Sample records for average fracture strength

  1. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  2. Fracture strength testing of crowns made of CAD/CAM composite resins.

    PubMed

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns

    PubMed Central

    ABDULLAH, Adil Othman; TSITROU, Effrosyni A; POLLINGTON, Sarah

    2016-01-01

    ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns. PMID:27383707

  4. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns.

    PubMed

    Abdullah, Adil Othman; Tsitrou, Effrosyni A; Pollington, Sarah

    2016-01-01

    This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone "PEEK", Telio CAD-Temp, and Protemp™4 (control group). The crowns were divided into four groups (n=10), Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99) µm, PEEK 46.75 (±8.26) µm, Telio CAD-Temp 56.10 (±5.65) µm, and Protemp™4 193.07(±35.96) µm (P<0.001). The average internal fit was: VITA CAD-Temp® 124.94 (±22.96) µm, PEEK 113.14 (±23.55) µm, Telio CAD-Temp 110.95 (±11.64) µm, and Protemp™4 143.48(±26.74) µm. The average fracture strength was: VITA CAD-Temp® 361.01 (±21.61) N, PEEK 802.23 (±111.29) N, Telio CAD-Temp 719.24 (±95.17) N, and Protemp™4 416.40 (±69.14) N. One-way ANOVA test showed a statistically significant difference for marginal gap, internal gap, and fracture strength between all groups (p<0.001). However, the mode of fracture showed no differences between the groups (p>0.05). CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns.

  5. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    PubMed

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  6. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1977-01-01

    Fractography and metallographic sectioning were used to investigate the influence of microstructure and strength on the fracture toughness (KIc) and fracture mechanism of an 18 Ni, 300 grade maraging steel. Increased yield strength from 1442 to 2070 MN/m squared through precipitation hardening results in a KIc loss from 143 to 55 MN/m superscript 3/2. Ti (C,N) Ti2S, and TiC inclusions in sizes from 1 to 8, 1 to 15, and 0.1 to 2 microns respectively serve as sites for void nucleation and lead to fracture by the dimpled rupture process in all strength levels considered. TiC nucleated dimples occupy more than half the fracture in all conditions. Void nucleation rate and resultant number of dimples per unit area of fracture increase with increasing yield strength. Average dimple size decreases with increasing strength and/or overaging which follows from the decreasing amount of stable void growth measured by sectioning tensile specimens. Void growth is assisted by crack branching along a path of TiC inclusions. Coalescence occurs in the highest strength materials by a combination of TiC void nucleation and premature separation at strengthening precipitates.

  7. A study on tensile deformation at room temperature and 650 °C in the directional solidified Ni-base superalloy GTD-111

    NASA Astrophysics Data System (ADS)

    Pauzi, AA; Ghaffar, MH Abdul; Chang, SY; Ng, GP; Husin, S.

    2017-10-01

    GTD-111 DS generally used for gas turbine blades is a high performance Ni-base superalloy. This alloy, with high volume of γ’ phase, has excellent tensile properties at high temperature. The effect of temperature on the tensile deformation of GTD-111 DS was investigated by using tensile test and microstructure evaluation of the fractured specimens. The tensile behaviour of GTD-111 DS was studied in the room temperature (RT) and 650 °C. From the yield strength results, the yield strength decreases from the average of 702.72 MPa to the average of 645.62 MPa with the increase of temperature from RT to 650 °C. The scanning electron microscope (SEM) results on fractured specimens confirmed that the tensile behaviour affected by deformation of the surface at 650 °C compared to fractured surface at RT. Based on the laboratory testing results, the correlation between tensile deformation of fractured surface and yield strength were discussed.

  8. Factors influencing the thermally-induced strength degradation of B/Al composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1982-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed.

  9. Examination of the pronator quadratus muscle during hardware removal procedures after volar plating for distal radius fractures.

    PubMed

    Nho, Jae-Hwi; Gong, Hyun Sik; Song, Cheol Ho; Wi, Seung Myung; Lee, Young Ho; Baek, Goo Hyun

    2014-09-01

    It is not clear whether the pronator quadratus (PQ) muscle actually heals and provides a meaningful pronation force after volar plating for distal radius fractures (DRFs). We aimed to determine whether the length of the PQ muscle, which is dissected and then repaired during volar plating for a DRF, affects the forearm rotation strength and clinical outcomes. We examined 41 patients who requested hardware removal after volar plating. We measured the isokinetic forearm rotation strength and clinical outcomes including grip strength, wrist range of motion, and disabilities of the arm, shoulder and hand (DASH) scores at 6 months after fracture fixation. During the hardware removal surgery, which was performed at an average of 9 months (range, 8.3 to 11.5 months) after fracture fixation, we measured the PQ muscle length. The average PQ muscle length was 68% of the normal muscle length, and no significant relationship was found between the PQ muscle length and the outcomes including isokinetic forearm rotation strength, grip strength, wrist range of motion, and DASH scores. This study demonstrates that the length of the healed PQ muscle does not affect isokinetic forearm rotation strength and clinical outcomes after volar plating for DRFs. The results of this study support our current practice of loose repair of the PQ that is performed by most of the surgeons to prevent tendon irritation over the plate, and suggest that tight repair of the PQ is not necessary for achieving improved forearm function.

  10. Intermediate Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC Matric Composite in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet; Brewer, David

    1999-01-01

    Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.

  11. Factors influencing the thermally-induced strength degradation of B/Al composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed. Previously announced in STAR as N82-24297

  12. Batman-cracks. Observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.

    1991-05-01

    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  13. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    PubMed

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  14. Effectiveness of acute in-hospital physiotherapy with knee-extension strength training in reducing strength deficits in patients with a hip fracture: A randomised controlled trial

    PubMed Central

    2017-01-01

    Question Is acute in-hospital physiotherapy with additional progressive knee-extension strength training (ST) of the fractured limb more effective in reducing knee-extension strength deficit at follow-up compared to physiotherapy without strength training in patients with a hip fracture? Design Assessor blinded, randomised controlled trial with intention-to-treat analysis. Participants 90 patients with a hip fracture admitted to an acute orthopaedic Hip Fracture Unit at a university hospital between October 2013 and May 2015. Intervention Daily physiotherapy with or without progressive knee-extension strength training (10RM), 3 x 10 repetitions, of the fractured limb using ankle weight cuffs conducted by ward physical therapists during hospital stay. Outcome measures Primary outcome was the change in maximal isometric knee-extension strength in the fractured limb in percentage of the non-fractured limb from inclusion to postoperative day 10 or discharge (follow-up). Secondary outcome was Timed Up and Go test measured early after surgery and at follow-up. Results In the intention-to-treat analysis of between-group differences, the primary outcome improved 8.1% (95% CI -2.3; 18.4) by additional strength training from baseline to follow-up. In the per-protocol analysis of non-missing data, significant between-group improvements by 10.5% (95% CI 0.3; 20.7) were found in favour of additional ST. No significant between-group differences were found in any secondary outcome. Conclusion Physiotherapy with addition of 5 sessions of ST yielded no additional improvements compared to physiotherapy without strength training in reducing the knee-extension strength deficit at follow-up in patients with a hip fracture. It is debatable whether larger improvements than the observed 8–10% can be expected given that only five exercise sessions, on average, were completed. In fragile patients with a hip fracture in the acute phase, where the ability to participate in functional exercise is compromised, we still consider early strength training a possibility to improve outcomes of clinical importance, given the results of the per-protocol analysis. The present data provides an important basis and call for future investigations including longer term interventions. Trial registration Clinicaltrials.gov NCT00848913 PMID:28662153

  15. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    NASA Technical Reports Server (NTRS)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  16. 3D Printing of 316L Stainless Steel and Its Effect on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Rawn, Penn

    Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile yield strength was the highest for 0° and decreased in the order of 60°, 30°, and 90° angles; all had higher yield strength than wrought. Unlike with the tensile results, the 60° had the highest fatigue strength followed by the 0°, then the 30°, and the 90° build angle had the lowest fatigue strength. Tensile specimens all failed predominantly by ductile fracture, with a few locations of brittle fracture suspected to be caused by delamination. Fatigue fracture always initiated at void space.

  17. Image Analysis of Proppant Performance in Pressurized Fractures

    NASA Astrophysics Data System (ADS)

    Crandall, D.; Smith, M. M.; Carroll, S.; Walsh, S. D.; Gill, M.; Moore, J.; Tennant, B.; Aines, R. D.

    2014-12-01

    Proppants are small particles used to prop or hold open subsurface fractures to permit fluid flow through these pathways. In many oil and gas well applications, the most common proppant materials are sand, ceramic particles, resin-coated sands, glass beads or even walnut shells. More dense proppants require additives to create viscous fluids which can transport them further along wells and into fractures, but are generally preferred over neutrally buoyant options due to their increased strength. Currently, proppant strength and generation of broken fragments ("fines") is analyzed via a standardized crush test between parallel plates. To augment this type of information, we present here the results of various experiments involving resin-coated proppants held at increasing pressures in fractured samples of Marcellus shale. The shale/proppant samples were imaged continuously with an industrial tomography scanner during pressurization up to 10,000psi. This technique allows for in situ characterization of fracture/proppant interactions and fracture void volume and average aperture with varying confining pressures.

  18. Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography

    NASA Technical Reports Server (NTRS)

    Herball, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.

  19. Reaction bonded silicon nitride prepared from wet attrition-milled silicon

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.

  20. The association between body mass index, weight loss and physical function in the year following a hip fracture.

    PubMed

    Reider, L; Hawkes, W; Hebel, J R; D'Adamo, C; Magaziner, J; Miller, R; Orwig, D; Alley, D E

    2013-01-01

    To determine whether body mass index (BMI) at the time of hospitalization or weight change in the period immediately following hospitalization predict physical function in the year after hip fracture. Prospective observational study. Two hospitals in Baltimore, Maryland. Female hip fracture patients age 65 years or older (N=136 for BMI analysis, N=41 for analysis of weight change). Body mass index was calculated based on weight and height from the medical chart. Weight change was based on DXA scans at 3 and 10 days post fracture. Physical function was assessed at 2, 6 and 12 months following fracture using the lower extremity gain scale (LEGS), walking speed and grip strength. LEGS score and walking speed did not differ across BMI tertiles. However, grip strength differed significantly across BMI tertiles (p=0.029), with underweight women having lower grip strength than normal weight women at all time points. Women experiencing the most weight loss (>4.8%) had significantly lower LEGS scores at all time points, slower walking speed at 6 months, and weaker grip strength at 12 months post-fracture relative to women with more modest weight loss. In adjusted models, overall differences in function and functional change across all time points were not significant. However, at 12 months post fracture,women with the most weight loss had an average grip strength 7.0 kg lower than women with modest weight loss (p=0.030). Adjustment for confounders accounts for much of the relationships between BMI and function and weight change and function in the year after fracture. However, weight loss is associated with weakness during hip fracture recovery. Weight loss during and immediately after hospitalization appears to identify women at risk of poor function and may represent an important target for future interventions.

