pens contained 15 boars. Gains (ADG) were measured from about 71 to 161 d of...

  14. What Is the Minimum Information Needed to Estimate Average Treatment Effects in Education RCTs?

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2014-01-01

    Randomized controlled trials (RCTs) are considered the "gold standard" for evaluating an intervention's effectiveness. Recently, the federal government has placed increased emphasis on the use of opportunistic experiments. A key criterion for conducting opportunistic experiments, however, is that there is relatively easy access to data…

  15. Is Scientifically Based Reading Instruction Effective for Students with Below-Average IQs?

    ERIC Educational Resources Information Center

    Allor, Jill H.; Mathes, Patricia G.; Roberts, J. Kyle; Cheatham, Jennifer P.; Al Otaiba, Stephanie

    2014-01-01

    This longitudinal randomized-control trial investigated the effectiveness of scientifically based reading instruction for students with IQs ranging from 40 to 80, including students with intellectual disability (ID). Students were randomly assigned into treatment (n = 76) and contrast (n = 65) groups. Students in the treatment group received…

  16. Strategy Precedes Operational Effectiveness: Aligning High Graduation Rankings with Competitive Graduation Grade Point Averages

    ERIC Educational Resources Information Center

    Apprey, Maurice; Bassett, Kimberley C.; Preston-Grimes, Patrice; Lewis, Dion W.; Wood, Beverly

    2014-01-01

    Two pivotal and interconnected claims are addressed in this article. First, strategy precedes program effectiveness. Second, graduation rates and rankings are insufficient in any account of academic progress for African American students. In this article, graduation is regarded as the floor and not the ceiling, as it were. The ideal situation in…

  17. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  18. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  19. Forbush decrease effects on radiation dose received on-board aeroplanes.

    PubMed

    Lantos, P

    2005-01-01

    Doses received on-board aeroplanes during deep Forbush decreases (FDs) have been recently measured and published. Using an operational model of dose calculation, the effects on aviation dose of the FDs observed from 1981 to 2003 using neutron monitors are studied and a simplified method to estimate dose variations from galactic cosmic ray variations during FDs is derived.

  20. Laboratory measurement error in external dose estimates and its effects on dose-response analyses of Hanford worker mortality data

    SciTech Connect

    Gilbert, E.S.; Fix, J.J.

    1996-08-01

    This report addresses laboratory measurement error in estimates of external doses obtained from personnel dosimeters, and investigates the effects of these errors on linear dose-response analyses of data from epidemiologic studies of nuclear workers. These errors have the distinguishing feature that they are independent across time and across workers. Although the calculations made for this report were based on Hanford data, the overall conclusions are likely to be relevant for other epidemiologic studies of workers exposed to external radiation.

  1. Analytical models for total dose ionization effects in MOS devices.

    SciTech Connect

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  2. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  3. Effects of repeated doses of aspartame on serotonin and its metabolite in various regions of the mouse brain.

    PubMed

    Sharma, R P; Coulombe, R A

    1987-08-01

    Following a finding that single doses (approximating to average intakes and to potential 'over-use') of aspartame administered orally to mice caused significant increases in norepinephrine and dopamine concentrations in various brain regions, the effect of repeated exposure to aspartame was studied. Male CD-1 mice were given a daily oral dose of 0, 13, 133 or 650 mg/kg for 30 days and 1 day after the last dose the animals were decapitated and their brain regions were quickly isolated. Analyses of the different regions for catecholamine and indoleamine neurotransmitters and their major metabolites indicated that the increases in adrenergic chemicals observed shortly after a single exposure were not apparent after repeated dosing. In contrast, concentrations of serotonin and its metabolite, 5-hydroxyindoleacetic acid, were decreased in several regions. An increased supply of phenylalanine may be responsible for a decrease in tryptophan uptake by the brain tissue or for a depression in tryptophan conversion to serotonin.

  4. Low dose acute alcohol effects on GABAA receptor subtypes

    PubMed Central

    Wallner, Martin; Hanchar, H. Jacob; Olsen, Richard W.

    2010-01-01

    GABAA receptors (GABAARs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABAAR subtypes, nonsynaptic GABAARs have recently emerged as important regulators of neuronal excitability. While high doses (≥100 mM) of ethanol have been reported to enhance activity of most GABAAR subtypes, most abundant synaptic GABAARs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (<30 mM). However, extrasynaptic δ and β3 subunit-containing GABAARs, associated in the brain with α4or α6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar α6 subunit (α6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant α6β3δ receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on α4/6/β3δ receptors, without reducing GABA-induced currents. In binding assays α4β3δ GABAARs bind [3H] Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513’s block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABAAR subtypes. PMID:16814864

  5. UV doses and skin effects during psoriasis climate therapy

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Hernandez-Palacios, Julio; Lilleeng, Mila; Nilsen, Lill Tove; Krogstad, Anne-Lene

    2011-03-01

    Psoriasis is a common autoimmune disease with inflammatory symptoms affecting skin and joints. One way of dealing with psoriasis is by controlled solar UV exposure treatment. However, this treatment should be optimized to get the best possible treatment effect and to limit negative side effects such as erythema and an increased risk of skin cancer. In this study 24 patients at Valle Marina Treatment Center in Gran Canaria were monitored throughout a treatment period of three weeks starting at the beginning of November. The total UV dose to the location was monitored by UV-meters placed on the roof of the treatment centere, and the patients wore individual film dosimeters throughout the treatment period. Skin parameters were accessed by reflection spectroscopy (400-850nm). This paper presents preliminary findings from the skin measurements in the visible part of the spectrum, such as blood oxygenation, erythema and melanin indexes. Reflection spectroscopy was found to be a good tool for such treatment monitoring.

  6. Low-Dose Nonlinear Effects of Smoking on Coronary Heart Disease Risk

    PubMed Central

    Cox, Louis Anthony (Tony)

    2012-01-01

    Some recent discussions of adverse human health effects of active and passive smoking have suggested that low levels of exposure are disproportionately dangerous, so that “The effects of even brief (minutes to hours) passive smoking are often nearly as large (averaging 80% to 90%) as chronic active smoking” (Barnoya and Glantz, 2005). Recent epidemiological evidence (Teo et al., 2006) suggests a more linear relation. This paper reexamines the empirical relation between self-reported low levels of active smoking and risk of coronary heart disease (CHD) in public-domain data from the National Health and Nutrition Examination Survey (NHANES). Consistent with biological evidence on J-shaped and U-shaped relations between smoking-associated risk factors and CHD risks, we find that low levels of active smoking do not appear to be associated with increased CHD risk. Several methodological challenges in epidemiology may explain how model-derived estimates can predict low-dose linear or concave dose-response estimates, even if the empirical (i.e., data-based) relation does not show a clear increased risk at the lowest doses. PMID:22740784

  7. The effect of gravity level on the average primary dendritic spacing of a directionally solidified superalloy

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.; Lee, J. E.; Curreri, P. A.

    1986-01-01

    The effect of alternating low (0.01 g) and high (1.8 g) gravity force on the primary spacings in the dendrite structure in a directionally solidified Ni-based superalloy (PWA 1480, containing 5 pct Co, 10 pct Cr, 4 pct W, 12 pct Ta, 5 pct Al, 1.5 pct Ti, and the balance Ni) was investigated using samples solidified in a directional solidification furnace aboard the NASA KC-135 aircraft that made a series of low-g parabolas. The cross-section slices for each growth rate were polished and etched with Kallings II, and the primary dendritic arm spacings were measured using the method of Jacobi and Schwerdtfeger (1976). The arm spacings were found to fluctuate with gravity force, increasing as the gravity level decreased, and growing finer as gravity increased.

  8. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    NASA Astrophysics Data System (ADS)

    Wielandts, J.-Y.; Smans, K.; Ector, J.; De Buck, S.; Heidbüchel, H.; Bosmans, H.

    2010-02-01

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 ± 1.4 mSv according to ICRP 60 and 6.6 ± 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  9. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in x-ray computed tomography

    SciTech Connect

    Straten, Marcel van; Deak, Paul; Shrimpton, Paul C.; Kalender, Willi A.

    2009-11-15

    account. In the head, neck, thorax, and upper abdominal regions, conversion coefficients changed similarly by only 5% or less. Conversion coefficients for estimating effective doses for scans of complete regions, e.g., chest or abdomen, were approximately 8% lower when taking angular and longitudinal TCMs into account. Conclusions: The authors conclude that for accurate organ and effective dose estimates in individual cross sections in the shoulder or pelvic regions, the angular tube current modulation should be taken into account. In general, using the average of the modulated tube current causes an overestimation of the effective dose.

  10. Prediction of the effectiveness of long term β blocker treatment for dilated cardiomyopathy by signal averaged electrocardiography

    PubMed Central

    Yamada, T; Fukunami, M; Shimonagata, T; Kumagai, K; Kim, J; Sanada, S; Ogita, H; Hori, M; Hoki, N

    1998-01-01

    Objective—To determine whether the effectiveness of long term β blocker treatment for idiopathic dilated cardiomyopathy can be predicted by signal averaged electrocardiography (ECG).
Patients—31 patients with dilated cardiomyopathy and without bundle branch block were included in a retrospective study and 16 in a prospective study.
Methods—A signal averaged ECG was recorded before β blocker treatment, and three variables were measured from the vector magnitude: QRS duration, root mean square voltage for the last 40 ms (RMS40), and duration of the terminal low amplitude signals (< 40 µV) (LAS40). In the retrospective study, these variables were compared among good responders (showing ⩾ 0.10 increase in ejection fraction 12 months after start of β blocker treatment) and poor responders without such improvement. The validity of the signal averaged ECG criteria for prediction of the response to β blocker treatment was examined in the prospective study.
Results—In the retrospective study, good responders (n = 16) had a shorter QRS duration (mean (SD): 122.9 (11) v 138 (14.4) ms, p < 0.005) and LAS40 (33.1 (8.9) v 42.5 (7.8) ms, p < 0.005), and a higher RMS40 (31.6 (16.3) v 19.0 (10.3) µV, p < 0.02) than poor responders (n = 15). Signal averaged ECG criteria for good response were defined as two or more of the following: QRS duration < 130 ms, RMS40 > 20 µV, LAS40 < 40 ms (sensitivity 81%, specificity 73%). In the prospective study, six of seven patients who met these criteria showed a good response to the β blocker treatment, while eight of nine who did not showed a poor response (χ2 = 6.1, p < 0.02). The signal averaged ECG criteria gave a sensitivity of 86% and a specificity of 89% for predicting the effectiveness of β blocker treatment.
Conclusions—A signal averaged ECG might be useful in predicting the effectiveness of β blocker treatment for dilated cardiomyopathy.

 Keywords: signal

  11. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack.

  12. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  13. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Survey on low-dose medical radiation exposure in occupational workers: the effect on hematological change

    NASA Astrophysics Data System (ADS)

    Ryu, J. K.; Cho, S. M.; Cho, J. H.; Dong, K. R.; Chung, W. K.; Lee, J. W.

    2013-03-01

    This study examined the changes in the hematological index caused by low-dose medical radiation exposure in workers in a medical radiation-exposed environment. The cumulative dose was obtained using thermoluminescent dosimeters over a 9-year period, and the changes in hematological index count (red blood cells (RBCs), hemoglobin, platelets, white blood cells (WBCs), monocytes, lymphocytes, neutrophils, basophils, and eosinophils) were examined in both the occupational workers and controls. In total, 370 occupational workers and 335 controls were compared. The analysis led to the following observations: (1) The average cumulative dose in males and females was 9.65±15.2 and 4.82±5.55 mSv, respectively. (2) In both males and females, there was a very low correlation between the occupation period and the cumulative dose (r<±0.25). (3) When the occupation period was longer, the WBC counts both decreased and increased in the male workers and the RBC counts were lower in the workers than in the control group (p<0.05). In females, the WBC counts both decreased and increased in the workers and the eosinophil counts were lower in the workers than in the control group (p<0.01). (4) When the cumulative dose was large, the lymphocyte counts decreased in male workers and the platelet count was lower in the workers than in the control group (p<0.05). In females, the lymphocyte count and RBC count were lower in the workers than in the control group (p<0.05). Abnormal distributions of some blood indices were observed in the occupational radiation workers compared with the controls. Attempts were made to limit radiation exposure to personnel, but the employees did not always follow the preset rules. Actually, the adverse effects of low-level radiation were attributed to probability. Overall, workers should obey the radiation protection regulations provided by the government and a national system of radiation protection is needed.

  15. Chemotherapy of onchocerciasis with high doses of diethylcarbamazine or a single dose of ivermectin: microfilaria levels and side effects.

    PubMed

    Albiez, E J; Newland, H S; White, A T; Kaiser, A; Greene, B M; Taylor, H R; Büttner, D W

    1988-03-01

    Fifty adult male subjects with moderate to heavy onchocerciasis from the Liberian rain forest were selected for a double-blind placebo-controlled chemotherapy study. The effects of high doses of diethylcarbamazine (DEC) - 30 mg/kg/d - over one week preceded by a one week initial treatment with normal oral doses of DEC or DEC lotion were compared with a single dose of ivermectin (150 micrograms/kg) and placebo. During the initial treatment DEC tablets or lotion caused distinctly more frequent and severe reactions than did invermectin. The reactions to ivermectin did not differ from those of the placebo patients. High doses of DEC caused, in about half of the patients, headache, dizziness, nausea or vomiting. DEC markedly increased the number of corneal microfilariae and of corneal opacities compared to ivermectin. All changes resolved with a return to pretreatment findings two months after treatment. The three treatment groups showed no differences at the ten months follow-up. In all treated patients skin microfilaria counts fell almost to zero by the end of the two week therapy. In the ivermectin group microfilaria counts remained significantly lower than in the DEC patients at the two and ten months examinations. In summary, ivermectin was much better tolerated than DEC and had a longer lasting effect on the microfilariae in the skin. Since high doses of DEC were less effective and caused more frequent and severe side effects, this approach cannot be recommended for treatment of onchocerciasis.

  16. Resource Letter EIRLD-1: Effects of ionizing radiation at low doses

    NASA Astrophysics Data System (ADS)

    Wilson, Richard

    1999-05-01

    This Resource Letter provides a guide to the literature on the effects of ionizing radiation on people at low doses. Journal articles, books, and web pages are provided for the following: data at high dose levels, effects of moderate to high doses (leukemia, solid cancer, lung cancer, childhood cancer and noncancer outcomes), effects of dose rate, relationship to background, supra linearity and homesis, and policy implications.

  17. Resource Letter EIRLD-2: Effects of Ionizing Radiation at Low Doses

    NASA Astrophysics Data System (ADS)

    Wilson, Richard

    2012-04-01

    This Resource Letter provides a guide to the literature on the effects of ionizing radiation on people at low doses. Journal articles, books and web pages are provided for the following: data at high dose levels, effects of moderate to high doses (leukemia, solid cancer, lung cancer, childhood cancer, and non-cancer outcomes), effects of dose rate, relationship to background, supra linearity and hormesis, and policy implications.

  18. The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations

    SciTech Connect

    Tzedakis, A.; Damilakis, J.; Perisinakis, K.; Stratakis, J.; Gourtsoyiannis, N.

    2005-06-15

    z overscanning in multidetector (MD) helical CT scanning is prerequisite for the interpolation of acquired data required during image reconstruction and refers to the exposure of tissues beyond the boundaries of the volume to be imaged. The aim of the present study was to evaluate the effect of z overscanning on the patient effective dose from helical MD CT examinations. The Monte Carlo N-particle radiation transport code was employed in the current study to simulate CT exposure. The validity of the Monte Carlo simulation was verified by (a) a comparison of calculated and measured standard computed tomography dose index (CTDI) dosimetric data, and (b) a comparison of calculated and measured dose profiles along the z axis. CTDI was measured using a pencil ionization chamber and head and body CT phantoms. Dose profiles along the z axis were obtained using thermoluminescence dosimeters. A commercially available mathematical anthropomorphic phantom was used for the estimation of effective doses from four standard CT examinations, i.e., head and neck, chest, abdomen and pelvis, and trunk studies. Data for both axial and helical modes of operation were obtained. In the helical mode, z overscanning was taken into account. The calculated effective dose from a CT exposure was normalized to CTDI{sub freeinair}. The percentage differences in the normalized effective dose between contiguous axial and helical scans with pitch=1, may reach 13.1%, 35.8%, 29.0%, and 21.5%, for head and neck, chest, abdomen and pelvis, and trunk studies, respectively. Given that the same kilovoltage and tube load per rotation were used in both axial and helical scans, the above differences may be attributed to z overscanning. For helical scans with pitch=1, broader beam collimation is associated with increased z overscanning and consequently higher normalized effective dose value, when other scanning parameters are held constant. For a given beam collimation, the selection of a higher value of

  19. CMOS inverter design-hardened to the total dose effect

    SciTech Connect

    Roche, F.M.; Salager, L.

