High-resolution observations of the polar magnetic fields of the sun
NASA Technical Reports Server (NTRS)
Lin, H.; Varsik, J.; Zirin, H.
1994-01-01
High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.
NASA Astrophysics Data System (ADS)
Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan
2013-06-01
The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.
A new estimate of average dipole field strength for the last five million years
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Halldorsson, S. A.
2013-12-01
The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and temporal distributions, and objectively constrains site level estimates by applying uniform selection requirements on measurement level data. (1) Lawrence, K.P., L. Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. McIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude, Geochemistry Geophysics Geosystems, 10, 2009. (2) Selkin, P.A., L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond., 358, 1065-1088, 2000. (3) Shaar, R., L. Tauxe, Thellier GUI: An integrated tool for analyzing paleointensity data from Thellier-type experiments, Geochemistry Geophysics Geosystems, 14, 2013
Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.
Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T
2003-02-01
The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.
14 CFR Appendix E to Part 29 - HIRF Environments and Equipment HIRF Test Levels
Code of Federal Regulations, 2010 CFR
2010-01-01
... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...
14 CFR Appendix D to Part 27 - HIRF Environments and Equipment HIRF Test Levels
Code of Federal Regulations, 2010 CFR
2010-01-01
... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...
Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun
NASA Astrophysics Data System (ADS)
Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu, Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren, Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu, Zhou, X. X.; Tibet AS γ Collaboration
2018-01-01
We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54 ±0.21stat±0.20syst (1.62 ±0.15stat±0.22syst ) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.
Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun.
Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Kozai, M; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Miyazaki, T; Mizutani, K; Munakata, K; Nakajima, T; Nakamura, Y; Nanjo, H; Nishizawa, M; Niwa, T; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yamauchi, K; Yang, Z; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X
2018-01-19
We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54±0.21_{stat}±0.20_{syst} (1.62±0.15_{stat}±0.22_{syst}) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.
Wang, Huapei; Kent, Dennis V; Rochette, Pierre
2015-12-08
The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene-Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain-behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼ 60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 10(22) A ⋅ m(2).
Wang, Huapei; Kent, Dennis V.; Rochette, Pierre
2015-01-01
The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene–Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain–behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 1022 A⋅m2. PMID:26598664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Cornelia, E-mail: cwenger@fc.ul.pt; Salvador, Ricardo; Basser, Peter J.
Purpose: To investigate tumors of different size, shape, and location and the effect of varying transducer layouts on Tumor Treating Fields (TTFields) distribution in an anisotropic model. Methods and Materials: A realistic human head model was generated from MR images of 1 healthy subject. Four different virtual tumors were placed at separate locations. The transducer arrays were modeled to mimic the TTFields-delivering commercial device. For each tumor location, varying array layouts were tested. The finite element method was used to calculate the electric field distribution, taking into account tissue heterogeneity and anisotropy. Results: In all tumors, the average electric field inducedmore » by either of the 2 perpendicular array layouts exceeded the 1-V/cm therapeutic threshold value for TTFields effectiveness. Field strength within a tumor did not correlate with its size and shape but was higher in more superficial tumors. Additionally, it always increased when the array was adapted to the tumor's location. Compared with a default layout, the largest increase in field strength was 184%, and the highest average field strength induced in a tumor was 2.21 V/cm. Conclusions: These results suggest that adapting array layouts to specific tumor locations can significantly increase field strength within the tumor. Our findings support the idea of personalized treatment planning to increase TTFields efficacy for patients with GBM.« less
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cliver, E. W.; Cane, H. V.; White, Nicholas E. (Technical Monitor)
2002-01-01
Lockwood et al have recently reported an approximately 40% increase in the radial component of the interplanetary magnetic field (IMF) at Earth between 1964 and 1996. We argue that this increase does not constitute a secular trend but is largely the consequence of lower than average fields during solar cycle 20 (1964-1976) in comparison with surrounding cycles. For times after 1976 the average IMF strength has actually decreased slightly. Examination of the cosmic ray intensity, an indirect measure of the IMF strength, over the last five solar cycles (19-23) also indicates that cycle averages of the IMF strength have been relatively constant since approximately 1954. We also consider the origin of the well-documented increase in the geomagnetic alphaalpha index that occurred primarily during the first half of the twentieth century. We surmise that the coronal mass ejection (CME) rate for recent solar cycles was approximately twice as high as that for solar cycles 100 years ago. However, this change in the CME rate and the accompanying increase in 27-day recurrent storm activity reported by others are unable to account completely for the increase in alphaalpha. Rather, the CMEs and recurrent high-speed streams at the beginning of the twentieth century must have been embedded in a background of slow solar wind that was less geoeffective (having, for example, lower IMF strength and/or flow speed) than its modern counterpart.
Magnetic Field Effects on In-Medium ϒ Dissociation
NASA Astrophysics Data System (ADS)
Hoelck, Johannes; Nendzig, Felix; Wolschin, Georg
2017-12-01
The electromagnetic fields during relativistic heavy ion collisions are calculated using a simple model which characterises the emerging quark-gluon medium by its conductivity only. An estimate of the average magnetic field strength experienced by the bb¯ mesons produced in the collision is made. In a sufficiently strong magnetic field, the individual spins of bb¯ mesons can align with the field leading to quantum mixing of the singlet and triplet spin configurations. The extent of this intermixture, however, is found to be negligible at field strengths occurring in heavy ion collisions at LHC energies.
The source of the intermediate wavelength component of the Earth's magnetic field
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.
1985-01-01
The intermediate wavelength component of the Earth's magnetic field has been well documented by observations made by MAGSAT. It has been shown that some significant fraction of this component is likely to be caused within the core of the Earth. Evidence for this comes from analysis of the intermediate wavelength component revealed by spherical harmonics between degrees 14 and 23, in which it is shown that it is unlikely that all of this signal is crustal. Firstly, there is no difference between average continental source strength and average oceanic source strength, which is unlikely to be the case if the anomalies reside within the crust, taking into account the very different nature and thickness of continental and oceanic crust. Secondly, there is almost no latitudinal variation in the source strength, which is puzzling if the sources are within the crust and have been formed by present or past magnetic fields with a factor of two difference in intensity between the equator and the poles. If however most of the sources for this field reside within the core, then these observations are not very surprising.
Tidal dissipation in rotating fluid bodies: the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Lin, Yufeng; Ogilvie, Gordon I.
2018-02-01
We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.
NASA Astrophysics Data System (ADS)
Gadkari, Siddharth; Gu, Sai
2018-06-01
A two-dimensional numerical fluid model is developed for studying the influence of packing configurations on dielectric barrier discharge (DBD) characteristics. Discharge current profiles and time averaged electric field strength, electron number density, and electron temperature distributions are compared for the three DBD configurations, plain DBD with no packing, partially packed DBD, and fully packed DBD. The results show that a strong change in discharge behaviour occurs when a DBD is fully packed as compared to partial packing or no packing. While the average electric field strength and electron temperature of a fully packed DBD are higher relative to the other DBD configurations, the average electron density is substantially lower and may impede the DBD reactor performance under certain operating conditions. Possible scenarios of the synergistic effect of the combination of plasma with catalysis are also discussed.
Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang
2015-05-01
Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.
Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.
Siems, William F; Viehland, Larry A; Hill, Herbert H
2012-11-20
For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch
Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we presentmore » a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.« less
NASA Astrophysics Data System (ADS)
Bista, S.; Stebbins, J. F.
2017-12-01
In aluminosilicate melts and glasses, both non-bridging oxygen content (NBO) and modifier cation field strength (Mg>Ca>Na>K) are known to facilitate network cation (e.g. Al, B) coordination increase with pressure. However, the role of these two compositional parameters in pressure-induced structural changes is derived from data for a limited set of compositions, where effects of the interaction between these parameters is less understood. For example, the effects of NBO are largely based on studies of Na and K aluminosilicate glasses, but effects of geologically important, higher field strength modifier cations such as Mg2+ and Fe2+ could well be significantly different. In this study, we look at a wide compositional range of Na, Ca and Mg aluminosilicate glasses (quenched from high pressure melts near to the glass transition temperature) to understand the roles of NBO and modifier cation field strength that can extend our view of processes important for silicate melts common in nature. Our results show that the role of NBO in pressure-induced structural changes varies systematically with increasing field strength of the modifier cation. In Na aluminosilicate glasses recovered from 1.5 to 3 GPa, large increases in average aluminum coordination are observed in glasses with high NBO content, while no detectable increases are seen for low nominal NBO (jadeite). In contrast, Mg aluminosilicate glasses with both high and low NBO show similar, large increases in average aluminum coordination with increasing pressure. The behaviors of Ca aluminosilicates fall between those of Na and Mg-rich glasses. We have also looked at interactions between different network forming cations in pressure-induced structural changes in low NBO Ca-aluminoborosilicate glasses with varying B/Si. Both aluminum and boron increase dramatically in coordination in these compositions 1.5 to 3 GPa. Increases in both average aluminum coordination and densification are larger in compositions containing higher boron concentrations, suggesting an interaction between boron and aluminum network cations in pressure-induced structural changes.
Using coronal seismology to estimate the magnetic field strength in a realistic coronal model
NASA Astrophysics Data System (ADS)
Chen, F.; Peter, H.
2015-09-01
Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
2014-06-01
Context. Determining the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: We determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He i 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods: The He i 1083.0 nm triplet Stokes profiles were analyzed with an inversion code that takes the physics responsible for the polarization signals in this triplet into account. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field strength of 7 gauss. We do not find local variations in the field strength except that the field is, on average, lower in the prominence body than in the prominence feet, where the field strength reaches ~25 gauss. The averaged magnetic field inclination with respect to the local vertical is ~77°. The acute angle of the magnetic field vector with the prominence main axis is 24° for the sinistral chirality case and 58° for the dextral chirality. These inferences are in rough agreement with previous results obtained from the analysis of data acquired with lower spatial resolutions. A movie is available in electronic form at http://www.aanda.org
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-01-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599
NASA Astrophysics Data System (ADS)
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-08-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
NASA Astrophysics Data System (ADS)
Zhang, Lianzhong; Li, Dichen; Yan, Shenping; Xie, Ruidong; Qu, Hongliang
2018-04-01
The mechanical properties of 316L stainless steel repaired with Fe314 under different temperatures and humidities without inert gas protection were studied. Results indicated favorable compatibility between Fe314 and 316L stainless steel. The average yield strength, tensile strength, and sectional contraction percentage were higher in repaired samples than in 316L stainless steel, whereas the elongation rate was slightly lower. The different conditions of humiture environment on the repair sample exerted minimal influence on tensile and yield strengths. The Fe314 cladding layer was mainly composed of equiaxed grains and mixed with randomly oriented columnar crystal and tiny pores or impurities in the tissue. Results indicated that the hardness value of Fe314 cladding layer under different humiture environments ranged within 419-451.1 HV0.2. The field humiture environment also showed minimal impact on the average hardness of Fe314 cladding layers. Furthermore, 316L stainless steel can be repaired through laser cladding by using Fe314 powder without inert gas protection under different temperatures and humidity environments.
The source of marine magnetic anomalies
NASA Technical Reports Server (NTRS)
Harrison, Christopher G. A.
1987-01-01
The Vine-Matthews hypothesis (1963) is examined. This hypothesis suggests that oceanic rocks become polarized in the direction of the magnetic field at the time of their formation, thus recording the polarity history of the earth's magnetic field. This produces the lineated magnetic anomalies on either side of the midoceanic ridge crests. The strength of these magnetic anomalies is studied to determine the strength of magnetization. Indirect determinations of the magnetization intensity of the oceanic crust and direct observations of the oceanic crust are compared. It is found that the average magnetization of a 6-km thick oceanic crust is 1.18 A/m.
C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field
Chrisman, Steven D.; Waite, Christopher B.; Scoville, Alison G.; Carnell, Lucinda
2016-01-01
C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals’ tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals’ tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis behavior within a uniform fixed field. PMID:26998749
Electrically Guided Assembly of Colloidal Particles
NASA Astrophysics Data System (ADS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2002-11-01
In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.
The paleointensity record of Icelandic subglacial volcanic glasses and recent lavas
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Halldorsson, S. A.
2013-05-01
The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2 , which corresponds to surface field intensities of ~30 μT and 60 μT at the equator and poles, respectively. An astounding departure from the GAD hypothesis is found in Antarctica where the average field strength for 0-5 Ma (31.5 ± 2.4 μT, 78° S (1)) is equivalent to predictions at the Earth's equator. Proposed explanations for this decidedly non-GAD behavior at high southern latitudes include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry (especially at high latitudes). A comparison of Arctic and Antarctic paleointensity data over similar timescales might offer insights into the GAD field, however northern high latitude data comparable to the Antarctic collection are sparse due to the lack of young (0-5 Ma) and accessible lava flows. One exception is Iceland, a volcanic island on the Mid-Atlantic Ridge with continuous volcanism for the last ~15 Ma. Many of the paleointensity studies from Iceland target very young lavas (Holocene age) or transitional geomagnetic field states, both of which offer limited analysis of the long-term geomagnetic field. Additionally, some studies employ experimental methods that do not provide tests for alteration or other irreversible magnetic behaviors that can occur during multiple high temperature heating steps. We present a detailed collection of Icelandic paleointensity records from 85 volcanic units ranging in age from 1783 C.E. to ~4 Ma. We sample volcanic glass from flow tops and subglacially erupted volcanic units in order to collect single-domain magnetic material, which has been shown to accurately record magnetic field strength (2). Preliminary results from 35 successful sites (0-4 Ma) indicate an average paleointensity of 42.6 ± 15.0 μT with a VADM of 59.5 ± 20.9 ZAm2. The Icelandic data have a higher dipole moment than Antarctica (41.4 ZAm2) with a similar temporal distribution, indicating that the difference in field strength may yet be the result of hemispheric asymmetry or influence from the tangent cylinder. Our average Icelandic VADM is less than the present-day field, 80 ZAm2, and much closer to a lower estimate for long-term dipole field strength of 50 ZAm2 (3). (1) Lawrence, K.P., L. Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. McIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude, Geochemistry Geophysics Geosystems, 10, 2009. (2) Pick, T., L. Tauxe, Holocene paleointensities: Thellier experiments on submarine basaltic glass from the East Pacific Rise, Journal of Geophysical Research, 98, B10, 17949-17964, 1993. (3) Selkin, P.A., L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond., 358, 1065-1088, 2000.
A search for weak or complex magnetic fields in the B3V star ι Herculis
NASA Astrophysics Data System (ADS)
Wade, G. A.; Folsom, C. P.; Petit, P.; Petit, V.; Lignières, F.; Aurière, M.; Böhm, T.
2014-11-01
We obtained 128 high signal-to-noise ratio Stokes V spectra of the B3V star ι Her on five consecutive nights in 2012 with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, with the aim of searching for the presence of weak and/or complex magnetic fields. Least-squares deconvolution (LSD) mean profiles were computed from individual spectra, averaged over individual nights and over the entire run. No Zeeman signatures are detected in any of the profiles. The longitudinal magnetic field in the grand average profile was measured to be -0.24 ± 0.32 G, as compared to -0.22 ± 0.32 G in the null profile. Our observations therefore provide no evidence for the presence of Zeeman signatures analogous to those observed in the A0V star Vega by Lignières et al. We interpret these observations in three ways. First, we compare the LSD profiles with synthetic Stokes V profiles corresponding to organized (dipolar) magnetic fields, for which we find an upper limit of about 8 G on the polar strength of any surface dipole present. Secondly, we compare the grand average profile with calculations corresponding to the random magnetic spot topologies of Kochukhov & Sudnik, inferring that spots, if present, of 2° radius with strengths of 2-4 G and a filling factor of 50 per cent should have been detected in our data. Finally, we compare the observations with synthetic V profiles corresponding to the surface magnetic maps of Vega (Petit et al.) computed for the spectral characteristics of ι Her. We conclude that while it is unlikely we would have detected a magnetic field identical to Vega's, we would have likely detected one with a peak strength of about 30 G, i.e. approximately four times as strong as that of Vega.
Chameleon-photon mixing in a primordial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelpe, Camilla A. O.
2010-08-15
The existence of a sizable, O(10{sup -10}-10{sup -9} G), cosmological magnetic field in the early Universe has been postulated as a necessary step in certain formation scenarios for the large-scale O({mu}G) magnetic fields found in galaxies and galaxy clusters. If this field exists then it may induce significant mixing between photons and axion-like particles (ALPs) in the early Universe. The resonant conversion of photons into ALPs in a primordial magnetic field has been studied elsewhere by Mirizzi, Redondo and Sigl (2009). Here we consider the nonresonant mixing between photons and scalar ALPs with masses much less than the plasma frequencymore » along the path, with specific reference to the chameleon scalar field model. The mixing would alter the intensity and polarization state of the cosmic microwave background (CMB) radiation. We find that the average modification to the CMB polarization modes is negligible. However the average modification to the CMB intensity spectrum is more significant and we compare this to high-precision measurements of the CMB monopole made by the far infrared absolute spectrophotometer on board the COBE satellite. The resulting 95% confidence limit on the scalar-photon conversion probability in the primordial field (at 100 GHz) is P{sub {gamma}{r_reversible}{phi}<}2.6x10{sup -2}. This corresponds to a degenerate constraint on the photon-scalar coupling strength, g{sub eff}, and the magnitude of the primordial magnetic field. Taking the upper bound on the strength of the primordial magnetic field derived from the CMB power spectra, B{sub {lambda}{<=}5}.0x10{sup -9} G, this would imply an upper bound on the photon-scalar coupling strength in the range g{sub eff} < or approx. 7.14x10{sup -13} GeV{sup -1} to g{sub eff} < or approx. 9.20x10{sup -14} GeV{sup -1}, depending on the power spectrum of the primordial magnetic field.« less
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Ness, N. F.; Florinski, V.; Heerikhuisen, J.
2014-09-01
We discuss microscale fluctuations of the hour averages of the magnetic field B observed on a scale of one day by Voyager 1 (V1) from 2011.0 to 2012.3143 (when it was within the distant heliosheath, where the average magnetic field strength langBrang = 0.17 nT) and during the interval from 2012.6503 to 2013.5855 (when it was within the interstellar plasma with langBrang = 0.47 nT). In both regions, the fluctuations were primarily compressive fluctuations, varying along the average B (≈T direction in RTN coordinates). In the heliosheath, the average of the daily standard deviations (SDs) of the compressive and transverse components of B were langSDcrang = 0.010 nT and langSDtrang <= 0.005 nT (which is the limit of the measurement). In the distant heliosheath langSDcrang/langBrang = 0.06, and the distributions of SD were skewed and highly kurtotic. The interstellar magnetic field (ISMF) strength was B = 0.48 nT, but the fluctuations were below the limit of measurement: langSDcrang = 0.004 nT and langabs(SDt)rang = 0.004 nT. The distributions of these interstellar SDs have skewness and kurtosis consistent with a Gaussian noise distribution. We also discuss the fluctuations of 48 s averages of B on a scale of 1 day during a 30 day interval when V1 was observing the ISMF. For the fluctuations in all three components of B, SD = 0.010 nT, which gives an upper limit on the fluctuations of the ISMF on the scales observed by V1. This SD rules out the possibility that there is significant power in electromagnetic fluctuations generated by pickup ion ring instabilities at these scales, which strongly constrains models of the IBEX ribbon.
Mean-field velocity difference model considering the average effect of multi-vehicle interaction
NASA Astrophysics Data System (ADS)
Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di
2018-06-01
In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.
Coronal heating by stochastic magnetic pumping
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Uchida, Y.
1980-01-01
Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn
Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less
Axisymmetric Flow Properties for Magnetic Elements of Differing Strength
NASA Technical Reports Server (NTRS)
Rightmire-Upton, Lisa; Hathaway, David H.
2012-01-01
Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.
Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.
Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W
2018-04-01
Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.
The mean coronal magnetic field determined from Helios Faraday rotation measurements
NASA Technical Reports Server (NTRS)
Patzold, M.; Bird, M. K.; Volland, H.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.
1987-01-01
Coronal Faraday rotation of the linearly polarized carrier signals of the Helios spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3-10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975-1976 was found to decrease with radial distance according to r exp-alpha, where alpha = 2.7 + or - 0.2. The mean field magnitude was 1.0 + or - 0.5 x 10 to the -5th tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.
Findlay, R P; Dimbylow, P J
2009-04-21
If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus
Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less
NASA Astrophysics Data System (ADS)
Norton, A. A.; Ulrich, R. K.
2000-03-01
A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.
Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surzhikov, S. T., E-mail: surg@ipmnet.ru
Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.
Magnetic field effects on the energy deposition spectra of MV photon radiation.
Kirkby, C; Stanescu, T; Fallone, B G
2009-01-21
Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.
Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.
Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir
2015-04-09
This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.
47 CFR 15.237 - Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall lie wholly within the above specified frequency ranges. (c) The field strength of any emissions... employing an average detector. The provisions in § 15.35 for limiting peak emissions apply. [54 FR 17714...
47 CFR 15.237 - Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... shall lie wholly within the above specified frequency ranges. (c) The field strength within the... instrumentation employing an average detector. The provisions in § 15.35 for limiting peak emissions apply. [54 FR...
47 CFR 15.237 - Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... shall lie wholly within the above specified frequency ranges. (c) The field strength within the... instrumentation employing an average detector. The provisions in § 15.35 for limiting peak emissions apply. [54 FR...
47 CFR 15.237 - Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... shall lie wholly within the above specified frequency ranges. (c) The field strength of any emissions... employing an average detector. The provisions in § 15.35 for limiting peak emissions apply. [54 FR 17714...
47 CFR 73.685 - Transmitter location and antenna system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...
47 CFR 73.685 - Transmitter location and antenna system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...
47 CFR 73.685 - Transmitter location and antenna system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...
47 CFR 73.685 - Transmitter location and antenna system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...
47 CFR 73.685 - Transmitter location and antenna system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Transmitter location and antenna system. 73.685... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.685 Transmitter location and antenna system... and antenna height above average terrain employed, the following minimum field strength in dB above...
Korpinen, Leena H; Elovaara, Jarmo A; Kuisti, Harri A
2011-01-01
The aim of the study was to investigate the occupational exposure to electric fields, average current densities, and average total contact currents at 400 kV substation tasks from different service platforms (main transformer inspection, maintenance of operating device of disconnector, maintenance of operating device of circuit breaker). The average values are calculated over measured periods (about 2.5 min). In many work tasks, the maximum electric field strengths exceeded the action values proposed in the EU Directive 2004/40/EC, but the average electric fields (0.2-24.5 kV/m) were at least 40% lower than the maximum values. The average current densities were 0.1-2.3 mA/m² and the average total contact currents 2.0-143.2 µA, that is, clearly less than the limit values of the EU Directive. The average values of the currents in head and contact currents were 16-68% lower than the maximum values when we compared the average value from all cases in the same substation. In the future it is important to pay attention to the fact that the action and limit values of the EU Directive differ significantly. It is also important to take into account that generally, the workers' exposure to the electric fields, current densities, and total contact currents are obviously lower if we use the average values from a certain measured time period (e.g., 2.5 min) than in the case where exposure is defined with only the help of the maximum values. © 2010 Wiley-Liss, Inc.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generation of flat-top pulsed magnetic fields with feedback control approach.
Kohama, Yoshimitsu; Kindo, Koichi
2015-10-01
We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.
The Magnetic Field of the Class I Protostar WL 17
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Greene, T. P.; Doppmann, G.; Covey, K. R.
2007-12-01
Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on Classical T Tauri stars [class II young stellar objects (YSOs)] with field strengths in general agreement with the predictions of magnetopsheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded class I YSOs. It is during this protostellar evolutionary phase that stars accrete most of their final mass, but the physics governing this process remains poorly understood. Here, we use high resolution near infrared spectra obtained with NIRSPEC on Keck and with PHOENIX on Gemini South to measure the magnetic field properties of the class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Initial analysis of this data suggests a surface average field strength of 3.6 kG on the surface of WL 17. This is the highest mean surface field detected to date on any YSO. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars.
Computed versus measured ion velocity distribution functions in a Hall effect thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.
2012-06-01
We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less
Assessment of radio frequency exposures in schools, homes, and public places in Belgium.
Verloock, Leen; Joseph, Wout; Goeminne, Francis; Martens, Luc; Verlaek, Mart; Constandt, Kim
2014-12-01
Characterization of exposure from emerging radio frequency (RF) technologies in areas where children are present is important. Exposure to RF electromagnetic fields (EMF) was assessed in three "sensitive" microenvironments; namely, schools, homes, and public places located in urban environments and compared to exposure in offices. In situ assessment was conducted by performing spatial broadband and accurate narrowband measurements, providing 6-min averaged electric-field strengths. A distinction between internal (transmitters that are located indoors) and external (outdoor sources from broadcasting and telecommunication) sources was made. Ninety-four percent of the broadband measurements were below 1 V m(-1). The average and maximal total electric-field values in schools, homes, and public places were 0.2 and 3.2 V m(-1) (WiFi), 0.1 and 1.1 V m(-1) (telecommunication), and 0.6 and 2.4 V m(-1) (telecommunication), respectively, while for offices, average and maximal exposure were 0.9 and 3.3 V m(-1) (telecommunication), satisfying the ICNIRP reference levels. In the schools considered, the highest maximal and average field values were due to internal signals (WiFi). In the homes, public places, and offices considered, the highest maximal and average field values originated from telecommunication signals. Lowest exposures were obtained in homes. Internal sources contributed on average more indoors (31.2%) than outdoors (2.3%), while the average contributions of external sources (broadcast and telecommunication sources) were higher outdoors (97.7%) than at indoor positions (68.8%). FM, GSM, and UMTS dominate the total downlink exposure in the outdoor measurements. In indoor measurements, FM, GSM, and WiFi dominate the total exposure. The average contribution of the emerging technology LTE was only 0.6%.
Are There Paleomagnetic Signals That Herald the Inner Core?
NASA Astrophysics Data System (ADS)
Coe, R. S.
2016-12-01
Calculated estimates for the age of the inner core (IC) have ranged from 3.5 Ga to as little as 0.5 Ga over the past five decades. A few years ago opinion swung sharply toward the younger end of the range based on a much increased estimate for the thermal conductivity of the core. But more recently these values are contested by other studies, and support for an additional energy source for the geodynamo involving exsolution of MgO has also been proposed, rendering the age of IC initiation wide open again. Thus there is strong motivation to examine the paleomagnetic record for any signal that may constrain when the IC formed. Presence of a solid IC changes the topology of the fluid core, and its growth releases buoyant material that helps power the dynamo, so there is reason to hope that detectable changes in the paleomagnetic record might indeed mark its existence. Such changes, however, must be discerned against the backdrop of ordinary geomagnetic secular variation, which is substantial, so that time averages must be established before looking for telltale signals in the paleomagnetic field. Intuitively, the most likely signal to look for is an increase in the average strength of the field. Paleointensity, though, is the most difficult part of the ancient field vector to determine experimentally, and it can only be obtained from igneous rocks with unaltered magnetic mineralogy. Another potential signal for development of the IC is difference in morphology of the paleomagnetic field, namely a change in the latitudinal pattern of time-averaged secular variation. Again, rapidly cooled igneous rocks are required because only they can provide a reliable snapshot of the field direction, even after substantial overprinting by later geologic events. A third potential marker is a change in average reversal frequency. An advantage over the other two is that polarity is the most robust of paleomagnetic signals, and it can be well recorded by both sedimentary and igneous rocks. However, it may well have the least resolving power of the three. I will discuss some of the candidate changes in long-term paleomagnetic field strength, morphology and reversal frequency that have been proposed as markers of IC nucleation. While some appear to hold promise, none are definitive and all require more data to establish meaningful background averages.
Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma
NASA Astrophysics Data System (ADS)
Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma
2018-06-01
When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.