  1. Numerical simulation of microstructural damage and tensile strength of snow

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Theile, Thiemo C.; Schneebeli, Martin

    2014-01-01

    This contribution uses finite-element analysis to simulate microstructural failure processes and the tensile strength of snow. The 3-D structure of snow was imaged by microtomography. Modeling procedures used the elastic properties of ice with bond fracture assumptions as inputs. The microstructure experiences combined tensile and compressive stresses in response to macroscopic tensile stress. The simulated nonlocalized failure of ice lattice bonds before or after reaching peak stress creates a pseudo-plastic yield curve. This explains the occurrence of acoustic events observed in advance of global failure. The measured and simulated average tensile strengths differed by 35%, a typical range for strength measurements in snow given its low Weibull modulus. The simulation successfully explains damage, fracture nucleation, and strength according to the geometry of the microstructure of snow and the mechanical properties of ice. This novel method can be applied to more complex snow structures including the weak layers that cause avalanches.

  2. EBSD and Nanoindentation-Correlated Study of Delamination Fracture in Al-Li Alloy 2090

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Crooks, Roy E.; Domack, Marcia S.; Wagner, John A.; Elmustafa, A. A.

    2008-01-01

    Al-Li alloys offer attractive combinations of high strength and low density. However, a tendency for delamination fracture has limited their use. A better understanding of the delamination mechanisms may identify methods to control delaminations through processing modifications. A combination of new techniques has been used to evaluate delamination fracture in Al-Li alloys. Both high quality electron backscattered diffraction (EBSD) information and valid nanoindentation measurements were obtained from fractured test specimens. Correlations were drawn between nano-scale hardness variations and local texture along delaminating boundaries. Intriguing findings were observed for delamination fracture through the combined analysis of grain orientation, Taylor factor, and kernel average misorientation.

  3. A comparison of stereology, structural rigidity and a novel 3D failure surface analysis method in the assessment of torsional strength and stiffness in a mouse tibia fracture model.

    PubMed

    Wright, David A; Nam, Diane; Whyne, Cari M

    2012-08-31

    In attempting to develop non-invasive image based measures for the determination of the biomechanical integrity of healing fractures, traditional μCT based measurements have been limited. This study presents the development and evaluation of a tool for assessment of fracture callus mechanical properties through determination of the geometric characteristics of the fracture callus, specifically along the surface of failure identified during destructive mechanical testing. Fractures were created in tibias of ten male mice and subjected to μCT imaging and biomechanical torsion testing. Failure surface analysis, along with previously described image based measures was calculated using the μCT image data, and correlated with mechanical strength and stiffness. Three-dimensional measures along the surface of failure, specifically the surface area and torsional rigidity of bone, were shown to be significantly correlating with mechanical strength and stiffness. It was also shown that surface area of bone along the failure surface exhibits stronger correlations with both strength and stiffness than measures of average and minimum torsional rigidity of the entire callus. Failure surfaces observed in this study were generally oriented at 45° to the long axis of the bone, and were not contained exclusively within the callus. This work represents a proof of concept study, and shows the potential utility of failure surface analysis in the assessment of fracture callus stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effects of confining pressure and stress difference on static fatigue of granite

    NASA Technical Reports Server (NTRS)

    Kranz, R. L.

    1979-01-01

    Samples of Barre granite were creep tested at room temperature at confining pressures up to 2 kilobars. The time to fracture increased with decreasing stress difference at every pressure, but the rate of change of fracture time with respect to the stress difference increased with pressure. At 87% of the short-term fracture strength, the time to fracture increased from about 4 minutes at atmospheric pressure to longer than one day at 2 Kb of pressure. The inelastic volumetric strain at the onset of tertiary creep, delta, was constant within 25% at any particular pressure but increased with pressure in a manner analogous to the increase of strength with pressure. At the onset of tertiary creep, the number of cracks and their average length increased with pressure. The crack angle and crack length spectra were quite similar, however, at each pressure at the onset of tertiary creep.

  5. Constitutive relationships and physical basis of fault strength due to flash heating

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.

    2008-01-01

    We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.

  6. SURGICAL TREATMENT OF DISTAL RADIUS FRACTURES WITH A VOLAR LOCKED PLATE: CORRELATION OF CLINICAL AND RADIOGRAPHIC RESULTS

    PubMed Central

    Xavier, Claudio Roberto Martins; Dal Molin, Danilo Canesin; dos Santos, Rafael Mota Marins; dos Santos, Roberto Della Torre; Neto, Julio Cezar Ferreira

    2015-01-01

    Objectives: To analyze and correlate the clinical and radiographic results from patients with distal radius fractures who underwent surgical treatment with a fixed-angle volar locked plate. Methods: Sixty-four patients with distal radius fractures were evaluated. They all underwent surgical treatment with a volar locked plate for the distal radius, with a minimum of six months of postoperative follow-up. They underwent a physical examination that measured range of motion and grip strength, answered the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and underwent radiographic examination. Results: In the physical examination on the patients, all the range-of-motion measurements were reduced. Grip strength measured in kgf was on average 85.8% of the strength on the unaffected side. The mean DASH score was 15.99. A significant relationship was found between lower DASH scores and losses of extension and grip strength. On the radiographs, the mean values in relation to the unfractured side were 84.0% for radial inclination, 85.4% for radial length and 86.8% for volar deviation of the radius. Loss of radial length was correlated with losses of extension and grip strength. PMID:27027046

  7. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    PubMed

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Grinding damage assessment for CAD-CAM restorative materials.

    PubMed

    Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S

    2017-03-01

    To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Proximal humeral fractures: the role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates.

    PubMed

    Somasundaram, K; Huber, C P; Babu, V; Zadeh, H

    2013-04-01

    The aim of our study is to analyse the results of our surgical technique for the treatment of proximal humeral fractures and fracture dislocations using locking plates in conjunction with calcium sulphate bone-substitute augmentation and tuberosity repair using high-strength sutures. We used the extended deltoid-splitting approach for fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Optimal surgical management of proximal humeral fractures remains controversial. Locking plates have become a popular method of fixation. However, failure of fixation may occur if they are used as the sole method of fixation in comminuted fractures, especially in osteopenic bone. We retrospectively analysed 22 proximal humeral fractures in 21 patients; 10 were male and 11 female with an average age of 64.6 years (range 37-77). Average follow-up was 24 months. Eleven of these fractures were exposed by the extended deltoid-splitting approach. Fractures were classified according to Neer and Hertel systems. Preoperative radiographs and computed tomography (CT) scans in three- and four-part fractures were done to assess the displacement and medial calcar length for predicting the humeral head vascularity. According to the Neer classification, there were five two-part, six three-part, five four-part fractures and six fracture-dislocations (two anterior and four posterior). Results were assessed clinically with disabilities of the arm, shoulder and hand (DASH) scores, modified Constant and Murley scores and serial postoperative radiographs. The mean DASH score was 16.18 and the modified Constant and Murley score was 64.04 at the last follow-up. Eighteen out of twenty-two cases achieved good clinical outcome. All the fractures united with no evidence of infection, failure of fixation, malunion, tuberosity failure, avascular necrosis or adverse reaction to calcium sulphate bone substitute. There was no evidence of axillary nerve injury. Four patients had a longer recovery period due to stiffness, associated wrist fracture and elbow dislocation. The CaSO4 bone substitute was replaced by normal appearing trabecular bone texture at an average of 6 months in all patients. In our experience, we have found the use of locking plates, calcium sulphate bone substitute and tuberosity repair with high-strength sutures to be a safe and reliable method of internal fixation for complex proximal humeral fractures and fracture-dislocations. Furthermore, we have also found the use of the extended deltoid-splitting approach to be safe and to provide excellent exposure facilitating accurate reduction for fixation of the fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Structural Design Parameters for Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  11. Internal fixation of pilon fractures of the distal radius.

    PubMed Central

    Trumble, T. E.; Schmitt, S. R.; Vedder, N. B.

    1993-01-01

    When closed manipulation fails to restore articular congruity in comminuted, displaced fractures of the distal radius, open reduction and internal fixation is required. Results of surgical stabilization and articular reconstruction of these injuries are reviewed in this retrospective study of 49 patients with 52 displaced, intra-articular distal radius fractures. Forty-three patients (87%) with a mean age of 37 years (range of 17 to 79 years) were available for evaluation. The mean follow-up time was 38 months (range 22-69 months). When rated according to the Association for the Study of Internal Fixation (ASIF), 19 were type C2 and 21 were type C3. We devised an Injury Score System based on the initial injury radiographs to classify severely comminuted intra-articular fractures and to identify those associated with carpal injury (3 patients). Post-operative fracture alignment, articular congruity, and radial length were significantly improved following surgery (p < .01). Grip strength averaged 69% +/- 22% of the contralateral side, and the range of motion averaged 75% +/- 18% of the contralateral side post-operatively. A combined outcome rating system that included grip strength, range of motion, and pain relief averaged 76% +/- 19% of the contralateral side. There was a statistically significant decrease in the combined rating with more severe fracture patterns as defined by the ASIF system (p < .01), Malone classification (p < .03), and the Injury Score System (p < .001). The Injury Score System presented here, and in particular the number of fracture fragments, correlated most closely with outcome of all the classification systems studied. Operative treatment of these distal radius fractures with reconstruction of the articular congruity and correction of the articular surface alignment with internal fixation and/or external fixation, can significantly improve the radiographic alignment and functional outcome. Furthermore, the degree to which articular stepoff, gap between fragments, and radial shortening are improved by surgery is strongly correlated with improved outcome, even when the results are corrected for severity of initial injury, whereas correction of radial tilt or dorsal tilt did not correlate with improved outcome. Images Figure 2 PMID:8209554

  12. Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Robbins, Mark O.