    1996-12-01

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to {sup 60}Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption.

  20. Total effective dose equivalent associated with fixed uranium surface contamination

    SciTech Connect

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm{sup 2} and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels.

  1. Dose-dependent effects of atorvastatin on myocardial infarction

    PubMed Central

    Barbarash, Olga; Gruzdeva, Olga; Uchasova, Evgenya; Belik, Ekaterina; Dyleva, Yulia; Karetnikova, Victoria

    2015-01-01

    Background Dyslipidemia is a key factor determining the development of both myocardial infarction (MI) and its subsequent complications. Dyslipidemia is associated with endothelial dysfunction, activation of inflammation, thrombogenesis, and formation of insulin resistance. Statin therapy is thought to be effective for primary and secondary prevention of complications associated with atherosclerosis. Methods This study examined 210 patients with Segment elevated MI (ST elevated MI) who were treated with atorvastatin from the first 24 hours after MI. Group 1 (n=110) were given atorvastatin 20 mg/day. Group 2 (n=100) were given atorvastatin 40 mg/day. At days 1 and 12 after MI onset, insulin resistance levels determined by the homeostasis model assessment of insulin resistance index, lipid profiles, and serum glucose, insulin, adipokine, and ghrelin levels were measured. Results Free fatty acid levels showed a sharp increase during the acute phase of MI. Treatment with atorvastatin 20 mg/day, and especially with 40 mg/day, resulted in a decrease in free fatty acid levels. The positive effect of low-dose atorvastatin (20 mg/day) is normalization of the adipokine status. Administration of atorvastatin 20 mg/day was accompanied with a statistically significant reduction in glucose levels (by 14%) and C-peptide levels (by 38%), and a decrease in the homeostasis model assessment of insulin resistance index on day 12. Conclusion Determination of atorvastatin dose and its use during the in-hospital period and subsequent periods should take into account changes in biochemical markers of insulin resistance and adipokine status in patients with MI. PMID:26170622

  2. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems.

    PubMed

    Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-21

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  3. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  4. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  5. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI).

  6. Lifetime exposure to low doses of lead in rats: effect on selected parameters of carbohydrate metabolism.

    PubMed

    Nováková, Jaroslava; Lukačínová, Agnesa; Lovásová, Eva; Cimboláková, Iveta; Rácz, Oliver; Ništiar, František

    2015-05-01

    The aim of the study was to assess the effects of exposure to low doses of lead dissolved in drinking water (average daily dose of 2.2 mg kg(-1) day(-1)) on selected carbohydrate metabolism parameters in 20 wistar rats. Animals were divided into two groups - control (C) (group drinking clear water) and experimental group (Pb; group exposed to low doses of lead acetate in a concentration of 100 μmol l(-1) of drinking water). In this study, we studied the biochemical parameters (glucose, haemoglobin (Hb), glycated haemoglobin (HbA1c), lactate dehydrogenase (LDH) and amylase (AMS)) in rat blood. Glucose and Hb concentration and AMS activity decreased, LDH activity increased but HbA1c concentration levels did not change in rats exposed to lead. Our results well documented that lifetime exposure to lead affected carbohydrate metabolism of rats. Some parameters like concentration of Hb as well as activities of AMS and LDH are useful markers of intoxication of rats with lead. For the evaluation of results (e.g. AMS), not only the data at the end of the experiment should be taken into account but also the entire duration of trials (i.e. more time steps) that makes results more objective should be considered.

  7. Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system.

    PubMed

    Kantawanichkul, Suwasa; Boontakhum, Walaya

    2012-01-01

    In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.

  8. Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system.

    PubMed

    Kantawanichkul, Suwasa; Boontakhum, Walaya

    2012-01-01

    In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency. PMID:22828298

  9. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  10. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  11. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  12. Estimation of Nuclear Reaction Effects in Proton-Tissue-Dose Calculations.

    1983-01-14

    Version 00 REPC reviews calculational methods for the estimation of dose from external proton exposure of arbitrary convex bodies and presents the necessary information for the estimation of dose in soft tissue. The effects of nuclear reactions, especially in relation to the dose equivalent, are retained. REPC subroutines can be used to convert existing computer programs which neglect nuclear reaction effects to include them.

  13. 210Pb and 210Po concentrations in Italian cigarettes and effective dose evaluation.

    PubMed

    Taroni, Mattia; Zagà, Vincenzo; Bartolomei, Paolo; Gattavecchia, Enrico; Pacifici, Roberta; Zuccaro, Piergiorgio; Esposito, Massimo

    2014-09-01

    It has been known for a long time that cigarette tobacco contains naturally occurring radioactive nuclides such as 210Pb and 210Po. In this study, the concentrations of 210Pb and 210Po in the 10 most widely sold cigarette brands in Italy during the year 2010 were measured, and the effective dose to smokers has been calculated. The results of this study show that 210Pb concentration ranged from 11.6 to 20.0 mBq cig-1 with an arithmetic mean of 14.6 mBq cig-1, while the activity concentration of 210Po ranged from 13.1 to 19.0 mBq cig-1 with an arithmetic mean of 15.7 mBq cig-1, thus confirming previous results and showing that the radioactivity concentration was not reduced in the last few years. The annual effective dose for a typical smoker consuming 20 cigarettes per day ranged from an average of 55 μSv y-1 to about 81 μSv y-1. It is finally put in evidence the need to improve the knowledge about crucial data needed for accurate dose assessment deriving from the inhalation of both radioisotopes contained in the cigarettes, namely the dose conversion coefficients, which strongly depend on several parameters such as the inhalation speed through the mouth, the real fraction of radionuclide transferred from cigarette to mainstream smoke, the lung absorption behavior of the radioisotopes inhaled with mainstream smoke, and the AMAD of particles inhaled by smokers.

  14. Hearing Loss After Radiotherapy for Pediatric Brain Tumors: Effect of Cochlear Dose

    SciTech Connect

    Hua, Chiaho Bass, Johnnie K.; Khan, Raja; Kun, Larry E.; Merchant, Thomas E.

    2008-11-01

    Purpose: To determine the effect of cochlear dose on sensorineural hearing loss in pediatric patients with brain tumor treated by using conformal radiation therapy (CRT). Patients and Methods: We studied 78 pediatric patients (155 ears) with localized brain tumors treated in 1997-2001 who had not received platinum-based chemotherapy and were followed up for at least 48 months. They were evaluated prospectively by means of serial pure-tone audiograms (250 Hz-8 kHz) and/or auditory brainstem response before and every 6 months after CRT. Results: Hearing loss occurred in 14% (11 of 78) of patients and 11% (17 of 155) of cochleae, with onset most often at 3-5 years after CRT. The incidence of hearing loss was low for a cochlear mean dose of 30 Gy or less and increased at greater than 40-45 Gy. Risk was greater at high frequencies (6-8 kHz). In children who tested abnormal for hearing, average hearing thresholds increased from a less than 25 decibel (dB) hearing level (HL) at baseline to a mean of 46 {+-} 13 (SD) dB HL for high frequencies, 41 {+-} 7 dB HL for low frequencies, and 38 {+-} 6 dB HL for intermediate frequencies. Conclusions: Sensorineural hearing loss is a late effect of CRT. In the absence of other factors, including ototoxic chemotherapy, increase in cochlear dose correlates positively with hearing loss in pediatric patients with brain tumor. To minimize the risk of hearing loss for children treated with radiation therapy, a cumulative cochlear dose less than 35 Gy is recommended for patients planned to receive 54-59.4 Gy in 30-33 treatment fractions.

  15. 210Pb and 210Po concentrations in Italian cigarettes and effective dose evaluation.

    PubMed

    Taroni, Mattia; Zagà, Vincenzo; Bartolomei, Paolo; Gattavecchia, Enrico; Pacifici, Roberta; Zuccaro, Piergiorgio; Esposito, Massimo

    2014-09-01

    It has been known for a long time that cigarette tobacco contains naturally occurring radioactive nuclides such as 210Pb and 210Po. In this study, the concentrations of 210Pb and 210Po in the 10 most widely sold cigarette brands in Italy during the year 2010 were measured, and the effective dose to smokers has been calculated. The results of this study show that 210Pb concentration ranged from 11.6 to 20.0 mBq cig-1 with an arithmetic mean of 14.6 mBq cig-1, while the activity concentration of 210Po ranged from 13.1 to 19.0 mBq cig-1 with an arithmetic mean of 15.7 mBq cig-1, thus confirming previous results and showing that the radioactivity concentration was not reduced in the last few years. The annual effective dose for a typical smoker consuming 20 cigarettes per day ranged from an average of 55 μSv y-1 to about 81 μSv y-1. It is finally put in evidence the need to improve the knowledge about crucial data needed for accurate dose assessment deriving from the inhalation of both radioisotopes contained in the cigarettes, namely the dose conversion coefficients, which strongly depend on several parameters such as the inhalation speed through the mouth, the real fraction of radionuclide transferred from cigarette to mainstream smoke, the lung absorption behavior of the radioisotopes inhaled with mainstream smoke, and the AMAD of particles inhaled by smokers. PMID:25068956

  16. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study123

    PubMed Central

    Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; Most, Marlene M; Ma, Lina; Ostlund, Richard E

    2010-01-01

    Background: Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain. Objective: We evaluated the effects of 3 phytosterol intakes on whole-body cholesterol metabolism. Design: In this placebo-controlled, crossover feeding trial, 18 adults received a phytosterol-deficient diet (50 mg phytosterols/2000 kcal) plus beverages supplemented with 0, 400, or 2000 mg phytosterols/d for 4 wk each, in random order. All meals were prepared in a metabolic kitchen; breakfast and dinner on weekdays were eaten on site. Primary outcomes were fecal cholesterol excretion and intestinal cholesterol absorption measured with stable-isotope tracers and serum lipoprotein concentrations. Results: Phytosterol intakes (diet plus supplements) averaged 59, 459, and 2059 mg/d during the 3 diet periods. Relative to the 59-mg diet, the 459- and 2059-mg phytosterol intakes significantly (P < 0.01) increased total fecal cholesterol excretion (36 ± 6% and 74 ± 10%, respectively) and biliary cholesterol excretion (38 ± 7% and 77 ± 12%, respectively) and reduced percentage intestinal cholesterol absorption (−10 ± 1% and −25 ± 3%, respectively). Serum LDL cholesterol declined significantly only with the highest phytosterol dose (−8.9 ± 2.3%); a trend was observed with the 459-mg/d dose (−5.0 ± 2.1%; P = 0.077). Conclusions: Dietary phytosterols in moderate and high doses favorably alter whole-body cholesterol metabolism in a dose-dependent manner. A moderate phytosterol intake (459 mg/d) can be obtained in a healthy diet without supplementation. This trial was registered at clinicaltrials.gov as NCT00860054. PMID:19889819

  17. Effect of average flow and capacity utilization on effluent water quality from US municipal wastewater treatment facilities.

    PubMed

    Weirich, Scott R; Silverstein, Joann; Rajagopalan, Balaji

    2011-08-01

    There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m³/d) had violation rates greater than 10 times that of the largest facilities (400,000 m³/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m³/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency.

  18. The difference between laboratory and in-situ pixel-averaged emissivity: The effects on temperature-emissivity separation

    NASA Technical Reports Server (NTRS)

    Matsunaga, Tsuneo

    1993-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a Japanese future imaging sensor which has five channels in thermal infrared (TIR) region. To extract spectral emissivity information from ASTER and/or TIMS data, various temperature-emissivity (T-E) separation methods have been developed to date. Most of them require assumptions on surface emissivity, in which emissivity measured in a laboratory is often used instead of in-situ pixel-averaged emissivity. But if these two emissivities are different, accuracies of separated emissivity and surface temperature are reduced. In this study, the difference between laboratory and in-situ pixel-averaged emissivity and its effect on T-E separation are discussed. TIMS data of an area containing both rocks and vegetation were also processed to retrieve emissivity spectra using two T-E separation methods.

  19. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    SciTech Connect

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K.S. Clifford; Nam, Jiho; Eisbruch, Avraham

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.

  20. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    PubMed Central

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K. S. Clifford; Nam, Jiho; Eilsbruch, Avraham

    2013-01-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than ≈20 Gy or if both glands are spared to less than ≈25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk. PMID:20171519

  1. Effect of jaw size in megavoltage CT on image quality and dose

    SciTech Connect

    Jung, Jae Hong; Cho, Kwang Hwan; Kim, Yong Ho; Moon, Seong Kwon; Min, Chul Kee; Kim, Woo Chul; Kim, Eun Seog; Chang, Ah Ram; Kim, Tae Ho; Yoon, Jai-Woong; Suh, Tae-Suk; Huh, Hyun Do

    2012-08-15

    Purpose: Recently, the jaw size for the TomoTherapy Hi-Art II{sup Registered-Sign} (TomoTherapy Inc., Madison, WI) was reduced from 4 mm (J4) to 1 mm (J1) to improve the longitudinal (IEC-Y) resolution in megavoltage computed tomography (MVCT) images. This study evaluated the effect of jaw size on the image quality and dose, as well as the dose delivered to the lens of the eye, which is a highly radiosensitive tissue. Methods: MVCT image quality (image noise, uniformity, contrast linearity, high-contrast resolution, and full width at half-maximum) and multiple scan average dose (MSAD) were measured at different jaw sizes. A head phantom and photoluminescence glass dosimeters (PLDs) were used to measure the exposed lens dose (cGy). Different MVCT scan modes (pitch = 1, 2, and 3) and scan lengths (108 mm, 156 mm, and 204 mm) were applied in the MSAD and PLDs measurements. Results: The change in jaw size from J4 to J1 produced no change or only a slight improvement in image noise, uniformity, contrast linearity, and high-contrast resolution. However, the full-width at half-maximum reduced from approximately 7.2 at J4 to 4.5 mm at J1, which represents an enhancement in the longitudinal resolution. The MSAD at the center point changed from approximately 0.69-2.32 cGy (peripheral: 0.83-2.49 cGy) at J4 to 0.85-2.81 cGy (peripheral: 1.05-2.86 cGy) at J1. The measured lens dose increased from 0.92-3.36 cGy at J4 to 1.06-3.91 cGy at J1. Conclusions: The change in jaw size improved longitudinal resolution. The MVCT imaging dose of approximately 3.86 cGy, 1.92 cGy, and 1.22 cGy was delivered at a pitch of 1, 2, and 3, respectively, per fraction in the head and neck treatment plans. Therefore, allowance for an approximately 15% increase in lens dose over that with J4 should be provided with J1.

  2. Pharmacodynamic effects of standard dose prasugrel versus high dose clopidogrel in non-diabetic obese patients with coronary artery disease.

    PubMed

    Darlington, Andrew; Tello-Montoliu, Antonio; Rollini, Fabiana; Ueno, Masafumi; Ferreiro, José Luis; Patel, Ronakkumar; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2014-02-01

    Increased body weight is independently associated with impaired clopidogrel pharmacodynamic (PD) response. Prasugrel has more potent PD effects compared with clopidogrel, although its PD effects in obese patients are unknown. The aim of this prospective, randomised, study was to compare the PD effects of standard-dose prasugrel [60 mg loading dose (LD)/10 mg daily maintenance dose (MD)] with high-dose clopidogrel (900 mg LD/150 mg daily MD) in non-diabetic obese [body mass index (BMI) ≥30 kg/m²] patients, with coronary artery disease (CAD) on aspirin therapy. PD assessments (baseline, 2 hours post-LD and 6 ± 2 days after MD) were conducted using four platelet function assays, and the platelet reactivity index (PRI) assessed by VASP was used for sample size estimation. A total of 42 patients with a BMI of 36.42 ± 5.6 kg/m² completed the study. There were no differences in baseline PD measures between groups. At 2 hours post-LD, prasugrel was associated with lower PRI compared with clopidogrel (24.3 ± 5.5 vs 58.7 ± 5.7, p≤0.001), with consistent findings for all assays. At one-week, PRI values on prasugrel MD were lower than clopidogrel MD without reaching statistical significance (34.7 ± 5.8 vs 42.9 ± 5.8, p=0.32), with consistent findings for all assays. Accordingly, rates of high on-treatment platelet reactivity were markedly reduced after prasugrel LD, but not after MD. In conclusion, in non-diabetic obese patients with CAD, standard prasugrel dosing achieved more potent PD effects than high-dose clopidogrel in the acute phase of treatment, but this was not sustained during maintenance phase treatment. Whether an intensified prasugrel regimen is required in obese patients warrants investigation.