NASA Astrophysics Data System (ADS)
Kurihara, Takashi; Takahashi, Toshihiro; Mizutani, Yoshinobu; Suzuki, Hiroshi; Okamoto, Tatsuki; Ogura, Nobuyuki; Iwamoto, Kazuyoshi; Kitagawa, Setsuo
Three types of resin-coated papers were investigated; kraft papers and heat-resistant kraft papers partially covered with epoxy resin, and a kraft paper covered with phenol resin; those were laminated to certain thickness. They were thermally degraded at 120°C for 240 to 1320 hours, and their mechanical characteristics such as tensile strength and average polymerization degree were measured. As a result, it was found that the tensile strength of the first and second resin-coated papers was larger than that of the pressboard, but the tensile strength of the third one was smaller. As the effect of the heating time, it was found that the tensile strength of the first resin-coated paper decreased down to that of pressboards after 500 hours of heating time while those of the second and third ones almost retained the initial values after 1320 hours of the heating time. Then, electrical breakdown characteristics of composite insulation systems with a resin-coated paper and insulation oil were investigated. In the system, an oil-filled gap was artificially introduced between a resin-coated paper and a plane electrode to induce partial discharges (PDs) at the same location. PDs occurred before breakdowns and it was found that their PD inception electric field strength was almost as high as that of the pressboard and the effect of the heating time was negligible. It was also found that the electrical breakdown field strength has similar characteristics to those of the PD inception field strength; negligible effects of the type of resin-coated papers and the heating time. Electrical breakdown occurred at the oil-filled gap and the edge of a high voltage electrode.
Santacruz, Stalin
2014-06-15
The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical simulation and experiment on effect of ultrasonic in polymer extrusion processing
NASA Astrophysics Data System (ADS)
Wan, Yue; Fu, ZhiHong; Wei, LingJiao; Zang, Gongzheng; Zhang, Lei
2018-01-01
The influence of ultrasonic wave on the flow field parameters and the precision of extruded products are studied. Firstly, the effect of vibration power on the average velocity of the outlet, the average viscosity of the die section, the average shear rate and the inlet pressure of the die section were studied by using the Polyflow software. Secondly, the effects of ultrasonic strength on the die temperature and the drop of die pressure were studied experimentally by different head temperature and different screw speed. Finally, the relationship between die pressure and extrusion flow rate under different ultrasonic power were studied through experiments.
Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan
2018-01-01
Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.
Influence of the Atmospheric Model on Hanle Diagnostics
NASA Astrophysics Data System (ADS)
Ishikawa, Ryohko; Uitenbroek, Han; Goto, Motoshi; Iida, Yusuke; Tsuneta, Saku
2018-05-01
We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-α line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error ( e.g., {˜} 40 G instead of 50 G in field strength and {˜} 100° instead of 90° in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known ( e.g., the inversion error is much larger than 40% of the field strength; {>} 70 G instead of 50 G). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.
Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G
2016-08-01
Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.
Probe Measurements of Parameters of Streamers of Nanosecond Frequency Crown Discharge
NASA Astrophysics Data System (ADS)
Ponizovskiy, A. Z.; Gosteev, S. G.
2017-12-01
Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50-300 ns, duration of 100-600 ns, and amplitude up to 100 kV at the frequency of 50-1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4-10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5-10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at E av ≈ 4 kV/cm.
Vlasov Simulation Study of Landau Damping Near the Persisting to Arrested Transition
NASA Astrophysics Data System (ADS)
Vinas, A. F.; Klimas, A. J.; Araneda, J. A.
2017-12-01
A 1-D electrostatic filtered Vlasov-Poisson simulation study is discussed. The transition from persisting to arrested Landau damping that is produced by increasing the strength of a sinusoidal perturbation on a background Vlasov-Poisson equilibrium is explored. Emphasis is placed on observed features of the electron phase-space distribution when the perturbation strength is near the transition value. A single ubiquitous waveform is found perturbing the space-averaged phase space distribution at almost any time in all of the simulations; the sole exception is the saturation stage that can occur at the end of the arrested damping scenario. This waveform contains relatively strong, very narrow structures in velocity bracketing ±vres - the velocities at which electrons must move to traverse the dominant field mode wavelength in one of its oscillation periods - and propagating with ±vres respectively. Local streams of electrons are found in these structures crossing the resonant velocities from low speed to high speed during Landau damping and from high speed to low speed during Landau growth. At the arrest time, when the field strength is briefly constant, these streams vanish. It is conjectured that the expected transfer of energy between electrons and field during Landau growth or damping has been visualized for the first time. No evidence is found in the phase-space distribution to support recent well established discoveries of a second order phase transition in the electric field evolution. While trapping is known to play a role for larger perturbation strengths, it is shown that trapping plays no role at any time in any of the simulations near the transition perturbation strength.
Solar Mean Magnetic Field Observed by GONG
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Petrie, G.; Clark, R.; GONG Team
2009-05-01
The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such measurements are well correlated with the heliospheric magnetic field observed near Earth about 4 days later. They are also a measure of solar activity on long and short time scales. Averaging a GONG magnetogram, with nominal noise of 3 G per pixel, results in a noise level of about 4 mG. This is low enough that flare-related field changes have been seen in the mean field signal with time resolution of 1 minute. Longer time scales readily show variations associated with rotation of magnetic patterns across the solar disk. Annual changes due to the varying visibility of the polar magnetic fields may also be seen. Systematic effects associated with modulator non-uniformity require correction and limit the absolute accuracy of the GONG measurements. Comparison of the measurements with those from other instruments shows high correlation but suggest that GONG measurements of field strength are low by a factor of about two. The source of this discrepancy is not clear. Fourier analysis of 2007 and 2008 time series of the GONG mean field measurements shows strong signals at 27.75 and 26.84/2 day (synodic) periods with the later period showing more power. The heliospheric magnetic field near Earth shows the same periods but with reversed power dominance. The Global Oscillation Network Group (GONG) project is managed by NSO, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.
The Relationship Between X-Ray Radiance and Magnetic Flux
NASA Astrophysics Data System (ADS)
Pevtsov, Alexei A.; Fisher, George H.; Acton, Loren W.; Longcope, Dana W.; Johns-Krull, Christopher M.; Kankelborg, Charles C.; Metcalf, Thomas R.
2003-12-01
We use soft X-ray and magnetic field observations of the Sun (quiet Sun, X-ray bright points, active regions, and integrated solar disk) and active stars (dwarf and pre-main-sequence) to study the relationship between total unsigned magnetic flux, Φ, and X-ray spectral radiance, LX. We find that Φ and LX exhibit a very nearly linear relationship over 12 orders of magnitude, albeit with significant levels of scatter. This suggests a universal relationship between magnetic flux and the power dissipated through coronal heating. If the relationship can be assumed linear, it is consistent with an average volumetric heating rate Q~B/L, where B is the average field strength along a closed field line and L is its length between footpoints. The Φ-LX relationship also indicates that X-rays provide a useful proxy for the magnetic flux on stars when magnetic measurements are unavailable.
Saltmarsh creek bank stability: Biostabilisation and consolidation with depth
NASA Astrophysics Data System (ADS)
Chen, Y.; Thompson, C. E. L.; Collins, M. B.
2012-03-01
The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochukhov, Oleg; Lavail, Alexis
2017-01-20
The nearby M dwarf binary GJ65 AB, also known as BL Cet and UV Cet, is a unique benchmark for investigation of dynamo-driven activity of low-mass stars. Magnetic activity of GJ65 was repeatedly assessed by indirect means, such as studies of flares, photometric variability, X-ray, and radio emission. Here, we present a direct analysis of large-scale and local surface magnetic fields in both components. Interpreting high-resolution circular polarization spectra (sensitive to a large-scale field geometry) we uncovered a remarkable difference of the global stellar field topologies. Despite nearly identical masses and rotation rates, the secondary exhibits an axisymmetric, dipolar-like globalmore » field with an average strength of 1.3 kG while the primary has a much weaker, more complex, and non-axisymmetric 0.3 kG field. On the other hand, an analysis of the differential Zeeman intensification (sensitive to the total magnetic flux) shows the two stars having similar magnetic fluxes of 5.2 and 6.7 kG for GJ65 A and B, respectively, although there is evidence that the field strength distribution in GJ65 B is shifted toward a higher field strength compared to GJ65 A. Based on these complementary magnetic field diagnostic results, we suggest that the dissimilar radio and X-ray variability of GJ65 A and B is linked to their different global magnetic field topologies. However, this difference appears to be restricted to the upper atmospheric layers but does not encompass the bulk of the stars and has no influence on the fundamental stellar properties.« less
ERIC Educational Resources Information Center
Drake, James Bob
1981-01-01
From results on the tensile strength and nick-break average jury evaluations test, it was concluded that with the same total practice time, different distributions of welding practice time intervals (15, 30, and 45 minutes) influence the quality of butt welds made by ninth-grade vocational agriculture students. (Author/SJL)
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.
2007-01-01
We present results of a statistical investigation of 99 magnetic clouds (MCs) observed during 1995-2005. The MC-associated coronal mass ejections (CMEs) are faster and wider on the average and originate within +/-30deg from the solar disk center. The solar sources of MCs also followed the butterfly diagram. The correlation between the magnetic field strength and speed of MCs was found to be valid over a much wider range of speeds. The number of south-north (SN) MCs was dominant and decreased with solar cycle, while the number of north-south (NS) MCs increased confirming the odd-cycle behavior. Two-thirds of MCs were geoeffective; the Dst index was highly correlated with speed and magnetic field in MCs as well as their product. Many (55%) fully northward (FN) MCs were geoeffective solely due to their sheaths. The non-geoeffective MCs were slower (average speed approx. 382 km/s), had a weaker southward magnetic field (average approx. -5.2nT), and occurred mostly during the rise phase of the solar activity cycle.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1974-01-01
A complete survey of the near-earth magnetic field magnitude was carried out by the Polar Orbiting Geophysical Observatories (Ogo 2, 4, and 6). The average properties of variations in total magnetic field strength at invariant latitudes greater than 55 deg are given. Data from all degrees of magnetic disturbance are included, the emphasis being on periods when Kp = 2- to 3+. Although individual satellite passes at low altitudes confirm the existence of electrojet currents, neither individual satellite passes nor contours of average delta B are consistent with latitudinally narrow electrojet currents as the principal source of delta B at the satellite. The total field variations at the satellite form a region of positive delta B between about 2200 and 1000 MLT and a region of negative delta B between about 1000 and 2200 MLT. The ratio of delta B magnitudes in these positive and negative regions is variable.
Galactic X-ray emission from pulsars
NASA Technical Reports Server (NTRS)
Harding, A. K.
1981-01-01
The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.
Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Xu, Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
The effect of changing the magnetic field strength on HiPIMS deposition rates
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Mishra, A.; Kelly, P. J.
2015-06-01
The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25-40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B. These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B. From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates.
Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K
2015-07-01
The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P < 0.0014) the proposed second-order response functions. The results showed that PEF combined treatment conditions of 4 kV cm(-1) for 525 and 1000 µs were optimal to maximize glucosinolate levels in broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.
The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells
NASA Astrophysics Data System (ADS)
Fan, W.; Ding, J.; Duan, W.; Zhu, Y. M.
2004-11-01
The aim of present work was to investigate the influence of magnetic fields exposure on neurite outgrowth in PC12 cells. The neurite number per cell, length of neurites and directions of neurite growth with respect to the direction of the magnetic field were analyzed after exposure to 50 Hz electromagnetic field for 96 h. A promotion was observed under a weak field (0.23 mT), as the average number of neurites per cell increased to 2.38±0.06 compared to 1.91±0.07 neurites/cell of the control dishes, while inhibition and directional outgrowth was evident under a relatively stronger field (1.32 mT). Our work shows that biological systems can be very sensitive to the strength of electromagnetic field.
Controlling stray electric fields on an atom chip for experiments on Rydberg atoms
NASA Astrophysics Data System (ADS)
Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.
2018-02-01
Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.
Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng
2018-05-08
We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.
Influence of electric field on the hydrogen bond network of methanol.
Suresh, S J; Prabhu, Arun Laxman; Arora, Abhinav
2007-04-07
The understanding of the structure of hydrogen (H) bonding liquids in electric (E) fields is important in the context of several areas of research, such as electrochemistry, surface science, and thermodynamics of electrolyte solutions. We had earlier presented a general thermodynamic framework for this purpose, and had shown that the application of E field enhances H-bond interactions among water molecules. The present investigation with methanol suggests a different result-the H-bond structure, as indicated by the average number of H bonds per molecule, goes through a maxima with increasing field strength. This result is explained based on the symmetry in the location of the H-bonding sites in the two types of molecules.
Review of Electromagnetic Frequency (EMF) Safety Program for Homestead ARB, FL
2012-11-28
using technique number MSL-7. Calibrations below I GHz were perfonned in a electrical characterist.ics of the cell and the measured net power...Altimeter ( CARA ) 1 per F-16 4 .2-4.2 GHz 100/10 0 .8 2 .4 482 AMXS/MXAAS AN/APG68 Fire Control Radar (FCR) 1 per F-1 6 Classified Classified Classified...A. MPE fot· Upper T ier Electric Magnetic field Powet· Averaging Fr equency Field - nns strength - n ns Density - nns (S) time R ange (t) (E
Gravitational dynamos and the low-frequency geomagnetic secular variation.
Olson, P
2007-12-18
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.
Gravitational dynamos and the low-frequency geomagnetic secular variation
Olson, P.
2007-01-01
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345
Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
2003-01-01
We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.
Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers.
Fantoni, Riccardo; Müller-Nedebock, Kristian K
2011-07-01
We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers. The system contains several species of these clustering centers with different functionality, each of which connects a fixed number segments of the chain to each other. The field theory is solved using the saddle point approximation and evaluated for dense polymer melts using the random phase approximation. We find a short-ranged effective intersegment interaction with strength dependent on the average segment density and discuss the structure factor within this approximation. We also determine the fractions of linkers of the different functionalities.
Transport in a magnetic field modulated graphene superlattice.
Li, Yu-Xian
2010-01-13
Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.
Initial pioneer venus magnetic field results: dayside observations.
Russell, C T; Elphic, R C; Slavin, J A
1979-02-23
Initial observations by the Pioneer Venus mangnetometer in the sunlit ionosphere reveal a dynamic ionosphere, very responsive to external solar-wind conditions. The localtions of the bow shock and ionosphere are variable. The strength of the magnetic field just olutside the ionopause is in approximate pressure balance with the thermal plasma of the ionosphere and changes markedly from day, to day in response to changes in solar wind pressure. The field strength in the ionosphere is also variable from day to day. The field is often weak, at most a few gammas, but reaching many tens of gammas for periods of the order of seconds. These field enchantments are interpreted as due to the passage of spacecraft through flux ropes consisting of bundles of twisted field lines surrounded by the ionospheric plasma. The helicity of the flux varies through the flux tube, with lows pitch angles on the inside and very lage angles in the low-field outer edges of the ropes. These ropes may have external or internal sources. Consistent with previous results, the average position of the bow shock is much closer to the planet than would be expected if the solar wnd were completely deflected by the planet. In total, these observations indicate that the solar wind plays a significant role in the physics of the Venus ionosphere.
The magnetic nature of umbra-penumbra boundary in sunspots
NASA Astrophysics Data System (ADS)
Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.
2018-03-01
Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.
Fast DNA sieving through submicrometer cylindrical glass capillary matrix.
Cao, Zhen; Yobas, Levent
2014-01-07
Here, we report on DNA electrophoresis through a novel artificial sieving matrix based on the highly regular submicrometer cylindrical glass capillary segments alternatingly arranged with wells. Such round capillaries pose a higher-order confinement resulting in a lower partition coefficient and greater entropic energy barrier while limiting the driving field strength to a small fraction of the applied electric field. In return, the separation can be performed at high average field strengths (up to 1.6 kV/cm) without encountering the field-dependent loss of resolving power. This leads to fast DNA sieving as demonstrated here on the capillaries of 750 nm in diameter. The 600 bp to 21 kbp long chains are shown to resolve within 4 min after having undergone a fairly limited number of entropic barriers (128 in total). The capillary matrix also exhibits a critical field threshold below which DNA bands fail to launch, and this occurs at a considerably greater magnitude than in other matrixes. The submicrometer capillaries are batch-fabricated on silicon through a fabrication process that does not require high-resolution advanced lithography or well-controlled wafer bonding techniques to define their critical dimension.
Bohannon, Richard W; Bear-Lehman, Jane; Desrosiers, Johanne; Massy-Westropp, Nicola; Mathiowetz, Virgil
2007-01-01
Although strength diminishes with age, average values for grip strength have not been available heretofore for discrete strata after 75 years. The purpose of this meta-analysis was to provide average values for the left and right hands of men and women 75-79, 80-84, 85-89, and 90-99 years. Contributing to the analysis were 7 studies and 739 subjects with whom the Jamar dynamometer and standard procedures were employed. Based on the analysis, average values for the left and right hands of men and women in each age stratum were derived. The derived values can serve as a standard of comparison for individual patients. An individual whose grip strength is below the lower limit of the confidence intervals of each stratum can be confidently considered to have less than average grip strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours and presumptive determination of field strength at individual locations. 73.683 Section 73.683 Telecommunication FEDERAL... Stations § 73.683 Field strength contours and presumptive determination of field strength at individual...
Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere
NASA Astrophysics Data System (ADS)
Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M. K.; Glassmeier, K.-H.
2014-02-01
The recently established presence of a convective electric field in Saturn’s inner and middle magnetosphere, with an average pointing approximately towards midnight and an intensity less than 1 mV/m, is one of the most puzzling findings by the Cassini spacecraft. In order to better characterize the properties of this electric field, we augmented the original analysis method used to identify it (Andriopoulou et al., 2012) and applied it to an extended energetic electron microsignature dataset, constructed from observations at the vicinity of four saturnian moons. We study the average characteristics of the convective pattern and additionally its temporal and spatial variations. In our updated dataset we include data from the recent Cassini orbits and also microsignatures from the two moons, Rhea and Enceladus, allowing us to further extend this analysis to cover a greater time period as well as larger radial distances within the saturnian magnetosphere. When data from the larger radial range and more recent orbits are included, we find that the originally inferred electric field pattern persists, and in fact penetrates at least as far in as the orbit of Enceladus, a region of particular interest due to the plasma loading that takes place there. We perform our electric field calculations by setting the orientation of the electric field as a free, time-dependent parameter, removing the pointing constraints from previous works. Analytical but also numerical techniques have been employed, that help us overcome possible errors that could have been introduced from simplified assumptions used previously. We find that the average electric field pointing is not directed exactly at midnight, as we initially assumed, but is found to be stably displaced by approximately 12-32° from midnight, towards dawn. The fact, however, that the field’s pointing is much more variable in short time scales, in addition to our observations that it penetrates inside the orbit of Enceladus (∼4 Rs), may suggest that the convective pattern is dominating all the way down to the main rings (2.2 Rs), when data from the Saturn Orbit Insertion are factored in. We also report changes of the electric field strength and pointing over the course of time, possibly related to seasonal effects, with the largest changes occurring during a period that envelopes the saturnian equinox. Finally, the average electric field strength seems to be sensitive to radial distance, exhibiting a drop as we move further out in the magnetosphere, confirming earlier results. This drop-off, however, appears to be more intense in the earlier years of the mission. Between 2010 and 2012 the electric field is quasi-uniform, at least between the L-shells of Tethys and Dione. These new findings provide constraints in the possible electric field sources that might be causing such a convection pattern that has not been observed before in other planetary magnetospheres. The very well defined values of the field’s average properties may suggest a periodic variation of the convective pattern, which can average out very effectively the much larger changes in both pointing and intensity over short time scales, although this period cannot be defined. The slight evidence of changes in the properties across the equinox (seasonal control), may also hint that the source of the electric field resides in the planet’s atmosphere/ionosphere system.
NASA Astrophysics Data System (ADS)
Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.
2014-07-01
The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.
Decorrelation Times of Photospheric Fields and Flows
NASA Technical Reports Server (NTRS)
Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.
2012-01-01
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.
Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE
NASA Technical Reports Server (NTRS)
Wilms, Jorn; Felix, Furst; Rothschild, Richard E.; Pottschmidt, Katja; Smith, David M.; Lingenfelter, Richard
2009-01-01
The evolution of the particle background at an altitude of approx.540km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by approx.1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field. Key words: space radiation environment, South Atlantic Anomaly, radiation monitors, Rossi X-ray Timing Explorer
47 CFR 24.236 - Field strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits. 24.236 Section 24.236... SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength at... to a higher field strength. ...
47 CFR 24.236 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits. 24.236 Section 24.236... SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength at... to a higher field strength. ...
14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels
Code of Federal Regulations, 2010 CFR
2010-01-01
... MHz. (4) From 100 MHz to 400 MHz, use radiated susceptibility tests at a minimum of 20 volts per meter... is specified in the following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400...
Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed
Liu, J.; Xia, J.; Luo, Y.; Li, X.; Xu, S.; ,
2004-01-01
This paper first explains the tau-p mapping method of extracting Rayleigh waves (LR waves) from field shot gathers. It also explains a mathematical model of physical character parameters of quality of high-grade roads. This paper then discusses an algorithm of computing dispersion curves using adjacent channels. Shear velocity and physical character parameters are obtained by inversion of dispersion curves. The algorithm using adjacent channels to calculating dispersion curves eliminates average effects that exist by using multi-channels to obtain dispersion curves so that it improves longitudinal and transverse resolution of LR waves and precision of non-invasive detection, and also broadens its application fields. By analysis of modeling results of detached computation of the ground roll and real examples of detecting density and pressure strength of a high-grade roadbed, and by comparison of shallow seismic image method with borehole cores, we concluded that: 1 the abnormal scale and configuration obtained by LR waves are mostly the same as the result of shallow seismic image method; 2 an average relative error of density obtained from LR waves inversion is 1.6% comparing with borehole coring; 3 transient LR waves in detecting density and pressure strength of a high-grade roadbed is feasible and effective.
NASA Astrophysics Data System (ADS)
Zheng, Q.; Dickson, S.; Guo, Y.
2007-12-01
A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.
Revised and updated paleomagnetic results from Costa Rica
NASA Astrophysics Data System (ADS)
Cromwell, G.; Constable, C. G.; Staudigel, H.; Tauxe, L.; Gans, P.
2013-09-01
Paleomagnetic results from globally distributed lava flows have been collected and analyzed under the time-averaged field initiative (TAFI), a multi-institutional collaboration started in 1996 and designed to improve the geographic and temporal coverage of the 0-5 Ma paleomagnetic database for studying both the time-averaged field and its very long-term secular variations. Paleomagnetic samples were collected from 35 volcanic units, either lava flows or ignimbrites, in Costa Rica in December 1998 and February 2000 from the Cordilleras Central and Guanacaste, the underlying Canas, Liberia and Bagaces formations and from Volcano Arenal. Age estimates range from approximately 40 ka to slightly over 6 Ma. Although initial results from these sites were used in a global synthesis of TAFI data by Johnson et al. (2008), a full description of methodology was not presented. This paper documents the definitive collection of results comprising 28 paleomagnetic directions (24 normal, 4 reversed), with enhanced precision and new geological interpretations, adding two paleointensity estimates and 19 correlated 40Ar/39Ar radiometric ages. The average field direction is consistent with that of a geocentric axial dipole and dispersion of virtual geomagnetic poles (17.3 ± 4.6°) is in general agreement with predictions from several statistical paleosecular variation models. Paleointensity estimates from two sites give an average field strength of 26.3 μT and a virtual axial dipole moment of 65 ZAm2. The definitive results provide a useful augmentation of the global database for the longer term goal of developing new statistical descriptions of paleomagnetic field behavior.
Universal energy distribution for interfaces in a random-field environment
NASA Astrophysics Data System (ADS)
Fedorenko, Andrei A.; Stepanow, Semjon
2003-11-01
We study the energy distribution function ρ(E) for interfaces in a random-field environment at zero temperature by summing the leading terms in the perturbation expansion of ρ(E) in powers of the disorder strength, and by taking into account the nonperturbational effects of the disorder using the functional renormalization group. We have found that the average and the variance of the energy for one-dimensional interface of length L behave as,
Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C
2015-05-22
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Berčič, L.; Behar, E.; Nilsson, H.; Nicolaou, G.; Wieser, G. Stenberg; Wieser, M.; Goetz, C.
2018-06-01
Aims: Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma. We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in the terminator plane. Methods: We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly using plasma moments). We propose a statistical approach over a period of one month. Results: On average, two populations were observed, separated in phase space. The motion of the first is governed by its interaction with the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatible with an ambipolar electric field. Both populations display a consistent anti-sunward velocity component. Conclusions: Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov-Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative to the nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometary ion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. There is no corresponding signature in the average magnetic field strength.
RAiSE III: 3C radio AGN energetics and composition
NASA Astrophysics Data System (ADS)
Turner, Ross J.; Shabala, Stanislav S.; Krause, Martin G. H.
2018-03-01
Kinetic jet power estimates based exclusively on observed monochromatic radio luminosities are highly uncertain due to confounding variables and a lack of knowledge about some aspects of the physics of active galactic nuclei (AGNs). We propose a new methodology to calculate the jet powers of the largest, most powerful radio sources based on combinations of their size, lobe luminosity, and shape of their radio spectrum; this approach avoids the uncertainties encountered by previous relationships. The outputs of our model are calibrated using hydrodynamical simulations and tested against independent X-ray inverse-Compton measurements. The jet powers and lobe magnetic field strengths of radio sources are found to be recovered using solely the lobe luminosity and spectral curvature, enabling the intrinsic properties of unresolved high-redshift sources to be inferred. By contrast, the radio source ages cannot be estimated without knowledge of the lobe volumes. The monochromatic lobe luminosity alone is incapable of accurately estimating the jet power or source age without knowledge of the lobe magnetic field strength and size, respectively. We find that, on average, the lobes of the Third Cambridge Catalogue of Radio Sources (3C) have magnetic field strengths approximately a factor three lower than the equipartition value, inconsistent with equal energy in the particles and the fields at the 5σ level. The particle content of 3C radio lobes is discussed in the context of complementary observations; we do not find evidence favouring an energetically dominant proton population.
Structure of high latitude currents in magnetosphere-ionosphere models
NASA Astrophysics Data System (ADS)
Wiltberger, M. J.; Lyon, J.; Merkin, V. G.; Rigler, E. J.
2016-12-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model the structure of the high latitude field-aligned current patterns is examined. Each LFM resolution was run for the entire Whole Heliosphere Interval (WHI), which contained two high-speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results from the Weimer 2005 computed using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and confined. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths in the model also results in a better shielding of mid- and low-latitude ionosphere from the polar cap convection, also in agreement with observations. Current-voltage relationships between the R1 strength and the cross-polar cap potential (CPCP) are quite similar at the higher resolutions indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements
Pagan, Darren C.; Shade, Paul A; Barton, Nathan R.; ...
2017-02-17
Far-field high-energy X-ray diffraction microscopy is used to asses the evolution of slip system strengths in hexagonal close-packed (HCP) Ti-7A1 during tensile deformation in-situ. The following HCP slip system families are considered: basal < a >, prismatic < a >, pyramidal < a >, and first-order pyramidal < c + a >. A 1 mm length of the specimen's gauge section, marked with fiducials and comprised of an aggregate of over 500 grains, is tracked during continuous deformation. The response of each slip system family is quantified using 'slip system strength curves' that are calculated from the average stress tensorsmore » of each grain over the applied deformation history. These curves, which plot the average resolved shear stress for each slip system family versus macroscopic strain, represent a mesoscopic characterization of the aggregate response. A short time-scale transient softening is observed in the basal < a >, prismatic < a >, and pyramidal < a > slip systems, while a long time-scale transient hardening is observed in the pyramidal < c + a > slip systems. These results are used to develop a slip system strength model as part of an elasto-viscoplastic constitutive model for the single crystal behavior. A suite of finite element simulations is performed on a virtual polycrystal to demonstrate the relative effects of the different parameters in the slip system strength model. Finally, the model is shown to accurately capture the macroscopic stress-strain response using parameters that are chosen to capture the mesoscopic slip system responses.« less
Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.