    2014-09-26

    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less

  13. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  14. Strength, toughness and R-curve behaviour of SiC whisker-reinforced composite Si3N4 with reference to monolithic Si3N4

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1992-01-01

    The flexural strength and fracture toughness of 30 vol pct SiC whisker-reinforced Si3N4 material were determined as a function of temperature from 25 to 1400 C in an air environment. It was found that both strength and toughness of the composite material were almost the same as those of the monolithic counterpart. The room-temperature strength was retained up to 1100 C; however, appreciable strength degradation started at 1200 C and reached a maximum at 1400 C due to stable crack growth. In contrast, the fracture toughness of the two materials was independent of temperature with an average value of 5.66 MPa sq rt m. It was also observed that the composite material exhibited no rising R-curve behavior at room temperature, as was the case for the monolithic material. These results indicate that SiC whisker addition to the Si3N4 matrix did not provide any favorable effects on strength, toughness and R-curve behavior.

  15. Dynamic Stabilization of Simple Fractures With Active Plates Delivers Stronger Healing Than Conventional Compression Plating

    PubMed Central

    Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.

    2017-01-01

    Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456

  16. Effect of Aperture Field Variability, Flow Rate, and Ionic Strength on Colloid Transport in Single Fractures: Laboratory-Scale Experiments and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Dickson, S.; Guo, Y.

    2007-12-01

    A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.

  17. Design factors of femur fracture fixation plates made of shape memory alloy based on the Taguchi method by finite element analysis.

    PubMed

    Ko, Cheolwoong; Yang, Mikyung; Byun, Taemin; Lee, Sang-Wook

    2018-05-01

    This study proposed a way to design femur fracture fixation plates made of shape memory alloy based on computed tomography (CT) images of Korean cadaveric femurs. To this end, 3 major design factors of femur fracture fixation plates (circumference angle, thickness, and inner diameter) were selected based on the contact pressure when a femur fracture fixation plate was applied to a cylinder model using the Taguchi method. Then, the effects of the design factors were analyzed. It was shown that the design factors were statistically significant at a level of p = 0.05 concerning the inner diameter and the thickness. The factors affecting the contact pressure were inner diameter, thickness, and circumference angle, in that order. Particularly, in the condition of Case 9 (inner diameter 27 mm, thickness 2.4 mm, and circumference angle 270°), the max. average contact pressure was 21.721 MPa, while the min. average contact pressure was 3.118 MPa in Case 10 (inner diameter 29 mm, thickness 2.0 mm, and circumference angle 210°). When the femur fracture fixation plate was applied to the cylinder model, the displacement due to external sliding and pulling forces was analyzed. As a result, the displacement in the sliding condition was at max. 3.75 times greater than that in the pulling condition, which indicated that the cohesion strength between the femur fracture fixation plate and the cylinder model was likely to be greater in the pulling condition. When a human femur model was applied, the max. average contact pressure was 10.76 MPa, which was lower than the yield strength of a human femur (108 MPa). In addition, the analysis of the rib behaviors of the femur fracture fixation plate in relation to the recovery effect of the shape memory alloy showed that the rib behaviors varied depending on the arbitrarily curved shapes of the femur sections. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.

    PubMed

    Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V

    2004-06-01

    The present study, divided into two parts, aimed to compare the strength, fracture toughness and microstructure of a range of all-ceramic materials. In part I, three hot-pressed glass-ceramics (IPS-Empress, Empress 2 and a new experimental ceramic) and alumina glass-infiltrated ceramics (In-Ceram Alumina), processed by both slip casting and dry pressing, were compared. Tensile strength was appraised on 10 bar-shaped specimens (20 x 4 x 1.2 mm3) for each material with the three-point bending method; the fracture toughness was measured from 20 specimens (20 x 4 x 2 mm3), by using the indentation strength technique. Data were compared with ANOVA and the Sheffé post hoc test (p = 0.05). The volume fraction of each phase, the dimensions and shapes of the grains, porosity and the crack patterns were investigated using SEM. The average and standard deviation in strength (MPa) and fracture toughness (MPa m(1/2)) were: IPS-Empress 106(17)1, 1.2(0.14)1; Empress 2 306(29)2, 2.9(0.51)2, new experimental ceramic 303(49)2, 3.0(0.65)2, In-Ceram Alumina dry-pressed 440(50)2, 3.6(0.26)2, In-Ceram Alumina slip 594(52)3, 4.4(0.48)3. Values with the same superscript number showed no significant statistical difference. Microscopy revealed the relationship between the glass matrix and the crystalline phase and the characteristics of the latter were correlated to the strengthening and toughening mechanisms of these glass-ceramics. The mechanical properties and microstructure of core materials have been advocated as crucial to the clinical long-term performance of all-ceramic dental restorations. This investigation provides the clinician with data regarding strength, fracture toughness and microstructure of a broad range of current materials. Copyright 2003 Academy of Dental Materials

  19. Influence of nano-size inclusions on spall fracture of copper single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razorenov, S. V.; Ivanchihina, G. E.; Kanel, G. I.

    2007-12-12

    Spall experiments have been carried out for copper in different structural states. The samples were copper single crystals, crystals of Cu+0.1% Si, copper crystals with silica particles of 180 nm average size, and polycrystalline copper. In experiments, the free surface velocity histories were recorded with the VISAR. The recovered samples were studied using optical microscopy and SEM. Solid solution Cu+0.1% Si demonstrates slower spall process than pure copper crystals. At longer pulse durations its spall strength is slightly less than that of pure crystals but approaches the latter with decreasing pulse duration. Fracture of copper with silica inclusions is completedmore » much faster. The spall strength of this material is close to that of Cu+0.1% Si crystals at longer pulse duration and approaches the strength of polycrystalline copper with decreasing the load duration. Fractography of the spall surfaces correlates with the free surface velocity histories. The main fracture surface of the Cu+0.1% Si grains consists of net of dimples {approx}4 {mu}m to 40 {mu}m mean diameter. The fracture surfaces of copper with silica inclusions is covered by a net of dimples of 1 {mu}m to 5 {mu}m size.« less

  20. Physical and mechanical properties of spinach for whole-surface online imaging inspection

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin

    2011-06-01

    The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.

  1. Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding. [Mylar interlayer

    NASA Technical Reports Server (NTRS)

    Felbeck, D. K.; Jea, L. C.

    1980-01-01

    Intermittent interlaminar bonding, which can lead to a large increase in the fracture surface area, was achieved through the introduction of thin perforated Mylar between the layers of a multi-layer continuous-filament graphite-epoxy composite. For the best optimum condition included in this study, fracture toughness was increased from about 100 kJ/sq m for untreated specimens to an average of about 500 kJ/sq m, while tensile strength dropped from 500 MPa to 400 MPa, and elastic modulus remained the same at about 75 GPa. An approximate analysis is presented to explain the observed improvement in toughness.

  2. 7-year follow-up after open reduction and internal screw fixation in Bennett fractures.

    PubMed

    Leclère, Franck Marie Patrick; Jenzer, Achat; Hüsler, Rolf; Kiermeir, David; Bignion, Dietmar; Unglaub, Frank; Vögelin, Esther

    2012-07-01

    Bennett fractures are unstable, and, with inadequate treatment, lead to osteoarthritis, weakness and loss of function of the first carpometacarpal joint. This study focuses on long-term functional and radiological outcomes after open reduction and internal fixation. Between June 1997 and December 2005, 24 patients with Bennett fractures were treated with open reduction and internal fixation with screws at our center. Radiological and functional assessments including range of motion of the thumb and pinch and grip strength were performed 4 months post-procedure and at the long-term follow-up, on average 83 months after surgery. Reduction of the Bennett fracture was maintained as it was at the time of the procedure in 96 % of the cases when fixation with two lag screws was performed. At the 4-month follow-up, mean pinch and grip strength reached 92 ± 3 and 89 ± 4 % of the contralateral side, respectively. Long-term follow-up demonstrated no correlation between the accuracy of the fracture reduction and the development of post-traumatic arthritis. Good clinical results could be observed, if successful reduction of the fracture was achieved and maintained. However, there was no correlation between the accuracy of the fracture reduction considering a gap and step <2 mm and the development of arthritis.

  3. A nondestructive technique for predicting the strength remaining in filament wound composites subjected to low-level impact

    NASA Technical Reports Server (NTRS)

    Madaras, E. I.; Poe, C. C.; Heyman, J. S.

    1987-01-01

    A model for predicting the fracture strength of homogeneous materials is proposed. Impacted FWC samples were evaluated using ultrasonic testing and an X-ray dye penetration method. The ability of the model to measure fracture strength was also examined. The relation between attenuation and velocity measurements is studied. It is observed that the X-ray method is not useful for predicting fracture strength because the dye could not penetrate the matrix. It is noted that fracture strength predictions derived from the fracture mechanical model and the ultrasonic measurements correlate well with actual measured fracture strengths.

  4. Observed source parameters for dynamic rupture with non-uniform initial stressand relatively high fracture energy

    USGS Publications Warehouse

    Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,

    2012-01-01

    We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.

  5. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  6. Mechanism of strength degradation for hot corrosion of alpha-SiC

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jacobson, N. S.

    1984-01-01

    Sintered alpha SiC was corroded by thin films of Na2SO4 and Na2CO3 molten salts at 1000%. This hot corrosion attack reduced room temperature strengths by as much as 50%. Strength degradation was porportional to the degree and uniformity of corrosion pitting attack as controlled by the chemistry of the molten salt. Extensive fractography identified corrosion pits as the most prevalent source of failure. A fracture mechanics treatment of the strength/pit depth relationship produced an average K sub IC equal to 2.6 MPa sub m 1/2, which is consistent with published values.

  7. Mechanism of strength degradation for hot corrosion of alpha-SiC

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Jacobson, Nathan S.

    1986-01-01

    Sintered alpha SiC was corroded by thin films of Na2SO4 and Na2CO3 molten salts at 1000 percent. This hot corrosion attack reduced room temperature strengths by as much as 50 percent. Strength degradation was proportional to the degree and uniformity of corrosion pitting attack as controlled by the chemistry of the molten salt. Extensive fractography identified corrosion pits as the most prevalent source of failure. A fracture mechanics treatment of the strength/pit depth relationship produced an average K sub IC equal to 2.6 MPa sub m 1/2, which is cnsistent ith published values.

  8. The research on delayed fracture behavior of high-strength bolts in steel structure

    NASA Astrophysics Data System (ADS)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  9. Spall behavior of cast iron with varying microstructures

    NASA Astrophysics Data System (ADS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  10. [Application of bone flap pedicled on retrograde branch of radial artery for treatment of old scaphoid bone fractures of type AO-B].