  3. Dose-dependent effects of tryptophan on learning and memory.

    PubMed

    Ikram, Huma; Mushtaq, Foqia; Haleem, Darakhshan Jabeen

    2014-09-01

    The concentration of 5-hydroxytryptamine (5-HT, Serotonin) varies as a result of physiological changes in the availability of its precursor tryptophan to the serotonergic neurons in the brain. Increase in brain tryptophan occurs following an increase in plasma tryptophan concentration. Tryptophan intake increases brain serotonin metabolism and enhances memory. The Present study was designed to investigate the effects of oral administration of tryptophan (TRP) at different doses (100, 300 and 500mg/kg) for two weeks on learning and memory functions and Neurochemical changes in rats. Control rats were given drinking water. Assessment of memory in rats was done by using the water Maze. on the 14th day trail training of water Maze was given to rats and after 1h of this 2nd trial of these rats were done. On the next day (After 24h of trail) long-term memories of these rats were monitored. After 1 hour of this all rats were killed by decapitation using guillotine. Brain and blood was collected and stored at -70°C. Neurochemical estimations of Plasma and brain tryptophan, 5-HT and 5-HIAA in brain were made by HPLC-EC. Result showed that administration of tryptophan enhanced performance on water Maze test. Tryptophan treated animals exhibited higher level of Plasma as well as brain tryptophan. 5-HT and 5-HIAA levels were also increased in tryptophan treated rats. Findings are discussed in context with the role of 5-HT metabolism in learning and memory process in rats. Results may help to understand the 5-HT changes following long term TRP administration in a dose dependent manner and will help to suggest the use of TRP in serotonin related illnesses.

  4. Dosimetry for quantitative analysis of the effects of low-dose ionizing radiation in radiation therapy patients.

    PubMed

    Lehmann, Joerg; Stern, Robin L; Daly, Thomas P; Rocke, David M; Schwietert, Chad W; Jones, Gregory E; Arnold, Michelle L; Siantar, Christine L Hartmann; Goldberg, Zelanna

    2006-02-01

    We have developed and validated a practical approach to identifying the location on the skin surface that will receive a prespecified biopsy dose (ranging down to 1 cGy) in support of in vivo biological dosimetry in humans. This represents a significant technical challenge since the sites lie on the patient's surface outside the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery, and TLDs were used for validation on phantoms and for confirmation during patient treatment. In the developmental studies, the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% (of the local dose) for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1-cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real-world challenges. Since the 10-cGy point is situated in the region of high-dose gradient at the edge of the field, patient motion had a greater effect, and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6-mm shift on the patient's surface. PMID:16435922

  5. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  6. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium.

    PubMed

    Vranckx, Stijn; Vos, Peter; Maiheu, Bino; Janssen, Stijn

    2015-11-01

    Effects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons. The impact of trees is simulated for a variety of vegetation types and the full range of approaching wind directions at 15° interval. All these results are combined using meteo statistics, including effects of seasonal leaf loss, to determine the annual average effect of trees in street canyons. This analysis is performed for two pollutants, elemental carbon (EC) and PM10, using background concentrations and emission strengths for the city of Antwerp, Belgium. The results show that due to the presence of trees the annual average pollutant concentrations increase with about 8% (range of 1% to 13%) for EC and with about 1.4% (range of 0.2 to 2.6%) for PM10. The study indicates that this annual effect is considerably smaller than earlier estimates which are generally based on a specific set of governing conditions (1 wind direction, full leafed trees and peak hour traffic emissions).

  7. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  8. Effect of lung and target density on small-field dose coverage and PTV definition

    SciTech Connect

    Higgins, Patrick D. Ehler, Eric D.; Cho, Lawrence C.; Dusenbery, Kathryn E.

    2015-04-01

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy was delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.

  9. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  10. Measurements of dose from secondary radiation outside a treatment field: effects of wedges and blocks

    SciTech Connect

    Sherazi, S.; Kase, K.R.

    1985-12-01

    Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest in estimating organ doses. In a previous paper we reported the results of measurements made using unmodified radiation fields. We have extended this study to include the effects of wedge filters and blocks. For a given dose on the central axis of a radiation field, wedges can cause a factor of 2 to 4 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge, and generally less than a factor of 2. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  11. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-01

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications. PMID:26437746

  12. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-01

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.

  13. Statistical mechanics of the ``Chinese restaurant process'': Lack of self-averaging, anomalous finite-size effects, and condensation

    NASA Astrophysics Data System (ADS)

    Bassetti, Bruno; Zarei, Mina; Cosentino Lagomarsino, Marco; Bianconi, Ginestra

    2009-12-01

    The Pitman-Yor, or Chinese restaurant process, is a stochastic process that generates distributions following a power law with exponents lower than 2, as found in numerous physical, biological, technological, and social systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this process invariably gives rise to a condensation, i.e., a distribution dominated by a finite number of classes. We also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other statistical mechanical models.

  14. Statistical mechanics of the "Chinese restaurant process": lack of self-averaging, anomalous finite-size effects, and condensation.

    PubMed

    Bassetti, Bruno; Zarei, Mina; Cosentino Lagomarsino, Marco; Bianconi, Ginestra

    2009-12-01

    The Pitman-Yor, or Chinese restaurant process, is a stochastic process that generates distributions following a power law with exponents lower than 2, as found in numerous physical, biological, technological, and social systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this process invariably gives rise to a condensation, i.e., a distribution dominated by a finite number of classes. We also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other statistical mechanical models.

  15. Raising the Minimum Effective Dose of Serotonin Reuptake Inhibitor Antidepressants: Adverse Drug Events.

    PubMed

    Safer, Daniel J

    2016-10-01

    This review focuses on the dose-response of serotonin reuptake inhibitor (SRI) antidepressants for efficacy and for adverse drug events (ADEs). Dose-response is identified by placebo-controlled, double-blind, fixed-dose clinical trials comparing various doses for efficacy and for ADEs. Reports from the great majority of clinical trials have consistently found that the minimum SRI effective dose is usually optimal for efficacy in the treatment of depression disorders, even though most American medical practitioners raise the dose when early antidepressant treatment results are negative or partial. To better understand this issue, the medical literature was comprehensively reviewed to ascertain the degree to which SRI medications resulted in a flat dose response for efficacy and then to identify specific ADEs that are dose-dependent. Strong evidence from fixed-dose trial data for the efficacy of nonascendant, minimum effective doses of SRIs was found for the treatment of both major depression and anxiety disorders. Particularly important was the finding that most SRI ADEs have an ascending dose-response curve. These ADEs include sexual dysfunction, hypertension, cardiac conduction risks, hyperglycemia, decreased bone density, sweating, withdrawal symptoms, and agitation. Thus, routinely raising the SRI dose above the minimum effective dose for efficacy can be counter-productive. PMID:27518478

  16. The total ionizing dose effect in 12-bit, 125 MSPS analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Xue, Wu; Wu, Lu; Yudong, Li; Qi, Guo; Xin, Wang; Xingyao, Zhang; Xin, Yu; Wuying, Ma

    2014-04-01

    This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.

  17. A statistical study of gyro-averaging effects in a reduced model of drift-wave transport

    NASA Astrophysics Data System (ADS)

    da Fonseca, J. D.; del-Castillo-Negrete, D.; Sokolov, I. M.; Caldas, I. L.

    2016-08-01

    A statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic drift-waves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K0, becomes K0J0(ρ ̂ ) , where J0 is the zeroth-order Bessel function and ρ ̂ is the Larmor radius. Assuming a Maxwellian probability density function (pdf) for ρ ̂ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturbation amplitude K0J0(ρ ̂ ) . Using these results, we compute the probability of loss of confinement (i.e., global chaos), Pc, and the probability of trapping in the main drift-wave resonance, Pt. It is shown that Pc provides an upper bound for the escape rate, and that Pt provides a good estimate of the particle trapping rate. The analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.

  18. Scaling effects in area-averaged values of two-band spectral vegetation indices represented in a general form

    NASA Astrophysics Data System (ADS)

    Obata, Kenta; Miura, Tomoaki; Yoshioka, Hiroki

    2012-01-01

    Area-averaged vegetation index (VI) depends on spatial resolution and the computational approach used to calculate the VI from the data. Certain data treatments can introduce scaling effects and a systematic bias into datasets gathered from different sensors. This study investigated the mechanisms underlying the scaling effects of a two-band spectral VI defined in terms of the ratio of two linear sums of the red and near-infrared reflectances (a general form of the two-band VI). The general form of the VI model was linearly transformed to yield a common functional VI form that elucidated the nature of the monotonic behavior. An analytic investigation was conducted in which a two-band linear mixture model was assumed. The trends (increasing or decreasing) in the area-averaged VIs could be explained in terms of a single scalar index, ην, which may be expressed in terms of the spectra of the vegetation and nonvegetation endmembers as well as the coefficients unique to each VI. The maximum error bounds on the scaling effects were derived as a function of the endmember spectra and the choice of VI. The validity of the expressions was explored by conducting a set of numerical experiments that focused on the monotonic behavior and trends in several VIs.

  19. Application of a generalized matrix averaging method for the calculation of the effective properties of thin multiferroic layers

    SciTech Connect

    Starkov, A. S.; Starkov, I. A.

    2014-11-15

    It is proposed to use a generalized matrix averaging (GMA) method for calculating the parameters of an effective medium with physical properties equivalent to those of a set of thin multiferroic layers. This approach obviates the need to solve a complex system of magnetoelectroelasticity equations. The required effective characteristics of a system of multiferroic layers are obtained using only operations with matrices, which significantly simplifies calculations and allows multilayer systems to be described. The proposed approach is applicable to thin-layer systems, in which the total thickness is much less than the system length, radius of curvature, and wavelengths of waves that can propagate in the system (long-wave approximation). Using the GMA method, it is also possible to obtain the effective characteristics of a periodic structure with each period comprising a number of thin multiferroic layers.

  20. Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching.

    PubMed

    Balzer, Laura B; Petersen, Maya L; van der Laan, Mark J

    2016-09-20

    In cluster randomized trials, the study units usually are not a simple random sample from some clearly defined target population. Instead, the target population tends to be hypothetical or ill-defined, and the selection of study units tends to be systematic, driven by logistical and practical considerations. As a result, the population average treatment effect (PATE) may be neither well defined nor easily interpretable. In contrast, the sample average treatment effect (SATE) is the mean difference in the counterfactual outcomes for the study units. The sample parameter is easily interpretable and arguably the most relevant when the study units are not sampled from some specific super-population of interest. Furthermore, in most settings, the sample parameter will be estimated more efficiently than the population parameter. To the best of our knowledge, this is the first paper to propose using targeted maximum likelihood estimation (TMLE) for estimation and inference of the sample effect in trials with and without pair-matching. We study the asymptotic and finite sample properties of the TMLE for the sample effect and provide a conservative variance estimator. Finite sample simulations illustrate the potential gains in precision and power from selecting the sample effect as the target of inference. This work is motivated by the Sustainable East Africa Research in Community Health (SEARCH) study, a pair-matched, community randomized trial to estimate the effect of population-based HIV testing and streamlined ART on the 5-year cumulative HIV incidence (NCT01864603). The proposed methodology will be used in the primary analysis for the SEARCH trial. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching.

    PubMed

    Balzer, Laura B; Petersen, Maya L; van der Laan, Mark J

    2016-09-20

    In cluster randomized trials, the study units usually are not a simple random sample from some clearly defined target population. Instead, the target population tends to be hypothetical or ill-defined, and the selection of study units tends to be systematic, driven by logistical and practical considerations. As a result, the population average treatment effect (PATE) may be neither well defined nor easily interpretable. In contrast, the sample average treatment effect (SATE) is the mean difference in the counterfactual outcomes for the study units. The sample parameter is easily interpretable and arguably the most relevant when the study units are not sampled from some specific super-population of interest. Furthermore, in most settings, the sample parameter will be estimated more efficiently than the population parameter. To the best of our knowledge, this is the first paper to propose using targeted maximum likelihood estimation (TMLE) for estimation and inference of the sample effect in trials with and without pair-matching. We study the asymptotic and finite sample properties of the TMLE for the sample effect and provide a conservative variance estimator. Finite sample simulations illustrate the potential gains in precision and power from selecting the sample effect as the target of inference. This work is motivated by the Sustainable East Africa Research in Community Health (SEARCH) study, a pair-matched, community randomized trial to estimate the effect of population-based HIV testing and streamlined ART on the 5-year cumulative HIV incidence (NCT01864603). The proposed methodology will be used in the primary analysis for the SEARCH trial. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27087478

  2. Apparent absence of a proton beam dose rate effect and possible differences in RBE between Bragg peak and plateau

    SciTech Connect

    Matsuura, Taeko; Egashira, Yusuke; Nishio, Teiji; Matsumoto, Yoshitaka; Wada, Mami; Koike, Sachiko; Furusawa, Yoshiya; Kohno, Ryosuke; Nishioka, Shie; Kameoka, Satoru; Tsuchihara, Katsuya; Kawashima, Mitsuhiko; Ogino, Takashi

    2010-10-15

    Purpose: Respiration-gated irradiation for a moving target requires a longer time to deliver single fraction in proton radiotherapy (PRT). Ultrahigh dose rate (UDR) proton beam, which is 10-100 times higher than that is used in current clinical practice, has been investigated to deliver daily dose in single breath hold duration. The purpose of this study is to investigate the survival curve and relative biological effectiveness (RBE) of such an ultrahigh dose rate proton beam and their linear energy transfer (LET) dependence. Methods: HSG cells were irradiated by a spatially and temporally uniform proton beam at two different dose rates: 8 Gy/min (CDR, clinical dose rate) and 325 Gy/min (UDR, ultrahigh dose rate) at the Bragg peak and 1.75 (CDR) and 114 Gy/min (UDR) at the plateau. To study LET dependence, the cells were positioned at the Bragg peak, where the absorbed dose-averaged LET was 3.19 keV/{mu}m, and at the plateau, where it was 0.56 keV/{mu}m. After the cell exposure and colony assay, the measured data were fitted by the linear quadratic (LQ) model and the survival curves and RBE at 10% survival were compared. Results: No significant difference was observed in the survival curves between the two proton dose rates. The ratio of the RBE for CDR/UDR was 0.98{+-}0.04 at the Bragg peak and 0.96{+-}0.06 at the plateau. On the other hand, Bragg peak/plateau RBE ratio was 1.15{+-}0.05 for UDR and 1.18{+-}0.07 for CDR. Conclusions: Present RBE can be consistently used in treatment planning of PRT using ultrahigh dose rate radiation. Because a significant increase in RBE toward the Bragg peak was observed for both UDR and CDR, further evaluation of RBE enhancement toward the Bragg peak and beyond is required.

  3. Effect of dexmedetomidine bolus dose on isoflurane consumption in surgical patients under general anesthesia

    PubMed Central

    Muniyappa, Reshma B.; Rajappa, Geetha C.; Govindswamy, Suresh; Thamanna, Prathima P.

    2016-01-01

    Background and Objective: Various adjuvants have been introduced to decrease the dose of volatile agents and their side effects. Dexmedetomidine a potent alpha-2 adrenoreceptor agonist is one such agent. Our objective is to assess the effect of preanesthetic dexmedetomidine on isoflurane consumption and its effect on intraoperative hemodynamic stability and recovery profile. Setting and Design: This prospective, randomized controlled, double-blind study was done in a tertiary care hospital. Materials and Methods: One hundred patients were randomly allocated into two groups. Group 1 received saline infusion and Group 2 received dexmedetomidine infusion in a dose of 1 μg/kg over 10 min given 15 min before induction. Vital parameters and bispectral index (BIS) values were noted throughout the surgery. Patients were induced and intubated as per the standard protocol and maintained with N2O: O2 = 1:1 mixture at 2 L/min and isoflurane concentration adjusted to achieve BIS values of 45–60. Demographic profile, hemodynamic variables, total isoflurane consumption, and recovery profile data were collected. Statistics: Independent t-test and Mann–Whitney U-test were used to compare the average anesthetic consumption, hemodynamics, and recovery profile between two groups. Results: End-tidal concentration and total isoflurane consumption in Group 2 were 0.56 ± 0.11 and 10.69 ± 3.01 mL, respectively, with P < 0.001 which was statistically significant compared to Group 1 which were 0.76 ± 0.14 and 13.76 ± 3.84 mL. Postintubation and intraoperative mean arterial pressure values were significantly lower in dexmedetomidine group with P < 0.001. Conclusion: Preanesthetic bolus dose of dexmedetomidine is a useful adjuvant to reduce isoflurane consumption. PMID:27746567

  4. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    NASA Technical Reports Server (NTRS)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  5. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  6. Climate Change Effects on Annual Average Concentrations of Fine Particulate Matter (PM2.5) in California

    NASA Astrophysics Data System (ADS)

    Kleeman, M.; Mahmud, A.