The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less
Direct measurements of flux tube inclinations in solar plages.
NASA Astrophysics Data System (ADS)
Bernasconi, P. N.; Keller, C. U.; Povel, H. P.; Stenflo, J. O.
1995-10-01
Observations of the full Stokes vector in three spectral lines indicate that flux tubes in solar plages have an average inclination in the photosphere of 14^o^ with respect to the local vertical. Most flux tubes are inclined in the eastwards direction, i.e., opposite to the solar rotation. We have recorded the Stokes vector of the FeI 5247.1A, FeI 5250.2A, and FeI 5250.7A lines in nine different plages with the polarization-free 20cm Zeiss coronagraph at the Arosa Astrophysical Observatory of ETH Zuerich. The telescope has been modified for solar disk observations. The chosen spectral lines are particularly sensitive to magnetic field strength and temperature. To determine the field strength and geometry of the flux tubes in the observed plages we use an inversion code that numerically solves the radiative transfer equations and derives the emergent Stokes profiles for one-dimensional model atmospheres consisting of a flux tube and its surrounding non-magnetic atmosphere. Our results confirm earlier indirect estimates of the inclination of the magnetic fields in plages.
47 CFR 90.671 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required to...
47 CFR 90.671 - Field strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required to...
Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.
Paglione, Johnpierre; Tanatar, M A; Reid, J-Ph; Shakeripour, H; Petrovic, C; Taillefer, Louis
2016-07-01
The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.
Research on the novel FBG detection system for temperature and strain field distribution
NASA Astrophysics Data System (ADS)
Liu, Zhi-chao; Yang, Jin-hua
2017-10-01
In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Collapse and revival of entanglement between qubits coupled to a spin coherent state
NASA Astrophysics Data System (ADS)
Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis
We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.
MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH: VOYAGER 1 OBSERVATIONS DURING 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burlaga, L. F.; Ness, N. F., E-mail: lburlagahsp@verizon.net, E-mail: nfnudel@yahoo.com
2012-01-01
We analyze the ''microscale fluctuations'' of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or 'pink noise' spectrum on scales from 1 to 100 days, and itmore » has a broad multifractal spectrum f({alpha}) with 0.57 {<=} {alpha} {<=} 1.39. The time series of increments SD(t + {tau}) - SD(t) has a pink noise spectrum with {alpha}' = 0.88 {+-} 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 {+-} 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The 'turbulence' observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of 'turbulence' in the heliosheath.« less
14 CFR Appendix L to Part 25 - HIRF Environments and Equipment HIRF Test Levels
Code of Federal Regulations, 2010 CFR
2010-01-01
... 400 MHz, use radiated susceptibility tests at a minimum of 20 volts per meter (V/m) peak with CW and 1... table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700 MHz-1...
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less
Abbas, Zaheer; Gras, Vincent; Möllenhoff, Klaus; Oros-Peusquens, Ana-Maria; Shah, Nadim Joni
2015-02-01
Quantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3T obtained with a protocol proposed recently for 3T MRI. The proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3T water maps. Our analysis indicates that the water content values obtained at 1.5 T and 3T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3T by a factor of at least 1.5. Vulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3T. Copyright © 2014 Elsevier Inc. All rights reserved.
Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
NASA Astrophysics Data System (ADS)
Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R.; Paterson, G. A.; Veikkolainen, T.; Tauxe, L.
2015-10-01
The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth.
NASA Astrophysics Data System (ADS)
Lillis, Robert J.; Halekas, J. S.; Fillingim, M. O.; Poppe, A. R.; Collinson, G.; Brain, David A.; Mitchell, D. L.
2018-01-01
Field-aligned electrostatic potentials in the Martian ionosphere play potentially important roles in maintaining current systems, driving atmospheric escape and producing aurora. The strength and polarity of the potential difference between the observation altitude and the exobase ( 180 km) determine the energy dependence of electron pitch angle distributions (PADs) measured on open magnetic field lines (i.e. those connected both to the collisional atmosphere and to the interplanetary magnetic field). Here we derive and examine a data set of 3.6 million measurements of the potential between 185 km and 400 km altitude from PADs measured by the Mars Global Surveyor Magnetometer/Electron Reflectometer experiment at 2 A.M./2 P.M. local time from May 1999 to November 2006. Potentials display significant variability, consistent with expected variable positive and negative divergences of the convection electric field in the highly variable and dynamic Martian plasma environment. However, superimposed on this variability are persistent patterns whereby potential magnitudes depend positively on crustal magnetic field strength, being close to zero where crustal fields are weak or nonexistent. Average potentials are typically positive near the center of topologically open crustal field regions where field lines are steeper, and negative near the edges of such regions where fields are shallower, near the boundaries with closed fields. This structure is less pronounced for higher solar wind pressures and (on the dayside) higher solar EUV irradiance. Its causes are uncertain at present but may be due to differential motion of electrons and ions in Mars's substantial but (compared to Earth) weak magnetic fields.
The Influence of Addition of Plastiment-VZ to Concrete Characteristics in Riau Province
NASA Astrophysics Data System (ADS)
Wahyuni Megasari, Shanti; Winayati
2017-12-01
Riau Province has an area of 8,702,000 ha consisting of 7,121.344,00 ha of forest and 3,867,000 ha in the form of peatlands. Peat structures are soft and have pores that make it easy to hold water. Peat water has a high color intensity, low pH, high organic content and has an acidic properties So it does not qualify as a mixture of concrete. To meet the needs of water in the concrete mix then water should be obtained from another place but it will require a greater cost and time. To resolve the issue, the advancement of concrete technology has resulted in admixture that can help in maintaining the quality of concrete. Plastiment-VZ is a plasticizer material that can increase workability of concrete without adding water. However, for the use in the field, the selection of admixture must be adjusted to the planned concrete situation and condition. Excessive use of admixture will also result in uneconomical concrete. The design of the job mix using the Department of Environment (DOE) method with compressive strength concrete plan fc ' = 25 MPa. The percentage of Plastiment-VZ addition is 0%, 0,05%; 0,10%; 0,15% and 0,20% to the weight of cement. The reduction of the amount of water in this study is 10% of the total amount of water. Specimens in each variation were made using cylinder mold with 15 cm in diameter and 30 cm high. After specimens are created and maintained, testing of compressive strength concrete held in 28 days. The test results show that the trend of average compressive strength has increased along with the addition of Plastiment-VZ percentage. The equation resulting from the average compressive strength is y = -362,7x2 + 133,3x + 28,10 with value R2 = 0,969. The highest average compressive strength value was obtained in the addition of 0,20% Plastiment-VZ at 40,76 MPa. Statistical testing with Analysis of Variance - ANOVA states that there is a very real interaction or treatment between the compressive strength of the concrete with the addition of Plastiment-VZ. So it can be concluded that the reduction of the amount of water with the addition of Plastiment-VZ has an effect on the increasing of concrete compressive strength characteristics.
Turbulence in the Outer Heliosheath
NASA Astrophysics Data System (ADS)
Burlaga, L. F.; Florinski, V.; Ness, N. F.
2018-02-01
We present in situ observations of magnetic turbulence in the draped interstellar magnetic field {\\boldsymbol{B}} measured by Voyager 1 during an undisturbed interval from 2015.3987 to 2016.6759 confirming the existence of the turbulence observed previously from 2013.3593 to 2014.6373. The power spectral density of the turbulence was the same in both cases. The turbulence had a Kolmogorov k ‑5/3 spectrum in the range from k = 1.3 × 10‑13 cm‑1 to 4 × 10‑12 cm‑1. The ratio of the turbulent fluctuations to the average magnetic field strength was only 0.02, indicating that the turbulence was very weak. Extrapolating the power-law slope to lower frequencies yields an upper limit on the turbulence outer scale of 0.01 pc = 2000 au, which may be regarded as the distance at which Voyager 1 will enter the undisturbed local interstellar medium, beyond the outer heliosheath or bow wave in the upstream direction. The maximum variance of the fluctuations was in the two directions transverse to the average magnetic field in the recent interval, whereas it was parallel to the average magnetic field in the earlier interval, suggesting a transformation from turbulence with a dominant compressive component to turbulence dominated by transverse fluctuations. As the magnitude of the fluctuations was approaching that of the uncertainties of the measurements, the latter result requires confirmation by further observations.
Supernovae driven turbulence in the interstellar medium
NASA Astrophysics Data System (ADS)
Gent, Frederick A.
2012-11-01
I model the multi-phase interstellar medium (ISM) randomly heated and shocked by supernovae (SN), with gravity, differential rotation and other parameters we understand to be typical of the solar neighbourhood. The simulations are in a 3D domain extending horizontally 1x1 kpc^2 and vertically 2 kpc, symmetric about the galactic mid-plane. They routinely span gas number densities 10^{-5}-10^2 cm^{-3}, temperatures 10-10^8 K, speeds up to 10^3 km s^{-1} and Mach number up to 25. Radiative cooling is applied from two widely adopted parameterizations, and compared directly to assess the sensitivity of the results to cooling. There is strong evidence to describe the ISM as comprising well defined cold, warm and hot regions, typified by T 10^2 ; 10^4 and 10^6 K, which are statistically close to thermal and total pressure equilibrium. This result is not sensitive to the choice of parameters considered here. The distribution of the gas density within each can be robustly modelled as lognormal. Appropriate distinction is required between the properties of the gases in the supernova active mid-plane and the more homogeneous phases outside this region. The connection between the fractional volume of a phase and its various proxies is clarified. An exact relation is then derived between the fractional volume and the filling factors defined in terms of the volume and probabilistic averages. These results are discussed in both observational and computational contexts. The correlation scale of the random flows is calculated from the velocity autocorrelation function; it is of order 100 pc and tends to grow with distance from the mid-plane. The origin and structure of the magnetic fields in the ISM is also investigated in nonideal MHD simulations. A seed magnetic field, with volume average of roughly 4 nG, grows exponentially to reach a statistically steady state within 1.6 Gyr. Following Germano (1992), volume averaging is applied with a Gaussian kernel to separate magnetic field into a mean field and fluctuations. Such averaging does not satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The mean field thus obtained varies in both space and time. Growth rates differ for the mean-field and fluctuating field and there is clear scale separation between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc, respectively. Analysis of the dependence of the dynamo on rotation, shear and SN rate is used to clarify its mean and fluctuating contributions. The resulting magnetic field is quadrupolar, symmetric about the mid-plane, with strong positive azimuthal and weak negative radial orientation. Contrary to conventional wisdom, the mean field strength increases away from the mid-plane, peaking outside the SN active region at |z| < 300 pc. The strength of the field is strongly dependent on density, and in particular the mean field is mainly organised in the warm gas, locally very strong in the cold gas, but almost absent in the hot gas. The field in the hot gas is weak and dominated by fluctuations.
NASA Astrophysics Data System (ADS)
Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.
2018-03-01
A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.
γ Pegasi: testing Vega-like magnetic fields in B stars
NASA Astrophysics Data System (ADS)
Neiner, C.; Monin, D.; Leroy, B.; Mathis, S.; Bohlender, D.
2014-02-01
Context. The bright B pulsator γ Peg shows both p and g modes of β Cep and SPB types. It has also been claimed that it is a magnetic star, while others do not detect any magnetic field. Aims: We check for the presence of a magnetic field, with the aim to characterise it if it exists, or else provide a firm upper limit of its strength if it is not detected. If γ Peg is magnetic as claimed, it would make an ideal asteroseismic target for testing various theoretical scenarios. If it is very weakly magnetic, it would be the first observation of an extension of Vega-like fields to early B stars. Finally, if it is not magnetic and we can provide a very low upper limit on its non-detected field, it would make an important result for stellar evolution models. Methods: We acquired high resolution, high signal-to-noise spectropolarimetric Narval data at Telescope Bernard Lyot (TBL). We also gathered existing dimaPol spectropolarimetric data from the Dominion Astrophysical Observatory (DAO) and Musicos spectropolarimetric data from TBL. We analysed the Narval and Musicos observations using the least-squares deconvolution (LSD) technique to derive the longitudinal magnetic field and Zeeman signatures in lines. The longitudinal field strength was also extracted from the Hβ line observed with the DAO. With a Monte Carlo simulation we derived the maximum strength of the field possibly hosted by γ Peg. Results: We find that no magnetic signatures are visible in the very high quality spectropolarimetric data. The average longitudinal field measured in the Narval data is Bl = -0.1 ± 0.4 G. We derive a very strict upper limit of the dipolar field strength of Bpol ~ 40 G. Conclusions: We conclude that γ Peg is not magnetic: it hosts neither a strong stable fossil field as observed in a fraction of massive stars nor a very weak Vega-like field. There is therefore no evidence that Vega-like fields exist in B stars, contrary to the predictions by fossil field dichotomy scenarios. These scenarios should thus be revised. Our results also provide strong constraints for stellar evolution models. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France, and at the Dominion Astrophysical Observatory.Tables 1-3 are available in electronic form at http://www.aanda.org
Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1998-01-01
Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.
NASA Technical Reports Server (NTRS)
Hathaway, David; Upton, Lisa
2012-01-01
We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Upton, Lisa
2012-01-01
We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.
NASA Astrophysics Data System (ADS)
Hilbich, D.; Rahbar, A.; Khosla, A.; Gray, B. L.
2012-10-01
We present the initial experimental results for manipulating micro-robots featuring permanent magnetic polymer magnets for guided wireless endoscopy applications. The magnetic polymers are fabricated by doping polydimethylsiloxane (PDMS) with permanent isotropic rare earth magnetic powder (MQFP 12-5) with an average particle size of 6 μm. The prepared magnetic nanocomposite polymer (M-NCP) is patterned in the desired shape against a plexiglass mold via soft lithography techniques. It is observed that the fabricated micro-robot magnets have a magnetic field strength of 50 mT and can easily be actuated by applying a field of 8.3 mT (field measured at the capsule's position) and moved at a rate of 5 inches/second.
Rogers, Benjamin H; Brown, Justin C; Gater, David R; Schmitz, Kathryn H
2017-02-01
To characterize the relationship between 1-repetition maximum (1-RM) bench press strength and isometric handgrip strength among breast cancer survivors. Cross-sectional study. Laboratory. Community-dwelling breast cancer survivors (N=295). Not applicable. 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer, with 3 maximal contractions of the left and right hands. All measures were conducted by staff with training in clinical exercise testing. Among 295 breast cancer survivors, 1-RM bench press strength was 18.2±6.1kg (range, 2.2-43.0kg), and isometric handgrip strength was 23.5±5.8kg (range, 9.0-43.0kg). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=.399; P<.0001). Mean difference analysis suggested that the average isometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7kg (95% limits of agreement, -8.2 to 17.6kg). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=.31; P<.0001) and age (β=-.20; P<.0001) were positively correlated with 1-RM bench press strength (R 2 =.23). Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among breast cancer survivors. 1-RM bench press strength and isometric handgrip strength quantify distinct components of muscular strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure
NASA Astrophysics Data System (ADS)
Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.
2013-01-01
New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.
Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles
NASA Astrophysics Data System (ADS)
Kay, C.; Gopalswamy, N.
2017-12-01
Predicting the effects of a coronal mass ejection (CME) impact requires knowing if impact will occur, which part of the CME impacts, and its magnetic properties. We explore the relation between CME deflections and rotations, which change the position and orientation of a CME, and the resulting magnetic profiles at 1 AU. For 45 STEREO-era, Earth-impacting CMEs, we determine the solar source of each CME, reconstruct its coronal position and orientation, and perform a ForeCAT (Forecasting a CME's Altered Trajectory) simulation of the coronal deflection and rotation. From the reconstructed and modeled CME deflections and rotations, we determine the solar cycle variation and correlations with CME properties. We assume no evolution between the outer corona and 1 AU and use the ForeCAT results to drive the ForeCAT In situ Data Observer (FIDO) in situ magnetic field model, allowing for comparisons with ACE and Wind observations. We do not attempt to reproduce the arrival time. On average FIDO reproduces the in situ magnetic field for each vector component with an error equivalent to 35% of the average total magnetic field strength when the total modeled magnetic field is scaled to match the average observed value. Random walk best fits distinguish between ForeCAT's ability to determine FIDO's input parameters and the limitations of the simple flux rope model. These best fits reduce the average error to 30%. The FIDO results are sensitive to changes of order a degree in the CME latitude, longitude, and tilt, suggesting that accurate space weather predictions require accurate measurements of a CME's position and orientation.
Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Brain, D. A.
2012-12-01
Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.
Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.
2016-01-01
Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; P<0.0001). Mean-difference analysis suggested that the average isometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; P<0.0001) and age (β=−0.20; P<0.0001) were positively correlated with 1-RM bench press strength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047
ERIC Educational Resources Information Center
Muris, Peter; Maas, Anneke
2004-01-01
The current study examined attachment style, strengths, and difficulties in institutionalized and non-institutionalized children with below-average intellectual abilities. Parents/caregivers and teachers of the children completed a brief measure of attachment style and the Strengths and Difficulties Questionnaire, which assesses the most important…
Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru
2016-10-11
An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.
NASA Astrophysics Data System (ADS)
Ogawa, Yutaro; Ikeda, Akira; Kotani, Kiyoshi; Jimbo, Yasuhiko
In this study, we propose the EEG phase synchronization analysis including not only the average strength of the synchronization but also the distribution and directions under the conditions that evoked emotion by musical stimuli. The experiment is performed with the two different musical stimuli that evoke happiness or sadness for 150 seconds. It is found that the average strength of synchronization indicates no difference between the right side and the left side of the frontal lobe during the happy stimulus, the distribution and directions indicate significant differences. Therefore, proposed analysis is useful for detecting emotional condition because it provides information that cannot be obtained only by the average strength of synchronization.
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
Quantum critical quasiparticle scattering within the superconducting state of CeCoIn 5
Paglione, Johnpierre; Tanatar, M. A.; Reid, J.-Ph.; ...
2016-06-27
Here, the thermal conductivity κ of the heavy-fermion metal CeCoIn 5 was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H c2, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution ofmore » κ/T with field reveals that the electron-electron scattering (or transport mass m*) of those unpaired electrons diverges as H→H c2 from below, in the same way that it does in the normal state as H→H c2 from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn 5 at H*=H c2 even from inside the superconducting state. In conclusion, the fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.« less
Wei, Wei; Sun, Yang; Zhu, Mingli; Liu, Xiangzhi; Sun, Peiqing; Wang, Feng; Gui, Qiu; Meng, Wuyi; Cao, Yi; Zhao, Jing
2015-12-16
The coordination bond between gold and sulfur (Au-S) has been widely studied and utilized in many fields. However, detailed investigations on the basic nature of this bond are still lacking. A gold-specific binding protein, GolB, was recently identified, providing a unique opportunity for the study of the Au-S bond at the molecular level. We probed the mechanical strength of the gold-sulfur bond in GolB using single-molecule force spectroscopy. We measured the rupture force of the Au-S bond to be 165 pN, much lower than Au-S bonds measured on different gold surfaces (∼1000 pN). We further solved the structures of apo-GolB and Au(I)-GolB complex using X-ray crystallography. These structures showed that the average Au-S bond length in GolB is much longer than the reported average value of Au-S bonds. Our results highlight the dramatic influence of the unique biological environment on the stability and strength of metal coordination bonds in proteins.
Correlations between solar wind parameters and auroral kilometric radiation intensity
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Dangelo, N.
1981-01-01
The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.
Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field
Wang, Shunqiang; Zhou, Yihua; Tan, Jifu; Xu, Jiang; Yang, Jie; Liu, Yaling
2014-01-01
A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs’ targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system. PMID:24653546
Relation of field-aligned currents measured by AMPERE project to solar wind and substorms
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Anderson, B. J.; Chu, X.
2016-12-01
Magnetic perturbations measured in the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) by the Iridium constellation of spacecraft have been processed to obtain the time history of field-aligned currents (FAC) connecting the magnetosphere to the ionosphere. We find that the strength of these currents is closely related to the strength of the solar wind driver defined as a running average of the previous three hours of the optimum AL (auroral lower) coupling function. The relation is well represented by a saturation model I = A*S*Ss/(S+Ss) with I the current strength in mega Amps, S the driver strength in mV/m, Ss the saturation value of 7.78 mV/m, and A = 2.55 scales the relation to units of current. We also find that in general the upward current on the nightside increases with each substorm expansion onset defined by a combination of the SuperMag SML (SuperMag AL) and midlatitude positive bay (MPB) onset lists. A superposed epoch analysis using 700 onsets in 2010 shows the following: solar wind coupling peaks at expansion onset; dayside outward current starts to increase one hour before onset while nightside outward current starts suddenly at onset; nightside outward current reaches a peak at 28 minutes as do SML and MPB indices; FAC, SML, and MPB respectively take 1, 2, and 3 hours to decay to background. The data indicate that the substorm current wedge is superposed on a pre-existing field-aligned current system and that the location and properties of the current wedge can be studied with the AMPERE data.
47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided such...
47 CFR 73.311 - Field strength contours.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...
47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided such...
47 CFR 73.311 - Field strength contours.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...
Apparatus and method for magnetically processing a specimen
Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A
2013-09-03
An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.
First Magnetic Field Detection on a Class I Protostar
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Greene, Thomas P.; Doppmann, Greg W.; Covey, Kevin R.
2009-08-01
Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on T Tauri stars with field strengths in general agreement with the predictions of magnetospheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded Class I young stellar objects. It is believed that protostars accrete much of their final mass during the Class I phase, but the physics governing this process remains poorly understood. Here, we use high-resolution near-infrared spectra obtained with NIRSPEC on Keck and with Phoenix on Gemini South to measure the magnetic field properties of the Class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Analysis of this data suggests a surface average field strength of 2.9 ± 0.43 kG on WL 17. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). The Phoenix data were obtained under the program: GS-2006A-C-12.
NASA Astrophysics Data System (ADS)
Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.
2017-12-01
Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.
Vyas, Manan; Kota, V K B; Chavda, N D
2010-03-01
Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as lambda , the strength of the interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field), increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions (also called local density of states) and also a duality region where information entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition points lambda_{c} , lambdaF, and lambdad , respectively, is described using the propagator for the spectral variances and the formula for the propagator is derived. We further establish that the duality region corresponds to a region of thermalization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-particle orbitals with thermodynamic entropy and information entropy for various lambda values and they are very close to each other at lambda=lambdad.
Pole-strength of the earth from Magsat and magnetic determination of the core radius
NASA Technical Reports Server (NTRS)
Voorhies, G. V.; Benton, E. R.
1982-01-01
A model based on two days of Magsat data is used to numerically evaluate the unsigned magnetic flux linking the earth's surface, and a comparison of the 16.054 GWb value calculated with values from earlier geomagnetic field models reveals a smooth, monotonic, and recently-accelerating decrease in the earth's pole strength at a 50-year average rate of 8.3 MWb, or 0.052%/year. Hide's (1978) magnetic technique for determining the radius of the earth's electrically-conducting core is tested by (1) extrapolating main field models for 1960 and 1965 downward through the nearly-insulating mantle, and then separately comparing them to equivalent, extrapolated models of Magsat data. The two unsigned fluxes are found to equal the Magsat values at a radius which is within 2% of the core radius; and (2) the 1960 main field and secular variation and acceleration coefficients are used to derive models of 1930, 1940 and 1950. The same core magnetic radius value, within 2% of the seismic value, is obtained. It is concluded that the mantle is a nearly-perfect insulator, while the core is a perfect conductor, on the decade time scale.
Effects of SiO2 and ZnO doping on mechanical and biological properties of 3D printed TCP scaffolds
Fielding, Gary A.; Bandyopadhyay, Amit; Bose, Susmita
2011-01-01
Objectives To evaluate the effects of SiO2 (0.5 wt %) and ZnO (0.25 wt %) dopants on the mechanical and biological properties of tricalcium phosphate (TCP) scaffolds with three dimensionally (3D) interconnected pores. Methods Scaffolds were created with a commercial 3D printer. Post sintering phase analysis was determined by x-ray diffraction. Surface morphology of the scaffolds was examined by field emission electron microscopy. Mechanical strength was evaluated with a screw driven universal testing machine. MTT assay was used for cellular proliferation characteristics and cellular morphology was examined by field emission electron microscopy. Results Addition of dopants into TCP increased the average density of pure TCP from 90.8 ± 0.8% to 94.1 ± 1.6% and retarded the β to α phase transformation at high sintering temperatures, which resulted in up to 2.5 fold increase in compressive strength. In vitro cell-materials interaction studies, carried out using hFOB cells, confirmed that the addition of SiO2 and ZnO to the scaffolds facilitates faster cell proliferation when compared to pure TCP scaffolds. Significance Addition of SiO2 and ZnO dopants to the TCP scaffolds showed increased mechanical strength as well as increased cellular proliferation. PMID:22047943
47 CFR 90.689 - Field strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for EA...
47 CFR 90.689 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for EA...
FARADAY ROTATION STRUCTURE ON KILOPARSEC SCALES IN THE RADIO LOBES OF CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feain, I. J.; Ekers, R. D.; Norris, R. P.
2009-12-10
We present the results of an Australia Telescope Compact Array 1.4 GHz spectropolarimetric aperture synthesis survey of 34 deg{sup 2} centered on Centaurus A-NGC 5128. A catalog of 1005 extragalactic compact radio sources in the field to a continuum flux density of 3 mJy beam{sup -1} is provided along with a table of Faraday rotation measures (RMs) and linear polarized intensities for the 28% of sources with high signal to noise in linear polarization. We use the ensemble of 281 background polarized sources as line-of-sight probes of the structure of the giant radio lobes of Centaurus A. This is themore » first time such a method has been applied to radio galaxy lobes and we explain how it differs from the conventional methods that are often complicated by depth and beam depolarization effects. Assuming a magnetic field strength in the lobes of 1.3 B {sub 1} muG, where B {sub 1} = 1 is implied by equipartition between magnetic fields and relativistic particles, the upper limit we derive on the maximum possible difference between the average RM of 121 sources behind Centaurus A and the average RM of the 160 sources along sightlines outside Centaurus A implies an upper limit on the volume-averaged thermal plasma density in the giant radio lobes of (n{sub e} ) < 5 x 10{sup -5} B {sup -1} {sub 1} cm{sup -3}. We use an RM structure function analysis and report the detection of a turbulent RM signal, with rms sigma{sub RM} = 17 rad m{sup -2} and scale size 0.{sup 0}3, associated with the southern giant lobe. We cannot verify whether this signal arises from turbulent structure throughout the lobe or only in a thin skin (or sheath) around the edge, although we favor the latter. The RM signal is modeled as possibly arising from a thin skin with a thermal plasma density equivalent to the Centaurus intragroup medium density and a coherent magnetic field that reverses its sign on a spatial scale of 20 kpc. For a thermal density of n {sub 1} 10{sup -3} cm{sup -3}, the skin magnetic field strength is 0.8 n {sup -1} {sub 1} muG.« less
Shock heating of the solar wind plasma
NASA Technical Reports Server (NTRS)
Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.
1990-01-01
The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Rani, Raj
2015-10-01
The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.
NASA Astrophysics Data System (ADS)
Lillis, Robert J.; Brain, David A.
2013-06-01
Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.
47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits for EA-licensed LMS... § 90.359 Field strength limits for EA-licensed LMS systems. EA-licensed multilateration systems shall limit the field strength of signals transmitted from their base stations to 47 dBuV/m at their EA...
Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
1997-01-01
This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.
Laser-induced polarization of a quantum spin system in the steady-state regime
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2016-05-01
The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.