    PubMed

    Sun, Qing-peng

    2015-05-01

    To investigate application of the bone flap pedicled on the retrograde branch of radial artery for treatment of old scaphoid bone fractures of type AO-B. From October 2007 to October 2011,41 patients with old scaphoid bone fractures of type AO-B were treated by transplantation of the bone flap pedicled on the retrograde branch of radial artery including 26 males and 15 females with an average of (27.3±4.5) years old ranging from 16 to 43 years old. The courses before operation ranged from 6 to 22 months with an average of 11 months. All fractures belonged to the type B of AO classification, that is old wrist fracture of scaphoid bone. All patients' wrist function (pain, function, motion, grip strength) were evaluated by Cooney's modifiedwrist scoring system before and 6 months after operation,and the conditions of bone healing were observed during the follow-up time. Among them, 36 patients were followed up from 4 to 15 months with an average of 8.3 months. The wounds were healed well without other complications as infection appearing. X-rays or CT confirmed that all fractures were healed completely. The Cooney wrist score was improved from preoperative 53.61±13.97 to postoperative 81.81±8.71 (P<0.01). The operation of transplantation of the bone flap pedicled on the retrograde branch of radial artery is an effective method to treat old scaphoid bone fractures,which is scientific and has curative effects, and valuable for clinical application.

  11. Processing, Microstructure, and Properties of Engineered Diboride Structures

    NASA Astrophysics Data System (ADS)

    Wittmaier, Connor Charles

    The mechanical properties and processing parameters of boride ceramics in foam and laminate architectures were evaluated. The ceramic reticulated foam was produced through a polymer substrate replication technique and the hardness and compressive strength were tested. The laminate structure was tested to evaluate the flexure strength and work of fracture as a function of temperature. The foam architecture was produced using a TiB2 slurry coating on a polyurethane reticulated foam preform. Foams sintered to 2150°C displayed an average grain size of 8.9 +/- 7.3 microm, and a hardness of 17.3 +/- 2.4 GPa. Crush testing foams were sintered at 1975°C, and displayed a specific strength of 208 +/- 63 kPa with an overall porosity of 97%. For these specimens, it is likely that microcracking lowered the hardness, but the overall strength was controlled by the bulk density. The laminate structures were fabricated using alternating layers of ZrB 2 and C-10 vol% ZrB2. The structures were fabricated through the shaping of ceramic loaded thermoplastic polymers that underwent burnout and hot pressing cycles. These specimens had strong phase ZrB2 layers that were about 150 mum thick alternating with weak phase layers that were about 20 mum thick. Specimens exhibited a maximum flexure strength of 311 +/- 10 MPa at 1600°C, and an increased work of fracture compared to conventional ZrB2 ceramics. The maximum fraction of inelastic work of fracture occurred at room temperature, and decreased as temperature increased. This was reflected in the length of the crack path through the specimen. Deflected cracks travelled through the center of the C-ZrB2 layers in the material in Mode II fracture.

  12. Hollow proppants and a process for their manufacture

    DOEpatents

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  13. Hollow proppants and a process for their manufacture

    DOEpatents

    Jones, Arfon H.; Cutler, Raymond A.

    1985-01-01

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2250 and 125 .mu.m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 .mu.m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing.

  14. Grinding damage assessment on four high-strength ceramics.

    PubMed

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a ceramic framework post sintering should be avoided with final diamond grits of 75 μm as a general rule. For alumina and the glass-infiltrated alumina, using a 54 μm diamond still induces chip damage which may affect strength. Removal of such damage from a reshaped framework is mandatory by using sequentially finer diamonds prior to the application of veneering ceramics especially in critical areas such as margins, connectors and inner surfaces. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Does age affect outcome in children with clavicle fracture treated conservatively? QuickDash and MRC evaluation of 131 consecutive cases.

    PubMed

    Pavone, Vito; DE Cristo, Claudia; Testa, Gianluca; Canavese, Federico; Lucenti, Ludovico; Sessa, Giuseppe

    2018-04-12

    Non-operative treatment with immobilization is the gold-standard for paediatric clavicular fractures. Purpose of this study is to evaluate functional outcomes and efficacy of non-operative treatment of clavicular fractures in a succession of 131 children. Between 2006 and 2012, we treated non-surgically 131 children for a clavicular fracture. All fractures have been classified according to Robinson classification. Clavicle shortening, range of movements and muscular strength through the Medical Research Council (MRC) scale were evaluated. To assess the outcomes, QuickDASH questionnaire, dividing the sample in 3 age-related group, was administered. The average follow-up was 26 months (8-84 months). Clavicle shortening at the time of injury occurred in 18 cases. All fractures reached union. Average time to union was 34 days. Mean time return to activity was 12.6 weeks. No cases of nonunion or delayed union were reported. Complications occurred in 21 cases. A shortening persisted in 2 cases. Only one patient had a slight functional restriction. Average QuickDASH score was 6.2±1.1 (range 4.3-9.4). All patients recovered to a MRC score of 5, except for one patient with a score of 4. Best QuickDASH scores were observed in the group aged under 8 years and in non-comminuted and lateral third fractures of the clavicle. Observing results, clavicle fractures have a satisfactory clinical healing as shown by the good scores at QuickDASH and MRC scale. Younger children under 8 years can achieve the best results with a conservative treatment in terms of bone healing and activity level.

  16. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen

    2016-05-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  17. Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel

    NASA Astrophysics Data System (ADS)

    Duan, Yujie; Ta, Wurui; Gao, Yuanwen

    2018-02-01

    In extreme operating environments, delamination in 2G HTS tapes occurs within and/or near the superconductor layer from high transverse tensile stresses caused by fabrication, Lorentz forces and thermal mismatch, etc. Generally, transverse opening and peeling off are the main delamination modes, and are always studied in anvil and peel tests, respectively. Numerical models of these modes for 2G HTS tape are presented wherein the mixed-mode traction-separation law at the interface of the silver and superconductor layers is considered. Plastic deformations of copper, silver, and Hastelloy® in the HTS tape are taken into account. The results obtained from the transverse opening model show that the maximum average tensile stress is smaller than the delamination tensile strength because delamination is asynchronous in the tape. When a crack appears in the tape, only a small stress ( ≤ 1 MPa) is required to expand the crack to other stress free areas through peeling. Using the peeling model, the dependency of the peel strength on peeling angle is investigated under constant fracture toughness. Peel strength decreases with the peeling angle until the minimum value is reached at 150°, and thereafter increases slightly. Other results indicate that peel strength depends strongly on delamination strength, fracture toughness, and thickness of copper layer. The fracture toughness of the delamination interface, which is difficult to obtain by experiment, can be extracted using the present model.

  18. Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose

    PubMed Central

    Nakai, Takahisa; Enomoto, Koichi; Uchio, Yuji; Yoshino, Katsumi

    2010-01-01

    Background Major disadvantages of antibiotic bone cements include limited drug release and reduced strength resulting from the addition of high doses of antibiotics. Bacterial cellulose, a three-dimensional hydrophilic mesh, may retain antibiotics and release them gradually. We hypothesized that the addition of cellulose to antibiotic bone cement would improve mechanical strength and antibiotic release. Questions/purposes We therefore examined the mechanical strength and antibiotic release of cellulose antibiotic cement. Methods A high dose of antibiotics (5 g per 40 g cement powder) was incorporated into bacterial cellulose and then mixed with bone cement. We compared the compression strength, fracture toughness, fatigue life, and elution kinetics of this formulation with those of plain cement and a traditional antibiotic cement. Results The average values for compression strength, fracture toughness, and fatigue life of the cellulose antibiotic cement were 97%, 97%, and 78% of the values obtained for plain cement, respectively. The corresponding values for the traditional antibiotic cement were 79%, 82%, and 17%, respectively. The cumulative elution over 35 days was 129% greater from the cellulose antibiotic cement than from the traditional antibiotic cement. Conclusions With a high dose of antibiotics, incorporating cellulose into the bone cement prevented compression and fracture fragility, improved fatigue life, and increased antibiotic elution. Clinical Relevance Antibiotic cements containing cellulose may have applications in clinical situations that require high levels of antibiotic release and preservation of the mechanical properties of the cement. PMID:20945120

  19. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  20. Estimation of Ultimate Tensile Strength of dentin Using Finite Element Analysis from Endodontically Treated Tooth

    NASA Astrophysics Data System (ADS)

    Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.

    2018-01-01

    Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.

  1. Fracture toughness study on LIGA fabricated microstructures

    NASA Astrophysics Data System (ADS)

    Oropeza, Catherine; Lian, Kun; Wang, Wanjun

    2003-01-01

    One of the major difficulties faced by MEMS researchers today is the lack of data regarding properties of electroplated metals or alloys at micro-levels as those produced by the LIGA and the LIGA related process. These mechanical properties are not well known and they cannot be extrapolated from macro-scale data without experimental verification. This lack of technical information about physical properties at microscale has affected the consistency and reliability of batch-fabricated components and leads to very low rates of successful fabrication. Therefore, this material issue is of vital importance to the development of LIGA technology and to its industrial applications. The research work reported in this paper focuses on the development of a new capability based on design, fabrication, and testing of groups of UV-LIGA fabricated nickel microspecimens for the evaluation of fracture strength. The devised testing mechanism demonstrated compatibility with the fabricated samples and capability of performing the desired experimentation by generating resistance-to-fracture values of the nickel specimens. The average fracture strength value obtained, expressed with a 95% confidence interval, was 315 +/- 54 Mpa. Further data acquisition, especially involving tensile specimen testing, and material analysis is needed to fully understand the implications of the information obtained.

  2. The fracture strength and frictional strength of Weber Sandstone

    USGS Publications Warehouse

    Byerlee, J.D.

    1975-01-01

    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  3. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns.

    PubMed

    Kwon, Taek-Ka; Pak, Hyun-Soon; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun; Yeo, In-Sung

    2013-05-01

    All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. THE MEAN FRACTURE STRENGTHS WERE AS FOLLOWS: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

  4. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns.