    2008-12-01

    California has one of the worst particulate air pollution problems in the nation with some estimates predicting more than 5000 premature deaths each year attributed to air pollution. Climate change will modify weather patterns in California with unknown consequences for PM2.5. Previous down-scaling exercises carried out for the entire United States have typically not resolved the details associated with California's mountain-valley topography and mixture of urban-rural emissions characteristics. Detailed studies carried out for California have identified strong effects acting in opposite directions on PM2.5 concentrations making the net prediction for climate effects on PM2.5 somewhat uncertain. More research is needed to reduce this uncertainty so that we can truly understand climate impacts on PM2.5 and public health. The objective of this research is to predict climate change effects on annual average concentrations of particulate matter (PM2.5) in California with sufficient resolution to capture the details of California's air basins. Business-as-usual scenarios generated by the Parallel Climate Model (PCM) will be down-scaled to 4km meteorology using the Weather Research Forecast (WRF) model. The CIT/UCD source-oriented photochemical air quality model will be employed to predict PM2.5 concentrations throughout the entire state of California. The modeled annual average total and speciated PM2.5 concentrations for the future (2047-2049) and the present-day (2004-2006) periods will be compared to determine climate change effects. The results from this study will improve our understanding of global climate change effects on PM2.5 concentrations in California.

  7. Radiation Dose-Volume Effects in the Heart

    SciTech Connect

    Gagliardi, Giovanna; Constine, Louis S.; Moiseenko, Vitali; Correa, Candace; Pierce, Lori J.; Allen, Aaron M.; Marks, Lawrence B.

    2010-03-01

    The literature is reviewed to identify the main clinical and dose-volume predictors for acute and late radiation-induced heart disease. A clear quantitative dose and/or volume dependence for most cardiac toxicity has not yet been shown, primarily because of the scarcity of the data. Several clinical factors, such as age, comorbidities and doxorubicin use, appear to increase the risk of injury. The existing dose-volume data is presented, as well as suggestions for future investigations to better define radiation-induced cardiac injury.

  8. An angular dependent neutron effective-dose-equivalent dosimeter

    NASA Astrophysics Data System (ADS)

    Veinot, Kenneth Guy

    The effective-dose-equivalent (EDE) is a strong function of angular orientation in a radiation field. Detection systems that attempt to measure the EDE directly would be desirable. Historically, dosimeters have been designed to respond as isotropically as possible in a radiation field. However, since the EDE is strongly dependent upon the incident angle of the radiation, past designs are no longer desirable for personal radiation dosimetry. In addition, the EDE is a function of incident neutron energy. CR-39 foils are commonly used neutron detectors. Neutrons produce tracks in CR-39 (allyl diglycol polycarbonate) detectors over a wide energy range. Through chemical or electrochemical etching, these tracks can be enlarged and counted. From this track count, the fluence of neutrons incident on the CR-39 foils may be inferred. Thermoluminescent dosimeters (TLDs) are another method of neutron detection. Both of these detectors have angular response properties. In the present work, calculations of EDE were compared to calculations and measurements of the angular responses of CR-39 and TLD neutron dosimeters. The measurements used a variety of neutron sources, each with its own characteristic energy spectrum. This research resulted in a neutron personal dosimeter prototype whose angular response properties resembled the angular response of EDE.

  9. Estimation of effective doses to adult and pediatric patients from multislice computed tomography: A method based on energy imparted

    SciTech Connect

    Theocharopoulos, Nicholas; Damilakis, John; Perisinakis, Kostas; Tzedakis, Antonis; Karantanas, Apostolos; Gourtsoyiannis, Nicholas

    2006-10-15

    The purpose of this study is to provide a method and required data for the estimation of effective dose (E) values to adult and pediatric patients from computed tomography (CT) scans of the head, chest abdomen, and pelvis, performed on multi-slice scanners. Mean section radiation dose (d{sub m}) to cylindrical water phantoms of varying radius normalized over CT dose index free-in-air (CTDI{sub F}) were calculated for the head and body scanning modes of a multislice scanner with use of Monte Carlo techniques. Patients were modeled as equivalent water phantoms and the energy imparted ({epsilon}) to simulated pediatric and adult patients was calculated on the basis of measured CTDI{sub F} values. Body region specific energy imparted to effective dose conversion coefficients (E/{epsilon}) for adult male and female patients were generated from previous data. Effective doses to patients aged newborn to adult were derived for all available helical and axial beam collimations, taking into account age specific patient mass and scanning length. Depending on high voltage, body region, and patient sex, E/{epsilon} values ranged from 0.008 mSv/mJ for head scans to 0.024 mSv/mJ for chest scans. When scanned with the same technique factors as the adults, pediatric patients absorb as little as 5% of the energy imparted to adults, but corresponding effective dose values are up to a factor of 1.6 higher. On average, pediatric patients absorb 44% less energy per examination but have a 24% higher effective dose, compared with adults. In clinical practice, effective dose values to pediatric patients are 2.5 to 10 times lower than in adults due to the adaptation of tube current. A method is provided for the calculation of effective dose to adult and pediatric patients on the basis of individual patient characteristics such as sex, mass, dimensions, and density of imaged anatomy, and the technical features of modern multislice scanners. It allows the optimum selection of scanning

  10. Effect of low-dose scopolamine on autonomic control of the heart

    NASA Technical Reports Server (NTRS)

    Raeder, E. A.; Stys, A.; Cohen, R. J.

    1997-01-01

    Background: In low doses, scopolamine paradoxically enhances parasympathetic outflow to the heart. The mechanisms which mediate this action are not fully understood. Moreover, there are conflicting data regarding the potential role of sympathetic activity. This study in 17 healthy individuals was designed to characterize the influence of low dose transdermal scopolamine on the gain of the baroreflex and respiratory heart rate reflex and to determine the role of sympathetic activity. Methods: The effect of scopolamine was analyzed in the time and frequency domain by computing heart rate variability indices. The gains of the respiratory heart rate reflex and the baroreflex were estimated simultaneously by means of a cardiovascular system identification approach using an optimized autoregressive moving average algorithm. Measurements were repeated in the upright posture to assess the influence of enhanced sympathetic activity. In six subjects ambulatory ECGs were recorded to determine whether there are diurnal variations of the effect of scopolamine. Results: Scopolamine enhances vagal modulation of heart rate through both the respiratory-heart rate reflex and the baroreflex, as the gains of both were augmented by the drug in the supine and in the upright postures. Conclusions: Scopolamine increases parasympathetic cardiac control by augmenting the gain of the respiratory-heart rate and baroreflex. This action is not attenuated in the upright posture when sympathetic tone is increased.

  11. The effective dose of different scanning protocols using the Sirona GALILEOS® comfort CBCT scanner

    PubMed Central

    Bohay, R; Kaci, L; Barnett, R; Battista, J

    2015-01-01

    Objectives: To determine the effective dose and CT dose index (CTDI) for a range of imaging protocols using the Sirona GALILEOS® Comfort CBCT scanner (Sirona Dental Systems GmbH, Bensheim, Germany). Methods: Calibrated optically stimulated luminescence dosemeters were placed at 26 sites in the head and neck of a modified RANDO® phantom (The Phantom Laboratory, Greenwich, NY). Effective dose was calculated for 12 different scanning protocols. CTDI measurements were also performed to determine the dose–length product (DLP) and the ratio of effective dose to DLP for each scanning protocol. Results: The effective dose for a full maxillomandibular scan at 42 mAs was 102 ± 1 μSv and remained unchanged with varying contrast and resolution settings. This compares with 71 μSv for a maxillary scan and 76 μSv for a mandibular scan with identical milliampere-seconds (mAs) at high contrast and resolution settings. Conclusions: Changes to mAs and beam collimation have a significant influence on effective dose. Effective dose and DLP vary linearly with mAs. A collimated maxillary or mandibular scan decreases effective dose by approximately 29% and 24%, respectively, as compared with a full maxillomandibular scan. Changes to contrast and resolution settings have little influence on effective dose. This study provides data for setting individualized patient exposure protocols to minimize patient dose from ionizing radiation used for diagnostic or treatment planning tasks in dentistry. PMID:25358865

  12. The effects of repeated low-dose sarin exposure

    SciTech Connect

    Shih, T.-M. . E-mail: tsungming.a.shih@us.army.mil; Hulet, S.W.; McDonough, J.H.

    2006-09-01

    This project assessed the effects of repeated low-dose exposure of guinea pigs to the organophosphorus nerve agent sarin. Animals were injected once a day, 5 days per week (Monday-Friday), for 2 weeks with fractions (0.3x, 0.4x, 0.5x, or 0.6x) of the established LD{sub 5} dose of sarin (42 {mu}g/kg, s.c.). The animals were assessed for changes in body weight, red blood cell (RBC) acetylcholinesterase (AChE) levels, neurobehavioral reactions to a functional observational battery (FOB), cortical electroencephalographic (EEG) power spectrum, and intrinsic acetylcholine (ACh) neurotransmitter (NT) regulation over the 2 weeks of sarin exposure and for up to 12 days postinjection. No guinea pig receiving 0.3, 0.4 or 0.5 x LD{sub 5} of sarin showed signs of cortical EEG seizures despite decreases in RBC AChE levels to as low as 10% of baseline, while seizures were evident in animals receiving 0.6 x LD{sub 5} of sarin as early as the second day; subsequent injections led to incapacitation and death. Animals receiving 0.5 x LD{sub 5} sarin showed obvious signs of cholinergic toxicity; overall, 2 of 13 animals receiving 0.5 x LD{sub 5} sarin died before all 10 injections were given, and there was a significant increase in the angle of gait in the animals that lived. By the 10th day of injection, the animals receiving saline were significantly easier to remove from their cages and handle and significantly less responsive to an approaching pencil and touch on the rump in comparison with the first day of testing. In contrast, the animals receiving 0.4 x LD{sub 5} sarin failed to show any significant reductions in their responses to an approaching pencil and a touch on the rump as compared with the first day. The 0.5 x LD{sub 5} sarin animals also failed to show any significant changes to the approach and touch responses and did not adjust to handling or removal from the cage from the first day of injections to the last day of handling. Thus, the guinea pigs receiving the 0

  13. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique

    SciTech Connect

    Gandhi, Diksha; Schmidt, Taly Gilat; Crotty, Dominic J.; Stevens, Grant M.

    2015-11-15

    Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head

  14. Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method

    NASA Astrophysics Data System (ADS)

    Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia

    2016-11-01

    Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.

  15. Minimum effective doses of mebendazole in treatment of soil-transmitted helminths.

    PubMed

    Nontasut, P; Waikagul, J; Muennoo, C; Sanguankait, S; Nuamtanong, S; Maipanich, W

    1997-06-01

    Three hundred and fifteen primary school children infected with soil-transmitted helminths were divided into 5 groups. Three groups were treated with 25, 50 and 75 mg mebendazole (MBZ) single dose. One group was given MBZ conventional dose of 100 mg twice daily for 3 days and another group was given albendazole (ABZ) standard dose of 400 mg single dose. Every trial lower MBZ dose 75 mg, 50 mg and 25 mg regimen were highly effective against Ascaris lumbricoides but only moderately effective against Trichuris trichiura and Necator americanus.

  16. Radiation Dose-Volume Effects in the Spinal Cord

    SciTech Connect

    Kirkpatrick, John P.; Kogel, Albert J. van der; Schultheiss, Timothy E.

    2010-03-01

    Dose-volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8-2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (alpha/beta = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose-volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.

  17. Effect of skull contours on dose calculations in Gamma Knife Perfexion stereotactic radiosurgery.

    PubMed

    Nakazawa, Hisato; Komori, Masataka; Mori, Yoshimasa; Hagiwara, Masahiro; Shibamoto, Yuta; Tsugawa, Takahiko; Hashizume, Chisa; Kobayashi, Tatsuya

    2014-03-06

    In treatment planning of Leksell Gamma Knife (LGK) radiosurgery, the skull geometry defined by generally dedicated scalar measurement has a crucial effect on dose calculation. The LGK Perfexion (PFX) unit is equipped with a cone-shaped collimator divided into eight sectors, and its configuration is entirely different from previous model C. Beam delivery on the PFX is made by a combination of eight sectors, but it is also mechanically available from one sector with the remaining seven blocked. Hence the treatment time using one sector is more likely to be affected by discrepancies in the skull shape than that of all sectors. In addition, the latest version (Ver. 10.1.1) of the treatment planning system Leksell GammaPlan (LGP) includes a new function to directly generate head surface contouring from computed tomography (CT) images in conjunction with the Leksell skull frame. This paper evaluates change of treatment time induced by different skull models. A simple simulation using a uniform skull radius of 80 mm and anthropomorphic phantom was implemented in LGP to find the trend between dose and skull measuring error. To evaluate the clinical effect, we performed an interobserver comparison of ruler measurement for 41 patients, and compared instrumental and CT-based contours for 23 patients. In the phantom simulation, treatment time errors were less than 2% when the difference was within 3 mm. In the clinical cases, the variability of treatment time induced by the differences in interobserver measurements was less than 0.91%, on average. Additionally the difference between measured and CT-based contours was good, with a difference of -0.16% ± 0.66% (mean ±1 standard deviation) on average and a maximum of 3.4%. Although the skull model created from CT images reduced the dosimetric uncertainty caused by different measurers, these results showed that even manual skull measurement could reproduce the skull shape close to that of a patient's head within an acceptable

  18. Dose-Effect Relationship in Chemoradiotherapy for Locally Advanced Rectal Cancer: A Randomized Trial Comparing Two Radiation Doses

    SciTech Connect

    Jakobsen, Anders; Ploen, John; Vuong, Te; Appelt, Ane; Lindebjerg, Jan; Rafaelsen, Soren R.

    2012-11-15

    Purpose: Locally advanced rectal cancer represents a major therapeutic challenge. Preoperative chemoradiation therapy is considered standard, but little is known about the dose-effect relationship. The present study represents a dose-escalation phase III trial comparing 2 doses of radiation. Methods and Materials: The inclusion criteria were resectable T3 and T4 tumors with a circumferential margin of {<=}5 mm on magnetic resonance imaging. The patients were randomized to receive 50.4 Gy in 28 fractions to the tumor and pelvic lymph nodes (arm A) or the same treatment supplemented with an endorectal boost given as high-dose-rate brachytherapy (10 Gy in 2 fractions; arm B). Concomitant chemotherapy, uftoral 300 mg/m{sup 2} and L-leucovorin 22.5 mg/d, was added to both arms on treatment days. The primary endpoint was complete pathologic remission. The secondary endpoints included tumor response and rate of complete resection (R0). Results: The study included 248 patients. No significant difference was found in toxicity or surgical complications between the 2 groups. Based on intention to treat, no significant difference was found in the complete pathologic remission rate between the 2 arms (18% and 18%). The rate of R0 resection was different in T3 tumors (90% and 99%; P=.03). The same applied to the rate of major response (tumor regression grade, 1+2), 29% and 44%, respectively (P=.04). Conclusions: This first randomized trial comparing 2 radiation doses indicated that the higher dose increased the rate of major response by 50% in T3 tumors. The endorectal boost is feasible, with no significant increase in toxicity or surgical complications.

  19. [Evaluation of the dose-effect relationship of perindopril in the treatment of arterial hypertension].