Analysis of the Effect of Menstrual Cycle Phases on Aerobic-Anaerobic Capacity and Muscle Strength
ERIC Educational Resources Information Center
Kose, Bereket
2018-01-01
The objective of this study is to examine the effect of menstrual cycle phases on aerobic-anaerobic capacity and muscle strength. 10 female kickboxing athletes with an average age of 21.40 ± 2.01 years; average height of 169.60 ± 6.14 cm; average weight of 63.90 ± 5.76 kg and average training age of 7.41 ± 2.10 participated in the study. On the…
World-wide increase in tropospheric methane, 1978-1983
NASA Technical Reports Server (NTRS)
Blake, D. R.; Rowland, F. S.
1986-01-01
Techniques used to assess methane concentration in the troposphere are described, and data obtained during the period from 1978 to 1983 are presented in detail. Tropospheric methane concentrations in remote locations averaged a yearly world-wide increase of 0.018 + or - 0.002 parts per million by volume (ppmv). Average world-wide tropospheric concentration of methane in dry air was 1.625 ppmv at the end of 1983 measured against an NBS standard certified as 0.97 ppmv. Contributing to this steady increase in methane concentration are increases in the source strengths from cattle and rice fields, which in turn result from CO, CH4 and HO coupling. Among the physical and chemical effects is an increase in greenhouse warming of about 0.04 C per decade.
NASA Astrophysics Data System (ADS)
Edberg, N. J. T.; Lester, M.; Cowley, S. W. H.; Eriksson, A. I.
2008-08-01
We use the data set from the magnetometer and electron reflectometer instruments on board the Mars Global Surveyor spacecraft to show that the crustal magnetic fields of Mars affect the location of the magnetic pileup boundary (MPB) and bow shock (BS) globally. We search for crossings of the MPB and BS in the data that were observed over the first 16 months of the mission. To identify the influence of the crustal magnetic fields, all crossings are extrapolated to the terminator plane in order to remove the solar zenith angle (SZA) dependence, and to make it possible to compare crossings independently of location. The MPB crossings that were observed over regions on Mars, which contain strong crustal magnetic fields, are on average located further out than crossings observed over regions with weak crustal fields. This is shown in three separate longitude intervals. We also find that the dayside BS crossings observed over the southern hemisphere of Mars are on average located further out than the BS crossings observed over the northern hemisphere, possibly because of the influence of the crustal fields. We also study the magnetic field strength and its variation at the inside of the MPB and their dependence on the SZA and altitude. We find that the magnitude of the magnetic field in the MPB is closely linked to the altitude of the MPB, with the magnitude increasing as the MPB is observed closer to the planet.
Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout
2014-05-01
In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.
Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere
Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Luhmann, J. G.; Xiao, S. D.
2016-01-01
The existence of a strong internal magnetic field allows probing of the interior through both long term changes of and short period fluctuations in that magnetic field. Venus, while Earth’s twin in many ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field became weaker on average and less noisy. Below 140 km, the median field strength became steady but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such as a plane or balloon, but possibly could be attempted on a lander. PMID:27009234
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul
2018-01-21
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair
NASA Astrophysics Data System (ADS)
Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2011-10-01
We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.
LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J.
LSPM J1314+1320 (=NLTT 33370) is a binary star system consisting of two nearly identical pre-main-sequence stars of spectral type M7. The system is remarkable among ultracool dwarfs for being the most luminous radio emitter over the widest frequency range. Masses and luminosities are at first sight consistent with the system being coeval at age ∼80 Myr according to standard (nonmagnetic) evolutionary models. However, these models predict an average effective temperature of ∼2950 K, which is 180 K hotter than the empirical value. Thus, the empirical radii are oversized relative to the standard models by ≈13%. We demonstrate that magnetic stellarmore » models can quantitatively account for the oversizing. As a check on our models, we note that the radio emission limits the surface magnetic field strengths: the limits depend on identifying the radio emission mechanism. We find that the field strengths required by our magnetic models are too strong to be consistent with gyrosynchrotron emission but are consistent with electron cyclotron maser emission.« less
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.
1990-01-01
A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.
2015-12-01
During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by
Pisiform excision for pisotriquetral instability and arthritis.
Campion, Heather; Goad, Andrea; Rayan, Ghazi; Porembski, Margaret
2014-07-01
To evaluate wrist strength and kinematics after pisiform excision and preservation of its soft tissue confluence for pisotriquetral instability and arthritis. We evaluated 12 patients, (14 wrists) subjectively and objectively an average of 7.5 years after pisiform excision. Three additional patients were interviewed by phone. Subjective evaluation included inquiry about pain and satisfaction with the treatment. Objective testing included measuring wrist flexion and extension range of motion, grip strength, and static and dynamic flexion and ulnar deviation strengths of the operative hand compared with the nonsurgical normal hand. Four patients had concomitant ulnar nerve decompression at the wrist. All patients were satisfied with the outcome. Wrist flexion averaged 99% and wrist extension averaged 95% of the nonsurgical hand. Mean grip strength of the operative hand was 90% of the nonsurgical hand. Mean static flexion strength of the operative hand was 94% of the nonsurgical hand, whereas mean dynamic flexion strength was 113%. Mean static ulnar deviation strength of the operative hand was 87% of the nonsurgical hand. The mean dynamic ulnar deviation strength of the operative hand was 103% of the nonsurgical hand. Soft tissue confluence-preserving pisiform excision relieved pain and retained wrist motion and static and dynamic strength. Associated ulnar nerve compression was a confounding factor that may have affected outcomes. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge
NASA Astrophysics Data System (ADS)
Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning
2018-07-01
Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.
Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying
2014-01-01
We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505
Effects of meridional flow variations on solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov
2014-09-10
The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less
Seat strength in rear body block tests.
Viano, David C; White, Samuel D
2016-07-03
This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats. The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY). Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989-2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats. Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700-3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.
47 CFR 18.305 - Field strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Field strength limits. 18.305 Section 18.305... Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in § 18.301... strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise indicated...
Structure of High Latitude Currents in Magnetosphere-Ionosphere Models
NASA Astrophysics Data System (ADS)
Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.
2017-03-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Structure of high latitude currents in global magnetospheric-ionospheric models
Wiltberger, M; Rigler, E. J.; Merkin, V; Lyon, J. G
2016-01-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations
NASA Astrophysics Data System (ADS)
Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul
2018-01-01
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data
NASA Astrophysics Data System (ADS)
Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther
2017-12-01
Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.
Implications of grain size variation in magnetic field alignment of block copolymer blends
Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.; ...
2017-03-28
Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less
Implications of grain size variation in magnetic field alignment of block copolymer blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.
Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less
NASA Astrophysics Data System (ADS)
Ma, N.; Walker, J. S.
2000-01-01
This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.
46 CFR 160.076-21 - Component materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by § 160.076-25(d)(2)(iii). (c) The average grab breaking strength and tear strength of the inflation....076-25(d)(2)(ii), must be at least 90% of the grab breaking strength and tear strength determined from... breaking strength or tear strength may be more than 20% below the results obtained in approval testing. (d...
A Theoretical Model of X-Ray Jets from Young Stellar Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp
There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less
NASA Astrophysics Data System (ADS)
Tao, C.; Jin, H.; Shinagawa, H.; Fujiwara, H.; Miyoshi, Y.
2017-12-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
NASA Astrophysics Data System (ADS)
Tao, Chihiro; Jin, Hidekatsu; Shinagawa, Hiroyuki; Fujiwara, Hitoshi; Miyoshi, Yasunobu
2017-09-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
Towards a universal master curve in magnetorheology
NASA Astrophysics Data System (ADS)
Ruiz-López, José Antonio; Hidalgo-Alvarez, Roque; de Vicente, Juan
2017-05-01
We demonstrate that inverse ferrofluids behave as model magnetorheological fluids. A universal master curve is proposed, using a reduced Mason number, under the frame of a structural viscosity model where the magnetic field strength dependence is solely contained in the Mason number and the particle concentration is solely contained in the critical Mason number (i.e. the yield stress). A linear dependence of the critical Mason number with the particle concentration is observed that is in good agreement with a mean (average) magnetization approximation, particle level dynamic simulations and micromechanical models available in the literature.
Primary Blast Injury Criteria for Animal/Human TBI Models using Field Validated Shock Tubes
2016-09-01
Software, Inc., San Jose, CA). Dose-response models for heart rate and pulmonary injury were fitted with Origin 9.0 software (OriginLab Corp...impulse. We observed only a few cases where pathological score exceeded 21 for the blast 7 strength higher than 300 kPa BOP with high standard...average heart rates (ΔHR) decreased gradually with increase in blast intensity: -29±10 (60 kPa), - 26±20 (100 kPa), -43±26 (130 kPa), -62±21 (190
NASA Astrophysics Data System (ADS)
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.
2015-09-01
Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm-1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm-1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2015-09-21
Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm(-1). Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm(-1), independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.
Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2015-01-01
Tumor Treating Fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1 - 3 V/cm. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V/cm, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields. PMID:26350296
Strong transverse fields in delta-spots
NASA Technical Reports Server (NTRS)
Zirin, Harold; Wang, Haimin
1993-01-01
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.
NASA Astrophysics Data System (ADS)
Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.
2018-04-01
The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.
Intensity of geomagnetic field in the Precambrian and evolution of the Earth's deep interior
NASA Astrophysics Data System (ADS)
Smirnov, A. V.
2017-09-01
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively "young" Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth's internal structure, such as the age of the Earth's solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth's inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth's core. The data are consistent with very young or very "old" inner core ages and, correspondingly, with high or low values of core thermal conductivity.
Hinterreiter, J; Veronig, A M; Thalmann, J K; Tschernitz, J; Pötzi, W
2018-01-01
A statistical study of the chromospheric ribbon evolution in H[Formula: see text] two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the H[Formula: see text] and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. H[Formula: see text] filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s -1 ). The local reconnection electric field of confined ([Formula: see text]) and eruptive ([Formula: see text]) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections. The online version of this article (10.1007/s11207-018-1253-1) contains supplementary material, which is available to authorized users.
Modelling and assessment of the electric field strength caused by mobile phone to the human head.
Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas
2016-06-01
Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.
47 CFR 27.55 - Power strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Power strength limits. 27.55 Section 27.55... COMMUNICATIONS SERVICES Technical Standards § 27.55 Power strength limits. (a) Field strength limits. For the following bands, the predicted or measured median field strength at any location on the geographical border...
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, Bonnie R.
2004-11-01
The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Peng; Liu, Hui; Gao, Yuanyuan
The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weakermore » magnetic field in the discharge channel.« less
47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...
47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...
47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Bats respond to very weak magnetic fields.
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
47 CFR 27.804 - Field strength limits at WMTS facility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS band...
47 CFR 27.804 - Field strength limits at WMTS facility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS band...
Typical and Unusual Properties of Magnetic Clouds during the WIND Era
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Berdichevsky, D.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Mariani, F.; Lazarus, A. J.; Steinberg, J. T.
1999-01-01
A list of 33 magnetic clouds as identified in WIND magnetic field and plasma data has been compiled. The intervals for these events are provided as part of NASA/GSFC, WIND-MFI's Website under the URL http://lepmfi.qsfc.nasa.gov/mfi/mag_cloud publ.html#table The period covered in this study is from early 1995 to November 1998 which primarily occurs in the quiet part of the solar cycle. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in 1-hour averaged form for all of these events (except one small event where 10 min avg's were used) and the resulting fit-parameters examined. Each event was provided a semi-quantitatively determined quality factor (excellent, good or poor). A set of 28 good or better cases, spanning a surprisingly large range of values for its various properties, was used for further analysis. These properties are, for example, durations, attitudes, sizes, asymmetries, axial field strengths, speeds, and relative impact parameters. They will be displayed and analyzed, along with some related derived quantities, with emphasis on typical vs unusual properties and on the magnetic fields magnetic clouds' relationships to the Sun and to upstream interplanetary shocks, where possible. For example, it is remarkable how narrowly distributed the speeds of these clouds are, and the overall average speed (390 techniques km/s) is less than that normally quoted for the average solar wind speed (420 km/s) despite the fact that many of these clouds are d"drivers" of interplanetary shocks. On average, a cloud appears to be a little less symmetric when the spacecraft is able to pass close to the cloud's axis as compared to a farther out passage. The average longitude and latitude (in GSE) of the axes of the clouds are 85 degrees and 8 degrees, respectively, with standard deviations near 40 degrees. Also, the half=yearly averaged axial magnetic flux has approximately tripled. almost monotonically, from about 6 to 17 X 10(exp 29) Mx over the first 3.5 years of consideration, but with a large uncertainty on each of the half-year estimates, because of small sampling. If true,this finding implies an approximate tripling of the events' solar fluxes over this period as it goes into solar maximum.
Assessment of Carrying Capacity of Timber Element Using SBRA Method
NASA Astrophysics Data System (ADS)
Kraus, Michal
2017-10-01
Wood as a building material has a significant perspective in the context of nonrenewable energy sources and production of greenhouse gas emissions. The subject of this paper is to verify the carrying capacity of the timber element using the probabilistic method Simulation Based Reliability Assessment (SBRA). The simulation is performed for one million cycles. Key factors decreasing the strength of wooden material at the time include the duration of the loads, and combinations thereof. Inconsiderable factor affecting the strength of wood is also the humidity. Continuous beam with three fields (length 15 m, glued laminated timber, and strength class GL 36 according to the DIN EN 1194) is placed in an environment with a thermal-humidity regime of the 2nd class according to the EC 5. Average life of carrying timber structure is estimated to be 50 years. The simulation results show that there is no risk of failure of wood during the first year. The probability of failure is common in the 10 years of its life. Then, wooden element already meets only a reduced level of reliability.
NASA Astrophysics Data System (ADS)
El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.
2014-08-01
Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.
New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N I
NASA Astrophysics Data System (ADS)
Tayal, S. S.
2006-03-01
The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N I lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strengths over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s22p3 4So, 2Do, 2Po, 2s2p4 4P, 2s22p23s 4P, and 2P terms and from these levels to the levels of the 2s22p23p 2So, 4Do, 4Po, 4So, 2Do, 2Po, 2s22p23s 2D, 2s22p24s 4P, 2P, 2s22p23d 2P, 4F, 2F, 4P, 4D, and 2D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.
Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R
2018-04-16
Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P < 0.05) increase in four out of seven ROIs for the lowest bandwidth employed with respect to the highest (25.18% increase in CNR of caudate nucleus). All sequences reported an excellent correlation across field strength and bandwidth variation (R ≥ 0.96, widest limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Mean Field Analysis of Stochastic Neural Network Models with Synaptic Depression
NASA Astrophysics Data System (ADS)
Yasuhiko Igarashi,; Masafumi Oizumi,; Masato Okada,
2010-08-01
We investigated the effects of synaptic depression on the macroscopic behavior of stochastic neural networks. Dynamical mean field equations were derived for such networks by taking the average of two stochastic variables: a firing-state variable and a synaptic variable. In these equations, the average product of thesevariables is decoupled as the product of their averages because the two stochastic variables are independent. We proved the independence of these two stochastic variables assuming that the synaptic weight Jij is of the order of 1/N with respect to the number of neurons N. Using these equations, we derived macroscopic steady-state equations for a network with uniform connections and for a ring attractor network with Mexican hat type connectivity and investigated the stability of the steady-state solutions. An oscillatory uniform state was observed in the network with uniform connections owing to a Hopf instability. For the ring network, high-frequency perturbations were shown not to affect system stability. Two mechanisms destabilize the inhomogeneous steady state, leading to two oscillatory states. A Turing instability leads to a rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was previously unreported. Various oscillatory states take place in a network with synaptic depression depending on the strength of the interneuron connections.
Low-level hydrogen sulfide and central nervous system dysfunction.
Kilburn, Kaye H; Thrasher, Jack D; Gray, Michael R
2010-08-01
Forty-nine adults living in Lovington, Tatum, and Artesia, the sour gas/oil sector of Southeastern New Mexico, were tested for neurobehavioral impairment. Contributing hydrogen sulfide were (1) an anaerobic sewage plant; (2) two oil refineries; (3) natural gas/oil wells and (4) a cheese-manufacturing plant and its waste lagoons. Comparisons were to unexposed Wickenburg, Arizona, adults. Neurobehavioral functions were measured in 26 Lovington adults including 23 people from Tatum and Artesia, New Mexico, and 42 unexposed Arizona people. Participants completed questionnaires including chemical exposures, symptom frequencies and the Profile of Mood States. Measurements included balance, reaction time, color discrimination, blink reflex, visual fields, grip strength, hearing, vibration, problem solving, verbal recall, long-term memory, peg placement, trail making and fingertip number writing errors (FTNWE). Average numbers of abnormalities and test scores were adjusted for age, gender, educational level, height and weight, expressed as percent predicted (% pred) and compared by analysis of variance (ANOVA). Ages and educational attainment of the three groups were not statistically significantly different (ssd). Mean values of Lovington residents were ssd from the unexposed Arizona people for simple and choice reaction times, balance with eyes open and closed, visual field score, hearing and grip strength. Culture Fair, digit symbol substitution, vocabulary, verbal recall, peg placement, trail making A and B, FTNWE, information, picture completion and similarities were also ssd. The Lovington adults who averaged 11.8 abnormalities were ssd from, Tatum-Artesia adults who had 3.6 and from unexposed subjects with 2.0. Multiple source community hydrogen sulfide exposures impaired neurobehavioral functions.
Energy flux determines magnetic field strength of planets and stars.
Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar
2009-01-08
The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.
47 CFR 73.61 - AM directional antenna field strength measurements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...
47 CFR 73.61 - AM directional antenna field strength measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...
47 CFR 73.61 - AM directional antenna field strength measurements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...
47 CFR 73.61 - AM directional antenna field strength measurements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...
47 CFR 73.61 - AM directional antenna field strength measurements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, A. T.; Opher, M.; Provornikova, E.
In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic fieldmore » derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ∼100 km s{sup −1} larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.« less
NASA Astrophysics Data System (ADS)
Verscharen, D.; Chandran, B. D. G.; Klein, K. G.; Quataert, E.
2016-12-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in β∥p ≡ 8πnpkBT∥p/B2 and in Rp ≡ T⊥p/T∥p, where T⊥p and T∥p are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and np is the proton density. If the amplitude of the compressive fluctuations is large enough, Rp crosses one or more instability thresholds for anisotropy-driven micro-instabilities. The enhanced field fluctuations from these micro-instabilities scatter the protons so as to reduce the anisotropy of the pressure tensor, driving the average value of Rp away from the marginal stability boundary until the fluctuating value of Rp stops crossing the boundary. We model this "fluctuating-anisotropy effect" using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We show that this effect can explain why, in the nearly collisionless solar wind, the average value of Rp is close to unity.
Free Oscillations of the Facula Node at the Stage of Slow Dissipation
NASA Astrophysics Data System (ADS)
Solov'ev, A. A.; Kirichek, E. A.; Efremov, V. I.
2017-12-01
A solar faculae having an appearance of quite long-lived magnetic nodes can perform (as well as sunspots, chromospheric filaments, coronal loops) free oscillations, i.e., they can oscillate about the stable equilibrium position as a single whole, changing quasi-periodically magnetic field averaged over the section with periods from 1 to 4 hours. Kolotkov et al. (2017) described the case in which the average magnetic field strength of the facula node considerably decreased during observations of SDO magnetograms (13 hours), and, at the same time, its oscillations acquired a specific character: the fundamental mode of free oscillations of the facula considerably increased in amplitude (by approximately two times), while the period of oscillations increased by three times. At the end of the process, the system dissipated. In this work, we present the exact solution of the equation of small-amplitude oscillations of the system with a time-variable rigidity, describing the oscillation behavior at which the elasticity of the system decreases with time, while the period and amplitude of oscillations grow.
A substantial amount of hidden magnetic energy in the quiet Sun.
Bueno, J Trujillo; Shchukina, N; Ramos, A Asensio
2004-07-15
Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.
ERIC Educational Resources Information Center
Niemiec, Ryan M.; Shogren, Karrie A.; Wehmeyer, Michael L.
2017-01-01
There has been limited focus in the disability field on assessing and intervening to promote strengths of character. However, character strengths have received significant attention in the broader field of positive psychology. This paper provides an overview of the growing science of character strengths and explores why and how character strengths…
Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing
2018-06-13
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
NASA Technical Reports Server (NTRS)
Kavaya, M. J. (Inventor)
1981-01-01
A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.
Crossed-coil detection of two-photon excited nuclear quadrupole resonance
NASA Astrophysics Data System (ADS)
Eles, Philip T.; Michal, Carl A.
2005-08-01
Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burlaga, L. F.; Ness, N. F.; Richardson, J. D.
We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2012, when V2 was observing the effects of increasing solar activity following the solar minimum in 2009. The average magnetic field strength B was 0.14 nT and B reached 0.29 nT on day 249. V2 was in a unipolar region in which the magnetic polarity was directed away from the Sun along the Parker spiral 88% of the time, indicating that V2 was poleward of the heliospheric current sheet throughout most of 2012. The magnetic flux at V2 during 2012 was constant. A mergedmore » interaction region (MIR) was observed, and the flow speed increased as the MIR moved past V2. The MIR caused a decrease in the >70 MeV nuc{sup −1} cosmic-ray intensity. The increments of B can be described by a q-Gaussian distribution with q = 1.2 ± 0.1 for daily averages and q = 1.82 ± 0.03 for hour averages. Eight isolated current sheets (“PBLs”) and four closely spaced pairs of current sheets were observed. The average change of B across the current sheets was a factor of ≈2, and B increased or decreased with equal probability. Magnetic holes and magnetic humps were also observed. The characteristic size of the PBLs was ≈6 R{sub L}, where R{sub L} is the Larmor radius of protons, and the characteristic sizes of the magnetic holes and humps were ≈38 R{sub L} and ≈11 R{sub L}, respectively.« less
THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov
2016-12-20
The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less
Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar
2018-01-01
Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk ( P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT.
Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar
2018-01-01
Background: Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. Methods: The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. Results: An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk (P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. Conclusions: High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT. PMID:29535924
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application for broadcast station to conduct field strength measurements and for experimental operation. 1.544 Section 1.544 Telecommunication... General Filing Requirements § 1.544 Application for broadcast station to conduct field strength...
Csonka, P.L.; Tatchyn, R.O.
1989-01-24
Micropole undulators for use in the generation of x-rays from moving charged particles and methods for manufacturing such undulators are disclosed. One type of micropole undulator has two jaws containing rows of spaced apart poles arranged so that each pole produces a magnetic field aligned with all other similar fields. An external biasing field extends through the jaws so that an overall undulator field of substantially sinusoidal shape and substantially zero average value extends along the undulator axis. Preferably, the poles are bars formed of a magnetizable, but unmagnetized, material so that, after the jaws are assembled, all of the bars can be magnetized simultaneously in a uniform magnetic field of suitable strength. Another type of micropole undulator incorporates two parallel layers which have been magnetized to provide rows of alternating magnetic fields extending in opposite directions, the layers being positioned between the pole faces of a highly magnetically permeable material with the south poles of one layer opposite the north poles of the other. Poles in the layers are formed by subjecting successive regions of each layer to oppositely directed and suitably varied magnetizing forces. 16 figs.
Csonka, Paul L.; Tatchyn, Roman O.
1989-01-24
Micropole undulators for use in the generation of x-rays from moving charged particles and methods for manufacturing such undulators are disclosed. One type of micropole undulator has two jaws containing rows of spaced apart poles arranged so that each pole produces a magnetic field aligned with all other similar fields. An external biasing field extends through the jaws so that an overall undulator field of substantially sinusoidal shape and substantially zero average value extends along the undulator axis. Preferably, the poles are bars formed of a magnetizable, but unmagnetized, material so that, after the jaws are assembled, all of the bars can be magnetized simultaneously in a uniform magnetic field of suitable strength. Another type of micropole undulator incorporates two parallel layers which have been magnetized to provide rows of alternating magnetic fields extending in opposite directions, the layers being positioned between the pole faces of a highly magnetically permeable material with the south poles of one layer opposite the north poles of the other. Poles in the layers are formed by subjecting successive regions of each layer to oppositely directed and suitably varied magnetizing forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Laura K., E-mail: lcurrie@astro.ex.ac.uk
Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them,more » leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.« less
Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge
NASA Technical Reports Server (NTRS)
Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.
1982-01-01
The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.
NASA Astrophysics Data System (ADS)
Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.
2018-01-01
The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.
NASA Astrophysics Data System (ADS)
Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.
2018-03-01
Studies made earlier using ground-based observations of geomagnetic field over the Indian longitudes revealed that the occurrence of equatorial counter electrojet (CEJ) events in afternoon hours is more frequent during June solstice (May-June-July-August) in solar minimum than in other periods. In general, the June solstice solar minimum CEJ events occur between 1500 local time (LT) and 1800 LT with peak strength of about -10 nT at around 1600 LT. In order to understand the frequent occurrence of these CEJ events, an investigation is carried out using an equatorial electrojet model (Anandarao, 1976, https://doi.org/10.1029/GL003i009p00545) and the empirical vertical drift model by Fejer et al. (2008, https://doi.org/10.1029/2007JA012801). The strength, duration, peak value, and the occurrence time of CEJ obtained using electrojet model match remarkably well with the corresponding observation of average geomagnetic field variations. The occurrence of CEJ is found to be due to solar quiet (Sq) electric field in the westward direction which is manifested as downward drift in Fejer et al. (2008, https://doi.org/10.1029/2007JA012801) model output during 1500-1800 LT. Further, the occurrence of afternoon reversal of Sq electric field in this season is shown to be consistent with earlier studies from Indian sector. Therefore, this investigation provides explicit evidence for the role of westward Sq electric field on the generation of afternoon CEJ during June solstice in solar minimum periods over the Indian sector indicating the global nature of these CEJ events.
In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T
Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.
2013-01-01
Aim This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. Method Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the ‘progressive saturation’ method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. Results T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20–0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. Conclusion In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers. PMID:20206561
Simchick, Gregory; Liu, Zhi; Nagy, Tamas; Xiong, May; Zhao, Qun
2018-03-25
To assess the feasibility of quantifying liver iron concentration (LIC) using R2* and quantitative susceptibility mapping (QSM) at a high field strength of 7 Tesla (T). Five different concentrations of Fe-dextran were injected into 12 mice to produce various degrees of liver iron overload. After mice were sacrificed, blood and liver samples were harvested. Ferritin enzyme-linked immunosorbent assay (ELISA) and inductively coupled plasma mass spectrometry were performed to quantify serum ferritin concentration and LIC. Multiecho gradient echo MRI was conducted to estimate R2* and the magnetic susceptibility of each liver sample through complex nonlinear least squares fitting and a morphology enabled dipole inversion method, respectively. Average estimates of serum ferritin concentration, LIC, R2*, and susceptibility all show good linear correlations with injected Fe-dextran concentration; however, the standard deviations in the estimates of R2* and susceptibility increase with injected Fe-dextran concentration. Both R2* and susceptibility measurements also show good linear correlations with LIC (R 2 = 0.78 and R 2 = 0.91, respectively), and a susceptibility-to-LIC conversion factor of 0.829 ppm/(mg/g wet) is derived. The feasibility of quantifying LIC using MR-based R2* and QSM at a high field strength of 7T is demonstrated. Susceptibility quantification, which is an intrinsic property of tissues and benefits from being field-strength independent, is more robust than R2* quantification in this ex vivo study. A susceptibility-to-LIC conversion factor is presented that agrees relatively well with previously published QSM derived results obtained at 1.5T and 3T. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua
2016-01-01
Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.
Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.
Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B
2017-09-15
Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
Assessment of short/long term electric field strength measurements for a pilot district
NASA Astrophysics Data System (ADS)
Kurnaz, Cetin; Yildiz, Dogan; Karagol, Serap
2018-03-01
The level of electromagnetic radiation (EMR) exposure increases day by day as natural consequences of technological developments. In recent years, the increasing use of cellular systems has made it necessary to measure and evaluate EMR originating from base stations. In this study, broadband and band selective electric field strength (E) measurements were taken at four different times in order to evaluate the change of short term E in Atakum district of Samsun, Turkey. The measurements were collected from 46 different locations using a SRM 3006 and a PMM 8053 EMR meter in a band from 100 kHz to 3 GHz, and the maximum E (Emax) and the average E (Eavg) were recorded. The highest values have been noticed in these measurements at 9.45 V/m and 17.53 V/m for Eavg and Emax respectively. Apart from these measurements, 24 hour long term E measurements were taken at a location where the highest value was observed and analyzed, to observe the change of Es during a day. At the end of the study, a tentative mathematical model that helps in computing the total E of the medium with 95% accuracy, was obtained.