    PubMed

    Sieper, Kim; Wille, Sebastian; Kern, Matthias

    2017-10-01

    The aim of this study was to evaluate the fracture strength of crowns made from current CAD/CAM materials. In addition the influence of crown thickness and chewing simulation on the fracture strength was evaluated. Crowns were fabricated from lithium disilicate, zirconia reinforced lithium silicate (ZLS-ceramic) and a polymer-infiltrated ceramic-network (PICN) with an occlusal thickness of 1.0mm or 1.5mm, respectively (n=16). Crowns were cemented on composite dies. Subgroups of eight specimens were loaded with 5kg in a chewing simulator for 1,200,000 cycles with thermal cycling. Finally, all specimens were loaded until fracture in a universal testing machine. Three-way ANOVA was used to detect statistical interaction. Differences regarding the materials were tested with two-way ANOVA, following one-way ANOVA and a post-hoc Tukey's-Test. All crowns survived the chewing simulation. The material had a significant influence on the fracture resistance (p≤0.05). Lithium disilicate achieved the highest values of fracture strength in almost all groups followed by ZLS-ceramic. PICN achieved the lowest values of fracture strength. Chewing simulation increased the fracture strength of thick lithium disilicate crown significantly. Greater occlusal thickness of all crown materials resulted in higher crown fracture strength before chewing simulation. After chewing simulation occlusal thickness of lithium disilicate and PICN crowns had no significant influence on the fracture strength. All crowns revealed fracture strength above the clinically expected loading forces. Therefore the durability of the tested CAD/CAM materials seems promising also in an occlusal thickness of 1.0mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.

  6. The effect of different posts on fracture strength of roots with vertical fracture and re-attached fragments.

    PubMed

    Ozcopur, B; Akman, S; Eskitascioglu, G; Belli, S

    2010-08-01

    The aim of this in vitro study was to test the effect of different post systems on fracture strength of roots with re-attached fragments. Root canals of eighty extracted single-rooted human teeth were instrumented (ProFile) and randomly divided into two groups. The roots in the first group were vertically cracked, and the fragments were re-attached using Super Bond C&B (Sun Medical, Tokya, Japan). The roots in the second group were kept sound. Obturation of the roots was performed with MetaSEAL (Sun Medical) and gutta-percha. Post spaces were prepared, and the roots were restored with one of the followings: UniCore (Ultradent), Everstick (Stick Tech), Ribbond (Ribbond), ParaPost (Coltene/Whaledent) (n = 10). Four mm high build-ups were created (Clearfil DC Bond Core; Kuraray, Tokyo, Japan). Compressive loading of the samples was performed after 24 h (1 mm min(-1)). Mean load necessary to fracture each sample was recorded (Newton) and statistically analysed (One-way anova, t-tests). ParaPost showed the highest fracture strength among the roots with re-attached fragments (P < 0.05). UniCore and ParaPost systems showed similar fracture strength in the sound roots (P > 0.05). Re-attached fragments significantly reduced the fracture strength of roots in UniCore group (P = 0.000). Ribbond post showed mostly repairable fractures. Metal post (ParaPost) showed the highest fracture strength in the roots with re-attached fragments; however, fracture pattern was 41% non-repairable. Re-attached fragments significantly reduced the fracture strength of the roots in UniCore group. Prefabricated posts showed similar fracture strength in the sound roots. Customized post systems EverStick and Ribbond showed mostly repairable failure after loading in sound roots or roots with re-attached fragments.

  7. Modeling of orthotropic plate fracture under impact load using various strength criteria

    NASA Astrophysics Data System (ADS)

    Radchenko, Andrey; Krivosheina, Marina; Kobenko, Sergei; Radchenko, Pavel; Grebenyuk, Grigory

    2017-01-01

    The paper presents the comparative analysis of various tensor multinomial criteria of strength for modeling of orthotropic organic plastic plate fracture under impact load. Ashkenazi, Hoffman and Wu strength criteria were used. They allowed fracture modeling of orthotropic materials with various compressive and tensile strength properties. The modeling of organic plastic fracture was performed numerically within the impact velocity range of 700-1500 m/s.

  8. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041

  9. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly--a cluster-randomized controlled trial.

    PubMed

    Leung, K S; Li, C Y; Tse, Y K; Choy, T K; Leung, P C; Hung, V W Y; Chan, S Y; Leung, A H C; Cheung, W H

    2014-06-01

    This study is a prospective cluster-randomized controlled clinical trial involving 710 elderly subjects to investigate the long-term effects of low-magnitude high-frequency vibration (LMHFV) on fall and fracture rates, muscle performance, and bone quality. The results confirmed that LMHFV is effective in reducing fall incidence and enhancing muscle performance in the elderly. Falls are direct causes of fragility fracture in the elderly. LMHFV has been shown to improve muscle function and bone quality. This study is to investigate the efficacy of LMHFV in preventing fall and fractures among the elderly in the community. A cluster-randomized controlled trial was conducted with 710 postmenopausal females over 60 years. A total of 364 participants received daily 20 min LMHFV (35 Hz, 0.3 g), 5 days/week for 18 months; 346 participants served as control. Fall or fracture rate was taken as the primary outcome. Also, quadriceps muscle strength, balancing abilities, bone mineral density (BMD), and quality of life (QoL) assessments were done at 0, 9, and 18 months. With an average of 66.0% compliance in the vibration group, 18.6% of 334 vibration group subjects reported fall or fracture incidences compared with 28.7% of 327 in the control (adjusted HR = 0.56, p = 0.001). The fracture rate of vibration and control groups were 1.1 and 2.3 % respectively (p = 0.171). Significant improvements were found in reaction time, movement velocity, and maximum excursion of balancing ability assessment, and also the quadriceps muscle strength (p < 0.001). No significant differences were found in the overall change of BMD. Minimal adverse effects were documented. LMHFV is effective in fall prevention with improved muscle strength and balancing ability in the elderly. We recommend its use in the community as an effective fall prevention program and to decrease related injuries.

  10. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  11. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  12. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  13. Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra; Rao, P. Nageswara; Jayaganthan, R.

    2013-08-01

    The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from -190°C to 100°C. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350°C for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism.

  14. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  15. The Effect of CAMBRA Agents on Fracture Strength of Lithium Disilicate Crowns

    NASA Astrophysics Data System (ADS)

    Sinada, Naif

    The Caries Management By Risk Assessment (CAMBRA) protocol outlines an approach in which certain agents can be used to serve as protective factors toward the management of dental caries. In this study, the effects of particular CAMBRA agents on the fracture strength of lithium disilicate ceramics (commonly used in dentistry) are studied. While Chlorhexidine exhibited no effects on the fracture strength of these ceramics, Prevident showed a decrease in the fracture strength of all the ceramics studied. These results indicate that clinicians should proceed with caution when using these CAMBRA agents in patients restored with lithium disilicate ceramics. Further studies on the particular mechanisms whereby this reduction in fracture strength occurs are indicated.

  16. Fracture behaviors of ceramic tissue scaffolds for load bearing applications

    NASA Astrophysics Data System (ADS)

    Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing

    2016-07-01

    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.

  17. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.W.

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiatedmore » transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.« less

  18. Distal radius fractures and the volar lunate facet fragment: Kirschner wire fixation in addition to volar-locked plating.

    PubMed

    Moore, Amy M; Dennison, David G

    2014-06-01

    The volar lunate facet fragment of a distal radius fracture may not be stabilized with volar-locked plating alone due to the small size and distal location of the fragment. Identification and stabilization of this small fragment is critical as unstable fixation may result in radiocarpal and radioulnar joint subluxation. The addition of spring wire fixation with volar plating can provide stable internal fixation of this critical fracture fragment. A retrospective review (2006-2011) identified nine patients with distal radius fractures with an associated volar lunate facet fragment that were treated with volar-locked plating and spring wire fixation of the volar lunate facet fragment. Radiographic indices, range of motion, grip strength, and postoperative Patient-related wrist evaluation (PRWE) scores were obtained to assess pain and function. All distal radius fractures healed, and the volar lunate facet fragment reduction was maintained. The mean follow-up was 54 weeks. Mean active range of motion was 46° wrist flexion, 51° wrist extension, 80° pronation, and 68° supination. The mean grip strength was 21 Kg, achieving 66 % of the uninjured limb. The average PRWE score was 17. No patient required removal of hardware or had evidence of tendon irritation. The addition of spring wire fixation to volar-locked plating provided stable fixation of the volar lunate facet fragment of distal radius fractures without complication. This technique addresses a limitation of volar-locked plating to control the small volar lunate facet fragment in distal radius fractures otherwise amenable to volar plating. A retrospective case series, Level IV.

  19. [A case control study of perpendicular or parallel double plate for the treatment of young and middle-aged patients with type C fractures of distal humerus].

    PubMed

    Yu, Ye-Feng; Dai, Jia-Ping; Sheng, Jian-Ming; Zhou, Xiao

    2017-06-25

    To compare clinical outcomes of perpendicular or parallel double plate in treating type C fractures of distal humerus in adults. From March 2009 and March 2013, 40 adult patients with type C distal humerus fractures were treated. The patients were divided into two groups according to fixed form. In perpendicular group(group A), there were 13 males and 9 females with a mean age of (37.56±9.24) years old(ranged 18 to 56);while in parallel plating group(group B), including 11 males and 7 females, with a mean age of (41.35±9.03) year old(ranged 20 to 53). All fractures were fresh and closed without blood vessels or nerve damaged. Incision length, operating time, blood loss, hospital stay, preoperative and postoperative radiological change, range of activity of elbow joint, Mayo score, flexor and extensor elbow strength, and postoperative complications were observed and compared. All incisions were healed well. One patient occurred myositis ossificans between two groups. Two patients in group A and 1 patient in group B occurred elbow joint stiffness. All fractures were obtained bone union. Group A were followed up from 20 to 36 months with an average of (25.2±7.1) months, while group B were followed up from 18 to 35 months with an average of(24.3±6.0) months. There were significant differences in blood loss and operative time, while there was no obvious meaning in incision length, hospital stay, muscle strength, fracture healing time, range of activity of elbow joint. Mayo score of group A was 82.27±10.43, 6 cases obtained excellent results, 12 good, 3 moderate and 1 poor;in group B was 81.94±12.02, 5 cases obtained excellent results, 9 good, 3 moderate and 1 poor;and there were no statistical significance between two groups. There was no significant differences in clinical effects between perpendicular and parallel double plate for adult patients with type C distal humerus fractures, while the operation should choose according to facture and proficiency of operator.

  20. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  1. The epidemiology of wrist fractures in older men: the Osteoporotic Fractures in Men (MrOS) study.