    PubMed

    Luccioni, R; Frances, Y; Gass, R; Gilgenkrantz, J M

    1989-05-01

    To evaluate the dose-effect relationship of antihypertensive drugs is essential to a rational determination of their effective dosage. Two double-blind and strictly controlled trials have demonstrated the effectiveness of perindopril 4 mg orally in the treatment of mild to moderate arterial hypertension (100 less than DAP less than 120 mmHg). The drug remained effective 24 hours after the last dose. The 2 mg dose proved insufficient to obtain a significant reduction of blood pressure. In case where the 4 mg dose was not sufficiently active, a better antihypertensive effect could be achieved with an 8 mg dose without major untoward reactions. The antihypertensive activity of perindopril was parallel to the percentage of angiotensin-converting enzyme inhibition induced by the compound. This study also illustrates clearly the value of semi-automatic blood pressure recording with the Dinamap system in the determination of dose-effect relationship, compared with the conventional sphygmomanometric method. PMID:2505712

  20. Parotid Glands Dose–Effect Relationships Based on Their Actually Delivered Doses: Implications for Adaptive Replanning in Radiation Therapy of Head-and-Neck Cancer

    SciTech Connect

    Hunter, Klaudia U.; Fernandes, Laura L.; Vineberg, Karen A.; McShan, Daniel; Antonuk, Alan E.; Cornwall, Craig; Feng, Mary; Schipper, Mathew J.; Balter, James M.; Eisbruch, Avraham

    2013-11-15

    Purpose: Doses actually delivered to the parotid glands during radiation therapy often exceed planned doses. We hypothesized that the delivered doses correlate better with parotid salivary output than the planned doses, used in all previous studies, and that determining these correlations will help make decisions regarding adaptive radiation therapy (ART) aimed at reducing the delivered doses. Methods and Materials: In this prospective study, oropharyngeal cancer patients treated definitively with chemoirradiation underwent daily cone-beam computed tomography (CBCT) with clinical setup alignment based on the C2 posterior edge. Parotid glands in the CBCTs were aligned by deformable registration to calculate cumulative delivered doses. Stimulated salivary flow rates were measured separately from each parotid gland pretherapy and periodically posttherapy. Results: Thirty-six parotid glands of 18 patients were analyzed. Average mean planned doses was 32 Gy, and differences from planned to delivered mean gland doses were −4.9 to +8.4 Gy, median difference +2.2 Gy in glands in which delivered doses increased relative to planned. Both planned and delivered mean doses were significantly correlated with posttreatment salivary outputs at almost all posttherapy time points, without statistically significant differences in the correlations. Large dispersions (on average, SD 3.6 Gy) characterized the dose–effect relationships for both. The differences between the cumulative delivered doses and planned doses were evident at first fraction (r=.92, P<.0001) because of complex setup deviations (eg, rotations and neck articulations), uncorrected by the translational clinical alignments. Conclusions: After daily translational setup corrections, differences between planned and delivered doses in most glands were small relative to the SDs of the dose–saliva data, suggesting that ART is not likely to gain measurable salivary output improvement in most cases. These differences were

  1. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  2. Dose-Effect Relationships for Individual Pelvic Floor Muscles and Anorectal Complaints After Prostate Radiotherapy

    SciTech Connect

    Smeenk, Robert Jan; Hoffmann, Aswin L.; Hopman, Wim P.M.; Lin, Emile N.J. Th. van; Kaanders, Johannes H.A.M.

    2012-06-01

    Purpose: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). Methods and Materials: In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed. Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. Results: The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: {<=}30 Gy to the IAS; {<=}10 Gy to the EAS; {<=}50 Gy to the PRM; and {<=}40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Conclusions: Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are

  3. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  4. Dose-Dependent Effect of Granulocyte Transfusions in Hematological Patients with Febrile Neutropenia.

    PubMed

    Teofili, Luciana; Valentini, Caterina Giovanna; Di Blasi, Roberta; Orlando, Nicoletta; Fianchi, Luana; Zini, Gina; Sica, Simona; De Stefano, Valerio; Pagano, Livio

    2016-01-01

    It is still under debate whether granulocyte transfusions (GTs) substantially increase survival in patients with febrile neutropenia. We retrospectively examined data relative to 96 patients with hematological malignancies receiving 491 GTs during 114 infectious episodes (IE). Patients were grouped according to the median doses of granulocytes transfused during the infectious episode (low-dose group: <1.5-x108 cells/Kg; standard-dose group: 1.5-3.0x108 cells/Kg and high-dose group: >3.0x108 cells/Kg). The impact of clinical, microbiological and GT-related variables on the infection-related mortality (IRM) was investigated. The IRM was not influenced by the number of GTs or by the total amount of granulocytes received, whereas a dose-related effect of the median dose received for IE was detected at univariate analysis (IRM of 18.4% in the standard-dose group, 44.4% in the low-dose group and 48.4% in the high-dose group, p = 0.040) and confirmed at multivariate analysis (OR 3.7, IC 95% 1.5-8.9; 0.004 for patients not receiving standard doses of GTs). Moreover, patients receiving GTs at doses lower or greater than standard had increased risk for subsequent ICU admission and reduced overall survival. The dose-related effect of GTs was confirmed in bacterial but not in fungal infections. Preliminary findings obtained from a subgroup of patients candidate to GTs revealed that levels of inflammatory response mediators increase in a dose-related manner after GTs, providing a possible explanation for the detrimental effect exerted by high-dose transfusions. GTs can constitute a valuable tool to improve the outcome of infections in neutropenic patients, provided that adequate recipient-tailored doses are supplied. Further investigations of the immunomodulatory effects of GTs are recommended. PMID:27487075

  5. Dose-Dependent Effect of Granulocyte Transfusions in Hematological Patients with Febrile Neutropenia

    PubMed Central

    Di Blasi, Roberta; Orlando, Nicoletta; Fianchi, Luana; Zini, Gina; Sica, Simona; De Stefano, Valerio; Pagano, Livio

    2016-01-01

    It is still under debate whether granulocyte transfusions (GTs) substantially increase survival in patients with febrile neutropenia. We retrospectively examined data relative to 96 patients with hematological malignancies receiving 491 GTs during 114 infectious episodes (IE). Patients were grouped according to the median doses of granulocytes transfused during the infectious episode (low-dose group: <1.5-x108 cells/Kg; standard-dose group: 1.5–3.0x108 cells/Kg and high-dose group: >3.0x108 cells/Kg). The impact of clinical, microbiological and GT-related variables on the infection-related mortality (IRM) was investigated. The IRM was not influenced by the number of GTs or by the total amount of granulocytes received, whereas a dose-related effect of the median dose received for IE was detected at univariate analysis (IRM of 18.4% in the standard-dose group, 44.4% in the low-dose group and 48.4% in the high-dose group, p = 0.040) and confirmed at multivariate analysis (OR 3.7, IC 95% 1.5–8.9; 0.004 for patients not receiving standard doses of GTs). Moreover, patients receiving GTs at doses lower or greater than standard had increased risk for subsequent ICU admission and reduced overall survival. The dose-related effect of GTs was confirmed in bacterial but not in fungal infections. Preliminary findings obtained from a subgroup of patients candidate to GTs revealed that levels of inflammatory response mediators increase in a dose-related manner after GTs, providing a possible explanation for the detrimental effect exerted by high-dose transfusions. GTs can constitute a valuable tool to improve the outcome of infections in neutropenic patients, provided that adequate recipient-tailored doses are supplied. Further investigations of the immunomodulatory effects of GTs are recommended. PMID:27487075

  6. Intra-event isotope and raindrop size data of tropical rain reveal effects concealed by event averaged data

    NASA Astrophysics Data System (ADS)

    Managave, S. R.; Jani, R. A.; Narayana Rao, T.; Sunilkumar, K.; Satheeshkumar, S.; Ramesh, R.

    2016-08-01

    Evaporation of rain is known to contribute water vapor, a potent greenhouse gas, to the atmosphere. Stable oxygen and hydrogen isotopic compositions (δ18O and, δD, respectively) of precipitation, usually measured/presented as values integrated over rain events or monthly mean values, are important tools for detecting evaporation effects. The slope ~8 of the linear relationship between such time-averaged values of δD and δ18O (called the meteoric water line) is widely accepted as a proof of condensation under isotopic equilibrium and absence of evaporation of rain during atmospheric fall. Here, through a simultaneous investigation of the isotopic and drop size distributions of seventeen rain events sampled on an intra-event scale at Gadanki (13.5°N, 79.2°E), southern India, we demonstrate that the evaporation effects, not evident in the time-averaged data, are significantly manifested in the sub-samples of individual rain events. We detect this through (1) slopes significantly less than 8 for the δD-δ18O relation on intra-event scale and (2) significant positive correlations between deuterium excess ( d-excess = δD - 8*δ18O; lower values in rain indicate evaporation) and the mass-weighted mean diameter of the raindrops ( D m ). An estimated ~44 % of rain is influenced by evaporation. This study also reveals a signature of isotopic equilibration of rain with the cloud base vapor, the processes important for modeling isotopic composition of precipitation. d-excess values of rain are modified by the post-condensation processes and the present approach offers a way to identify the d-excess values least affected by such processes. Isotope-enabled global circulation models could be improved by incorporating intra-event isotopic data and raindrop size dependent isotopic effects.

  7. Simulation studies on the effect of absorbers on dose distribution in rotational radiotherapy.

    PubMed

    Ivanova, T; Bliznakova, K; Malatara, G; Kardamakis, D; Kolitsi, Z; Pallikarakis, N

    2009-12-01

    The effect of cylindrical protector dimensions, material and distance from the source on the dose distribution in rotational radiotherapy was studied to assess the potential protection possibilities of small-sized radiosensitive structures, such as spinal cord. The dose distributions were evaluated in terms of dose at the protected region and surface dose, ratio of the dose at the protected region to the maximum dose, and dose gradient. High-density materials, such as lead, tungsten, gold and cerrobend, along with new polymer-metal composite ones were used in simulation studies, performed by an in-house developed Monte Carlo Radiotherapy Simulator. To ensure correct modeling of the composite materials, simulated attenuation data were verified against experimentally measured data. The dependence of the dose at the protected region from the protector diameter and the field size was established. Protectors of higher density and larger diameter provide not only lower dose at the protected region, but also steeper dose gradient and lower ratio of the dose at the protected region to the treatment dose. For the protection of small structures, high-density protectors placed further from the source allow thicker protectors to be used. The surface dose increases insignificantly for the studied protector-surface distances. The results have shown that shielding properties of composite materials are close to those of lead. PMID:19186088

  8. An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1983-01-01

    Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.

  9. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. physical basis

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.

    2014-01-01

    To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.

  10. Phantom-dosimeter of effective dose in the interplanetary space flight

    NASA Astrophysics Data System (ADS)

    Kireeva, S. A.; Petrov, V. M.

    Effective dose was introduced by International Commission on Radiological Protection for the radiation risk estimation. Effective dose is a sum of the equivalent doses to the individual organs or tissues multiplied by their respective weighting factors. It is obvious that dose measurement inside the body organs is impossible. Therefore special means of measurement and calculation methods for effective dose estimation should be used. In space flight conditions equivalent dose to the individual organs will vary in the wide range, because the dose distribution in the body is non-uniform. This effect will be apparent mostly for the solar cosmic rays (SCR), because of varying of the energetic spectrum hardness. The anthropomorphic phantom should be used for the precise determination the dose to the critical organs, but high weight and size do not permit to use it as a part of the on-board radiation monitoring system. Moreover, the spherical tissue-equivalent phantom also permits to estimate the dose to the critical organs on the basis of measured depth - dose curve along the phantom radius. Effective depth of a critical organ in the spherical phantom depends on the SCR spectrum and can be estimated on the bases of the measurements. The procedure of this estimation is described in the paper. So on the basis of the measured depth - dose curve in the spherical phantom we can calculate the respective effective dose of SCR. The additional shielding of the human body by the spacecraft should be taken into account for the method development. However this fact does not make additional difficulties because adding the spacecraft's shielding will change the effective depth of critical organs in spherical phantom. This can be easily taken into account. In case of galactic cosmic rays (GCR) the effective dose calculation is simplified because of the GCR spectrum stability during space flight and isotropic angular distribution of radiation. The calculating procedure and measuring

  11. Effects of acute low doses of gamma-radiation on erythrocytes membrane.

    PubMed

    Mahmoud, Sherif S; El-Sakhawy, Eman; Abdel-Fatah, Eman S; Kelany, Adel M; Rizk, Rizk M

    2011-03-01

    It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01-0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins. PMID:20865271

  12. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation.

    PubMed

    Hauptmann, Monika; Haghdoost, Siamak; Gomolka, Maria; Sarioglu, Hakan; Ueffing, Marius; Dietz, Anne; Kulka, Ulrike; Unger, Kristian; Babini, Gabriele; Harms-Ringdahl, Mats; Ottolenghi, Andrea; Hornhardt, Sabine

    2016-03-01

    It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation. PMID:26934482

  13. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies.

    PubMed

    Howell, Rebecca M; Hertel, Nolan E; Wang, Zhonglu; Hutchinson, Jesson; Fullerton, Gary D

    2006-02-01

    Effective doses were calculated from the delivery of 6 MV, 15 MV, and 18 MV conventional and intensity-modulated radiation therapy (IMRT) prostate treatment plans. ICRP-60 tissue weighting factors were used for the calculations. Photon doses were measured in phantom for all beam energies. Neutron spectra were measured for 15 MV and 18 MV and ICRP-74 quality conversion factors used to calculate ambient dose equivalents. The ambient dose equivalents were corrected for each tissue using neutron depth dose data from the literature. The depth corrected neutron doses were then used as a measure of the neutron component of the ICRP protection quantity, organ equivalent dose. IMRT resulted in an increased photon dose to many organs. However, the IMRT treatments resulted in an overall decrease in effective dose compared to conventional radiotherapy. This decrease correlates to the ability of an intensity-modulated field to minimize dose to critical normal structures in close proximity to the treatment volume. In a comparison of the three beam energies used for the IMRT treatments, 6 MV resulted in the lowest effective dose, while 18 MV resulted in the highest effective dose. This is attributed to the large neutron contribution for 18 MV compared to no neutron contribution for 6 MV. PMID:16532941

  14. Effects of volume averaging on the line spectra of vertical velocity from multiple-Doppler radar observations

    NASA Technical Reports Server (NTRS)

    Gal-Chen, T.; Wyngaard, J. C.

    1982-01-01

    Calculations of the ratio of the true one-dimensional spectrum of vertical velocity and that measured with multiple-Doppler radar beams are presented. It was assumed that the effects of pulse volume averaging and objective analysis routines is replacement of a point measurement with a volume integral. A u and v estimate was assumed to be feasible when orthogonal radars are not available. Also, the target fluid was configured as having an infinite vertical dimension, zero vertical velocity at the top and bottom, and having homogeneous and isotropic turbulence with a Kolmogorov energy spectrum. The ratio obtained indicated that equal resolutions among radars yields a monotonically decreasing, wavenumber-dependent response function. A gain of 0.95 was demonstrated in an experimental situation with 40 levels. Possible errors introduced when using unequal resolution radars were discussed. Finally, it was found that, for some flows, the extent of attenuation depends on the number of vertical levels resolvable by the radars.

  15. Radiation Dose-Volume Effects and the Penile Bulb

    SciTech Connect

    Roach, Mack; Nam, Jiho; Gagliardi, Giovanna; El Naqa, Issam; Deasy, Joseph O.; Marks, Lawrence B.

    2010-03-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulb may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.

  16. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  17. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.

    PubMed

    Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-12-14

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.

  18. Effective Dose from Stray Radiation for a Patient Receiving Proton Therapy for Liver Cancer

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Krishnan, Sunil; Mirkovic, Dragan; Yepes, Pablo; Newhauser, Wayne D.

    2009-03-01

    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors.

  19. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol.

    PubMed

    McNamara, A L; Kam, W W Y; Scales, N; McMahon, S J; Bennett, J W; Byrne, H L; Schuemann, J; Paganetti, H; Banati, R; Kuncic, Z

    2016-08-21

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol. PMID:27435339

  20. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    NASA Astrophysics Data System (ADS)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10–50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  1. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    NASA Astrophysics Data System (ADS)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ˜70 eV, substantially lower than that of liquid water  ˜78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ˜1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  2. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol.

    PubMed

    McNamara, A L; Kam, W W Y; Scales, N; McMahon, S J; Bennett, J W; Byrne, H L; Schuemann, J; Paganetti, H; Banati, R; Kuncic, Z

    2016-08-21

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  3. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    SciTech Connect

    Qu, H; Xia, P; Yu, N

    2015-06-15

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.

  4. Biologically Effective Dose-Response Relationship for Breast Cancer Treated by Conservative Surgery and Postoperative Radiotherapy

    SciTech Connect

    Plataniotis, George A. Dale, Roger G.