NASA Technical Reports Server (NTRS)
Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter
1988-01-01
The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.
Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep
2014-07-09
Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-11-01
We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.
Koopmann, Jaclyn; Lanaj, Klodiana; Wang, Mo; Zhou, Le; Shi, Junqi
2016-07-01
The teams literature suggests that team tenure improves team psychological safety climate and climate strength in a linear fashion, but the empirical findings to date have been mixed. Alternatively, theories of group formation suggest that new and longer tenured teams experience greater team psychological safety climate than moderately tenured teams. Adopting this second perspective, we used a sample of 115 research and development teams and found that team tenure had a curvilinear relationship with team psychological safety climate and climate strength. Supporting group formation theories, team psychological safety climate and climate strength were higher in new and longer tenured teams compared with moderately tenured teams. Moreover, we found a curvilinear relationship between team tenure and average team member creative performance as partially mediated by team psychological safety climate. Team psychological safety climate improved average team member task performance only when team psychological safety climate was strong. Likewise, team tenure influenced average team member task performance in a curvilinear manner via team psychological safety climate only when team psychological safety climate was strong. We discuss theoretical and practical implications and offer several directions for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.359 Field strength limits for...
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...
Optical Field-Strength Polarization of Two-Mode Single-Photon States
ERIC Educational Resources Information Center
Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.
2010-01-01
We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…
High-order above-threshold ionization beyond the electric dipole approximation
NASA Astrophysics Data System (ADS)
Brennecke, Simon; Lein, Manfred
2018-05-01
Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.
Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing
NASA Astrophysics Data System (ADS)
Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe
2016-09-01
The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
NASA Astrophysics Data System (ADS)
Poddubnyi, I. I.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V.; Leshukov, A. Yu.; Aleskovskiy, K. V.; Obukhov, D. M.
2016-12-01
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru; Pyatnitskaya, N. Yu.; Razuvanov, N. G.
2016-12-15
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in themore » majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.« less
[Methodological aspects of functional neuroimaging at high field strength: a critical review].
Scheef, L; Landsberg, M W; Boecker, H
2007-09-01
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
NASA Astrophysics Data System (ADS)
Pederson, J. L.; Bursztyn, N.
2014-12-01
Bedrock strength is a key parameter in slope stability, landscape erosion, and fluvial incision, though it is typically ignored or at best indirectly constrained in models, as with the k erodability parameter in stream-power formulations. Indeed, empirical datasets of rock strength suited to address geomorphic questions are rare, in part because of the difficulty in measuring those rocks that are heterolithic, weak, or poorly exposed. We have completed a large dataset of measured bedrock strength organized by rock units exposed along the length of the trunk Colorado-Green river through the Colorado Plateau of the western U.S. Measurements include Selby RMS, fracturing, and field compressive tests at 168 localities, as well as 672 individual-sample tensile-strength tests in the laboratory. These rock strength results are compared to geomorphic metrics of unit stream power, river gradient, valley-bottom width, and local relief through the arid Colorado Plateau. Our measurements trend coherently and logically with bedrock type and age/induration, especially in the case of tensile strength and when the influence of fracturing is also considered, signs that the dataset is robust. Focusing on bedrock (rather than alluvial) reaches of the fluvial transect and tensile strength, there is a positive rank-correlation and a strong power-law correlation between reach-averaged rock strength and unit stream power, as well as an elegant linear relation between tensile strength and river gradient. To address the problem of immeasureable rock types, we utilize the inverse power-law scaling between tensile strength and valley-bottom width to estimate the "effective" tensile strength of heterolithic, shale-rich bedrock in alluvial reaches. These results suggest that tensile strength varies to at least an order-of-magnitude smaller values than evident with directly testable rocks in this landscape, with implications for scaling erodibility parameters. Overall, results lead to the conclusion that bedrock strength is, in fact, the first-order control on large-scale fluvial geomorphology in the Colorado Plateau. On one hand this is intuitive, yet it highlights the erroneous but common assumption that bedrock erodibility is uniform or of secondary importance in fluvial morphology and landscape evolution.
Calcium abundances in giant stars of the globular clusters M3, M13, M15, and M92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suntzeff, N.B.
The average calcium II H and K line strengths of giant stars in M3, M13, M15, and M92 are found to be closely correlated with the (Fe/H) of the cluster. Simple physical arguments are provided to show the observed average line strengths reproduce the difference in (Fe/H) between the clusters. The observed dispersion in H and K line strengths yields an upper limit of 0.15 dex for M15 and M92, and 0.11 dex for M3+M13 for the average intracluster variation of (Ca/H), provided (Ca/H)=Fe/H). The dispersions drop to half these values if the calcium abundance varies independently of the ironmore » peak abundances.« less
NASA Astrophysics Data System (ADS)
Wilson, Derek; Cooray, Asantha; Nayyeri, Hooshang; Bonato, Matteo; Bradford, Charles M.; Clements, David L.; De Zotti, Gianfranco; Díaz-Santos, Tanio; Farrah, Duncan; Magdis, Georgios; Michałowski, Michał J.; Pearson, Chris; Rigopoulou, Dimitra; Valtchanov, Ivan; Wang, Lingyu; Wardlow, Julie
2017-10-01
We present stacked average far-infrared spectra of a sample of 197 dusty star-forming galaxies (DSFGs) at 0.005< z< 4 using about 90% of the Herschel Space Observatory SPIRE Fourier Transform Spectrometer (FTS) extragalactic data archive based on 3.5 years of science operations. These spectra explore an observed-frame 447-1568 GHz frequency range, allowing us to observe the main atomic and molecular lines emitted by gas in the interstellar medium. The sample is subdivided into redshift bins, and a subset of the bins are stacked by infrared luminosity as well. These stacked spectra are used to determine the average gas density and radiation field strength in the photodissociation regions (PDRs) of DSFGs. For the low-redshift sample, we present the average spectral line energy distributions of CO and H2O rotational transitions and consider PDR conditions based on observed [C I] 370 and 609 μm, and CO (7-6) lines. For the high-z (0.8< z< 4) sample, PDR models suggest a molecular gas distribution in the presence of a radiation field that is at least a factor of 103 larger than the Milky Way and with a neutral gas density of roughly {10}4.5-{10}5.5 cm-3. The corresponding PDR models for the low-z sample suggest a UV radiation field and gas density comparable to those at high-z. Given the challenges in obtaining adequate far-infrared observations, the stacked average spectra we present here will remain the measurements with the highest signal-to-noise ratio for at least a decade and a half until the launch of the next far-infrared facility. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission
NASA Astrophysics Data System (ADS)
Larson, Rebecca L.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun
2015-06-01
We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program (“COPS”, PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 103 cm-3, a shock velocity of 3 km s-1, and a magnetic field strength of 4 μG model 2 has a density of 103.5 cm-3, a shock velocity of 2 km s-1, and a magnetic field strength of 8 μG. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to J of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars. We find significant agreement with predictions of models of turbulent dissipation in slightly denser (103.5 cm-3) material with a stronger magnetic field (24 μG) than in the general molecular cloud.
Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft
NASA Astrophysics Data System (ADS)
Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.
2018-04-01
It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.
Time-dependent modulation of galactic cosmic rays by merged interaction regions
NASA Technical Reports Server (NTRS)
Perko, J. S.
1993-01-01
Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner heliosphere this model accounts for the delay experienced by lower-rigidity protons in reaching their time-intensity peak. The actual delays in this model, however, are somewhat smaller than the data. In the outer heliosphere the models sees no delays, and the data are ambiguous as to their existence. It appears that strong magnetic field compression regions (merged interaction regions) that are 3-4 times the average field strength can, at least in a helioequatorial band, disrupt effects, such as drifts, that could dominate in quieter magnetic fields. The question remains: Is the heliosphere ever quiet enough to allow such effects to be unambiguously measured, at least in the midlatitudes?
Changes in muscle strength in patients with statin myalgia.
Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D
2014-10-15
Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.
2017-09-01
Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.
Muscle strength and knee range of motion after femoral lengthening.
Bhave, Anil; Shabtai, Lior; Woelber, Erik; Apelyan, Arman; Paley, Dror; Herzenberg, John E
2017-04-01
Background and purpose - Femoral lengthening may result in decrease in knee range of motion (ROM) and quadriceps and hamstring muscle weakness. We evaluated preoperative and postoperative knee ROM, hamstring muscle strength, and quadriceps muscle strength in a diverse group of patients undergoing femoral lengthening. We hypothesized that lengthening would not result in a significant change in knee ROM or muscle strength. Patients and methods - This prospective study of 48 patients (mean age 27 (9-60) years) compared ROM and muscle strength before and after femoral lengthening. Patient age, amount of lengthening, percent lengthening, level of osteotomy, fixation time, and method of lengthening were also evaluated regarding knee ROM and strength. The average length of follow-up was 2.9 (2.0-4.7) years. Results - Mean amount of lengthening was 5.2 (2.4-11.0) cm. The difference between preoperative and final knee flexion ROM was 2° for the overall group. Congenital shortening cases lost an average of 5% or 6° of terminal knee flexion, developmental cases lost an average of 3% or 4°, and posttraumatic cases regained all motion. The difference in quadriceps strength at 45° preoperatively and after lengthening was not statistically or clinically significant (2.7 Nm; p = 0.06). Age, amount of lengthening, percent lengthening, osteotomy level, fixation time, and lengthening method had no statistically significant influence on knee ROM or quadriceps strength at final follow-up. Interpretation - Most variables had no effect on ROM or strength, and higher age did not appear to be a limiting factor for femoral lengthening. Patients with congenital causes were most affected in terms of knee flexion.
Quantum phases of dipolar rotors on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths
Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.
2014-01-01
We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979
Grinding damage assessment on four high-strength ceramics.
Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S
2016-02-01
The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a ceramic framework post sintering should be avoided with final diamond grits of 75 μm as a general rule. For alumina and the glass-infiltrated alumina, using a 54 μm diamond still induces chip damage which may affect strength. Removal of such damage from a reshaped framework is mandatory by using sequentially finer diamonds prior to the application of veneering ceramics especially in critical areas such as margins, connectors and inner surfaces. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W
2008-02-21
Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.
Dispersion of aerosol particles undergoing Brownian motion
NASA Astrophysics Data System (ADS)
Alonso, Manuel; Endo, Yoshiyuki
2001-12-01
The variance of the position distribution for a Brownian particle is derived in the general case where the particle is suspended in a flowing medium and, at the same time, is acted upon by an external field of force. It is shown that, for uniform force and flow fields, the variance is equal to that for a free particle. When the force field is not uniform but depends on spatial location, the variance can be larger or smaller than that for a free particle depending on whether the average motion of the particles takes place toward, respectively, increasing or decreasing absolute values of the field strength. A few examples concerning aerosol particles are discussed, with especial attention paid to the mobility classification of charged aerosols by a non-uniform electric field. As a practical application of these ideas, a new design of particle-size electrostatic classifier differential mobility analyser (DMA) is proposed in which the aerosol particles migrate between the electrodes in a direction opposite to that for a conventional DMA, thereby improving the resolution power of the instrument.
The formation flare loops by magnetic reconnection and chromospheric ablation
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Malherbe, J. M.; Priest, E. R.
1989-01-01
Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.
2005-01-01
Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.
External electric field effects on Schottky barrier at Gd3N@C80/Au interface
NASA Astrophysics Data System (ADS)
Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong
2017-08-01
The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.
Non-neutral plasma diode in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Sourav; Chakrabarti, Nikhil; Kuznetsov, V. I.
An analytical study of the plasma states in non-neutral plasma diodes in the presence of an external transverse magnetic field is presented for an arbitrary neutralization parameter γ. Considerations are restricted to the regime where no electrons are turned around by the magnetic field. The emitter electric field strength E{sub 0} is used as a characteristic function to investigate the existence of solutions depending on the diode length, the applied voltage, the neutralization parameter, and the magnetic field strength. The potential distribution has a wave form for small magnitudes of the external magnetic field, as well as for the casemore » when magnetic field is absent. A new family of solutions appears along with the Bursian ones. On the other hand, as the Larmor radius becomes comparable with the beam Debye length, oscillations in the potential disappear, and only the Bursian branches remain. Unlike the vacuum diode, there are steady state solutions for the negative values of the emitter field strength. As the neutralization parameter (γ) increases, the emitter field strength relating to the SCL (space charge limit) bifurcation point diminishes, and at γ > 1, the value of the emitter's electric field strength at the space charge limit (E{sub 0,SCL}) turns out to be negative.« less
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Hofmeister, Eric P.; Moran, Steven L.
2006-01-01
The purpose of this study was to determine the results of combined anterior and posterior interosseous neurectomy (AIN/PIN) in patients with chronic wrist pain secondary to dynamic instability, and to determine the predictability of selective AIN/PIN blocks with respect to pain relief, grip strength, and outcome of the neurectomy. A prospectively accrued chronic wrist pain registry was undertaken. Inclusion criteria were patients with arthroscopically confirmed dynamic wrist instability who had undergone a diagnostic AIN/PIN injection, followed by a single dorsal incision neurectomy. All patients completed Disabilities of the Arm, Shoulder and Hand outcome questionnaires preoperatively and at intervals postoperatively. Pre- and postoperative range of motion, grip strength, and percentage pain relief were recorded. Over a 3-year period, 50 wrists (48 patients) were enrolled: average follow-up was 28 months (range: 24–42 months). The average improvement in grip strength after denervation was 16% (p = 0.076), the average improvement in subjective pain rating was 51% (p < 0.0001), and the average improvement in Disabilities of the Arm, Shoulder, and Hand scores was 15 points (p = 0.0039). Improvement of pain from diagnostic injections was not predictive of final improvement of pain; however, improvement in grip strength after diagnostic injections did correlate with improved grip strength after surgery. Lack of improvement in subjective pain rating or grip strength after diagnostic injection approached statistical significance. There was no decrease in range of motion postoperatively. Fourteen patients (16 wrists) failed as defined by need for subsequent surgery. The results of AIN/PIN neurectomy demonstrate that it may be an effective alternative to wrist salvage or reconstructive procedures within the first few years of follow-up. PMID:18780027
Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.
1996-01-01
Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.
Herschel Far Infrared Spectra of Dusty Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Wilson, Derek; Cooray, Asantha R.; Nayyeri, Hooshang
2017-01-01
We stack archival spectra from the Herschel Space Observatory's SPIRE Spectrometer in three redshift bins from low redshifts (z < 0.2), through intermediate redshifts (0.2 < z < 1), and up to high redshifts (z > 1) in order to determine the average properties of the gas and dust in dusty, star-forming galaxies and (U)LIRGs. In the lower-redshift stack, we detect a host of water and carbon monoxide rotational transition lines, as well as some fine structure lines such as [NII]. At intermediate redshifts, only a [CII] line appears. The high-redshift stack displays strong [CII] emission, as well as faint emission from [OI] and [OIII]. The observed emission lines are used to model the average number density and radiation field strength in the photodissociation regions of our high-redshift sample, and the spectral line energy distributions of CO rotational transitions from the low-redshift stack are presented.
Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Yakima - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Condon - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Reddy, K Obi; Zhang, Jinming; Zhang, Jun; Rajulu, A Varada
2014-12-19
The applications of natural fibers and their microfibrils are increasing rapidly due to their environment benefits, specific strength properties and renewability. In the present work, we successfully extracted cellulose microfibrils from Agave natural fibers by chemical method. The extracted microfibrils were characterized by chemical analysis. The cellulose microfibrils were found to dissolve in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) to larger extent along with little quantity of undissolved microfibrils. Using this solution, the self-reinforced regenerated cellulose composite films were prepared. The raw fiber, extracted cellulose microfibrils and regenerated cellulose composite films were characterized by FTIR, (13)C CP-MAS NMR, XRD, TGA and SEM techniques. The average tensile strength, modulus and elongation at break of the self-reinforced cellulose composite films were found to be 135 MPa, 8150 MPa and 3.2%, respectively. The high values of tensile strength and modulus were attributed to the self-reinforcement of Agave fibers in their generated matrix. These self-reinforced cellulose biodegradable composite films prepared from renewable source can find applications in packaging field. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud
2016-04-01
The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 104, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.
47 CFR 18.305 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Field strength limit (uV/m) Distance (meters) Any type unless otherwise specified (miscellaneous) Any...Any 2515 300300 Ultrasonic Below 490 kHz Below 500500 or more 2,400/F(kHz)2,400/F(kHz)× SQRT(power/500... kHzOn or above 90 kHz AnyAny 1,500300 430 430 1 Field strength may not exceed 10 μV/m at 1600 meters...
NASA Astrophysics Data System (ADS)
Fredriksen, H. B.; Løvsletten, O.; Rypdal, M.; Rypdal, K.
2014-12-01
Several research groups around the world collect instrumental temperature data and combine them in different ways to obtain global gridded temperature fields. The three most well known datasets are HadCRUT4 produced by the Climatic Research Unit and the Met Office Hadley Centre in UK, one produced by NASA GISS, and one produced by NOAA. Recently Berkeley Earth has also developed a gridded dataset. All these four will be compared in our analysis. The statistical properties we will focus on are the standard deviation and the Hurst exponent. These two parameters are sufficient to describe the temperatures as long-range memory stochastic processes; the standard deviation describes the general fluctuation level, while the Hurst exponent relates the strength of the long-term variability to the strength of the short-term variability. A higher Hurst exponent means that the slow variations are stronger compared to the fast, and that the autocovariance function will have a stronger tail. Hence the Hurst exponent gives us information about the persistence or memory of the process. We make use of these data to show that data averaged over a larger area exhibit higher Hurst exponents and lower variance than data averaged over a smaller area, which provides information about the relationship between temporal and spatial correlations of the temperature fluctuations. Interpolation in space has some similarities with averaging over space, although interpolation is more weighted towards the measurement locations. We demonstrate that the degree of spatial interpolation used can explain some differences observed between the variances and memory exponents computed from the various datasets.
Grinding damage assessment for CAD-CAM restorative materials.
Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S
2017-03-01
To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malo, Lison; Doyon, René; Albert, Loïc
2014-09-01
Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass starsmore » in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.« less
Coupling Field Theory with Mesoscopic Dynamical Simulations of Multicomponent Lipid Bilayers
McWhirter, J. Liam; Ayton, Gary; Voth, Gregory A.
2004-01-01
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations. PMID:15347594
Reliability of doming and toe flexion testing to quantify foot muscle strength.
Ridge, Sarah Trager; Myrer, J William; Olsen, Mark T; Jurgensmeier, Kevin; Johnson, A Wayne
2017-01-01
Quantifying the strength of the intrinsic foot muscles has been a challenge for clinicians and researchers. The reliable measurement of this strength is important in order to assess weakness, which may contribute to a variety of functional issues in the foot and lower leg, including plantar fasciitis and hallux valgus. This study reports 3 novel methods for measuring foot strength - doming (previously unmeasured), hallux flexion, and flexion of the lesser toes. Twenty-one healthy volunteers performed the strength tests during two testing sessions which occurred one to five days apart. Each participant performed each series of strength tests (doming, hallux flexion, and lesser toe flexion) four times during the first testing session (twice with each of two raters) and two times during the second testing session (once with each rater). Intra-class correlation coefficients were calculated to test for reliability for the following comparisons: between raters during the same testing session on the same day (inter-rater, intra-day, intra-session), between raters on different days (inter-rater, inter-day, inter-session), between days for the same rater (intra-rater, inter-day, inter-session), and between sessions on the same day by the same rater (intra-rater, intra-day, inter-session). ICCs showed good to excellent reliability for all tests between days, raters, and sessions. Average doming strength was 99.96 ± 47.04 N. Average hallux flexion strength was 65.66 ± 24.5 N. Average lateral toe flexion was 50.96 ± 22.54 N. These simple tests using relatively low cost equipment can be used for research or clinical purposes. If repeated testing will be conducted on the same participant, it is suggested that the same researcher or clinician perform the testing each time for optimal reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocker, Stella Koch; Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu
The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition tomore » studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.« less
Pollitz, F.F.
2003-01-01
Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large ( ≥106 km2) areas.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Kidane, Tesfaye; Yamamoto, Yuhji; Otofuji, Yo-ichiro
2016-01-01
Palaeointensity variation is investigated for an inferred time period spanning from 2.34 to 1.96 Ma. Twenty-nine consecutive lava flows are sampled along cliffs 350 m high generated by normal faulting on the Dobi section of Afar depression, Ethiopia. Magnetostratigraphy and K-Ar measurements indicate a lava sequence of R-N-R-N geomagnetic field polarities in ascending order; the lower normal polarity is identified as the Réunion Subchron. Reliability of palaeomagnetic data is ascertained through careful thermal demagnetization and by the reversal test. The Tsunakawa-Shaw method yielded 70 successful palaeointensity results from 24 lava flows and gave 11 acceptable mean palaeointensities. Reliability in palaeointensity data is ascertained by the similar values obtained by the IZZI-Thellier method and thus 11 reliable mean values are obtained from our combined results. After the older reverse polarity with the field intensity of 19.6 ± 7.8 μT, an extremely low palaeointensity period with an average of 6.4 μT is shown to occur prior to the Réunion Subchron. During the Réunion Subchron, the dipole field strength is shown to have returned to an average of 19.5 μT, followed by second extreme low of 3.6 μT and rejuvenation with 17.1 ± 5.3 μT in the younger reverse polarity. This `W-shape' palaeointensity variation is characterized by occurrences of two extremely weak fields lower than 8 μT prior to and during the Réunion Subchron and a relatively weak time-averaged field of approximately 15 μT. This feature is also found in sedimentary cores from the Ontong Java Plateau and the north Atlantic, indicative of a possibly global geomagnetic field phenomenon rather than a local effect on Ethiopia. Furthermore, we estimate a weak virtual axial dipole moment of 3.66 (±1.85) × 1022 Am2 during early stage of the Matuyama Chron (inferred time period of 2.34-1.96 Ma).
Dependence of Brownian and Néel relaxation times on magnetic field strength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.
2014-01-15
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.« less
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2008-12-01
The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.
NASA Astrophysics Data System (ADS)
Verscharen, Daniel; Chandran, Benjamin D. G.; Klein, Kristopher G.; Quataert, Eliot
2016-11-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in {β }\\parallel {{p}}\\equiv 8π {n}{{p}}{k}{{B}}{T}\\parallel {{p}}/{B}2 and in {R}{{p}}\\equiv {T}\\perp {{p}}/{T}\\parallel {{p}}, where {T}\\perp {{p}} and {T}\\parallel {{p}} are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and {n}{{p}} is the proton density. If the amplitude of the compressive fluctuations is large enough, {R}{{p}} crosses one or more instability thresholds for anisotropy-driven microinstabilities. The enhanced field fluctuations from these microinstabilities scatter the protons so as to reduce the anisotropy of the pressure tensor. We propose that this scattering drives the average value of {R}{{p}} away from the marginal stability boundary until the fluctuating value of {R}{{p}} stops crossing the boundary. We model this “fluctuating-anisotropy effect” using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We argue that this effect can explain why, in the nearly collisionless solar wind, the average value of {R}{{p}} is close to unity.
Geomagnetic dipole strength and reversal rate over the past two million years.
Valet, Jean-Pierre; Meynadier, Laure; Guyodo, Yohan
2005-06-09
Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60-80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.
47 CFR 73.186 - Establishment of effective field at one kilometer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coordinate paper, plot field strengths as ordinate and distance as abscissa. (ii) Using semi-log coordinate paper, plot field strength times distance as ordinate on the log scale and distance as abscissa on the...
NASA Technical Reports Server (NTRS)
Whitney, J. M.
1983-01-01
The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.
NASA Astrophysics Data System (ADS)
Jeong, Hyunju; Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-01-01
We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2.5 dimensions, extending our previous work by Frank et al. and Jones et al. In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength smoothly rotates across a thin velocity shear layer from the z-direction to the x-direction, aligned with the flow field. The sonic Mach number of the velocity transition is unity. Such flows containing a uniform field in the x-direction are linearly stable if the magnetic field strength is great enough that the Alfvénic Mach number MA=U0/cA<2. That limit does not apply directly to sheared magnetic fields, however, since the z-field component has almost no influence on the linear stability. Thus, if the magnetic shear layer is contained within the velocity shear layer, the KH instability may still grow, even when the field strength is quite large. So, here we consider a wide range of sheared field strengths covering Alfvénic Mach numbers, MA=142.9 to 2. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. There are a number of differences from our earlier simulations with uniform magnetic fields in the x-y plane. For the latter, simpler case we found a clear sequence of behaviors with increasing field strength ranging from nearly hydrodynamic flows in which the instability evolves to an almost steady cat's eye vortex with enhanced dissipation, to flows in which the magnetic field disrupts the cat's eye once it forms, to, finally, flows that evolve very little before field-line stretching stabilizes the velocity shear layer. The introduction of magnetic shear can allow a cat's eye-like vortex to form, even when the field is stronger than the nominal linear instability limit given above. For strong fields that vortex is asymmetric with respect to the preliminary shear layer, however, so the subsequent dissipation is enhanced over the uniform field cases of comparable field strength. In fact, so long as the magnetic field achieves some level of dynamical importance during an eddy turnover time, the asymmetries introduced through the magnetic shear will increase flow complexity and, with that, dissipation and mixing. The degree of the fluid mixing between the two layers is strongly influenced by the magnetic field strength. Mixing of the fluid is most effective when the vortex is disrupted by magnetic tension during transient reconnection, through local chaotic behavior that follows.
Evaluation of rotator cuff muscle strength in healthy individuals
Cortez, Paulo José Oliveira; Tomazini, José Elias
2015-01-01
OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091
An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods
NASA Astrophysics Data System (ADS)
Bolger, Nancy Beth
1998-12-01
Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with the changing additions. Polyethylene oxide, in combination with polyethylene glycol, did show an increase in green strength versus the polyethylene oxide alone. Strengths were still lower than those displayed by the polyethylene glycols alone. Reductions or degradations in molecular weight of the polymers due to mixing and extrusion processes may account for lower green strength of bodies, especially those containing polyethylene oxides.
Komlosi, Peter; Altes, Talissa A; Qing, Kun; Mooney, Karen E; Miller, G Wilson; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Mugler, John P
2017-10-01
To evaluate T 2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 ( 3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T 2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. As expected, T 2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T 2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Modal energy analysis for mechanical systems excited by spatially correlated loads
NASA Astrophysics Data System (ADS)
Zhang, Peng; Fei, Qingguo; Li, Yanbin; Wu, Shaoqing; Chen, Qiang
2018-10-01
MODal ENergy Analysis (MODENA) is an energy-based method, which is proposed to deal with vibroacoustic problems. The performance of MODENA on the energy analysis of a mechanical system under spatially correlated excitation is investigated. A plate/cavity coupling system excited by a pressure field is studied in a numerical example, in which four kinds of pressure fields are involved, which include the purely random pressure field, the perfectly correlated pressure field, the incident diffuse field, and the turbulent boundary layer pressure fluctuation. The total energies of subsystems differ to reference solution only in the case of purely random pressure field and only for the non-excited subsystem (the cavity). A deeper analysis on the scale of modal energy is further conducted via another numerical example, in which two structural modes excited by correlated forces are coupled with one acoustic mode. A dimensionless correlation strength factor is proposed to determine the correlation strength between modal forces. Results show that the error on modal energy increases with the increment of the correlation strength factor. A criterion is proposed to establish a link between the error and the correlation strength factor. According to the criterion, the error is negligible when the correlation strength is weak, in this situation the correlation strength factor is less than a critical value.
Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.
Strong Shock Propagating Over A Random Bed of Spherical Particles
NASA Astrophysics Data System (ADS)
Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S.; Thakur, Siddharth
2017-11-01
The study of shock interaction with particles has been largely motivated because of its wide-ranging applications. The complex interaction between the compressible flow features, such as shock wave and expansion fan, and the dispersed phase makes this multi-phase flow very difficult to predict and control. In this talk we will be presenting results on fully resolved inviscid simulations of shock interaction with random bed of particles. One of the fascinating observations from these simulations are the flow field fluctuations due to the presence of randomly distributed particles. Rigorous averaging (Favre averaging) of the governing equations results in Reynolds stress like term, which can be classified as pseudo turbulence in this case. We have computed this ``Reynolds stress'' term along with individual fluctuations and the turbulent kinetic energy. Average pressure was also computed to characterize the strength of the transmitted and the reflected waves. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program.
Deep Impact: excavating comet Tempel 1.
A'Hearn, M F; Belton, M J S; Delamere, W A; Kissel, J; Klaasen, K P; McFadden, L A; Meech, K J; Melosh, H J; Schultz, P H; Sunshine, J M; Thomas, P C; Veverka, J; Yeomans, D K; Baca, M W; Busko, I; Crockett, C J; Collins, S M; Desnoyer, M; Eberhardy, C A; Ernst, C M; Farnham, T L; Feaga, L; Groussin, O; Hampton, D; Ipatov, S I; Li, J-Y; Lindler, D; Lisse, C M; Mastrodemos, N; Owen, W M; Richardson, J E; Wellnitz, D D; White, R L
2005-10-14
Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less
Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides
NASA Astrophysics Data System (ADS)
Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene
2016-02-01
Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.
A dynamics prediction of nitromethane → methyl nitrite isomerization in external electric field.
Ren, Fu-de; Cao, Duan-lin; Shi, Wen-jing
2016-04-01
As a follow-up to our investigation into the effect of external electric field on the chemical bond strength, the effects of external electric field on the CH3NO2 → CH3ONO isomerization dynamics were investigated using the MP2/6-311++G(2d,p) and CCSD/6-311++G(2d,p) methods. The rate constants in the absence and presence of various field strengths were calculated. The results show that, when the field strength is larger than +0.0060 a.u. along the C-NO2 bond axis, the barriers of the isomerization are lower than the C-NO2 bond dissociation energies, leading to the preferences of the isomerization over the C-NO2 bond dissociation. In this case, the sensitivities are higher than that in no field. However, in the other fields, the C-NO2 bond scission is favored and the sensitivities are almost equal to that in no field. Several good linear correlations are found between the field strengths and the changes of the bond lengths or corresponding electron densities.
47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... For equipment operating on frequencies below 890 MHz, an open field test is normally required, with... either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results showmore » that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.« less
Linear unsaturating magnetoresistance in disordered systems
NASA Astrophysics Data System (ADS)
Lai, Ying Tong; Lara, Silvia; Love, Cameron; Ramakrishnan, Navneeth; Adam, Shaffique
Theoretical works have shown that disordered systems exhibit classical magnetoresistance (MR). In this talk, we examine a variety of experimental systems that observe linear MR at high magnetic fields, including silver chalcogenides, graphene, graphite and Weyl semimetals. We show that a careful analysis of the magnitude of the MR, as well as the field strength at which the MR changes from quadratic to linear, reveal important properties of the system, such as the ratio of the root-mean-square fluctuations in the carrier density and the average carrier density. By looking at other properties such as the zero-field mobility, we show that this carrier density inhomogeneity is consistent with what is known about the microscopic impurities in these experiments. The application of this disorder-induced MR to a variety of different experimental scenarios underline the universality of these theoretical models. This work is supported by the Singapore National Research Foundation (NRF-NRFF2012-01) and the Singapore Ministry of Education and Yale-NUS College through Grant Number R-607-265-01312.
Assessment of exposure to EMF in a Danish case-control study of childhood cancer.
Jensen, J K; Olsen, J H; Folkersen, E
1994-01-01
In Denmark it is permitted to draw overhead lines across residential areas. In connection with a Danish case-control study we developed a method for estimating the historical values of magnetic fields at residences. The study included 1,707 cases with childhood cancer and 4,788 matched population controls. A total of 16,082 different addresses had been occupied by the families from the time of conception until the date of diagnosis. The values of the extreme, maximum, middle and minimum 50 Hz magnetic field strengths originating from a 50-400 kV high-voltage installation were estimated for each of the dwellings included in a potential exposure area. 30 children were exposed to an average level of magnetic fields of 0.1 microT or more. The evaluated Danish method of exposure assessment was compared with the method for residential wiring codes developed by Wertheimer and Leeper /1/. We concluded that the US wiring codes are inappropriate for use in connection with the Danish electricity transmission system.
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations
NASA Astrophysics Data System (ADS)
Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.
2018-01-01
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control.
Ramezani-Dakhel, Hadi; Bedford, Nicholas M; Woehl, Taylor J; Knecht, Marc R; Naik, Rajesh R; Heinz, Hendrik
2017-06-22
Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.
Effects of onboard insecticide use on airline flight attendants.
Kilburn, Kaye H
2004-06-01
Flight attendants (FAs) exposed to insecticide spray in an aircraft were compared with unexposed subjects for neurobehavioral function, pulmonary function, mood states, and symptoms. The 33 symptomatic FAs were self-selected, and 5 had retired for disability. Testing procedures included balance, reaction time, color discrimination, visual fields, grip strength, verbal recall, problem solving, attention and discrimination functions, and long-term memory functions. Measurements were expressed as a percentage of their predicted values (derived from unexposed controls), and the author compared the means of the percentage predicted values by analysis of variance. Symptom frequencies and Profile of Mood States (POMS) scores were assessed. FAs were significantly more impaired than controls with respect to balance with eyes closed, grip strength, and color discrimination. Nearly half had 3 or more abnormal neurobehavioral functions, after adjustment was made for age, sex, and education level. Neither elevated POMS scores nor frequencies of average symptoms correlated with their numbers of abnormal measurements. Occupational exposure to synthetic pyrethrin insecticides on airliners was associated with neurobehavioral impairment and disability retirement.
Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo
2016-01-01
Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
Analyzing the international exergy flow network of ferrous metal ores.
Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing
2014-01-01
This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven.
Analyzing the International Exergy Flow Network of Ferrous Metal Ores
Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing
2014-01-01
This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407
NASA Astrophysics Data System (ADS)
Smith, DuWayne L.
A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg; ...
2018-04-15
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.
Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study
NASA Technical Reports Server (NTRS)
Tian, Pu; Smith, Grant D.
2003-01-01
We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.
ELF Field Strength Measurements Made in Connecticut During 1974
1975-10-01
Ionospheric Phenomena on Extremely Low Frequency ( ELF ) Propagation," IEEE Transactions on Communications , vol. COM-22, no. 4, 1974, pp. 484-492...34f" ""WW" I I W»*-«P ’^ AD-A016 795 ELF FIELD STRENGTH MEASUREMENTS MADE IN CONNECTICUT DURING 1974 Peter R. Bannister...Report 4927 CD rH O ELF Field Strength Measurements Made In Connecticut During 1974 PETER R. BANNISTER FREDERICK J. WILLIAMS Submarin
Technique for Predicting the RF Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, M.; Reddell, J.
1998-01-01
This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.
An Investigation of Magneto-Optical Effects
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Hagyard, Mona J.; West, Edward A.
1998-01-01
We exhibit the effects of Faraday rotation on the direction of the transverse component of the magnetic field in a simple, symmetric sunspot. A set of 35 polarization filtergrams of NOAA active region 4662 (June 9, 1985) were obtained with the Marshall Space Flight Center (MSFC) vector magnetograph. These filtergrams measured the Stokes I, Q, U, and V intensities averaged over the instrument's filter bandpass (0.0125 nm) for wavelengths from 0.017 nm in the red wing to 0.017 nm in the blue wing of the Lambda525.22 nm spectral line in steps of 0.001 nm. These data were used to derive the azimuth phi of the vector field as a function of wavelength over the field of view of the sunspot. We interpret the observed variations of this azimuth with wavelength as the effects of Faraday rotation and verify this interpretation by comparing these variations with those predicted from magneto-optical theory. In the theoretical calculations we use the line-profile parameters and magnetic field strength derived in previous work by Balasubramaniam and West (Astrophys. J 382, p. 699, 1991).
Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations
NASA Astrophysics Data System (ADS)
Lawless, A. P.; Asgari-Targhi, M.
2013-12-01
We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.
NASA Astrophysics Data System (ADS)
Smug, Damian; Sornette, Didier; Ashwin, Peter
We analyze an extended version of the dynamical mean-field Ising model. Instead of classical physical representation of spins and external magnetic field, the model describes traders' opinion dynamics. The external field is endogenized to represent a smoothed moving average of the past state variable. This model captures in a simple set-up the interplay between instantaneous social imitation and past trends in social coordinations. We show the existence of a rich set of bifurcations as a function of the two parameters quantifying the relative importance of instantaneous versus past social opinions on the formation of the next value of the state variable. Moreover, we present a thorough analysis of chaotic behavior, which is exhibited in certain parameter regimes. Finally, we examine several transitions through bifurcation curves and study how they could be understood as specific market scenarios. We find that the amplitude of the corrections needed to recover from a crisis and to push the system back to “normal” is often significantly larger than the strength of the causes that led to the crisis itself.
NASA Astrophysics Data System (ADS)
Dung, Nguyen Thi; Linh, Dinh Chi; Huyen Yen, Pham Duc; Yu, Seong Cho; Van Dang, Nguyen; Dang Thanh, Tran
2018-06-01
Influence of the crystallite size on the magnetic and critical properties of nanocrystals has been investigated. The results show that Curie temperature and magnetization slightly decrease with decreasing average crystallite size . Based on the mean-field theory and the magnetic-field dependences of magnetization at different temperatures , we pointed out that the ferromagnetic-paramagnetic phase transition in the samples undergoes the second-order phase transition with the critical exponents (, , and ) close to those of the mean-field theory. However, there is a small deviation from those expected for the mean-field theory of the values of , and obtained for the samples. It means that short-range ferromagnetic interactions appear in the smaller particles. In other words, nanocrystals become more magnetically inhomogeneous with smaller crystallite sizes that could be explained by the presence of surface-related effects, lattice strain and distortions, which lead the strength of ferromagnetic interaction is decreased in the small crystallite sizes.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Trunk rotational strength asymmetry in adolescents with idiopathic scoliosis: an observational study
McIntire, Kevin L; Asher, Marc A; Burton, Douglas C; Liu, Wen
2007-01-01
Background Recent reports have suggested a rotational strength weakness in rotations to the concave side in patients with idiopathic scoliosis. There have been no studies presenting normative values of female adolescent trunk rotational strength to which a comparison of female adolescents with idiopathic scoliosis could be made. The purpose of this study was to determine trunk rotational strength asymmetry in a group of female adolescents with AIS and a comparison group of healthy female adolescents without scoliosis. Methods Twenty-six healthy adolescent females served as the healthy group (HG) (average age 14 years) and fourteen otherwise healthy adolescent females with idiopathic scoliosis served as the idiopathic scoliosis group (ISG) (average age 13.5 years, average Cobb 28°). Participant's isometric trunk rotational strength was measured in five randomly ordered trunk positions: neutral, 18° and 36° of right and left pre-rotation. Rotational strength asymmetry was compared within each group and between the two groups using several different measures. Results The HG showed strength asymmetry in the 36° pre-rotated trunk positions when rotating towards the midline (p < 0.05). The ISG showed strength asymmetry when rotating towards the concavity of their primary curve from the neutral position (p < 0.05) and when rotating towards the concavity from the 18° (p < 0.05) and 36° (p < 0.05) concave pre-rotated positions. The ISG is significantly weaker than the HG when rotating away from the midline toward the concave (ISG)-left (HG) side from the concave/left pre-rotated 18° (p < 0.05) and 36° (p < 0.05) positions. Conclusion The AIS females were found to be significantly weaker when contracting toward their main curve concavity in the neutral and concave pre-rotated positions compared to contractions toward the convexity. These weaknesses were also demonstrated when compared to the group of healthy female adolescent controls. Possible mechanisms for the strength asymmetry in ISG are discussed. PMID:17620141
New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N1
NASA Technical Reports Server (NTRS)
Tayal, S. S.
2006-01-01
The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.
Growing up with Down syndrome: Development from 6 months to 10.7 years.
Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2016-12-01
We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mack, Keenan M L; Bever, James D
2014-09-01
1. Negative plant-soil feedback occurs when the presence of an individual of a particular species at a particular site decreases the relative success of individuals of the same species compared to those other species at that site. This effect favors heterospecifics thereby facilitating coexistence and maintaining diversity. Empirical work has demonstrated that the average strengths of these feedbacks correlate with the relative abundance of species within a community, suggesting that feedbacks are an important driver of plant community composition. Understanding what factors contribute to the generation of this relationship is necessary for diagnosing the dynamic forces that maintain diversity in plant communities. 2. We used a spatially explicit, individual-based computer simulation to test the effects of dispersal distance, the size of feedback neighbourhoods, the strength of pairwise feedbacks and community wide variation of feedbacks, community richness, as well as life-history differences on the dependence of relative abundance on strength of feedback. 3. We found a positive dependence of relative abundance of a species on its average feedback for local scale dispersal and feedback. However, we found that the strength of this dependence decreased as either the spatial scale of dispersal and/or the spatial scale of feedback increased. We also found that for spatially local (i.e. relatively small) scale interaction and dispersal, as the mean strength of feedbacks in the community becomes less negative, the greater the increase in abundance produced by a comparable increase in species-specific average feedback. We found that life-history differences such as mortality rate did not generate a pattern with abundance, nor did they affect the relationship between abundance and average feedback. 4. Synthesis . Our results support the claim that empirical observations of a positive correlation between relative abundance and strength of average feedback serves as evidence that local scale negative feedbacks play a prominent role in structuring plant communities. We also identify that this relationship depends upon local scale plant dispersal and feedback which generates clumping and magnifies the negative feedbacks.
Lower-extremity strength ratios of professional soccer players according to field position.
Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S
2015-05-01
Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.
NASA Astrophysics Data System (ADS)
Whitney, Heather M.; Drukker, Karen; Edwards, Alexandra; Papaioannou, John; Giger, Maryellen L.
2018-02-01
Radiomics features extracted from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. As clinical institutions transition from 1.5 T to 3.0 T magnetic resonance imaging (MRI), it is helpful to identify robust features across these field strengths. In this study, dynamic contrast-enhanced MR images were acquired retrospectively under IRB/HIPAA compliance, yielding 738 cases: 241 and 124 benign lesions imaged at 1.5 T and 3.0 T and 231 and 142 luminal A cancers imaged at 1.5 T and 3.0 T, respectively. Lesions were segmented using a fuzzy C-means method. Extracted radiomic values for each group of lesions by cancer status and field strength of acquisition were compared using a Kolmogorov-Smirnov test for the null hypothesis that two groups being compared came from the same distribution, with p-values being corrected for multiple comparisons by the Holm-Bonferroni method. Two shape features, one texture feature, and three enhancement variance kinetics features were found to be potentially robust. All potentially robust features had areas under the receiver operating characteristic curve (AUC) statistically greater than 0.5 in the task of distinguishing between lesion types (range of means 0.57-0.78). The significant difference in voxel size between field strength of acquisition limits the ability to affirm more features as robust or not robust according to field strength alone, and inhomogeneities in static field strength and radiofrequency field could also have affected the assessment of kinetic curve features as robust or not. Vendor-specific image scaling could have also been a factor. These findings will contribute to the development of radiomic signatures that use features identified as robust across field strength.
Dipole interaction of the Quincke rotating particles.
Dolinsky, Yu; Elperin, T
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
Dipole interaction of the Quincke rotating particles
NASA Astrophysics Data System (ADS)
Dolinsky, Yu.; Elperin, T.
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Measurement of EMG activity with textile electrodes embedded into clothing.
Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S
2007-11-01
Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.
The effects of magnetic field in plume region on the performance of multi-cusped field thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Peng, E-mail: hupengemail@126.com; Liu, Hui, E-mail: thruster@126.com; Yu, Daren
2015-10-15
The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume regionmore » improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.« less
The Gap in Big Data: Getting to Wellbeing, Strengths, and a Whole-person Perspective
Peters, Judith; Schlesner, Sara; Vanderboom, Catherine E.; Holland, Diane E.
2015-01-01
Background: Electronic health records (EHRs) provide a clinical view of patient health. EHR data are becoming available in large data sets and enabling research that will transform the landscape of healthcare research. Methods are needed to incorporate wellbeing dimensions and strengths in large data sets. The purpose of this study was to examine the potential alignment of the Wellbeing Model with a clinical interface terminology standard, the Omaha System, for documenting wellbeing assessments. Objective: To map the Omaha System and Wellbeing Model for use in a clinical EHR wellbeing assessment and to evaluate the feasibility of describing strengths and needs of seniors generated through this assessment. Methods: The Wellbeing Model and Omaha System were mapped using concept mapping techniques. Based on this mapping, a wellbeing assessment was developed and implemented within a clinical EHR. Strengths indicators and signs/symptoms data for 5 seniors living in a residential community were abstracted from wellbeing assessments and analyzed using standard descriptive statistics and pattern visualization techniques. Results: Initial mapping agreement was 93.5%, with differences resolved by consensus. Wellbeing data analysis showed seniors had an average of 34.8 (range=22-49) strengths indicators for 22.8 concepts. They had an average of 6.4 (range=4-8) signs/symptoms for an average of 3.2 (range=2-5) concepts. The ratio of strengths indicators to signs/symptoms was 6:1 (range 2.8-9.6). Problem concepts with more signs/symptoms had fewer strengths. Conclusion: Together, the Wellbeing Model and the Omaha System have potential to enable a whole-person perspective and enhance the potential for a wellbeing perspective in big data research in healthcare. PMID:25984416
Profile of Women Collegiate Strength and Conditioning Coaches.
Laskowski, Karisa D; Ebben, William P
2016-12-01
Laskowski, KD and Ebben, WP. Profile of women collegiate strength and conditioning coaches. J Strength Cond Res 30(12): 3481-3493, 2016-This study describes the careers of women collegiate strength and conditioning coaches, including specifics of the universities and athletic departments they work for, responsibilities and demands of their jobs, compensation and benefits, preparation and qualifications, likes and dislikes about their work, and the role that gender plays in their work. Forty-three coaches participated for a response rate of 29.1% (43 of 148). The survey was divided into 5 sections, including university profile, position profile, personal profile, job satisfaction, and comments. Results show that women occupy approximately 32% of all strength and conditioning positions. Those who are full-time coaches work approximately 55.6 hours per week, starting their workday at 6:02 AM and ending at 5:40 PM, on average. Part-time coaches worked 42.5 hours per week. Those who were in director positions earned approximately $76,000 per year, whereas full-time assistants averaged approximately $39,300 per year. Most coaches had master's degree and held the CSCS and USAW certifications. These coaches averaged 7.14 years of full-time experience. Coaches identified a variety of advantages and disadvantages associated with their work and described the influence of gender in their work. These results provide normative data about employment conditions of women strength and conditioning coaches and those who are considering this career. These data also document the current state of affairs in the profession and can be used in comparison with the past benchmarks in an attempt to understand the role of women in the collegiate strength and conditioning profession.
The Gap in Big Data: Getting to Wellbeing, Strengths, and a Whole-person Perspective.
Monsen, Karen A; Peters, Judith; Schlesner, Sara; Vanderboom, Catherine E; Holland, Diane E
2015-05-01
Electronic health records (EHRs) provide a clinical view of patient health. EHR data are becoming available in large data sets and enabling research that will transform the landscape of healthcare research. Methods are needed to incorporate wellbeing dimensions and strengths in large data sets. The purpose of this study was to examine the potential alignment of the Wellbeing Model with a clinical interface terminology standard, the Omaha System, for documenting wellbeing assessments. To map the Omaha System and Wellbeing Model for use in a clinical EHR wellbeing assessment and to evaluate the feasibility of describing strengths and needs of seniors generated through this assessment. The Wellbeing Model and Omaha System were mapped using concept mapping techniques. Based on this mapping, a wellbeing assessment was developed and implemented within a clinical EHR. Strengths indicators and signs/symptoms data for 5 seniors living in a residential community were abstracted from wellbeing assessments and analyzed using standard descriptive statistics and pattern visualization techniques. Initial mapping agreement was 93.5%, with differences resolved by consensus. Wellbeing data analysis showed seniors had an average of 34.8 (range=22-49) strengths indicators for 22.8 concepts. They had an average of 6.4 (range=4-8) signs/symptoms for an average of 3.2 (range=2-5) concepts. The ratio of strengths indicators to signs/symptoms was 6:1 (range 2.8-9.6). Problem concepts with more signs/symptoms had fewer strengths. Together, the Wellbeing Model and the Omaha System have potential to enable a whole-person perspective and enhance the potential for a wellbeing perspective in big data research in healthcare.
29 CFR Appendix E to Subpart L of... - Test Methods for Protective Clothing
Code of Federal Regulations, 2012 CFR
2012-07-01
... strength of the specimen shall be the average of the five highest peak loads of resistance registered for 3... convenience. (2) Test method for determining the strength of cloth by tearing: Trapezoid Method. A. Test... directions shall be tested from each sample unit. (ii) The tearing strength of the sample unit shall be the...
29 CFR Appendix E to Subpart L of... - Test Methods for Protective Clothing
Code of Federal Regulations, 2014 CFR
2014-07-01
... strength of the specimen shall be the average of the five highest peak loads of resistance registered for 3... convenience. (2) Test method for determining the strength of cloth by tearing: Trapezoid Method. A. Test... directions shall be tested from each sample unit. (ii) The tearing strength of the sample unit shall be the...
First results from the LIFE project: discovery of two magnetic hot evolved stars
NASA Astrophysics Data System (ADS)
Martin, A. J.; Neiner, C.; Oksala, M. E.; Wade, G. A.; Keszthelyi, Z.; Fossati, L.; Marcolino, W.; Mathis, S.; Georgy, C.
2018-04-01
We present the initial results of the Large Impact of magnetic Fields on the Evolution of hot stars (LIFE) project. The focus of this project is the search for magnetic fields in evolved OBA giants and supergiants with visual magnitudes between 4 and 8, with the aim to investigate how the magnetic fields observed in upper main-sequence (MS) stars evolve from the MS until the late post-MS stages. In this paper, we present spectropolarimetric observations of 15 stars observed using the ESPaDOnS instrument of the Canada-France-Hawaii Telescope. For each star, we have determined the fundamental parameters and have used stellar evolution models to calculate their mass, age, and radius. Using the least-squared deconvolution technique, we have produced averaged line profiles for each star. From these profiles, we have measured the longitudinal magnetic field strength and have calculated the detection probability. We report the detection of magnetic fields in two stars of our sample: a weak field of Bl = 1.0 ± 0.2 G is detected in the post-MS A5 star 19 Aur and a stronger field of Bl = -230 ± 10 G is detected in the MS/post-MS B8/9 star HR 3042.
NASA Astrophysics Data System (ADS)
Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang
2017-08-01
We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.
Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.
Horrigan, D J; Fuller, C A; Horowitz, J M
1997-10-01
The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.
MHD oscillations observed in the solar photosphere with the Michelson Doppler Imager
NASA Astrophysics Data System (ADS)
Norton, A.; Ulrich, R. K.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.
Magnetohydrodynamic oscillations are observed in the solar photosphere with the Michelson Doppler Imager (MDI). Images of solar surface velocity and magnetic field strength with 4'' spatial resolution and a 60 second temporal resolution are analyzed. A two dimensional gaussian aperture with a FWHM of 10'' is applied to the data in regions of sunspot, plage and quiet sun and the resulting averaged signal is returned each minute. Significant power is observed in the magnetic field oscillations with periods of five minutes. The effect of misregistration between MDI's left circularly polarized (LCP) and right circularly polarized (RCP) images has been investigated and is found not to be the cause of the observed magnetic oscillations. It is assumed that the large amplitude acoustic waves with 5 minute periods are the driving mechanism behind the magnetic oscillations. The nature of the magnetohydrodynamic oscillations are characterized by their phase relations with simultaneously observed solar surface velocity oscillations.
Reactor application of an improved bundle divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Ruck, G.W.; Lee, A.Y.
1978-11-01
A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supportedmore » by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW.« less
Radial diffusion in magnetodiscs. [charged particle motion in planetary or stellar magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1985-01-01
The orbits of charged particles in magnetodiscs are considered. The bounce motion is assumed adiabatic except for transits of a small equatorial region of weak magnetic field strength and high field curvature. Previous theory and modeling have shown that particles scatter randomly in pitch angle with each passage through the equator. A peaked distribution thus diffuses in pitch angle on the time scale of many bounces. It is argued in this paper that spatial diffusion is a further consequence when the magnetodisc has a longitudinal asymmetry. A general expression for DLL, the diffusion of equatorial crossing radii, is derived. DLL is evaluated explicitly for ions in Jupiter's 20-35 radii magnetodisc, assumed to be represented by Connerney et al.'s (1982) Voyager model plus a small image dipole asymmetry. Rates are energy, species, and space dependent but can average as much as a few tenths of a planetary radius per bounce period.
Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System
NASA Technical Reports Server (NTRS)
Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.
2016-01-01
The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.
Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions
NASA Astrophysics Data System (ADS)
Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.
2018-01-01
In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.
Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis
NASA Astrophysics Data System (ADS)
Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.
2005-07-01
We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.
NASA Astrophysics Data System (ADS)
Rajesh, Y.; Sangani, L. D. Varma; Shaik, Ummar Pasha; Gaur, Anshu; Mohiddon, Md Ahamad; Krishna, M. Ghanashyam
2017-05-01
The role of dielectric surrounding over the Au nanostructure for surface plasmon resonance (SPR) behavior is investigated by scanning near field optical microscopy (SNOM). The observed optical field strengths are correlated with the surface enhanced Raman scattering (SERS) enhancement recorded for R6G molecule. Discontinuous nanostructured Au thin films are deposited by RF magnatron sputtering at very low rate on to three different dielectric substrates, ZnO, TiO2 and SiO2. These three Au/dielectric nanostructures are investigated using SNOM by illuminating it in near field and collecting in transmission far field configuration. The observed optical near field images of the three different nanostructures are discussed by taking their dielectric constant into the account. The SERS enhancements are correlated with the optical field strengths derived from the near field optical imaging.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Fast torsional waves and strong magnetic field within the Earth's core.
Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre
2010-05-06
The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721
Eight Weeks of Strength and Power Training Improves Club Head Speed in Collegiate Golfers.
Oranchuk, Dustin J; Mannerberg, Jason M; Robinson, Tracey L; Nelson, Megan C
2018-02-14
Club head speed (CHS) is a major determinant of drive distance, a key component of golf performance. The purpose of this study was to determine the indirect effects of an eight-week strength and power program on CHS. Twelve (6 male, 6 female) NCAA Division II golfers (20.3±1.5 years) randomly assigned to an intervention or control group, underwent either a periodized strength and power program consisting of high-load barbell movements or a bodyweight and rotational movement focused resistance training program. Outcomes were CHS, countermovement jump (CMJ) height, and 1RM back squat (BS), power clean (PC), and deadlift (DL). Dependent t-tests were utilized to assess differences in outcome variables pre-to-post for each group, independent t-tests were utilized to assess differences between groups, and Pearson correlations were utilized to assess associations between CHS and outcome variables. On average, the intervention group experienced improvements in all outcome variables except peak CHS (p=0.60); the control group displayed no changes in any outcome variable except a decrease in average CHS (p=0.028). Compared to the control group, the intervention group experienced greater improvements in average CHS, BS, PC, and average and peak CMJ height (p<0.05). Additionally, CHS had large associations with PC (r=0.70, p=0.012), BS (r=0.64, p=0.025), DL (r=0.54, p=0.068) and CMJ (r=0.73, p=0.007). These results suggest improving muscular strength and power by increasing PC, BS, and CMJ is associated with increased CHS in collegiate golfers. Integrating a high-load, barbell-focused strength and power program may be beneficial for improving CHS and indirectly, golf performance.
Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.
Lu, Qi; Jiang, Cuiping; Zhang, Jiping
2016-02-01
Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Retinotopic mapping with Spin Echo BOLD at 7 Tesla
Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa
2010-01-01
For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
NASA Astrophysics Data System (ADS)
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloeckler, G.; Fisk, L. A., E-mail: gglo@umich.edu
It is generally believed that Voyager 1 ( V1 ) is now in interstellar space, having crossed the heliopause at a heliocentric distance of 121.58 au in late August of 2012. Here we use recently published spectra of energetic neutral hydrogen, and the magnetic field and energetic particles directly measured by V1 to find the average pressure in the inner heliosheath (termination shock to 122 au). This pressure turns out to be surprisingly large, (3.57 ± 0.71) × 10{sup −12} dyn cm{sup −2}, and is completely dominated by pressures of pickup ions (PUIs), created in the inner heliosheath, and their suprathermal tails (43%), andmore » PUIs and their tails that are produced upstream of the termination shock and enter the heliosheath (46%). We compute the total particle pressure in the outer heliosheath near the heliopause from distribution functions of the interstellar plasma and locally created PUIs using profiles of proton density, proton temperature, and neutral hydrogen density from model 2 in Zank et al., and find it to be at most 7.7 × 10{sup −13} dyn cm{sup −2}. Balancing pressure across the heliopause, thus requires an unusually large magnetic pressure (2.8 × 10{sup −12} dyn cm{sup −2}). The resulting strength and 1 σ uncertainty of the draped magnetic field in the outer heliosheath near the heliopause is 0.839 ± 0.106 nT. The 3 σ lower limit field strength (0.52 nT) is greater than the field of ∼0.43 ± 0.02 nT measured by V1 , implying that there is less than 1% probability that V1 is measuring the interstellar draped field.« less
Emergence of magnetic flux generated in a solar convective dynamo
NASA Astrophysics Data System (ADS)
Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong
2016-10-01
We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) sunspot reveals a predominant down flow inside the sunspots and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the sunspot, which could be considered as moat flows.
Geometric effects in applied-field MPD thrusters
NASA Technical Reports Server (NTRS)
Myers, R. M.; Mantenieks, M.; Sovey, J.
1990-01-01
Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).
Geometric effects in applied-field MPD thrusters
NASA Technical Reports Server (NTRS)
Myers, R. M.; Mantenieks, M.; Sovey, James S.
1990-01-01
Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).
Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube
NASA Astrophysics Data System (ADS)
Sturrock, Z.; Hood, A. W.
2016-09-01
Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.
Low-frequency radio constraints on the synchrotron cosmic web
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Brown, S.; Lenc, E.; Norris, R. P.
2017-06-01
We present a search for the synchrotron emission from the synchrotron cosmic web by cross-correlating 180-MHz radio images from the Murchison Widefield Array with tracers of large-scale structure (LSS). We use two versions of the radio image covering 21.76° × 21.76° with point sources brighter than 0.05 Jy subtracted, with and without filtering of Galactic emission. As tracers of the LSS, we use the Two Micron All-Sky Survey and the Wide-field InfraRed Explorer redshift catalogues to produce galaxy number density maps. The cross-correlation functions all show peak amplitudes at 0°, decreasing with varying slopes towards zero correlation over a range of 1°. The cross-correlation signals include components from point source, Galactic, and extragalactic diffuse emission. We use models of the diffuse emission from smoothing the density maps with Gaussians of sizes 1-4 Mpc to find limits on the cosmic web components. From these models, we find surface brightness 99.7 per cent upper limits in the range of 0.09-2.20 mJy beam-1 (average beam size of 2.6 arcmin), corresponding to 0.01-0.30 mJy arcmin-2. Assuming equipartition between energy densities of cosmic rays and the magnetic field, the flux density limits translate to magnetic field strength limits of 0.03-1.98 μG, depending heavily on the spectral index. We conclude that for a 3σ detection of 0.1 μG magnetic field strengths via cross-correlations, image depths of sub-mJy to sub-μJy are necessary. We include discussion on the treatment and effect of extragalactic point sources and Galactic emission, and next steps for building on this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Yuan-Kuen; Wang, Yi-Ming; Muglach, Karin
2014-06-01
We analyzed 27 solar wind (SW) intervals during the declining phase of cycle 23, whose source coronal holes (CHs) can be unambiguously identified and are associated with one of the polar CHs. We found that the SW ions have a temporal trend of decreasing ionization state, and such a trend is different between the slow and fast SW. The photospheric magnetic field, both inside and at the outside boundary of the CH, also exhibits a trend of decrease with time. However, EUV line emissions from different layers of the atmosphere exhibit different temporal trends. The coronal emission inside the CHmore » generally increases toward the CH boundary as the underlying field increases in strength and becomes less unipolar. In contrast, this relationship is not seen in the coronal emission averaged over the entire CH. For C and O SW ions that freeze-in at lower altitude, stronger correlation between their ionization states and field strength (both signed and unsigned) appears in the slow SW, while for Fe ions that freeze-in at higher altitude, stronger correlation appears in the fast SW. Such correlations are seen both inside the CH and at its boundary region. On the other hand, the coronal electron temperature correlates well with the SW ion composition only in the boundary region. Our analyses, although not able to determine the likely footpoint locations of the SW of different speeds, raise many outstanding questions for how the SW is heated and accelerated in response to the long-term evolution of the solar magnetic field.« less
NASA Astrophysics Data System (ADS)
Liu, X.
2017-12-01
The presence of fluid escape features like seafloor pockmarks are observed in continental margin basins and ocean floors worldwide. While most of the reported depressions developed at deep water, this study provides a description of shallow pockmark field in shallow water that no deep than 55m in continent of the Yellow Sea. Combined with the multi-beam bathymetry data, terrain slope and the back- scattering intensity data, this study calculated the morphological parameters of the seabed pockmarks and carried out quantitative analysis. The outline of the seabed pockmarks were accurately defined, and 282 pockmarks with circle, elliptic, or elongated shape in the plan view were analyzed in ArcGIS. The average diameter of the pockmarks was 0.94 km, average area and circumference were 0.88 km2 and 3.82 km, the pockmarks also have the aspect ratio of 1.83, and relief from 0.5m to 2.5 m. The profile of the pockmarks shaped like W1, W2 and V, respectively distributed in the north, south, and west of the pockmark group. The large plane size but small vertical scale may be associated with the low concentration of the fluid. The orientation of the major axis of the pockmarks has 3 major directions, pockmarks aligned around ENE - WSW, NNE SSW consistent with the main direction of the bottom current in the study area, while pockmarks aligned around NNW-SSE direction mainly controlled by submarine topography. Some pockmark clustered as pockmark chain, which shows that the pockmark shape controlled by the ancient river or lagoon of the sedimentary strata. The acoustic backscatter strength of the pockmark area is of -71dB to -60dB, the average strength data inside the pockmark is significantly higher than the outside, with a difference of 5dB. The high backscatter strength may attribute to the coarse sediments that left inside the pockmark due to winnowing of fine-grained sediments, or result of the precipitation of diagenitic or authigenic minerals associated with fluid venting.
Magnetohydrodynamic simulations of hot jupiter upper atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, George B.; Li, Zhi-Yun; Arras, Phil, E-mail: gbt8f@virginia.edu, E-mail: zl4h@virginia.edu, E-mail: arras@virginia.edu
Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to thatmore » of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth can be as short as ≅ 30 Myr, which is much shorter than the age of the system.« less
Physical capacity of rescue personnel in the mining industry
Stewart, Ian B; McDonald, Michael D; Hunt, Andrew P; Parker, Tony W
2008-01-01
Background The mining industry has one of the highest occupational rates of serious injury and fatality. Mine staff involved with rescue operations are often required to respond to physically challenging situations. This paper describes the physical attributes of mining rescue personnel. Methods 91 rescue personnel (34 ± 8.6 yrs, 1.79 ± 0.07 m, 90 ± 15.0 kg) participating in the Queensland Mines Rescue Challenge completed a series of health-related and rescue-related fitness tasks. Health-related tasks comprised measurements of aerobic capacity (VO2max), abdominal endurance, abdominal strength, flexibility, lower back strength, leg strength, elbow flexion strength, shoulder strength, lower back endurance, and leg endurance. Rescue-related tasks comprised an incremental carry (IC), coal shovel (CS), and a hose drag (HD), completed in this order. Results Cardiovascular (VO2max) and muscular endurance was average or below average compared with the general population. Isometric strength did not decline with age. The rescue-related tasks were all extremely demanding with heart rate responses averaging greater than 88% of age predicted maximal heart rates. Heart rate recovery responses were more discriminating than heart rates recorded during the tasks, indicating the hose drag as the most physically demanding of the tasks. Conclusion Relying on actual rescues or mining related work to provide adequate training is generally insufficient to maintain, let alone increase, physical fitness. It is therefore recommended that standards of required physical fitness be developed and mines rescue personnel undergo regularly training (and assessment) in order to maintain these standards. PMID:18847510
Heart Rate and Energy Expenditure in Division I Field Hockey Players During Competitive Play.
Sell, Katie M; Ledesma, Allison B
2016-08-01
Sell, KM and Ledesma, AB. Heart rate and energy expenditure in Division I field hockey players during competitive play. J Strength Cond Res 30(8): 2122-2128, 2016-The purpose of this study was to quantify energy expenditure and heart rate data for Division I female field hockey players during competitive play. Ten female Division I collegiate field hockey athletes (19.8 ± 1.6 years; 166.4 ± 6.1 cm; 58.2 ± 5.3 kg) completed the Yo-Yo intermittent endurance test to determine maximal heart rate. One week later, all subjects wore a heart rate monitor during a series of 3 matches in an off-season competition. Average heart rate (AvHR), average percentage of maximal heart rate (AvHR%), peak exercise heart rate (PExHR), and percentage of maximal heart rate (PExHR%), time spent in each of the predetermined heart rate zones, and caloric expenditure per minute of exercise (kcalM) were determined for all players. Differences between positions (backs, midfielders, and forwards) were assessed. No significant differences in AvHR, AvHR%, PExHR, PExHR%, and %TM were observed between playing positions. The AvHR% and PExHR% for each position fell into zones 4 (77-93% HRmax) and 5 (>93% HRmax), respectively, and significantly more time was spent in zone 4 compared with zones 1, 2, 3, and 5 across all players (p ≤ 0.05). The kcalM reflected very heavy intensity exercise. The results of this study will contribute toward understanding the sport-specific physiological demands of women's field hockey and has specific implications for the duration and schedule of training regimens.
Non-Dipole Features of the Geomagnetic Field May Persist for Millions of Years
NASA Astrophysics Data System (ADS)
Biasi, J.; Kirschvink, J. L.
2017-12-01
Here we present paleointensity results from within the South Atlantic Anomaly (SAA), which is a large non-dipole feature of the geomagnetic field. Within the area of the SAA, anomalous declinations, inclinations, and intensities are observed. Our results suggest that the SAA has been present for at least 5 Ma. This is orders-of-magnitude greater than any previous estimate, and suggests that some non-dipole features do not `average out' over geologic time, which is a fundamental assumption in all paleodirectional studies. The SAA has been steadily growing in size since the first magnetic measurements were made in the South Atlantic, and it is widely believed to have appeared 400 years ago. Recent studies from South Africa (Tarduno et al. (2015)) and Tristan da Cunha (Shah et al. (2016)) have suggested that the SAA has persisted for 1 ka and 96 ka respectively. We conducted paleointensity (PI) experiments on basaltic lavas from James Ross Island, on the Antarctic Peninsula. This large shield volcano has been erupting regularly over the last 6+ Ma (dated via Ar/Ar geochronology), and therefore contains the most complete volcanostratigraphic record in the south Atlantic. Our PI experiments used the Thellier-Thellier method, the IZZI protocol, and the same selection criteria as the Lawrence et al. (2009) study of Ross Island lavas (near McMurdo Station), which is the only comparable PI study on the Antarctic continent. We determined an average paleointensity at JRI of 13.8±5.2 μT, which is far lower than what we would expect from a dipole field (55 μT). In addition, this is far lower than the current value over James Ross Island of 36 μT. These results support the following conclusions: The time-averaged field model of Juarez et al. (1998) and Tauxe et al. (2013) is strongly favored by our PI data. The SAA has persisted over James Ross Island for at least 5 Ma, and has not drifted significantly over that time. The strength of non-dipole features such as the SAA scales with the dipole moment of the earth. Non-dipole features like the SAA can survive geomagnetic reversals. The fundamental assumption that non-dipole features of the geomagnetic field are `averaged out' over geologic timescales needs to be reconsidered.
Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.
Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V
2014-12-01
Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of strong electric field on the conformational integrity of insulin.
Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H
2014-10-02
A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.
Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y
2013-08-01
The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).
NASA Astrophysics Data System (ADS)
Werner, Nathaniel; Chung, Hojae; Wang, Junshi; Liu, Geng; Cimbala, John; Dong, Haibo; Cheng, Bo
2017-11-01
This work investigates the radial vorticity dynamics and the stability of leading-edge vortices (LEVs) in revolving wings. Previous studies have shown that Coriolis acceleration plays a key role in stabilizing the LEV; however, the exact mechanism remains unclear. This study tests a new hypothesis based on the curl of the Coriolis acceleration in the vorticity equation, which corresponds to the radial tilting of the planetary vortex (PVTr). The PVTr could reorient planetary vorticity into radial vorticity that reduces the strength of the LEV, preventing the LEV from growing and becoming unstable. To test this, an in-house immersed-boundary-method-based flow solver was used to generate velocity and vorticity fields of revolving wings of different aspect ratio (AR = 3, 5, 7) and Reynolds number (Re = 110, 1400). It is found that the PVTr consistently negates the LEV vorticity for all the AR and Re investigated, although its effect is outweighed by other 3D effects at Re =1400. It is also found that the strength of the PVTr increases along the wing span until approximately a chord length from the wing tip. The averaged magnitude of PVTr within the LEV and the dependency of its relative strength on the aspect ratio and Reynolds number are also investigated.
NASA Astrophysics Data System (ADS)
Ozturk, H.; Altinpinar, M.
2017-07-01
The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.
Random analysis of bearing capacity of square footing using the LAS procedure
NASA Astrophysics Data System (ADS)
Kawa, Marek; Puła, Wojciech; Suska, Michał
2016-09-01
In the present paper, a three-dimensional problem of bearing capacity of square footing on random soil medium is analyzed. The random fields of strength parameters c and φ are generated using LAS procedure (Local Average Subdivision, Fenton and Vanmarcke 1990). The procedure used is re-implemented by the authors in Mathematica environment in order to combine it with commercial program. Since the procedure is still tested the random filed has been assumed as one-dimensional: the strength properties of soil are random in vertical direction only. Individual realizations of bearing capacity boundary-problem with strength parameters of medium defined the above procedure are solved using FLAC3D Software. The analysis is performed for two qualitatively different cases, namely for the purely cohesive and cohesive-frictional soils. For the latter case the friction angle and cohesion have been assumed as independent random variables. For these two cases the random square footing bearing capacity results have been obtained for the range of fluctuation scales from 0.5 m to 10 m. Each time 1000 Monte Carlo realizations have been performed. The obtained results allow not only the mean and variance but also the probability density function to be estimated. An example of application of this function for reliability calculation has been presented in the final part of the paper.
Social contagions on time-varying community networks
NASA Astrophysics Data System (ADS)
Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng
2017-05-01
Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.
Factors affecting the pullout strength of cancellous bone screws.
Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D
1996-08-01
Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal threads in the porous material.
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Calomino, Anthony
2002-01-01
Tensile strengths and stress rupture lives of carbon-fiber reinforced silicon carbide (C/SiC) specimens were measured at 800 C and are compared to previously reported 1200 C data. All tests were conducted in an environmental chamber containing 1000 ppm of oxygen in argon. The average 800 C tensile strength of 610 MPa is 10% greater than at 1200 C. Average stress rupture lives at 800 C were 2.5 times longer than those obtained at 1200 C. The difference in the 800 and 1200 C lives is related to the oxidation rate of the reinforcing carbon fibers, which is the primary damage mode of C/SiC composites in oxygen-containing environments.
Dust coagulation and magnetic field strength in a planet-induced gap subject to MRI turbulence
NASA Astrophysics Data System (ADS)
Carballido, Augusto; Matthews, Lorin; Hyde, Truell
2017-01-01
We investigate the coagulation of dust particles in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magneto rotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses close to the gap edge, in one of the two gas streams that accrete onto the planet, and inside the low-density gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking, compaction and bouncing. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 micron, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 microns. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (MW) average porosity of the initially mono disperse population reaches extremely high final values of 98%. The final MW porosities in all other cases without bouncing range from 30% to 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap.We also analyze the strength of the magnetic field threading the gaps opened by planets of different sub-Jovian masses. Preliminary results show that, in a gap opened by a large-mass planet (~ 1 MJ), the time-averaged radial profile of the vertical component of the field (Bz) increases sharply inside the gap, and less sharply in the case of less massive planets. In gaps opened by intermediate-mass planets (~ 0.5 — 0.75 MJ), the radial profile of Bz exhibits local maxima in the vicinity of the planet, but not at the gap center.
The Effects of FUV Radiation on C-Shocks: Implications for Water and Other O-bearing Species
NASA Astrophysics Data System (ADS)
Kaufman, Michael; Melick, Gary; Tolls, Volker
2015-08-01
Protostellar outflows have long been known to drive endothermic reactions that produce high abundances of oxygen-bearing species. Models of shocks in well-shielded gas made the strong prediction that essentially all of the pre-shock oxygen gets driven into water, so that the post-shock water abundances are order 10-4. Herschel observations, however, including those from the key program “Water in Star Forming Regions with Herschel (WISH)” show that for most sources, the shocked gas water abundances of are far lower, 10-7 - 10-5.This pattern of lower-than-predicted water abundance has led us to consider that our C-shock model (Kaufman & Neufeld 1996) is incomplete. In particular, we did not previously take into account that many outflow sources have higher than average far-ultraviolet radiation fields within their outflow cavities. Strong FUV radiation has important effects on the structure of C-shocks: the ionization fraction is larger than in well-shielded gas, decreasing the coupling length between neutrals and ions, and leading to higher temperatures and a lower breakdown speeds; the pre-shock gas composition, including the presence of ice mantles and the dominant charge carriers, is strongly affected; and abundant species such as water are diminished by photodissociation in the cooled down stream gas.In addition to the normal parameters of density, shock velocity, and magnetic field strength, we now include the external FUV field strength and the extinction between the FUV source and the shock. We use the results of a detailed PDR model to compute pre-shock chemical conditions, including the ionization fraction, the increase of which decreases the maximum velocities of C- shocks. FUV also keeps oxygen in the gas phase, making more available for H2O formarion ; however, photodissociation beyond the temperature peak keeps the average H2O abundance down. We present comparisons of our model results with the inferred water abundances and with observations of H2O, CO, O and OH lines from the Herschel archive.
Concrete probe-strength study : final report.
DOT National Transportation Integrated Search
1969-12-01
The Windsor probe - test system was evaluated for determining compressive strength of concrete by comparing probe strengths against cylinder and core strengths from both laboratory and field-poured concrete. Advantages and disadvantages of this syste...
Strong Magnetic Field Characterisation
2012-04-01
an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699
NASA Technical Reports Server (NTRS)
Harker, K. J.
1975-01-01
The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.
NASA Astrophysics Data System (ADS)
Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.
2018-04-01
We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S, by about a factor of two compared to that of the Long-term period, indicating many strongly tipped MCs. In 2005, there was a distinct change in variability and average value (viewed at 1/2 year averages) of the duration, MC speed, axial magnetic field strength, axial magnetic flux, and total current to lower values. In the Present period, upstream shocks occur for 43% of the 49 cases; for comparison, the Long-term rate is 56%.
NASA Astrophysics Data System (ADS)
Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit
2017-06-01
We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.
Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall
NASA Astrophysics Data System (ADS)
Medan, Ilija; Andersson, B.-G.
2018-01-01
Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.
Xie, Lan; Xu, Huan; Niu, Ben; Ji, Xu; Chen, Jun; Li, Zhong-Ming; Hsiao, Benjamin S; Zhong, Gan-Ji
2014-11-10
The notion of toughening poly(lactic acid) (PLA) by adding flexible biopolymers has generated enormous interest but has yielded few desirable advances, mainly blocked by the sacrifice of strength and stiffness due to uncontrollable phase morphology and poor interfacial interactions. Here the phase control methodology, that is, intense extrusion compounding followed by "slit die extrusion-hot stretching-quenching" technique, was proposed to construct well-aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first time. We show that generating nanosized discrete droplets of PBS phase during extrusion compounding is key to enable the development of in situ nanofibrillar PBS assisted by the shearing/stretching field. The size of PBS nanofibrils strongly dependent on the PBS content, showing an increased average diameter from 83 to 116 and 236 nm for the composites containing 10, 20, and 40 wt % nanofibrils, respectively. More importantly, hybrid shish-kebab superstructure anchoring ordered PLA kebabs were induced by the PBS nanofibrils serving as the central shish, conferring the creation of tenacious interfacial crystalline ligaments. The exceptional combination of strength, modulus, and ductility for the composites loaded 40 wt % PBS nanofibrils were demonstrated, outperforming pure PLA with the increments of 31, 51, and 72% in strength, modulus, and elongation at break (56.4 MPa, 1702 MPa, and 92.4%), respectively. The high strength, modulus, and ductility are unprecedented for PLA and are in great potential need for packaging applications.
SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlers, Markus; Mertsch, Philipp
2015-12-10
The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that canmore » account for the effect.« less
Experiments on H2-O2MHD power generation
NASA Technical Reports Server (NTRS)
Smith, J. M.
1980-01-01
Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.
New measurements of photospheric magnetic fields in late-type stars and emerging trends
NASA Technical Reports Server (NTRS)
Saar, S. H.; Linsky, J. L.
1986-01-01
The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.
Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C
2016-08-02
Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly) inactivated and provided outgrowth opportunities for moulds, which led to spoilage by moulds after 14days (7°C) or 18days (4°C). Copyright © 2016 Elsevier B.V. All rights reserved.
Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited
NASA Astrophysics Data System (ADS)
Förster, M.; Haaland, S.
2015-07-01
The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.
The Effects of Earth's Outer Core's Viscosity on Geodynamo Models
NASA Astrophysics Data System (ADS)
Dong, C.; Jiao, L.; Zhang, H.
2017-12-01
Geodynamo process is controlled by mathematic equations and input parameters. To study effects of parameters on geodynamo system, MoSST model has been used to simulate geodynamo outputs under different outer core's viscosity ν. With spanning ν for nearly three orders when other parameters fixed, we studied the variation of each physical field and its typical length scale. We find that variation of ν affects the velocity field intensely. The magnetic field almost decreases monotonically with increasing of ν, while the variation is no larger than 30%. The temperature perturbation increases monotonically with ν, but by a very small magnitude (6%). The averaged velocity field (u) of the liquid core increases with ν as a simple fitted scaling relation: u∝ν0.49. The phenomenon that u increases with ν is essentially that increasing of ν breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, and thus u increases under the same thermal driving force. Forces balance is analyzed and balance mode shifts with variation of ν. When compared with former studies of scaling laws, this study supports the conclusion that in a certain parameter range, the magnetic field strength doesn't vary much with the viscosity, but opposes to the assumption that the velocity field has nothing to do with the outer core viscosity.
Dependence of the duration of geomagnetic polarity reversals on site latitude.
Clement, Bradford M
2004-04-08
An important constraint on the processes governing the geodynamo--the flow in the outer core responsible for generating Earth's magnetic field--is the duration of geomagnetic polarity reversals; that is, how long it takes for Earth's magnetic field to reverse. It is generally accepted that Earth's magnetic field strength drops to low levels during polarity reversals, and the field direction progresses through a 180 degrees change while the field is weak. The time it takes for this process to happen, however, remains uncertain, with estimates ranging from a few thousand up to 28,000 years. Here I present an analysis of the available sediment records of the four most recent polarity reversals. These records yield an average estimate of about 7,000 years for the time it takes for the directional change to occur. The variation about this mean duration is not random, but instead varies with site latitude, with shorter durations observed at low-latitude sites, and longer durations observed at mid- to high-latitude sites. Such variation of duration with site latitude is predicted by simple geometrical reversal models, in which non-dipole fields are allowed to persist while the axial dipole decays through zero and then builds in the opposite direction, and provides a constraint on numerical dynamo models.
Swim stress, motion, and deformation of active matter: effect of an external field.
Takatori, Sho C; Brady, John F
2014-12-21
We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.
NASA Astrophysics Data System (ADS)
Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji
2018-04-01
This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.
Bora event variability and the role of air-sea feedback
Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.
2007-01-01
A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.
Field evaporation of ZnO: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.
2015-07-14
With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less
Geomagnetic Field During a Reversal
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.
2003-01-01
It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.
The Electron Drift Technique for Measuring Electric and Magnetic Fields
NASA Technical Reports Server (NTRS)
Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)
1998-01-01
The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Murphy, G.
1983-01-01
The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.
Input-output relationship in galvanotactic response of Dictyostelium cells.
Sato, Masayuki J; Ueda, Michihito; Takagi, Hiroaki; Watanabe, Tomonobu M; Yanagida, Toshio; Ueda, Masahiro
2007-04-01
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.
Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho
2005-08-12
We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.
Entrainment, Drizzle, and Stratocumulus Cloud Albedo
NASA Technical Reports Server (NTRS)
Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Toon, O. B.
2004-01-01
Globally averaged cloud changes from GCMs on average show a doubling of the Twomey effect, which is the change in cloud albedo with respect to changes in droplet concentrations for fixed cloud water and droplet dispersion. In contrast, ship-track measurements show a much more modest amplification of the Twomey effect, suggesting that the GCMs are exaggerating the indirect aerosol effect. We have run large-eddy simulations with bin microphysics of marine stratocumulus from multiple field campaigns, and find that the large-eddy simulations are in much better agreement with the ship-track measurements. The inversion strength over N. Pacific stratocumulus (as measured during DYCOMS-II) is generally much stronger than over N. Atlantic stratocumulus (as measured during ASTEX), and we have found that the response of cloud water to increasing droplet concentration changes sign as the inversion strengthens. For the different environmental conditions, we will show the overall response of cloud albedo to droplet concentrations, and decompose the response into its contributing factors of changes in cloud water, droplet dispersion, and horizontal inhomogeneity.
47 CFR 90.771 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.771 Field... transmit frequencies, of EA and Regional licensees may not exceed a predicted 38 dBu field strength at... required in paragraph (a) of this section if all affected, co-channel EA and Regional licensees agree to...
47 CFR 90.771 - Field strength limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.771 Field... transmit frequencies, of EA and Regional licensees may not exceed a predicted 38 dBu field strength at... required in paragraph (a) of this section if all affected, co-channel EA and Regional licensees agree to...
47 CFR 73.189 - Minimum antenna heights or field strength requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...
47 CFR 73.189 - Minimum antenna heights or field strength requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...
47 CFR 73.189 - Minimum antenna heights or field strength requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...
47 CFR 73.189 - Minimum antenna heights or field strength requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...
47 CFR 73.189 - Minimum antenna heights or field strength requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...
47 CFR 73.184 - Groundwave field strength graphs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... function of groundwave conductivity and distance from the source of radiation. The groundwave field... Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere,” Part II, by Mr. K.A... relative values of groundwave field strength over a plane earth as a function of the numerical distance p...
Code of Federal Regulations, 2010 CFR
2010-10-01
... limited to intentional radiators used as field disturbance sensors, excluding perimeter protection systems. (b) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: Fundamental frequency (MHz) Field strength of fundamental (millivolts...