    PubMed

    Wright, N C; Hooker, E R; Nielson, C M; Ensrud, K E; Harrison, S L; Orwoll, E S; Barrett-Connor, E

    2018-04-01

    There is limited wrist fracture information on men. Our goal was to calculate frequency and identify risk factors for wrist fracture in the Osteoporotic Fractures in Men (MrOS) study. We confirmed that fracture history and certain medications are predictors, and identified novel predictors including markers of kidney function and physical performance. To calculate the incidence of wrist fractures and their risk factors in older community-dwelling men from the US Osteoporotic Fractures in Men (MrOS) study. Using triannual postcards, we identified incident wrist fractures (centrally confirmed by radiology) in men aged ≥ 65. Potential risk factors included the following: demographics, lifestyle, bone mineral density (BMD), selected medications, biomarkers, and physical function and performance measures. Both baseline and time-varying models were adjusted for age, race/ethnicity, MrOS geographic location, and competing mortality risks. We observed 97 incident wrist fractures among 5875 men followed for an average of 10.8 years. The incidence of wrist fracture was 1.6 per 1000 person-years overall and ranged from 1.0 among men aged 65-69 to 2.4 among men age ≥ 80. Significant predictors included the following: fracture history after age 50 [hazard ratio (95% CI): 2.48 (1.65, 3.73)], high serum phosphate [1.25 (1.02, 1.53)], use of selective serotonin receptor inhibitor (SSRI) [3.60 (1.96, 6.63), decreased right arm BMD [0.49 (0.37, 0.65) per SD increase], and inability to perform the grip strength test [3.38 (1.24, 9.25)]. We did not find associations with factors commonly associated with wrist and other osteoporosis fractures like falls, diabetes, calcium and vitamin D intake, and alcohol intake. Among these older, community-dwelling men, we confirmed that fracture history is a strong predictor of wrist fractures in men. Medications such as SSRIs and corticosteroids also play a role in wrist fracture risk. We identified novel risk factors including kidney function and the inability to perform the grip strength test.

  2. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.

    PubMed

    Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina

    2006-01-01

    Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.

  3. Strength, Fatigue, and Fracture Toughness of Ti-6Al-4V Liner from a Composite Over-Wrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Lerch, Brad; Thesken, John C.; Sutter, Jim; Russell, Richard

    2008-01-01

    It was demonstrated by way of experiment that Composite Over-wrapped Pressure Vessel (COPV) Ti-6Al-4V liner material can sustain the expected service loads and cycles. The experiments were performed as part of investigations on the residual life of COPV tanks being used in Space Shuttle Orbiters. Measured properties included tensile strength, compressive strength, reversed loading cycles to simulate liner proof strains, and cyclic fatigue loading to demonstrate the ability to sustain 1000 cycles after liner buckling. The liner material came from a salvaged 40 in. Columbia (orbiter 102) tank (SN029), and tensile strength measurements were made on both boss-transition (thick) and membrane regions (thin). The average measured yield strength was 131 ksi in the boss-transition and membrane regions, in good agreement with measurements made on 1970 s vintage forged plate stock. However, Young s modulus was 17.4+/-0.3 Msi, somewhat higher than typical handbook values (approx.16 Msi). The fracture toughness, as estimated from a failed fatigue specimen, was 74 ksi/sq in, in reasonable agreement with standardized measurements made on 1970 s vintage forged plate stock. Low cycle fatigue of a buckled test specimen implied that as-imprinted liners can sustain over 4000 load cycles.

  4. Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K Elliott

    2015-01-01

    Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.

  5. Mechanisms of boron fiber strengthening by thermal treatment

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1979-01-01

    The fracture strain for boron on tungsten fibers can be improved by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanisms responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 + or - 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.

  6. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  7. Bone strength measured by peripheral quantitative computed tomography and the risk of nonvertebral fractures: the osteoporotic fractures in men (MrOS) study.

    PubMed

    Sheu, Yahtyng; Zmuda, Joseph M; Boudreau, Robert M; Petit, Moira A; Ensrud, Kristine E; Bauer, Douglas C; Gordon, Christopher L; Orwoll, Eric S; Cauley, Jane A

    2011-01-01

    Many fractures occur in individuals without osteoporosis defined by areal bone mineral density (aBMD). Inclusion of other aspects of skeletal strength may be useful in identifying at-risk subjects. We used surrogate measures of bone strength at the radius and tibia measured by peripheral quantitative computed tomography (pQCT) to evaluate their relationships with nonvertebral fracture risk. Femoral neck (FN) aBMD, measured by dual-energy X-ray absorptiometry (DXA), also was included. The study population consisted of 1143 white men aged 69+ years with pQCT measures at the radius and tibia from the Minneapolis and Pittsburgh centers of the Osteoporotic Fractures in Men (MrOS) study. Principal-components analysis and Cox proportional-hazards modeling were used to identify 21 of 58 pQCT variables with a major contribution to nonvertebral incident fractures. After a mean 2.9 years of follow-up, 39 fractures occurred. Men without incident fractures had significantly greater bone mineral content, cross-sectional area, and indices of bone strength than those with fractures by pQCT. Every SD decrease in the 18 of 21 pQCT parameters was significantly associated with increased fracture risk (hazard ration ranged from 1.4 to 2.2) independent of age, study site, body mass index (BMI), and FN aBMD. Using area under the receiver operation characteristics curve (AUC), the combination of FN aBMD and three radius strength parameters individually increased fracture prediction over FN aBMD alone (AUC increased from 0.73 to 0.80). Peripheral bone strength measures are associated with fracture risk and may improve our ability to identify older men at high risk of fracture. © 2011 American Society for Bone and Mineral Research.

  8. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa

    2014-11-01

    Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.

  9. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  10. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  11. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate

    PubMed Central

    GOMES, Rafael Soares; de SOUZA, Caroline Mathias Carvalho; BERGAMO, Edmara Tatiely Pedroso; BORDIN, Dimorvan; DEL BEL CURY, Altair Antoninha

    2017-01-01

    Abstract Zirconia-reinforced lithium silicate (ZLS) is a ceramic that promises to have better mechanical properties than other materials with the same indications as well as improved adaptation and fracture strength. Objective In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Material and methods Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student’s t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson’s correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Results Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Conclusion Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits. PMID:28678947

  12. Fundamental Mechanisms of Tensile Fracture in Aluminum Sheet Unidirectionally Reinforced with Boron Filament. Ph.D. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1971-01-01

    Results are presented from an experimental research effort to gain a more complete understanding of the physics of tensile fracture in unidirectionally reinforced B-Al composite sheet. By varying the degree of filament degradation resulting from fabrication, composite specimens were produced which failed in tension by the cumulative mode, the noncumulative mode, or by any desired combination of the two modes. Radiographic and acoustic emission techniques were combined to identify and physically describe a previously unrecognized fundamental fracture mechanism which was responsible for the noncumulative mode. The tensile strength of the composite was found to be severely limited by the noncumulative mechanism which involved the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level followed by ductile fracture of the matrix. The minimum average filament stress required for initiation of the fracture mechanism was shown to be approximately 170 ksi, and appeared to be independent of filament diameter, number of filament layers, and the identity of the matrix alloy.

  13. Characterization of Mechanical Properties of Nuclear Graphite Using Subsize Specimens and Reusing Tested Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Hyun, Yoon; Byun, Thak Sang; Strizak, Joe P

    2011-01-01

    The mechanical properties of NBG-18 nuclear grade graphite have been characterized using small specimen test techniques and statistical treatment on the test results. New fracture strength and toughness test techniques were developed to use subsize cylindrical specimens with glued heads and to reuse their broken halves. Three sets of subsize cylindrical specimens with the different diameters of 4 mm, 8 mm, and 12 mm were tested to obtain tensile fracture strength. The longer piece of the broken halves was cracked from side surfaces and tested under three-point bend loading to obtain fracture toughness. Both the strength and fracture toughness datamore » were analyzed using Weibull distribution models focusing on size effect. The mean fracture strength decreased from 22.9 MPa to 21.5 MPa as the diameter increased from 4 mm to 12 mm, and the mean strength of 15.9 mm diameter standard specimen, 20.9 MPa, was on the extended trend line. These fracture strength data indicate that in the given diameter range the size effect is not significant and much smaller than that predicted by the Weibull statistics-based model. Further, no noticeable size effect existed in the fracture toughness data, whose mean values were in a narrow range of 1.21 1.26 MPa. The Weibull moduli measured for fracture strength and fracture toughness datasets were around 10. It is therefore believed that the small or negligible size effect enables to use the subsize specimens and that the new fracture toughness test method to reuse the broken specimens to help minimize irradiation space and radioactive waste.« less

  14. Development and mechanical characterization of green bamboo composites

    NASA Astrophysics Data System (ADS)

    Ali, Aidy; Ng, W. K.; Arifin, F.; Rassiah, K.; Othman, F.; Hazin, M. S.; Ahmad, M. M. H. Megat

    2018-02-01

    In this study, a bamboo composite is developed using specific bamboo species known as Gigantochloa Scortechinii (Buluh Semantan) which can be found in Malaysia. In precise, the woven bamboo (WB) was formed from the culm fier composite with an average of 0.5 mm thickness and 5.0 mm width strip is laminated with Wowen E Glass (WEG) and reinforced with epoxy (EP). The laminated was using a hand lay-up technique. The developed bamboo composites are then characterized comprehensively in the term of tensile, hardness, impact, fatigue and fracture test. It is found that the strength was equivalent with the existing steel alloy in term of tensile and fracture properties.

  15. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  16. Physical performance and radiographic and clinical vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Blackwell, Terri L; Marshall, Lynn M; Fink, Howard A; Kado, Deborah M; Ensrud, Kristine E; Cauley, Jane A; Black, Dennis; Orwoll, Eric S; Cummings, Steven R; Schousboe, John T

    2014-09-01

    In men, the association between poor physical performance and likelihood of incident vertebral fractures is unknown. Using data from the MrOS study (N = 5958), we describe the association between baseline physical performance (walking speed, grip strength, leg power, repeat chair stands, narrow walk [dynamic balance]) and incidence of radiographic and clinical vertebral fractures. At baseline and follow-up an average of 4.6 years later, radiographic vertebral fractures were assessed using semiquantitative (SQ) scoring on lateral thoracic and lumbar radiographs. Logistic regression modeled the association between physical performance and incident radiographic vertebral fractures (change in SQ grade ≥1 from baseline to follow-up). Every 4 months after baseline, participants self-reported fractures; clinical vertebral fractures were confirmed by centralized radiologist review of the baseline study radiograph and community-acquired spine images. Proportional hazards regression modeled the association between physical performance with incident clinical vertebral fractures. Multivariate models were adjusted for age, bone mineral density (BMD, by dual-energy X-ray absorptiometry [DXA]), clinical center, race, smoking, height, weight, history of falls, activity level, and comorbid medical conditions; physical performance was analyzed as quartiles. Of 4332 men with baseline and repeat radiographs, 192 (4.4%) had an incident radiographic vertebral fracture. With the exception of walking speed, poorer performance on repeat chair stands, leg power, narrow walk, and grip strength were each associated in a graded manner with an increased risk of incident radiographic vertebral fracture (p for trend across quartiles <0.001). In addition, men with performance in the worst quartile on three or more exams had an increased risk of radiographic fracture (odds ratio [OR] = 1.81, 95% confidence interval [CI] 1.33-2.45) compared with men with better performance on all exams. Clinical vertebral fracture (n =149 of 5813, 2.6%) was not consistently associated with physical performance. We conclude that poorer physical performance is associated with an increased risk of incident radiographic (but not clinical) vertebral fracture in older men. © 2014 American Society for Bone and Mineral Research.