    2009-10-01

    Purpose: To find a biologically effective dose (BED) response for adjuvant breast radiotherapy (RT) for initial-stage breast cancer. Methods and Materials: Results of randomized trials of RT vs. non-RT were reviewed and the tumor control probability (TCP) after RT was calculated for each of them. Using the linear-quadratic formula and Poisson statistics of cell-kill, the average initial number of clonogens per tumor before RT and the average tumor cell radiosensitivity (alpha-value) were calculated. An {alpha}/{beta} ratio of 4 Gy was assumed for these calculations. Results: A linear regression equation linking BED to TCP was derived: -ln[-ln(TCP)] = -ln(No) + {alpha}{sup *} BED = -4.08 + 0.07 * BED, suggesting a rather low radiosensitivity of breast cancer cells (alpha = 0.07 Gy{sup -1}), which probably reflects population heterogeneity. From the linear relationship a sigmoid BED-response curve was constructed. Conclusion: For BED values higher than about 90 Gy{sub 4} the radiation-induced TCP is essentially maximizing at 90-100%. The relationship presented here could be an approximate guide in the design and reporting of clinical trials of adjuvant breast RT.

  5. Big Fish in Little Ponds Aspire More: Mediation and Cross-Cultural Generalizability of School-Average Ability Effects on Self-Concept and Career Aspirations in Science

    ERIC Educational Resources Information Center

    Nagengast, Benjamin; Marsh, Herbert W.

    2012-01-01

    Being schooled with other high-achieving peers has a detrimental influence on students' self-perceptions: School-average and class-average achievement have a negative effect on academic self-concept and career aspirations--the big-fish-little-pond effect. Individual achievement, on the other hand, predicts academic self-concept and career…

  6. Radiation Dose-Volume Effects in the Larynx and Pharynx

    SciTech Connect

    Rancati, Tiziana; Schwarz, Marco; Allen, Aaron M.; Feng, Felix; Popovtzer, Aron; Mittal, Bharat; Eisbruch, Avraham

    2010-03-01

    The dose-volume outcome data for RT-associated laryngeal edema, laryngeal dysfunction, and dysphagia, have only recently been addressed, and are summarized. For late dysphagia, a major issue is accurate definition and uncertainty of the relevant anatomical structures. These and other issues are discussed.

  7. Radiation Dose Volume Effects in the Larynx and Pharynx

    PubMed Central

    Rancati, Tiziana; Schwarz, Marco; Allen, Aaron M.; Feng, Felix; Popovtzer, Aron; Mittal, Bharat; Eisbruch, Avraham

    2009-01-01

    The dose-volume-outcome data for RT-associated laryngeal edema, laryngeal dysfunction, and dysphagia, have only recently been addressed, and are summarized. For late dysphagia, a major issue is accurate definition and uncertainty of the relevant anatomical structures. These and other issues are discussed. PMID:20171520

  8. No effect of cigarette smoking dose on oxidized plasma proteins

    PubMed Central

    Yeh, Chih-Ching; Barr, R. Graham; Powell, Charles A.; Mesia-Vela, Sonia; Wang, Yuanjia; Hamade, Nada K.; Austin, John H.M.; Santella, Regina M.

    2008-01-01

    Cigarette smoking is a major source of oxidative stress. Protein carbonyls have been used as a biomarker of oxidative stress because of the relative stability of carbonylated proteins and the high protein concentration in blood. Increased levels of carbonyl groups have been found in serum proteins of smokers compared to nonsmokers. However, neither the dose effect of current cigarette smoke nor other predictors of oxidative stress have been studied. Hence, we used an ELISA (Enzyme-Linked Immunosorbent Assay) to evaluate plasma protein carbonyls in smokers recruited in the Early Lung Cancer Action Project (ELCAP) program. The lung cancer screening program enrolled current and former smokers age 60 years and over without a prior cancer diagnosis. A total of 542 participants (282 men and 260 women) completed a baseline questionnaire and provided blood samples for the biomarker study. Protein oxidation was measured by derivatization of the carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) and ELISA quantitation of the DNPH group. Current smoking status was confirmed with urinary cotinine. The mean (± SD) protein carbonyl level was 17.9 ± 2.9 nmol carbonyls/ml plasma. Protein carbonyls did not differ significantly by gender. Carbonyl levels were higher among current than former smokers, but these differences did not attain statistical significance, nor did differences by urine cotinine levels, pack-years, pack/day among current smokers, and smoking duration. In a multiple regression analysis, higher protein carbonyl levels were independently associated with increasing age (0.59 nmol/ml increase per 10 years, 95% CI 0.14, 1.05, p = 0.01), African-American vs. white race/ethnicity, (1.30 nmol/ml, 95% CI 0.4, 2.19, p =0.008), and lower educational attainment (0.75 nmol/ml, 95% CI 0.12, 1.38, p = 0.02). Although we found no significant difference between current versus past cigarette smoking and protein carbonyls in this older group of smokers, associations were

  9. No effect of cigarette smoking dose on oxidized plasma proteins.

    PubMed

    Yeh, Chih-Ching; Barr, R Graham; Powell, Charles A; Mesia-Vela, Sonia; Wang, Yuanjia; Hamade, Nada K; Austin, John H M; Santella, Regina M

    2008-02-01

    Cigarette smoking is a major source of oxidative stress. Protein carbonyls have been used as a biomarker of oxidative stress because of the relative stability of carbonylated proteins and the high protein concentration in blood. Increased levels of carbonyl groups have been found in serum proteins of smokers compared to nonsmokers. However, neither the dose effect of current cigarette smoke nor other predictors of oxidative stress have been studied. Hence, we used an Enzyme-Linked Immunosorbent Assay (ELISA) to evaluate plasma protein carbonyls in smokers recruited in the Early Lung Cancer Action Project (ELCAP) program. The lung cancer screening program enrolled current and former smokers age 60 years and over without a prior cancer diagnosis. A total of 542 participants (282 men and 260 women) completed a baseline questionnaire and provided blood samples for the biomarker study. Protein oxidation was measured by derivatization of the carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) and ELISA quantitation of the DNPH group. Current smoking status was confirmed with urinary cotinine. The mean (+/-S.D.) protein carbonyl level was 17.9+/-2.9 nmol carbonyl/ml plasma. Protein carbonyls did not differ significantly by gender. Carbonyl levels were higher among current than former smokers, but these differences did not attain statistical significance, nor did differences by urine cotinine levels, pack-years, pack/day among current smokers, and smoking duration. In a multiple regression analysis, higher protein carbonyl levels were independently associated with increasing age (0.59 nmol/ml increase per 10 years, 95% CI 0.14, 1.05, p=0.01), African-American vs. white race/ethnicity, (1.30 nmol/ml, 95% CI 0.4, 2.19, p=0.008), and lower educational attainment (0.75 nmol/ml, 95% CI 0.12, 1.38, p=0.02). Although we found no significant difference between current vs. past cigarette smoking and protein carbonyls in this older group of smokers, associations were found for

  10. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... the radionuclide decays. The time distribution of the absorbed dose rate will vary with the... radioactive material into the body. The time period, τ, is taken as 50 years as an average time of...

  11. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... the radionuclide decays. The time distribution of the absorbed dose rate will vary with the... radioactive material into the body. The time period, τ, is taken as 50 years as an average time of...

  12. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... the radionuclide decays. The time distribution of the absorbed dose rate will vary with the... radioactive material into the body. The time period, τ, is taken as 50 years as an average time of...

  13. Effects of split-dose X irradiation on rat salivary gland function

    SciTech Connect

    Vissink, A.; s-Gravenmade, E.J.; Ligeon, E.E.; Konings, A.W. )

    1991-07-01

    The effect of a single local dose of 15 Gy on salivary gland function in male Albino Wistar rats was compared with the effect of two doses of 7.5 Gy. The intervals chosen were 0-24 h and 1 week. Before and 1-30 days after the last radiation dose, samples of parotid and submandibular saliva were collected simultaneously after stimulation of the glands with pilocarpine. Irradiation with the single dose resulted in an increased lag phase and potassium concentration, and a decreased flow rate and sodium concentration. The rate of secretion of amylase was decreased during Days 1-6, increased at Day 10, and was decreased again at Day 30. With two dose fractions, substantial dose-sparing effects on lag phase, flow rate, and secretion of amylase were observed for both the very early (0-6 days postirradiation) and later (6-30 days postirradiation) effects. These effects were maximal when the interval between the fractions was 6 h. A significant dose-sparing effect on electrolytes was observed for the later effects only, again with a maximum for the 6-h interval. The dose-sparing observed for the very early effects cannot be explained satisfactorily by repair of sublethal damage (SLD), redistribution of cells over the cell cycle, or repopulation of salivary gland tissue between the doses. In contrast to the earlier dose-sparing effects, the split-dose recovery seen for later damage may be attributed, in part, to SLD repair in providing for greater reproductive survival of intercalated ductal cells and enhanced tissue regeneration.

  14. [Examination of Visual Effect in Low-dose Cerebral CT Perfusion Phantom Image Using Iterative Reconstruction].

    PubMed

    Ohmura, Tomomi; Lee, Yongbum; Takahashi, Noriyuki; Sato, Yuichiro; Ishida, Takato; Toyoshima, Hideto

    2015-11-01

    CT perfusion (CTP) is obtained cerebrovascular circulation image for assessment of stroke patients; however, at the expense of increased radiation dose by dynamic scan. Iterative reconstruction (IR) method is possible to decrease image noise, it has the potential to reduce radiation dose. The purpose of this study is to assess the visual effect of IR method by using a digital perfusion phantom. The digital perfusion phantom was created by reconstructed filtered back projection (FBP) method and IR method CT images that had five exposure doses. Various exposure dose cerebral blood flow (CBF) images were derived from deconvolution algorithm. Contrast-to-noise ratio (CNR) and visual assessment were compared among the various exposure dose and each reconstructions. Result of low exposure dose with IR method showed, compared with FBP method, high CNR in severe ischemic area, and visual assessment was significantly improvement. IR method is useful for improving image quality of low-dose CTP. PMID:26596197

  15. In vivo dosimetry for estimation of effective doses in multislice CT coronary angiography

    SciTech Connect

    De Denaro, M.; Bregant, P.; Severgnini, M.; De Guarrini, F.

    2007-10-15

    In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Considering the increment in dose to the population due to new high-dose multislice CT examinations, such as coronary angiography, it is becoming important to more accurately know the dose to the patient. The desire to know patient dose extends even to radiological examinations. Thermoluminescent dosimeters are considered the gold standard for in vivo dosimetry, but their use is time consuming. A rapid, less labor-intensive method has been developed to perform in vivo dosimetry using radiochromic film positioned next to the patient's skin. Multislice CT scanners allow the estimation of the effective dose to the patient from the dose length product (DLP) parameter, the value of which is displayed on the acquisition console, simply multiplying the DLP by published conversion factors. The method represents only an approximation based on standard size circular phantoms and neglects the actual size of the patient. More accurate evaluations can be carried out using software-based Monte Carlo simulations. However, these methods do not consider possible dose reduction techniques, such as automatic tube-current modulation. For 22 patients effective doses measured by in vivo dosimetry and calculated by software were compared. The technique of using in vivo dosimetry measured with radiochromic film appears a promising procedure for improving the assessment of the effective dose to the patient.

  16. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012.

  17. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012. PMID:27494960

  18. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  19. The normal hourly variation of blood pressure in women: average patterns and the effect of work stress.

    PubMed

    James, G D; Moucha, O P; Pickering, T G

    1991-12-01

    The purpose of this study was to examine the pattern of diurnal variation of blood pressure in normotensive working women, and to assess the effect of work stress on this pattern. The subjects were 121 normotensive (based on clinic readings less than 140/90 mmHg) young women (age = 30.2 +/- 7.3 years; range 20-50) who wore an ambulatory blood pressure monitor on a workday from 9 am to 6 am the next day. The effect of work stress on the pattern of variation was assessed by comparing the hourly averages among women who perceived greater stress at work on the day of study ('work stressed') (n = 67) with those of women who perceived greater or equal stress at home on the day of study ('home stressed') (n = 54). The results showed that the systolic pressure of 'work stressed' women was 5-8 mmHg higher (P less than 0.05) and diastolic 3-4 mmHg higher (P less than 0.05) than 'home stressed' women for nearly every hour from 9 am to 6 pm. From 7 pm to 6 am, both groups were similar hour by hour. These data suggest that there is no intrinsic pattern of diurnal blood pressure variation (other than an awake-sleep cycle) in working women. The data also provide a reference standard for comparison with hypertensive women.

  20. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  1. Effect of monomer dosing rate in the preparation of mesoporous polystyrene nanoparticles by semicontinuous heterophase polymerization.

    PubMed

    Sosa, Dalia Y; Guillén, Lourdes; Saade, Hened; Mendizábal, Eduardo; Puig, Jorge E; López, Raúl G

    2014-12-23

    The semicontinuous heterophase polymerization of styrene in the presence of cross-linking and porogen agents was carried out. Latexes with close to 20% solid content, which contained mesoporous nanoparticles with 28 nm in average diameters, up to 0.5 cm3/g in porosity and 6-8 nm in pore diameters were obtained. By varying the monomer dosing rate over the micellar solution, an unexpected direct dependence of instantaneous conversion on the monomer dosing rate was found. This was ascribed to the higher average number of radicals per particle attained in the polymerization at the higher dosing rate, which in turn would arise from the higher gel percentage in the polymer. It is believed that the cross-linked chains prevent encounters between radicals, delaying the bimolecular termination reactions and allowing the existence of more than one radical inside the particles, which in turn increases the propagation rate.

  2. Effect of reducing the paediatric stavudine dose by half: a physiologically-based pharmacokinetic model.

    PubMed

    Sy, Sherwin K B; Malmberg, Ruben; Matsushima, Aoi; Asin-Prieto, Eduardo; Rosenkranz, Bernd; Cotton, Mark F; Derendorf, Hartmut; Innes, Steve

    2015-04-01

    Owing to significant dose-related toxicity, the adult stavudine dose was reduced in 2007. The paediatric dose, however, has not been reduced. Although the intended paediatric dose is 1 mg/kg twice daily (b.i.d.), the current weight-band dosing approach results in a mean actual dose of 1.23±0.47 mg/kg. Both efficacy and mitochondrial toxicity depend on the concentration of the intracellular metabolite stavudine triphosphate (d4T-TP). We simulated the effect of reducing the paediatric dose to 0.5 mg/kg. A physiologically-based pharmacokinetic model consisting of 13 tissue compartments plus a full ADAM model was used to describe the elimination of stavudine. The volume of distribution at steady-state and apparent oral clearance were simulated and the resulting AUC profile was compared with literature data in adult and paediatric populations. A biochemical reaction model was utilised to simulate intracellular d4T-TP levels for both the standard and proposed reduced paediatric doses. Simulated and observed exposure after oral dosing showed adequate agreement. Mean steady-state d4T-TP for 1.23 mg/kg b.i.d. was 27.9 (90% CI 27.0-28.9) fmol/10(6) cells, 25% higher than that achieved by the 40 mg adult dose. The 0.5 mg/kg dose resulted in d4T-TP of 13.2 (12.7-13.7) fmol/10(6) cells, slightly higher than the adult dose of 20 mg b.i.d. [11.5 (11.2-11.9) fmol/10(6) cells], which has excellent antiviral efficacy and substantially less toxicity. Current paediatric dosing may result in even higher d4T-TP than the original 40 mg adult dose. Halving the paediatric dose would significantly reduce the risk of mitochondrial toxicity without compromising antiviral efficacy.

  3. Effect of tissue inhomogeneities on dose distributions from Cf-252 brachytherapy source.

    PubMed

    Ghassoun, J

    2013-01-01

    The Monte Carlo method was used to determine the effect of tissue inhomogeneities on dose distribution from a Cf-252 brachytherapy source. Neutron and gamma-ray fluences, energy spectra and dose rate distributions were determined in both homogenous and inhomogeneous phantoms. Simulations were performed using the MCNP5 code. Obtained results were compared with experimentally measured values published in literature. Results showed a significant change in neutron dose rate distributions in presence of heterogeneities. However, their effect on gamma rays dose distribution is minimal.

  4. Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model.