EVIDENCE FOR DECAY OF TURBULENCE BY MHD SHOCKS IN THE ISM VIA CO EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Rebecca L.; Evans II, Neal J.; Green, Joel D.
2015-06-10
We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program (“COPS”, PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 10{sup 3} cm{sup −3}, a shock velocity of 3 km s{sup −1}, and a magnetic field strength of 4 μG; model 2 has a density of 10{sup 3.5} cm{sup −3}, a shock velocity of 2more » km s{sup −1}, and a magnetic field strength of 8 μG. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to J of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars. We find significant agreement with predictions of models of turbulent dissipation in slightly denser (10{sup 3.5} cm{sup −3}) material with a stronger magnetic field (24 μG) than in the general molecular cloud.« less
Atlas of optimal coil orientation and position for TMS: A computational study.
Gomez-Tames, Jose; Hamasaka, Atsushi; Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu
2018-04-17
Transcranial magnetic stimulation (TMS) activates target brain structures in a non-invasive manner. The optimal orientation of the TMS coil for the motor cortex is well known and can be estimated using motor evoked potentials. However, there are no easily measurable responses for activation of other cortical areas and the optimal orientation for these areas is currently unknown. This study investigated the electric field strength, optimal coil orientation, and relative locations to optimally stimulate the target cortex based on computed electric field distributions. A total of 518,616 stimulation scenarios were studied using realistic head models (2401 coil locations × 12 coil angles × 18 head models). Inter-subject registration methods were used to generate an atlas of optimized TMS coil orientations on locations on the standard brain. We found that the maximum electric field strength is greater in primary somatosensory cortex and primary motor cortex than in other cortical areas. Additionally, a universal optimal coil orientation applicable to most subjects is more feasible at the primary somatosensory cortex and primary motor cortex. We confirmed that optimal coil angle follows the anatomical shape of the hand motor area to realize personalized optimization of TMS. Finally, on average, the optimal coil positions for TMS on the scalp deviated 5.5 mm from the scalp points with minimum cortex-scalp distance. This deviation was minimal at the premotor cortex and primary motor cortex. Personalized optimal coil orientation is preferable for obtaining the most effective stimulation. Copyright © 2018. Published by Elsevier Inc.
Rupture complexity and the supershear transition on rough faults
NASA Astrophysics Data System (ADS)
Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.
2016-01-01
Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.
Fracture strength testing of crowns made of CAD/CAM composite resins.
Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun
2018-03-28
The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan
2018-05-01
We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.
Aleatory Uncertainty and Scale Effects in Computational Damage Models for Failure and Fragmentation
2014-09-01
larger specimens, small specimens have, on average, higher strengths. Equivalently, because curves for small specimens fall below those of larger...the material strength associated with each realization parameter R in Equation (7), and strength distribution curves associated with multiple...effects in brittle media [58], which applies micromorphological dimensional analysis to obtain a universal curve which closely fits rate-dependent
Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography
NASA Technical Reports Server (NTRS)
Herball, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.
Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo
2016-10-01
Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.
NASA Astrophysics Data System (ADS)
Cao, Qianqian; Tian, Xiu; You, Hao
2018-04-01
We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.
Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud
2015-09-03
The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m(-1) and 111 kV m(-1) in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. Copyright © 2015 Elsevier B.V. All rights reserved.
The assessment of electromagnetic field radiation exposure for mobile phone users.
Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas
2014-12-01
During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.
NASA Astrophysics Data System (ADS)
Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.
2018-03-01
There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.
NASA Astrophysics Data System (ADS)
Beiersdorfer, Peter; Scofield, J. H.; Lepson, J. K.; Osten, R.; Smith, R. K.
2006-09-01
We will discuss a class of lines from highly charged ions that are sensitive to the strength of the ambient magnetic field. Calculations show that the magnitude of field strengths that can be measured ranges from a few hundred gauss to several tens of kilogauss depending on the particular ion emitting the line. These calculations have been verified in the laboratory by studying the spectra of S VII, Ar IX, and Fe XVII. As an example of the diagnostic utility, the possibility of using these lines to determine the coronal magnetic field strength of Prox Cen will be presented. This work was supported by NASA Astronomy and Physics Research and Analysis program work order NNH04AA751, and was performed under the auspices of the Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
Electrokinetic transport of aerobic microorganisms under low-strength electric fields.
Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R
2011-01-01
To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
Hydrogen molecules and chains in a superstrong magnetic field
NASA Technical Reports Server (NTRS)
Lai, Dong; Salpeter, Edwin E.; Shapiro, Stuart L.
1992-01-01
The electronic structures of hydrogen polymolecules H(n) (n = 2,3,4,...) is studied in a superstrong magnetic field (B greater than about 10 exp 12 G) typically found on the surface of a neutron star. Simple analytical scaling relations for several limiting cases (e.g., large n, high B field) are derived. The binding energies of H(n) molecules are numerically calculated for various magnetic-field strengths. For a given magnetic-field strength, the binding energy per atom in the H(n) molecules is found to approach a constant value as n increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds 3 to 4. Also considered is the structure of negative H ions in a high magnetic field. For B about 10 exp 12 G, the dissociation energy of an atom in a hydrogen chain and the ionization potential of H(-) are smaller than the ionization potential of neutral atomic hydrogen.
Observations of magnetic fields on solar-type stars
NASA Technical Reports Server (NTRS)
Marcy, G. W.
1982-01-01
Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.
Magnetic field deformation due to electron drift in a Hall thruster
NASA Astrophysics Data System (ADS)
Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu
2017-01-01
The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.
NASA Astrophysics Data System (ADS)
Alexander, D. J.; Goodwin, G. M.; Bloom, E. E.
1991-06-01
Primary design considerations for the Compact Ignition Tokamak toroidal field-coil cases are yield strength and toughness in the temperature range from 77 to 300 K. Type 21-6-9 stainless steel, also still known by its original Armco Steel Company trade name Nitronic 40, is the proposed alloy for this application. It has high yield strength and usually adequate base metal toughness, but weldments in thick sections have not been adequately characterized in terms of mechanical properties or hot-cracking propensity. In this study, weldability of the alloy in heavy sections and the mechanical properties of the resultant welds were investigated including tensile yield strength and Charpy V-notch toughness at 77 K and room temperature. Weldments were made in four different base metals using seven different filler metals. None of the weldments showed any indication of hot-cracking problems. All base metals, including weldment heat-affected zones, were found to have adequate strength and impact toughness at both test temperatures. Weld metals, on the other hand, except ERNiCr-3 and ENiCrFe-3, had impact toughnesses of less than 67 J at 77 K. Inconel 82 had an average weld metal impact toughness of over 135 J at 77 K, and although its strength at 77 K is less than that of type 21-6-9 base metal, at this point it is considered to be the first-choice filler metal. Phase 2 of this program will concentrate on composition refinement and process/procedure optimization for the generic ERNiCr-3 composition and will generate a design data base for base and weld metal, including tensile, fracture toughness, and crack growth rate data.
Spatial averaging of a dissipative particle dynamics model for active suspensions
NASA Astrophysics Data System (ADS)
Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot
2018-03-01
Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.
Hard X-ray spectral properties of distant AGN in the NuSTAR surveys
NASA Astrophysics Data System (ADS)
Del Moro, Agnese
2016-08-01
I will present a study on the average broad X-ray band (~0.5-30 keV) spectral properties of the NuSTAR sources detected in the ECDF-S, EGS and COSMOS fields. Constructing the rest-frame composite spectra of AGN in different hydrogen column density (NH) and 10-40 keV luminosity bins, using Chandra and NuSTAR data, we investigate the typical spectral parameters of the AGN population, such as the photon index, NH, strength of the iron emission line (~6.4 keV) and of the Compton reflection at ~20-30 keV. Placing constraints on the reflection fraction (R) is of particular importance for the synthesis models of the cosmic X-ray background (CXB), as this parameter is strongly linked with the fraction of Compton-thick AGN needed to fit the CXB spectrum. Thanks to its sensitivity at ~20-30 keV, NuSTAR allows for the first time, to directly place such constraints for non-local AGN. We find typical reflection fractions of R~1-1.5, consistent the AGN in the local Universe, with a tentative evidence for the most obscured AGN to have, on average, stronger Compton reflection compared to unobscured AGN. Moreover, contrary to previous works, we do not find significant evidence for a decrease of the reflection strength with luminosity for typical Γ=1.8-1.9. Our results support CXB models that require a relatively small fraction of CT AGN, of the order of ~10-15%.
Mazerolle, M.J.
2006-01-01
In ecology, researchers frequently use observational studies to explain a given pattern, such as the number of individuals in a habitat patch, with a large number of explanatory (i.e., independent) variables. To elucidate such relationships, ecologists have long relied on hypothesis testing to include or exclude variables in regression models, although the conclusions often depend on the approach used (e.g., forward, backward, stepwise selection). Though better tools have surfaced in the mid 1970's, they are still underutilized in certain fields, particularly in herpetology. This is the case of the Akaike information criterion (AIC) which is remarkably superior in model selection (i.e., variable selection) than hypothesis-based approaches. It is simple to compute and easy to understand, but more importantly, for a given data set, it provides a measure of the strength of evidence for each model that represents a plausible biological hypothesis relative to the entire set of models considered. Using this approach, one can then compute a weighted average of the estimate and standard error for any given variable of interest across all the models considered. This procedure, termed model-averaging or multimodel inference, yields precise and robust estimates. In this paper, I illustrate the use of the AIC in model selection and inference, as well as the interpretation of results analysed in this framework with two real herpetological data sets. The AIC and measures derived from it is should be routinely adopted by herpetologists. ?? Koninklijke Brill NV 2006.
Interaction of aerodynamic noise with laminar boundary layers in supersonic wind tunnels
NASA Technical Reports Server (NTRS)
Schopper, M. R.
1984-01-01
The interaction between incoming aerodynamic noise and the supersonic laminar boundary layer is studied. The noise field is modeled as a Mach wave radiation field consisting of discrete waves emanating from coherent turbulent entities moving downstream within the supersonic turbulent boundary layer. The individual disturbances are likened to miniature sonic booms and the laminar boundary layer is staffed by the waves as the sources move downstream. The mean, autocorrelation, and power spectral density of the field are expressed in terms of the wave shapes and their average arrival rates. Some consideration is given to the possible appreciable thickness of the weak shock fronts. The emphasis in the interaction analysis is on the behavior of the shocklets in the noise field. The shocklets are shown to be focused by the laminar boundary layer in its outer region. Borrowing wave propagation terminology, this region is termed the caustic region. Using scaling laws from sonic boom work, focus factors at the caustic are estimated to vary from 2 to 6 for incoming shocklet strengths of 1 to .01 percent of the free stream pressure level. The situation regarding experimental evidence of the caustic region is reviewed.
The pseudo-symmetric optimization of the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaev, M.Y.; Mikhailov, M.I.; Monticello, D.A.
1999-08-01
A new experiment, the National Compact Stellarator Experiment (NCSX) [Monticello {ital et al.} {open_quotes}Physics Consideration for the Design of NCSX,{close_quotes} {ital Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998} (European Physical Society, Petit-Lancy), paper 1.187], hopes to overcome the deleterious ripple transport usually associated with stellarators by creating a quasi-axisymmetric configuration. A quasi-axisymmetric configuration is one in which the Fourier spectrum of the magnetic field strength in so-called Boozer coordinates is dominated by the toroidal angle averaged (n=0) components. In this article the concept of pseudosymmetry is used to improve ripple transport in a four-periodmore » variant of NCSX. By definition, pseudosymmetric magnetic configurations have no locally trapped particles. To obtain a pseudosymmetric configuration, different target functions are considered. It is found that a target function equal to the area of ripple of the magnetic field magnitude along the field line is very effective in reducing the neoclassical transport coefficient. {copyright} {ital 1999 American Institute of Physics.}« less
The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2014-01-01
A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.
2013-01-01
Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114
A proposal to improve a 3D printing technology of composite materials products
NASA Astrophysics Data System (ADS)
Zlobina, I. V.; Bekrenev, N. V.; Pavlov, S. P.
2017-12-01
The objects formed by 3D printing, in particular from nonmetallic materials, have an essential disadvantage not eliminated at the present time - a significant anisotropy of the structure and, as a consequence, of physical and mechanical characteristics. The research of 3DP technology in combination with the influence of microwave electromagnetic field of various power on the formed three-dimensional product has been carried out. It was established that a microwave electromagnetic field with an average specific power of 2450 MHz causes an increase in the homogeneity of the of powder materials’ structure, expressed in a decrease of the pore size by 24% and a decrease in their dispersion by almost 30%. As a consequence of the increase in the homogeneity of the structure, the flexural strength of Zp130-powder plates impregnated with cyanoacrylate has increased to 1.77 times. Thus, the use of the microwave electromagnetic field as a final stage in the formation of products made from composite materials is promising and requires additional studies to justify the serial production technology.
Full field gas phase velocity measurements in microgravity
NASA Technical Reports Server (NTRS)
Griffin, Devon W.; Yanis, William
1995-01-01
Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.
NASA Technical Reports Server (NTRS)
Farley, G. L.
1985-01-01
Impact tests were conducted on shear panels fabricated from 6061-T6 aluminum and from woven fabric prepreg of Du Pont Kevlara fiber/epoxy resin and graphite fiber/epoxy resin. The shear panels consisted of three different composite laminates and one aluminum material configuration. Three panel aspect ratios were evaluated for each material configuration. Composite panels were impacted with a 1.27-cm (0.05-in) diameter aluminum sphere at low velocities of 46 m/sec (150 ft/sec) and 67 m/sec (220 ft/sec). Ballistic impact conditions consisted of a tumbled 0.50-caliber projectile impacting loaded composite and aluminum shear panels. The results of these tests indicate that ballistic threshold load (the lowest load which will result in immediate failure upon penetration by the projectile) varied between 0.44 and 0.61 of the average failure load of undamaged panels. The residual strengths of the panels after ballistic impact varied between 0.55 and 0.75 of the average failure strength of the undamaged panels. The low velocity impacts at 67 m/sec (220 ft/sec) caused a 15 to 20 percent reduction in strength, whereas the impacts at 46 m/sec (150 ft/sec) resulted in negligible strength loss. Good agreement was obtained between the experimental failure strengths and the predicted strength with the point stress failure criterion.
Improving the Q:H strength ratio in women using plyometric exercises.
Tsang, Kavin K W; DiPasquale, Angela A
2011-10-01
Plyometric training programs have been implemented in anterior cruciate ligament injury prevention programs. Plyometric exercises are designed to aid in the improvement of muscle strength and neuromuscular control. Our purpose was to examine the effects of plyometric training on lower leg strength in women. Thirty (age = 20.3 ± 1.9 years) recreationally active women were divided into control and experimental groups. The experimental group performed a plyometric training program for 6 weeks, 3 d·wk(-1). All subjects attended 4 testing sessions: before the start of the training program and after weeks 2, 4, and 6. Concentric quadriceps and hamstring strength (dominant leg) was assessed using an isokinetic dynamometer at speeds of 60 and 120°·s(-1). Peak torque, average peak torque, and average power (AvgPower) were measured. The results revealed a significant (p < 0.05) interaction between time and group for flexion PkTq and AvgPower at 120°·s(-1). Post hoc analysis further revealed that PkTq at 120°·s(-1) was greater in the plyometric group than in the control group at testing session 4 and that AvgPower was greater in the plyometric group than in the control group in testing sessions 2-4. Our results indicate that the plyometric training program increased hamstring strength while maintaining quadriceps strength, thereby improving the Q:H strength ratio.
Temperature Variations and N+/O+ in the Orion Nebula II. The Collision Strengths
NASA Astrophysics Data System (ADS)
Rubin, R. H.; Dufour, R. J.; Martin, P. G.; Ferland, G. J.; Baldwin, J. A.; Ortiz, C. O.; Walter, D. K.
2001-03-01
We continue an investigation of electron temperature (T[e]), mean-square T[e] variation (t2), and the N+/O+ abundance ratio. Our previous analysis of HST spectra of the Orion Nebula used collision strengths for N+ by Stafford et al. (1994). Here we examine the consequences of changing just these collision strengths by using those of Lennon & Burke (1994). Rather than utilize the standard analytical, low electron density (N[e]) regime treatment for the analysis, we develop a numerical technique that is valid at any density. With Stafford et al. collision strengths, we find the average N[e] for the (N+, O+)-zone is 7500 cm-3, the average T[e] is 9160 K, t2 is 0.045, and N+/O+ is 0.14. Using Lennon & Burke values, the ``best" solution is found when these respective quantities are: 9000 cm-3, 9920 K, 0.00073, and 0.15. The value for t2 is dramatically lower than that found using Stafford et al. data.
Nonequilibrium electrokinetic effects in beds of ion-permselective particles.
Leinweber, Felix C; Tallarek, Ulrich
2004-12-21
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.
Magnetic properties of undoped and Al doped layered α-Co(OH)2
NASA Astrophysics Data System (ADS)
Gupta, Anu; Tiwari, S. D.
2017-11-01
Undoped, 10% and 20% Al doped samples of layered hexagonal α-Co(OH)2 are synthesized. X-ray diffraction patterns show that the samples are nanocrystalline with average crystallite size 15 nm. Fourier transform infrared spectroscopy and thermogravimetric analysis are performed to establish molecular formula of samples. Analysis of susceptibility χ as a function of temperature T (5-300 K) data indicates for ferromagnetic transitions in the system at lower temperatures. Curie transition temperature TC for undoped, 10% and 20% Al doped α-Co(OH)2 are found to be 9, 7.5 and 6.0 K respectively. Fitting of χ vs. T data for T >TC to the high temperature series yields strength of intralayer and interlayer exchange interactions among Co2+ ions. For undoped sample values of these interactions are estimated to be 1.070 and 0.240 K respectively. Strength of these interactions decrease with increasing concentration of Al3+ ions in the lattice. Magnetization as a function of applied magnetic field (up to ± 50 kG) data confirm ferromagnetic nature of the samples at 5 K.
Selecting Magnet Laminations Recipes Using the Meth-od of Sim-u-la-ted Annealing
NASA Astrophysics Data System (ADS)
Russell, A. D.; Baiod, R.; Brown, B. C.; Harding, D. J.; Martin, P. S.
1997-05-01
The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. Budget and logistical constraints required that steel production, lamination stamping and magnet fabrication proceed in parallel. There were significant run-to-run variations in the magnetic properties of the steel (Martin, P.S., et al., Variations in the Steel Properties and the Excitation Characteristics of FMI Dipoles, this conference). The large lamination size (>0.5 m coil opening) resulted in variations of gap height due to differences in stress relief in the steel after stamping. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. Variations of the average magnet gap are an order of magnitude smaller than the variations in lamination gaps. This paper discusses observed gap variations, the program structure and the strength uniformity results.
Design and development of a 3D printed UAV
NASA Astrophysics Data System (ADS)
Banfield, Christopher P.
The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.
Slope stability improvement using low intensity field electrosmosis
NASA Astrophysics Data System (ADS)
Armillotta, Pasquale
2014-05-01
The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1: Carbonates were mixed to a natural soil obtaining three groups of soil samples at different carbonates level; the geotechnical characterization of each group was carried out; Phase 2: LEFE was applied to induce the precipitation of CaCO3, the reduction of the swelling potential of clay minerals and the increment of the soil shear strength. The outcomes of Phase 1 indicated that: the values of specific gravity of the grains, plasticity index (PI) and Value of Blue (VB) decrease with the increase carbonate content; the shear strength increases with the carbonates content. From the second laboratory phase, we observed: an almost constant pH values within the sample; an increment of the carbonate content after LEFE treatment regardless of its duration; this increment is particularly significant after 60 days of treatment; a reduction of the swelling potential of soil; that the water content at the end of each treatment, regardless of its duration and intensity of the electric field, shows similar values; that the values of the soil shear strength (after 60 days of LEFE treatment) are always greater than those of the natural soil (average +7%). During the LEFE treatment, the pore fluid used is water taken from the local groundwater, with pH = 7.3 and hardness of 34.6 ° F. The CaCO3 content in treated samples increases with the duration of treatment. The application of LEFE appears to be effective in increasing the carbonate content and improve mechanical strenght of the soil; further development of the research will apply the LEFE to an ideal slope model and to a real case.
Ethanol production from sorghum by a dilute ammonia pretreatment.
Salvi, D A; Aita, G M; Robert, D; Bazan, V
2010-01-01
Sorghum fibers were pretreated with ammonium hydroxide and the effectiveness of the pretreatment evaluated by enzyme hydrolysis and ethanol production. The treatment was carried out by mixing sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 at 160 degrees C for 1 h under 140-160 psi pressure. Approximately 44% lignin and 35% hemicellulose were removed during the process. Untreated and dilute-ammonia-treated fibers at 10% dry solids were hydrolyzed using combinations of commercially available enzymes, Spezyme CP and Novozyme 188. Enzyme combinations were tested at full strength (60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan) and at half strength (30 FPU Spezyme CP and 32 CBU Novozyme 188/g glucan). Biomass enzyme hydrolysis was conducted for 24 h. Saccharomyces cerevisiae D(5)A was added post hydrolysis for conversion of glucose to ethanol. Theoretical cellulose yields for treated biomass were 84% and 73%, and hemicellulose yields were 73% and 55% for full strength and half strength, respectively. Average cellulose yield was 38% and hemicellulose yield was 14.5% for untreated biomass. Ethanol yields were 25 g/100 g dry biomass and 21 g/100 g dry biomass for full strength and half strength enzyme concentrations, respectively. Controls averaged 10 g ethanol/100 g dry biomass.
Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf
2017-01-01
To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.
Application peculiarities of magnetic materials for protection from magnetic fields
NASA Astrophysics Data System (ADS)
Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.
2016-02-01
In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.
Magnetic fields from domestic appliances in the UK.
Preece, A W; Kaune, W; Grainger, P; Preece, S; Golding, J
1997-01-01
In a survey of 50 UK homes the 50 Hz fundamental and harmonic magnetic fields generated by 806 domestic appliances found in the homes, and used regularly by mothers, were measured. Measurements were made in the direction of most likely access, and from the surface of the appliances. Mothers completed a questionnaire on the use of appliances and were monitored for 24 h so that acquired exposure could be compared with the measured ambient fields in the home. Appliances were measured at standard distances and an algorithm was used to calculate fields at 100 and 50 cm to remove room background contributions. A few appliances generated fields in excess of 0.2 microT at 1 m: microwave cookers 0.37 +/- 0.14 microT; washing machines 0.27 +/- 0.14 microT; dishwashers 0.23 +/- 0.13 microT; some electric showers 0.11 +/- 0.25 microT and can openers 0.20 +/- 0.21 microT. Of continuously operating devices, only central heating pumps (0.51 +/- 0.47 microT), central heating boilers (0.27 +/- 0.26 microT) and fish-tank air pumps (0.32 +/- 0.09 microT) produced significant fields at 0.5 m. There were no obvious ways to group different types of appliances as high- or low-strength sources. Mothers spent on average about 4.5 h per day in the kitchen, where the strongest sources of magnetic field were located.
Speckle-field propagation in 'frozen' turbulence: brightness function approach
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Speckle-field propagation in 'frozen' turbulence: brightness function approach.
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning
2017-09-01
In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... measurements in inclement weather or when major weather fronts are moving through the measurement area. (iii....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
Field strengths and dissipated powers in microwave-excited high-pressure sulphur discharges
NASA Astrophysics Data System (ADS)
van Dongen, Menno; Körber, Achim; van der Heijden, Harm; Jonkers, Jeroen; Scholl, Robert; van der Mullen, Joost
1998-11-01
A method which makes it is possible to measure the electric field strength in microwave discharges is presented. A condition for this method is that the plasma has such a low conductivity that the associated skin depth is larger than the discharge radius. It is found that the field strength in high-pressure sulphur lamps is around 400 V 0022-3727/31/21/015/img10. Furthermore, this method allows the determination of the power absorbed in the resonator's wall and in the plasma and the estimation of the effective electric conductivity in the discharge.
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.
1993-01-01
Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.
Reconstruction of the first web space in symbrachydactyly using the reverse radial forearm flap.
Gülgönen, Ayan; Güdemez, Eftal
2007-02-01
To present a new approach for the reconstruction of severe first web contractures using a distally based reverse radial forearm flap in symbrachydactyly patients. This study included 6 hands in 5 patients. Subjective evaluation included appearance, parent satisfaction (and patient satisfaction when appropriate), and ability to perform daily activities such as thumb-index grasp and pinch at follow-up evaluations. We measured the angle between the first and second rays using a goniometer at maximum radial abduction, and pinch and grasp strengths were evaluated as an objective assessment. The average follow-up period was 2 years. All parents and patients were happy with the aesthetic appearance. They were completely satisfied in their daily living activities. The average first web angle measurement was 56 degrees . An average of 39 degrees of improvement of web measurement was achieved. For the unilateral 4 patients, the average pinch strength measurement was 80% of the normal contralateral hand and the grip strength was 75% of the normal contralateral hand. The reverse radial forearm flap was found to be a safe and simple method in the reconstruction of severe first web contractures in symbrachydactyly patients. This method provided good coverage of appropriate thickness and skin quality, and supple soft tissue that filled the first web space. Therapeutic IV.
Searching for primordial magnetic fields with CMB B-modes
NASA Astrophysics Data System (ADS)
Pogosian, Levon; Zucca, Alex
2018-06-01
Was the primordial universe magnetized? The answer to this question would help explain the origin of micro-Gauss strength magnetic fields observed in galaxies. It is also of fundamental importance in developing a complete theory of the early universe. While there can be other signatures of cosmological magnetic fields, a signature in the cosmic microwave background (CMB) would prove their primordial origin. The B-mode polarization of CMB is particularly promising in this regard because there are relatively few other sources of B-modes, and because the vortical modes sourced by the primordial magnetic field (PMF) survive diffusion damping up to a small fraction of the Silk length. At present, the Planck temperature and polarization spectra combined with the B-mode spectrum measured by the South Pole Telescope (SPT) constrain the PMF strength to be no more than ∼1 nano-Gauss (nG). Because of the quartic scaling of the CMB anisotropy spectra with the PMF strength, this bound will not change by much even with the significantly better measurements of the B-mode spectrum by the Stage III and Stage IV CMB experiments. On the other hand, tightening the bound well below the 1 nG threshold would rule out the purely primordial origin (requiring no dynamo action) of galactic fields. Considering Faraday rotation, which converts some of the E-modes into B-modes and scales linearly with the field strength, will help to achieve this goal. As we demonstrate, the upcoming experiments, such as SPT-3G and the Simons Observatory, will be sensitive to fields of ∼0.5 nG strength thanks to the mode-coupling signature induced by Faraday rotation. A future Stage IV ground based experiment or a space probe will be capable of probing fields below 0.1 nG, and would detect a scale-invariant PMF of 0.2 nG strength without de-lensing or subtracting the galactic rotation measure.
EVALUATING EXTREMELY LOW FREQUENCY MAGNETIC FIELDS IN THE REAR SEATS OF THE ELECTRIC VEHICLES.
Lin, Jun; Lu, Meng; Wu, Tong; Yang, Lei; Wu, Tongning
2018-03-23
In the electric vehicles (EVs), children can sit on a safety seat installed in the rear seats. Owing to their smaller physical dimensions, their heads, generally, are closer to the underfloor electrical systems where the magnetic field (MF) exposure is the greatest. In this study, the magnetic flux density (B) was measured in the rear seats of 10 different EVs, for different driving sessions. We used the measurement results from different heights corresponding to the locations of the heads of an adult and an infant to calculate the induced electric field (E-field) strength using anatomical human models. The results revealed that measured B fields in the rear seats were far below the reference levels by the International Commission on Non-Ionizing Radiation Protection. Although small children may be exposed to higher MF strength, induced E-field strengths were much lower than that of adults due to their particular physical dimensions.