  17. The Joint Strength and Fracture Mechanisms of TC4/TC4 and TA0/TA0 Brazed with Ti-25Cu-15Ni Braze Alloy

    NASA Astrophysics Data System (ADS)

    Zou, Zhihuan; Zeng, Fanhao; Wu, Haobo; Liu, Jian; Li, Yi; Gu, Yi; Yuan, Tiechui; Zhang, Fuqin

    2017-05-01

    In this paper, Ti-25Cu-15Ni (mass ratio) braze alloys were prepared by vacuum arc melting. Additionally, the TA0 pure titanium and TC4 titanium alloy were brazed with the Ti-25Cu-15Ni braze alloy at 960, 980, 1000, 1020, and 1040 °C. The effects of the braze temperature on the tensile strength of the TA0 and TC4 joints and their fracture mechanisms were studied. The maximum tensile strength of the TA0 joints of 219.9 ± 0.1 MPa was achieved at a brazing temperature of 980 °C, and the maximum tensile strength of the TC4 joints of 832.9 ± 0.1 MPa was achieved at the same brazing temperature. These results indicate that their ideal joint strength is comparable. According to the fractography results of the TA0 joints, a mixed fracture morphology is indicated. The TA0 fracture surface is dominated by cleavage fracture with a small contribution from ductile fracture. The TC4 joint fracture arises from cleavage.

  18. Prediction of Long-Term Strength of Thermoplastic Composites Using Time-Temperature Superposition. Degree awarded by Texas A&M Univ., May 1998

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    Accelerated tests for composite failure were investigated. Constant ramp transverse strength tests on thermoplastic composite specimens were conducted at four temperatures from 300 F to 450 F and five duration times from 0.5 sec to 24 hrs. Up to 400 F, the time-temperature-superposition method produces a master curve allowing strength at longer times to be estimated from strength tests conducted over shorter times but at higher temperatures. The shift factors derived from compliance tests applied well to the strength data. To explain why strength behaved similar to compliance, a viscoelastic fracture model was investigated based on the hypothesis that the work of fracture for crack initiation at some critical flaw remains constant with time and temperature. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with stress rate. Fracture tests using double cantilever beam specimens were conducted from 300 F to 450 F over time scales similar to the strength study. The toughness data showed a significant change with loading rate, less variation with temperature, did not form a master curve, and could not be correlated with the fracture model. Since the fracture model did not fit the fracture data, an alternative explanation based on the dilatational strain energy density was proposed. However the usefulness of this model is severely limited because it relies on a critical parameter which varies with loading rate.

  19. The fracture strength of ceramic brackets: a comparative study.

    PubMed

    Flores, D A; Caruso, J M; Scott, G E; Jeiroudi, M T

    1990-01-01

    Recent demand for esthetic brackets has led to the development and use of ceramic brackets in orthodontics. The purpose of this study was to compare the fracture strength of different ceramic brackets under different surface conditions and ligation methods using a torsional wire bending force. Five different bracket types (two polycrystalline, two single-crystal, and one metal) were tested using elastic and wire ligation, with half being scratched and the other half remaining unscratched. Results showed a significant difference between bracket types and surface conditions. Non-scratched single-crystal brackets had higher fracture strengths and slightly higher fracture loads than polycrystalline brackets. However, single-crystal brackets were significantly adversely affected by surface damage (scratching), while polycrystalline brackets were not significantly affected by surface damage. The fracture behavior of ceramic brackets followed the Griffith model where fracture strength decreased following surface damage.

  20. Hayward Fault rocks: porosity, density, and strength measurements

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2001-01-01

    Porosity, density and strength measurements were conducted on rock samples collected from the Hayward Fault region in Northern California as part of the Hayward Fault Working Group’s efforts to create a working model of the Hayward Fault. The rocks included in this study were both fine and coarse grained gabbros, altered keratophyre, basalt, sandstone, and serpentinite from various rock formations adjacent to the Hayward Fault. Densities ranged from a low of 2.25 gm/cc (altered keratophyre) to 3.05 gm/cc (fine gabbro), with an average of 2.6 gm/cc, typical of many other rocks. Porosities were generally around 1% or less, with the exception of the sandstone (7.6%) and altered keratophyre (13.5%). Failure and frictional sliding tests were conducted on intact rock cylinders at room temperature under effective pressure conditions of up to 192 MPa, simulating depths of burial to 12 km. Axial shortening of the samples progressed at a rate of 0.1 µm/sec (fine samples) or 0.2 µm/sec (porous samples) for 6 mm of displacement. Velocity stepping tests were then conducted for an additional 2 mm of displacement, for a total of 8 mm. Both peak strength (usually failure strength) and frictional strength, determined at 8 mm of displacement, increased systematically with effective pressure. Coefficients of friction, based on the observed fracture angles, ranged from 0.6 to 0.85, consistent with Byerlee’s Law. Possible secondary influences on the strength of the Hayward rock samples may be surface weathering, or a larger number of pre-existing fractures due to the proximity to the Hayward Fault. All samples showed velocity strengthening, so that the average a-b values were all strongly positive. There was no systematic relation between a-b values and effective pressure. Velocity strengthening behavior is associated with stable sliding (creep), as observed in the shallow portions of the Hayward Fault.

  1. Hand grip strength and its correlation with vitamin D in Indian patients with hip fracture.

    PubMed

    Dhanwal, Dinesh K; Dharmshaktu, Pramila; Gautam, V K; Gupta, N; Saxena, Alpana

    2013-01-01

    This case-control study was performed to evaluate 25-hydroxyvitamin D [25(OH)D] deficiency and its correlation with hand grip strength in 95 Indian hip fracture subjects and 95 controls. 25(OH)D deficiency was found in 88.4 % of hip fracture subjects that was significantly higher as compared to controls. Hand grip strength as measured by hand held dynamometer was significantly lower in patients, and there was a significant positive correlation between 25(OH)D and hand grip strength. The present study was conducted to assess correlation between 25(OH) D and hand grip strength in hip fracture subjects residing in North India. Ninety-five patients with hip fracture and similar number of controls were enrolled in the study. Fasting venous samples were analyzed for 25(OH)D, intact parathyroid hormone (PTH), alkaline phosphatase, calcium, and phosphate. Hand grip strength of study subjects was measured using Jamar dynamometer. Correlation between vitamin D levels and hand grip strength was analyzed in study population. The mean age of hip fracture subjects was 61.4 ± 12.6 years which was comparable in men and women. Out of 95 subjects, 57 were men and 38 were women. Mean 25(OH)D levels were significantly lower whereas intact PTH levels were significantly higher in patient group compared controls (10.29 ± 6.53 vs 13.6 ± 4.01 ng/ml; 62.6 ± 59.3 vs 37.7 ± 28.8 pg/ml, respectively). The number of subjects with 25(OH)D deficiency and secondary hyperparathyroidism was significantly higher in hip fracture group. The mean hand grip strength among hip fracture subjects was significantly lower compared to that of controls (16.57 ± 5.74 vs 26.74 ± 5.23 kg). There was a significant positive correlation between 25(OH)D and hand grip strength ( r = 0.482, p value <0.01) in hip fracture population. Majority of hip fracture patients in India have vitamin D deficiency, secondary hyperparathyroidism, and lower hand grip strength compared to controls. Further, there is significant positive correlation between 25(OH)D and hand grip strength.

  2. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  3. Mechanisms of boron fiber strengthening by thermal treatment

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1979-01-01

    The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.

  4. In vitro study comparing fracture strength recovery of teeth restored with three esthetic bonding materials using different techniques.

    PubMed

    Rajput, Akhil; Ataide, Ida; Lambor, Rajan; Monteiro, Jeanne; Tar, Malika; Wadhawan, Neeraj

    2010-01-01

    Reattachment of the fractured fragment of a traumatized tooth (whenever available and usable) has become the treatment of choice in cases of uncomplicated crown fractures. Despite the presence of various bonding materials and techniques, laboratory data evaluating the biomechanical aspects of such procedures is largely lacking in the literature. The objective of this in vitro study was to evaluate the fracture strength recovery of incisors, following fragment restoration with three different techniques. A total of 90 extracted human maxillary central incisors were subjected to crown fractured under standard conditions. This was carried out by applying a compressive force from the buccal aspect of the clinical crown using a universal strength testing machine. The fractured teeth were equality distributed in three groups, defined on the basis of the technique used for reattachment: i) overcontour, ii) internal dentinal groove and iii) direct buildup. Each group was further subdivided into three subgroups on the basis of the intermediate restorative material used for reattachment, namely: i) hybrid composite (Filtek Z100 Universal Restorative, ii) nanocomposite (Filtek Z350) and iii) Ormocer (Voco Admira). Following reattachment, the crowns were re-fractured under standard conditions. The force required for fracture was recorded and was expressed as a percentage of the fracture strength of the intact tooth. The data was expressed as a percentage of the fracture strength of the intact tooth. The data was analyzed using two-way ANOVA and Bonferroni tests for pair-wise comparison. The results showed no statistically significant differences in fractures strength between the three groups (P > 0.05). However, comparison of the subgroups revealed statistically significant higher strength recovery percentages for the hybrid and the nanocomposite compared with the Ormocer material (P < 0.05). It was concluded that material properties have a significant influence on the success of reattachment procedures.

  5. Fracture strength of all-ceramic lithium disilicate and porcelain-fused-to-metal bridges for molar replacement after dynamic loading.