    PubMed

    Hinojosa, M Belén; Carreira, José A; Rodríguez-Maroto, José M; García-Ruíz, Roberto

    2008-06-25

    A laboratory study was conducted to evaluate the response of soil enzyme activities (acid and alkaline phosphatase, beta-glucosidase, arylsulfatase, urease and dehydrogenase) to different levels of trace elements pollution in soils representative of the area affected by the pyrite sludge mining spill of Aznalcóllar (Guadiamar basin, SW Spain). Three uncontaminated soils from the study area were mixed with different loads of pyrite sludge to resemble field conditions and criteria applied for reclamation practices following the pollution incident: 0% ("reference" or background level), 1.3% ("attention level", further monitoring required), 4% ("intervention level", further cleaning and liming required) and 13% (ten times the "attention level"). Enzyme activities were analysed 4, 7, 14, 21, 34 and 92 days after pollutant addition and those measured after 92 days were used to calculate the ecological dose value (ED50). Soil enzyme activities and pH decreased after the pyrite sludge addition with respect to the "reference level" (0% pyrite sludge), whereas soil bioavailable (DTPA-extractable) trace elements concentration increased. Arylsulfatase, beta-glucosidase and phosphatase activities were reduced by more than 50% at 1.3% pyrite sludge dose. Arylsulfasate was the most sensitive soil enzyme (in average, ED50=0.99), whereas urease activity showed the lowest inhibition (in average, ED50=7.87) after pyrite sludge addition. Our results showed that the ecological dose concept, applied to enzyme activities, was satisfactory to quantify the effect of a multi-metalic pollutant (pyrite sludge) on soil functionality, and would provide manageable data to establish permissible limits of trace elements in polluted soils. Additionally, we evaluate the recovery of enzyme activities after addition of sugar-beet lime (calcium carbonate) to each experimentally polluted soil. The amount of lime added to each soil was enough to raise the pH to the original value (equal to control soil

  5. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  6. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  7. Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose

    SciTech Connect

    Kleut, D.; Jovanovic, S.; Markovic, Z.; Kepic, D.; Tosic, D.; Romcevic, N.; Marinovic-Cincovic, M.; Dramicanin, M.; Holclajtner-Antunovic, I.; Pavlovic, V.; Drazic, G.; Milosavljevic, M.; Todorovic Markovic, B.

    2012-10-15

    A systematic study of the gamma irradiation effects on single wall carbon nanotube (SWCNT) structure was conducted. Nanotubes were exposed to different doses of gamma irradiation in three media. Irradiation was carried out in air, water and aqueous ammonia. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and Raman spectroscopy confirmed the changes in the SWCNT structure. TGA measurements showed the highest percentage of introduced groups for the SWCNTs irradiated with 100 kGy. FTIR spectroscopy provided evidence for the attachment of hydroxyl, carboxyl and nitrile functional groups to the SWCNT sidewalls. Those groups were confirmed by EA. All irradiated SWCNTs had hydroxyl and carboxyl groups irrelevant to media used for irradiation, but nitrile functional groups were only identified in SWCNTs irradiated in aqueous ammonia. Raman spectroscopy indicated that the degree of disorder in the carbon nanotube structure correlates with the irradiation dose. For the nanotubes irradiated with the dose of 100 kGy, the Raman I{sub D}/I{sub G} ratio was three times higher than for the pristine ones. Atomic force microscopy showed a 50% decrease in nanotube length at a radiation dose of 100 kGy. Scanning and transmission electron microscopies showed significant changes in the morphology and structure of gamma irradiated SWCNTs. - Highlights: Black-Right-Pointing-Pointer Gamma irradiation causes SWCNT covalent functionalization. Black-Right-Pointing-Pointer Type of covalently attached groups to SWCNT surface depends on irradiation medium. Black-Right-Pointing-Pointer The SWCNT shortening level increases with applied irradiation dose. Black-Right-Pointing-Pointer The average length of carbon nanotubes decreased by 50% at the highest dose. Black-Right-Pointing-Pointer The diameter of SWCNT bundles becomes small as irradiation dose rises.

  8. Examining Master Schedule Practices in Rio Grande Valley Schools: Effects on Student Attendance, Discipline, and Grade Point Averages

    ERIC Educational Resources Information Center

    Carriaga, Benito T.

    2012-01-01

    This study evaluated the impact of the master schedule design on student attendance, discipline, and grade point averages. Unexcused and excused absences, minor and major infraction, and grade point averages in three high schools during the 2008-09 and 2009-10 school years were included in the study. The purpose was to examine if any difference…

  9. The Chicken Soup Effect: The Role of Recreation and Intramural Participation in Boosting Freshman Grade Point Average

    ERIC Educational Resources Information Center

    Gibbison, Godfrey A.; Henry, Tracyann L.; Perkins-Brown, Jayne

    2011-01-01

    Freshman grade point average, in particular first semester grade point average, is an important predictor of survival and eventual student success in college. As many institutions of higher learning are searching for ways to improve student success, one would hope that policies geared towards the success of freshmen have long term benefits…

  10. Effect of low-dose (single-dose) magnesium sulfate on postoperative analgesia in hysterectomy patients receiving balanced general anesthesia.

    PubMed

    Taheri, Arman; Haryalchi, Katayoun; Mansour Ghanaie, Mandana; Habibi Arejan, Neda

    2015-01-01

    Background and Aim. Aparallel, randomized, double blinded, placebo-controlled trial study was designed to assess the efficacy of single low dose of intravenous magnesium sulfate on post-total abdominal hysterectomy (TAH) pain relief under balanced general anesthesia. Subject and Methods. Forty women undergoing TAH surgery were assigned to two magnesium sulfate (N = 20) and normal saline (N = 20) groups randomly. The magnesium group received magnesium sulfate 50 mg·kg(-1) in 100 mL of normal saline solution i.v as single-dose, just 15 minutes before induction of anesthesia whereas patients in control group received 100 mL of 0.9% sodium chloride solution at the same time. The same balanced general anesthesia was induced for two groups. Pethidine consumption was recorded over 24 hours precisely as postoperative analgesic. Pain score was evaluated with Numeric Rating Scale (NRS) at 0, 6, 12, and 24 hours after the surgeries. Results. Postoperative pain score was lower in magnesium group at 6, 12, and 24 hours after the operations significantly (P < 0.05). Pethidine requirement was significantly lower in magnesium group throughout 24 hours after the surgeries (P = 0.0001). Conclusion. Single dose of magnesium sulfate during balanced general anesthesia could be considered as effective and safe method to reduce postoperative pain and opioid consumption after TAH.

  11. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    PubMed

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  12. Introductory Remarks on Effects of Dose and Radiation Quality in Relation to Non-Targeted Effects

    SciTech Connect

    Michael, B.D.

    2000-12-03

    It is now agreed that both high and low LET radiation can produce significant effects in cells which were not directly hit by the radiation. The effect predominates at low doses and seems to be already saturated at the lowest doses used by many investigators. Several methods have been used to explore the effect including very low fluences of alpha particles, microbeam technology and simple medium transfer. While the phenomenon is now recognized, very little is understood of the mechanisms involved and of the possible consequences or opportunities for radiation risk assessment and radiotherapy of this process. For this reason we think it is timely to propose to hold a workshop in the near future to explore the implications of the work in this field.

  13. Evaluation of the dose-effect relationship of perindopril in the treatment of hypertension.

    PubMed

    Luccioni, R; Frances, Y; Gass, R; Gilgenkrantz, J M

    1989-01-01

    The evaluation of the dose-antihypertensive effect relationship of a drug is essential for the rational determination of the effective dose. The efficacy and safety of the dose of 4 mg of perindopril in the treatment of mild-to-moderate hypertension were demonstrated by means of two double-blind studies conducted according to a rigorous methodology. This efficacy was still present 24 hours after the last dose of perindopril. The dose of 2 mg appeared to be insufficient to exert a significant antihypertensive effect. In the case of inadequate efficacy of the dose of 4 mg of perindopril, the dose of 8 mg is able to exert a greater antihypertensive effect without any major harmful effects. The antihypertensive efficacy is parallel to the percentage of converting enzyme inhibition induced by perindopril. The contribution of the automated method of blood pressure recording using the Dinamap method to establish a dose-effect relationship with reference to the classical sphygmomanometric method is clearly illustrated. PMID:2605801

  14. Effect of a multi-lead PCA approach on modified moving average method for T-wave alternans detection.

    PubMed

    Deogire, Aruna; Hamde, Satish

    2014-11-01

    T-wave alternans, a beat-to-beat re-polarization pattern variation phenomenon, plays an important role in sudden cardiac death prediction. The proposed method modifies the currently available Modified Moving Average Method (MMAM) by a multi-lead principal component analysis (PCA) approach. Application of PCA will concentrate the alternans effect, which is supposed to be distributed on multiple leads in a single derived lead. MMAM is applied to the derived lead and alternans magnitude is measured. Results are compared with MMAM, implemented by the authors and by an open source tool, TWAnalyser. The TWA Physionet/CinC 2008 Challenge Database is used for testing. Performances are measured in terms of root mean square error (rmse) and correlation coefficients. The rmse is highest for TWAnalyser results and lowest for the proposed method. While the correlation coefficient is highest for the proposed method, 0.88, that for normal MMAM is 0.73 and for TWAnalyser is 0.75. The proposed multi-lead PCA approach provides improved performance of current MMAM.

  15. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  16. The effect of New Neonatal Porcine Diarrhoea Syndrome (NNPDS) on average daily gain and mortality in 4 Danish pig herds

    PubMed Central

    2014-01-01

    Background The study evaluated the effect of New Neonatal Porcine Diarrhoea Syndrome (NNPDS) on average daily gain (ADG) and mortality and described the clinical manifestations in four herds suffering from the syndrome. NNPDS is a diarrhoeic syndrome affecting piglets within the first week of life, which is not caused by enterotoxigenic Escherichia coli (ETEC), Clostridium perfringens (C. perfringens) type A/C, Clostridium difficile (C. difficile), rotavirus A, coronavirus, Cystoisospora suis, Strongyloides ransomi, Giardia spp or Cryptosporidium spp. Results Piglets were estimated to have a negative ADG of 9 and 14 g when diarrhoeic for 1 day and >1 day respectively. However, if only diarrhoeic on the day of birth, no negative effect on ADG was seen. Piglets originating from severely affected litters were estimated to have a reduced ADG of 38 g. The study did not show an overall effect of diarrhoea on mortality, but herd of origin, sow parity, birth weight, and gender were significantly associated with mortality. In one of the herds, approximately 25% of the diarrhoeic piglets vs. 6% of the non-diarrhoeic piglets died, and 74% of necropsied piglets were diagnosed with enteritis. These findings indicate that the high mortality seen in this herd was due to diarrhoea. Conclusions NNPDS negatively affected ADG in piglets, and even piglets that were diarrhoeic for one day only experienced a reduction in ADG. However, the study showed that diarrhoea restricted to the day of birth did not affect ADG and suggested this phenomenon to be unrelated to the syndrome. Since the diarrhoeal status of the litter had important effects on ADG, future research on NNPDS probably ought to focus on piglets from severely affected litters. The study showed important dissimilarities in the course of diarrhoea between the herds, and one herd was considerably more affected than the others. Within this herd, NNPDS seemed to be associated with a higher mortality, whereas in general the

  17. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect

    Molins, Sergi; Trebotich, David; Steefel, Carl; Shen, Chaopeng

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  18. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect

    Molins, Sergi; Trebotich, David; Steefel, Carl I.; Shen, Chaopeng

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. In this study we investigate the dependence of mineral dissolution rates on the pore structure of the porous media by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. In conclusion, the effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  19. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    SciTech Connect

    Ebert, Martin A.; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah L.; Kennedy, Angel; Joseph, David J.; Denham, James W.

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  20. Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination

    SciTech Connect

    Staton, Robert J.; Williams, Jonathon L.; Arreola, Manuel M.; Hintenlang, David E.; Bolch, Wesley E.

    2007-02-15

    To provide more detailed data on organ and effective doses in digital upper gastrointestinal (UGI) fluoroscopy studies of newborns and infants, the present study was conducted employing the time-sequence videotape-analysis technique used in a companion study of newborn and infant voiding cystourethrograms (VCUG). This technique was originally pioneered [O. H. Suleiman, J. Anderson, B. Jones, G. U. Rao, and M. Rosenstein, Radiology 178, 653-658 (1991)] for adult UGI examinations. Individual video frames were analyzed to include combinations of field size, field center, x-ray projection, image intensifier, and magnification mode. Additionally, the peak tube potential and the mA or mAs values for each segment/subsegment or digital photospot were recorded for both the fluoroscopic and radiographic modes of operation. The data from videotape analysis were then used in conjunction with a patient-scalable newborn tomographic computational phantom to report both organ and effective dose values via Monte Carlo radiation transport. The study includes dose estimates for five simulated UGI examinations representative of patients ranging from three to six months of age. Effective dose values for UGI examinations ranged from 1.17 to 6.47 mSv, with a mean of 3.14 mSv and a large standard deviation of 2.15 mSv. The colon, lungs, stomach, liver, and esophagus absorbed doses in sum were found to constitute between 63 and 75% of the effective dose in these UGI studies. Representing 23-30% of the effective dose, the lungs were found to be the most significant organ in the effective dose calculation. Approximately 80-95% of the effective dose is contributed by the dynamic fluoroscopy segments with larger percentages found in longer studies. The mean effective dose for newborn UGI examinations was not found to be statistically different from that seen in newborn VCUG examinations.

  1. Air cavity effects on the radition dose to the larynx using Co-60, 6 MV, and 10 MV photon beams

    SciTech Connect

    Niroomand-Rad, A.; Harter, K.W.; Thobejane, S.; Bertrand, K.

    1994-07-30

    The purpose was to determine the perturbation effect in the surface layers of lesions located in the air-tumor tissues interface of larynx using {sup 60}Co, 6 MV, and 10 MV photon beams. Thermoluminescent dosimeters (TLDs) were embedded at 16 measurement locations in slab no. 8 of a humanoid phantom and exposed to two lateral-opposed beams using standard 7 {times} 7 cm fields. Similarly, radiographic and radiochromic films were placed between slabs no. 7 and no. 8 of the humanoid phantom and exposed to two lateral-opposed radiation beams. The dosimeters were irradiated with {sup 60}Co, 6 MV, and 10 MV photon beams. Computer tomography (CT) treatment planning without inhomogeneity correction was performed. At the tissue-air interface, the average measured percentage dose (% dose{sub m}) is about (108.7 {+-} 4.8%) with TLD data, (96.8 {+-} 2.5%) with radiographic film data, and (100.8 {+-} 4.9%) with radiochromic film data. Similarly, in the central part of the cavity, the % dose{sub m} is (98.4 {+-} 3.1)% with TLD data, (94.3 {+-} 3.3)% with radiographic film data, and (91.7 {+-} 5.0)% with radiochromic film data. Using the CT-based generated dose distribution (without inhomogeneity correction), the average calculated percentage dose (% dose{sub c}) is (98.7 {+-} 1.0%) at the tissue-air interface and 98% in the central part of the air cavity. For the beam energies studied, the variation from the % dose {sub m} at the tissue-air interface for a given dosimetry technique is relatively small and therefore should not be significant in clinical settings. The variation from the % dose{sub m} at the tissue-air interface is more significant for lower energies. This variation is about 4.3% for 10 MV photon beam, therefore, while institutional practice favors lower energy ({sup 60}Co to 6 MV) for node-negative glottic cancers, physical/dosimetric evidence offers no disadvantage to the use of higher energy photons. 10 refs., 7 figs., 2 tabs.

  2. Biologically effective doses from californium-252 intracavitary applications.

    PubMed

    Iyer, P S

    1975-02-01

    Californium-252 which emits fission neutrons and gamma rays is being investigated for applications in brachytherapy. From available experimental results, a value of 6.2 had been arrived at as the RBE for cell killing of californium neutrons relative to radium gavva rays for intracavitary applications based on the revised Manchester system of loading. The LET distributions as well as the ratio of neutron to gamma dose-rates have been estimated and are found to remain almost constant in the volume of interest around such applications.

  3. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans

    PubMed Central

    Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2012-01-01

    BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498

  4. Differential effect of low doses of intracerebroventricular corticotropin-releasing factor in forced swimming test.

    PubMed

    García-Lecumberri, C; Ambrosio, E

    2000-11-01

    In this work, we studied the effect of low doses of intracerebroventricular corticotropin-releasing factor (CRF) in six sessions of forced swimming test (FST). When CRF (0.01 and 0.1 microg) was administered pre-test, results showed that the 0.1-microg dose significantly increased swimming in SESSION2, SESSION3 and SESSION4, while the 0.01-microg dose proved ineffective. When CRF (0.1 and 0.03 microg) was administered post-test to evaluate retention of swimming response, the dose of 0.1 microg impaired retention, while the dose of 0.03 microg improved it, although these effects only reached significance in SESSION2. In an additional session (SESSION6), testing long-term retention of this swimming response, the 0.1-microg dose significantly impaired retention, whereas the 0.03-microg dose proved ineffective. A high dose of CRF (1 microg) was also included as a control of previous results [García-Lecumberri C, Ambrosio E. Role of corticotropin-releasing factor in forced swimming test. Eur J Pharmacol 1998;343:17-26]. In all the FST sessions, this high dose increased swimming when administered pre-test, while impairing retention when administered post-test. Preliminary data obtained with low doses of CRF suggest that a differential effect on retention of swimming response seems to exist depending on the dose, whereas a high dose of CRF clearly impairs retention. The role of CRF in learning and memory processes in FST is discussed.

  5. Effects of exercise dose on endogenous estrogens in postmenopausal women: a randomized trial.

    PubMed

    Friedenreich, Christine M; Neilson, Heather K; Wang, Qinggang; Stanczyk, Frank Z; Yasui, Yutaka; Duha, Aalo; MacLaughlin, Sarah; Kallal, Ciara; Forbes, Cynthia C; Courneya, Kerry S

    2015-10-01

    Exercise dose comparison trials with biomarker outcomes can identify the amount of exercise required to reduce breast cancer risk and also strengthen the causal inference between physical activity and breast cancer. The Breast Cancer and Exercise Trial in Alberta (BETA) tested whether or not greater changes in estradiol (E2), estrone, and sex hormone-binding globulin (SHBG) concentrations can be achieved in postmenopausal women randomized to 12 months of HIGH (300 min/week) vs MODERATE (150 min/week) volumes of aerobic exercise. BETA included 400 inactive postmenopausal women aged 50-74 years with BMI of 22-40 kg/m(2). Blood was drawn at baseline and 6 and 12 months. Adiposity, physical fitness, diet, and total physical activity were assessed at baseline and 12 months. Intention-to-treat analyses were performed using linear mixed models. At full prescription, women exercised more in the HIGH vs MODERATE group (median min/week (quartiles 1,3): 253 (157 289) vs 137 (111 150); P<0.0001). Twelve-month changes in estrogens and SHBG were <10% on average for both groups. No group differences were found for E2, estrone, SHBG or free E2 changes (treatment effect ratios (95% CI) from linear mixed models: 1.00 (0.96-1.06), 1.02 (0.98-1.05), 0.99 (0.96-1.02), 1.01 (0.95, 1.06), respectively, representing the HIGH:MODERATE ratio of geometric mean biomarker levels over 12 months; n=382). In per-protocol analyses, borderline significantly greater decreases in total and free E2 occurred in the HIGH group. Overall, no dose effect was observed for women randomized to 300 vs 150 min/week of moderate to vigorous intensity exercise who actually performed a median of 253 vs 137 min/week. For total and free E2, the lack of differential effect may be due to modest adherence in the higher dose group. PMID:26338699

  6. Decomposition-order effects of time integrator on ensemble averages for the Nosé-Hoover thermostat.

    PubMed

    Itoh, Satoru G; Morishita, Tetsuya; Okumura, Hisashi

    2013-08-14

    Decomposition-order dependence of time development integrator on ensemble averages for the Nosé-Hoover dynamics is discussed. Six integrators were employed for comparison, which were extensions of the velocity-Verlet or position-Verlet algorithm. Molecular dynamics simulations by these integrators were performed for liquid-argon systems with several different time steps and system sizes. The obtained ensemble averages of temperature and potential energy were shifted from correct values depending on the integrators. These shifts increased in proportion to the square of the time step. Furthermore, the shifts could not be removed by increasing the number of argon atoms. We show the origin of these ensemble-average shifts analytically. Our discussion can be applied not only to the liquid-argon system but also to all MD simulations with the Nosé-Hoover thermostat. Our recommended integrators among the six integrators are presented to obtain correct ensemble averages.

  7. SU-E-T-318: The Effect of Patient Positioning Errors On Target Coverage and Cochlear Dose in Stereotactic Radiosurgery Treatment of Acoustic Neuromas

    SciTech Connect

    Dellamonica, D.; Luo, G.; Ding, G.

    2014-06-01

    Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were created for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.

  8. Effect of Breathing Motion on Radiotherapy Dose Accumulation in the Abdomen Using Deformable Registration

    SciTech Connect

    Velec, Michael; Moseley, Joanne L.; Eccles, Cynthia L.; Craig, Tim; Sharpe, Michael B.; Dawson, Laura A.; Brock, Kristy K.

    2011-05-01

    Purpose: To investigate the effect of breathing motion and dose accumulation on the planned radiotherapy dose to liver tumors and normal tissues using deformable image registration. Methods and Materials: Twenty-one free-breathing stereotactic liver cancer radiotherapy patients, planned on static exhale computed tomography (CT) for 27-60 Gy in six fractions, were included. A biomechanical model-based deformable image registration algorithm retrospectively deformed each exhale CT to inhale CT. This deformation map was combined with exhale and inhale dose grids from the treatment planning system to accumulate dose over the breathing cycle. Accumulation was also investigated using a simple rigid liver-to-liver registration. Changes to tumor and normal tissue dose were quantified. Results: Relative to static plans, mean dose change (range) after deformable dose accumulation (as % of prescription dose) was -1 (-14 to 8) to minimum tumor, -4 (-15 to 0) to maximum bowel, -4 (-25 to 1) to maximum duodenum, 2 (-1 to 9) to maximum esophagus, -2 (-13 to 4) to maximum stomach, 0 (-3 to 4) to mean liver, and -1 (-5 to 1) and -2 (-7 to 1) to mean left and right kidneys. Compared to deformable registration, rigid modeling had changes up to 8% to minimum tumor and 7% to maximum normal tissues. Conclusion: Deformable registration and dose accumulation revealed potentially significant dose changes to either a tumor or normal tissue in the majority of cases as a result of breathing motion. These changes may not be accurately accounted for with rigid motion.

  9. Suicidal Obsessions as Dose Dependent Side-Effect of Clozapine

    PubMed Central

    Aukst-Margetić, Branka; Margetić, Branimir; Boričević Maršanić, Vlatka

    2011-01-01

    Objective Although numerous reports suggest that different atypical antipsychotics can exacerbate or induce (de novo) obsessive-compulsive symptoms, there is no report of the development of ego-dystonic, suicidal obsessions during treatment with these medications. Here, the authors report the first case of clozapine-induced suicidal obsessions. Method The authors report a case of a patient diagnosed with bipolar disorder and who developed suicidal obsessions in the weeks after the dose of clozapine was increased from 150 mg/day to 300 mg/day. Results Symptoms quickly resolved after the treatment with clozapine was changed to the treatment with quetiapine and sodium valproate. Suicidal obsessions decreased promptly, within a few days, and disappeared completely when the dose of clozapine was 100 mg/day, quetiapine 600 mg/day, and sodium valproate 900 mg/day, 16 days after the initiation of changes in the medications. Conclusion The case report emphasizes the crucial need of differentiation between genuine suicidal desires and ego-dystonic suicidal obsessions. The authors suggest that in similar cases a change in antipsychotic medications to those with stronger antidopaminergic properties and lower 5HT2 receptor affinity should be considered, but also assume that the use of sodium valproate in treatment of obsessive-compulsive symptoms deserves further study. PMID:22506440

  10. Effects of dose limits reduction on the Argentine nuclear power plants.

    PubMed

    Palacios, E; Curti, A; Massera, G; Spano, F; Boutet, L

    1993-11-01

    Occupational doses are evaluated in different stages of the fuel cycle and in the operation of nuclear power plants. Trends in individual dose distribution and collective doses are analyzed. The most contributive working conditions to collective dose are identified and the implications of dose limit reduction recommended by the ICRP in 1990 are assessed. It is concluded that no relevant difficulties should appear in accomplishing the new recommendations except for implementation at Atucha I, a nuclear power plant designed in the 1960s. Some options to reduce individual and collective doses in this plant are analyzed. The change of fuel channels by new ones free from cobalt is essential to get effective improvement of occupational exposures.

  11. Effect of high doses of gamma radiation on the functional characteristics of amniotic membrane

    NASA Astrophysics Data System (ADS)

    Singh, Rita; Purohit, Sumita; Chacharkar, M. P.

    2007-06-01

    The effect of different doses of gamma radiation viz. 25, 36 and 50 kGy on the chemical and functional characteristics of the amniotic membrane was studied. The change in the chemical structure of amniotic membranes at high doses of gamma irradiation was evaluated by means of Infrared (IR) Spectroscopy. The degradation of amnion on irradiation with gamma rays could produce a relative variation in IR absorption troughs. This kind of variation was absent in the samples irradiated to doses of 25, 36 and 50 kGy indicating no qualitative change in the material property of amnion. No significant differences in the water absorption capacity and water vapour transmission rate of amniotic membranes irradiated to different doses were observed. Impermeability of the amniotic membranes to different microorganisms was also not affected at high doses of gamma radiation. Gamma irradiation at doses of 25-50 kGy did not evoke undesirable changes in the functional properties of the amniotic membrane.

  12. Deleterious effects in mice of fish-associated methylmercury contained in a diet mimicking the Western populations' average fish consumption.

    PubMed

    Bourdineaud, Jean-Paul; Fujimura, Masatake; Laclau, Muriel; Sawada, Masumi; Yasutake, Akira

    2011-02-01

    Methylmercury (MeHg) is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. Only a few contradictory epidemiological studies are currently available examining the impact of fish consumption on human populations. In the present study, we wanted to address whether a diet mimicking the fish consumption of Western populations could result in observable adverse effects in mice, and whether beneficial nutriments from fish were able to counterbalance the deleterious effects of MeHg, if any. In Europe and the United States, fish consumption varies widely between countries, from 11 to 100 g fish/day. A mid-range value of 25 g fish/day corresponds to a fish contribution to the total diet of 1.25% on a dry weight basis. We decided to supplement a vegetarian-based mouse diet with 1.25% of lyophilized salmon flesh (SAL diet), or 1.25% of a blend of lyophilized cod, tuna, and swordfish (CTS diet). Total mercury contents were 1.15±0.15, 2.3±0.1 and 35.75±0.15 ng Hg/g of food pellets for the control, SAL and CTS diets, respectively. After two months feeding, the CTS diet resulted in significant observable effects as compared to the control and SAL diets, encompassing decreased body growth, altered behavioral performance and increased anxiety level, modification of mitochondrial respiratory protein subunit concentrations in kidney and brain structures, modified gene expression patterns in kidneys, liver and muscles, and a decrease of dopamine concentrations in the hypothalamus and striatum. Our findings have health implications, firstly because 1.25% of CTS flesh in the diet corresponds to an average exposure to MeHg below the WHO provisory tolerable weekly intake (PTWI) (1.6 μg MeHg/kg of body weight/week), and secondly because many people in Western populations, among them women of child-bearing age, are exceeding the PTWI value (for instance, 35% of the French population inhabiting the Atlantic and Mediterranean coasts). PMID

  13. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  14. Dose Response Effects of Lisdexamfetamine Dimesylate Treatment in Adults with ADHD: An Exploratory Study

    ERIC Educational Resources Information Center

    Faraone, Stephen V.; Spencer, Thomas J.; Kollins, Scott H.; Glatt, Stephen J.; Goodman, David

    2012-01-01

    Objective: To explore dose-response effects of lisdexamfetamine dimesylate (LDX) treatment for ADHD. Method: This was a 4-week, randomized, double-blinded, placebo-controlled, parallel-group, forced-dose titration study in adult participants, aged 18 to 55 years, meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.)…

  15. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  16. Dependence on dose of the acute effects of ethanol on liver metabolism in vivo.

    PubMed Central

    Guynn, R W; Pieklik, J R

    1975-01-01

    The dose dependence of the acute effects of ethanol upon liver intermediary metabolism in vivo has been demonstrated in rats. Ethanol was given i.p. in doses of 0.69, 1.7, and 3.0 g/kg in equal volumes (20 ml/kg). The liver was freeze-clamped 120 min after injection, and multiple metabolites were measured in the perchloric acid extract of the tissue. Each group showed a significantly different pattern of metabolites, redox states, and phosphorylation potentials although the rate of ethanol disappearance, at least between the two highest dose groups, was not significantly different. The mitochondrial free [NAD+]/[NADH] ratios and the cytoplasmic free [NADP+]/[NADPH] ratio were paradoxically most reduced with the lowest dose of ethanol and became progressively more oxidized with increasing dose. Once established, the differences in these ratios between the groups tended to persist with time, relatively independent of the concentration of ethanol. In a somewhat different pattern, the phosphorylation potential ([ATP]/[ADP][P1]) remained at the control level in the low-dose group but was significantly elevated in the two higher-dose groups. The results, therefore, show distinct and complicated dose-dependent patterns of intermediary metabolism that cannot be explained completely by any one hypothesis but that imply significant dose-dependent effects of ethanol upon intermediary metabolism not directly related to NADH production. PMID:422

  17. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  18. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  19. gamma-Irradiation of PEGd,lPLA and PEG-PLGA multiblock copolymers. I. Effect of irradiation doses.

    PubMed

    Dorati, R; Colonna, C; Serra, M; Genta, I; Modena, T; Pavanetto, F; Perugini, P; Conti, B

    2008-01-01

    To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a (60)Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation. PMID:18528761

  20. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  1. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    PubMed

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. PMID:20045343

  2. Dose-dependent effects of alcohol administration on behavioral profiles in the MCSF test.

    PubMed

    Karlsson, Oskar; Roman, Erika

    2016-02-01

    The acute effects of alcohol administration are age-, dose-, time- and task-dependent. Although generally considered to be a sedative drug, alcohol has both stimulatory and depressant effects on behavior, depending on dose and time. Alcohol-induced motor activating effects are consistently shown in mice but rarely demonstrated in adult, outbred rats using conventional behavioral tests. The aim of the present experiment was to study acute alcohol-induced effects on behavioral profiles in a more complex environment using the novel multivariate concentric square field™ (MCSF) test, designed for assessing different behaviors in the same trial including locomotor activity. Adult male Wistar rats (Sca:WI) were administered one intraperitoneal (i.p.) injection of alcohol (0.0 g/kg, 0.5 g/kg, 1.0 g/kg, or 1.5 g/kg) 5 min prior to the 30-min MCSF test. The two highest doses induced marked motor-suppressing effects. A significant interaction between group and time was found in general activity when comparing rats exposed to alcohol at 0.0 g/kg and 0.5 g/kg. In contrast to the 0.0 g/kg dose that increased the activity over time, animals administered the low dose (0.5 g/kg) demonstrated an initial high activity followed by a decline over time. No indications for acute alcohol-induced anxiolytic-like effects were found. The multivariate setting in the MCSF test appears to be sensitive for detecting motor-activating effects of low doses of alcohol as well as reduced locomotion at doses lower than in other behavioral tasks. The detection of subtle changes in behavior across time and dose is important for understanding alcohol-induced effects. This approach may be useful in evaluating alcohol doses that correspond to different degrees of intoxication in humans. PMID:26695588

  3. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  4. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    SciTech Connect

    Fager, Marcus; Toma-Dasu, Iuliana; Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha; Carabe, Alejandro

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  5. Low-dose effects of bisphenol A on mammary gland development in rats.

    PubMed

    Mandrup, K; Boberg, J; Isling, L K; Christiansen, S; Hass, U

    2016-07-01

    Bisphenol A (BPA) is widely used in food contact materials, toys, and other products. Several studies have indicated that effects observed at doses near human exposure levels may not be observed at higher doses. Many studies have shown effects on mammary glands at low doses of BPA, however, because of small number of animals or few doses investigated these data have not been used by EFSA as point of departure for the newly assessed tolerable daily intake (TDI). We performed a study with perinatal exposure to BPA (0, 0.025, 0.25, 5, and 50 mg/kg bw/day) in rats (n = 22 mated/group). One of the aims was to perform a study robust enough to contribute to the risk assessment of BPA and to elucidate possible biphasic dose-response relationships. We investigated mammary gland effects in the offspring at 22, 100, and 400 days of age. Male offspring showed increased mammary outgrowth on pup day (PD) 22 at 0.025 mg/kg BPA, indicating an increased mammary development at this low dose only. Increased prevalence of intraductal hyperplasia was observed in BPA females exposed to 0.25 mg/kg at PD 400, but not at PD 100, and not at higher or lower doses. The present findings support data from the published literature showing that perinatal exposure to BPA can induce increased mammary growth and proliferative lesions in rodents. Our results indicate that low-dose exposure to BPA can affect mammary gland development in male and female rats, although higher doses show a different pattern of effects. The observed intraductal hyperplasia in female rats could be associated with an increased risk for developing hyperplastic lesions, which are parallels to early signs of breast neoplasia in women. Collectively, current knowledge on effects of BPA on mammary gland at low doses indicates that highly exposed humans may not be sufficiently protected. PMID:27088260

  6. Low-dose effects of bisphenol A on mammary gland development in rats.

    PubMed

    Mandrup, K; Boberg, J; Isling, L K; Christiansen, S; Hass, U

    2016-07-01

    Bisphenol A (BPA) is widely used in food contact materials,