    PubMed

    Chitmongkolsuk, Somsak; Heydecke, Guido; Stappert, Christian; Strub, Joerg R

    2002-03-01

    The replacement of missing posterior teeth using all-ceramic bridges remains a challenge. This study compares the fracture resistance of all-ceramic 3-unit bridges for the replacement of first molars to conventional porcelain-fused-to-metal bridges. Human premolars and molars were used to create two test groups and one control group of 16 specimens each. To simulate clinical parameters, the specimens were exposed to cyclic fatigue loading in an artificial mouth with simultaneous thermocycling. All samples were thereafter exposed to fracture strength testing. Porcelain-fused-to-metal bridges showed significantly higher fracture strengths than all-ceramic bridges. However, the fracture strength of the all-ceramic bridges was higher than peak physiological chewing forces.

  6. Effect of porosity on ductility variation in investment cast 17-4PH.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Robert D.; Kilgo, Alice C.; Grant, Richard P.

    2005-02-01

    The stainless steel alloy 17-4PH contains a martensitic microstructure and second phase delta ({delta}) ferrite. Strengthening of 17-4PH is attributed to Cu-rich precipitates produced during age hardening treatments at 900-1150 F (H900-H1150). For wrought 17-4PH, the effects of heat treatment and microstructure on mechanical properties are well-documented [for example, Ref. 1]. Fewer studies are available on cast 17-4PH, although it has been a popular casting alloy for high strength applications where moderate corrosion resistance is needed. Microstructural features and defects particular to castings may have adverse effects on properties, especially when the alloy is heat treated to high strength. Themore » objective of this work was to outline the effects of microstructural features specific to castings, such as shrinkage/solidification porosity, on the mechanical behavior of investment cast 17-4PH. Besides heat treatment effects, the results of metallography and SEM studies showed that the largest effect on mechanical properties is from shrinkage/solidification porosity. Figure 1a shows stress-strain curves obtained from samples machined from castings in the H925 condition. The strength levels were fairly similar but the ductility varied significantly. Figure 1b shows an example of porosity on a fracture surface from a room-temperature, quasi-static tensile test. The rounded features represent the surfaces of dendrites which did not fuse or only partially fused together during solidification. Some evidence of local areas of fracture is found on some dendrite surfaces. The shrinkage pores are due to inadequate backfilling of liquid metal and simultaneous solidification shrinkage during casting. A summary of percent elongation results is displayed in Figure 2a. It was found that higher amounts of porosity generally result in lower ductility. Note that the porosity content was measured on the fracture surfaces. The results are qualitatively similar to those found by Gokhale et al. and Surappa et al. in cast A356 Al and by Gokhale et al. for a cast Mg alloys. The quantitative fractography and metallography work by Gokhale et al. illustrated the strong preference for fracture in regions of porosity in cast material. That is, the fracture process is not correlated to the average microstructure in the material but is related to the extremes in microstructure (local regions of high void content). In the present study, image analysis on random cross-sections of several heats indicated an overall porosity content of 0.03%. In contrast, the area % porosity was as high as 16% when measured on fracture surfaces of tensile specimens using stereology techniques. The results confirm that the fracture properties of cast 17-4PH cannot be predicted based on the overall 'average' porosity content in the castings.« less

  7. Developing a shale heterogeneity index to predict fracture response in the Mancos Shale

    NASA Astrophysics Data System (ADS)

    DeReuil, Aubry; Birgenheier, Lauren; McLennan, John

    2017-04-01

    The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have approximately equivalent proportions of Al-Ca-Si compositions, while Al-rich samples have consistently low strength. Moisture preserved samples fail on average at approximately 5 MPa lower than dry samples of similar facies. Additionally, moisture preserved samples fail in a step-like pattern when tested perpendicular to bedding. Tensile fractures are halted at heterogeneities and propagate parallel to bedding planes before developing a through-going failure plane, as opposed to the discrete, continuous fractures that crosscut dry samples. This result suggests that sedimentary heterogeneity plays a greater role in fracture propagation in moisture preserved samples, which are more indicative of in-situ reservoir conditions. Stress-strain curves will be further analyzed, including estimation of an energy released term based on post-failure response, and an estimation of volume of cracking measure on the physical fracture surface.

  8. Mechanical properties of contemporary composite resins and their interrelations.

    PubMed

    Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros

    2013-08-01

    To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Supination and Pronation Strength Deficits Persist at 2-4 Years after Treatment of Distal Radius Fractures.

    PubMed

    Ploegmakers, Joris; The, Bertram; Wang, Allan; Brutty, Mike; Ackland, Tim

    2015-10-01

    Forearm rotation is a key function in the upper extremity. Following distal radius fracture, residual disability may occur in tasks requiring forearm rotation. The objectives of this study are to define pronation and supination strength profiles tested through the range of forearm rotation in normal individuals, and to evaluate the rotational strength profiles and rotational strength deficits across the testing range in a cohort of patients treated for distal radius fracture associated with an ulnar styloid base fracture. In a normative cohort of 29 subjects the supination strength profile showed an increasing linear relationship from supination to pronation. Twelve subjects were evaluated 2-4 years after anatomical open reduction and volar plate fixation of a distal radius fracture. The injured wrist was consistently weaker (corrected for hand dominance) in both supination and pronation strength in all testing positions, with the greatest loss in 60 degrees supination. Mean supination strength loss across all testing positions was significantly correlated with worse PRWE scores, highlighting the importance of supination in wrist function.

  10. A Theoretical Model for Predicting Fracture Strength and Critical Flaw Size of the ZrB2-ZrC Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo

    2018-06-01

    This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.

  11. Anterior knee pain and thigh muscle strength after intramedullary nailing of a tibial shaft fracture: an 8-year follow-up of 28 consecutive cases.

    PubMed

    Väistö, Olli; Toivanen, Jarmo; Kannus, Pekka; Järvinen, Markku

    2007-03-01

    Chronic anterior knee pain is a common complication after intramedullary nailing of a tibial shaft fracture. The source of pain is often not known, although it correlates with a simultaneous decrease in thigh muscle strength. No long-term follow-up study has assessed whether weakness of the thigh muscles is associated with anterior knee pain after the procedure in question. Prospective study. University Hospital of Tampere, University of Tampere. The muscular performance of 40 consecutive patients with a nailed tibial shaft fracture was tested isokinetically in a follow-up examination an average of 3.2 +/- 0.4 (SD) years after the initial surgery. An 8-year follow-up was possible in 28 of these cases. Isokinetic muscle strength measurements were made in 28 patients at an average 8.1 +/- 0.3 (SD) years after nail insertion and an average 6.6 +/- 0.3 (SD) years after nail extraction. All nails were extracted at an average 1.6 +/- 0.2 years after the nailing. : Seven patients were painless initially and still were at final follow-up (never pain, or NP). In 13 patients, the previous symptom of anterior knee pain was no longer present at final follow-up [pain, no pain (PNP)], and the remaining 8 had anterior knee pain initially and at final follow-up [always pain group (AP)]. With reference to the hamstring muscles, the mean peak torque difference between the injured and uninjured limb was -2.2% +/- 12% in the NP group, 1.6% +/- 15% in the PNP group, and 10.3% +/- 30% in the AP group at a speed of 60 degrees/second (Kruskal-Wallis test; chi(2) = 1.0; P = 0.593). At a speed of 180 degrees/second, the corresponding differences were -2.9% +/- 23% and 7.0% +/- 19% and 4.4% +/- 16% (Kruskal-Wallis test; chi = 1.7; P = 0.429). With reference to the quadriceps muscles, the mean peak torque difference was -2.8% +/- 9% in the NP group, 5.9% +/- 15% in the PNP group, and -13.0% +/- 16% in the AP group at a speed of 60 degrees/second (Kruskal-Wallis test; chi(2) = 7.9; P = 0.019). At 180 degrees/second, the corresponding differences were -9.4% +/- 13% and 4.9% +/- 16% and -1.9% +/- 9%, respectively (Kruskal-Wallis test; chi(2) = 4.8; P = 0.092). Based on this prospective long-term follow-up study, it appears that the anterior knee pain symptoms that are present after intramedullary nailing of a tibial shaft fracture disappear in a number of patients 3 to 8 years after surgery. Quadriceps, but not hamstring weakness, and lower functional knee scores are associated with anterior knee pain at 8 years.

  12. Bonding measurement -Strength and fracture mechanics approaches.

    PubMed

    Anunmana, Chuchai; Wansom, Wiroj

    2017-07-26

    This study investigated the effect of cross-sectional areas on interfacial fracture toughness and bond strength of bilayered dental ceramics. Zirconia core ceramics were veneered and cut to produce specimens with three different cross-sectional areas. Additionally, monolithic specimens of glass veneer were also prepared. The specimens were tested in tension until fracture at the interface and reported as bond strength. Fracture surfaces were observed, and the apparent interfacial toughness was determined from critical crack size and failure stress. The results showed that cross-sectional area had no effect on the interfacial toughness whereas such factor had a significant effect on interfacial bond strength. The study revealed that cross-sectional area had no effect on the interfacial toughness, but had a significant effect on interfacial bond strength. The interfacial toughness may be a more reliable indicator for interfacial bond quality than interfacial bond strength.

  13. Biomechanics of the Proximal Radius Following Drilling of the Bicipital Tuberosity to Mimic Cortical Button Distal Biceps Repair Technique.

    PubMed

    Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N

    2018-05-01

    A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.

  14. Comparative Evaluation of Fracture Strength of Different Types of Composite Core Build-up Materials: An in vitro Study.

    PubMed

    Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu

    2018-05-01

    The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.

  15. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    PubMed

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  17. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT.

    PubMed

    Nishiyama, K K; Macdonald, H M; Hanley, D A; Boyd, S K

    2013-05-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) measurements of distal radius and tibia bone microarchitecture and finite element (FE) estimates of bone strength performed well at classifying postmenopausal women with and without previous fracture. The HR-pQCT measurements outperformed dual energy x-ray absorptiometry (DXA) at classifying forearm fractures and fractures at other skeletal sites. Areal bone mineral density (aBMD) is the primary measurement used to assess osteoporosis and fracture risk; however, it does not take into account bone microarchitecture, which also contributes to bone strength. Thus, our objective was to determine if bone microarchitecture measured with HR-pQCT and FE estimates of bone strength could classify women with and without low-trauma fractures. We used HR-pQCT to assess bone microarchitecture at the distal radius and tibia in 44 postmenopausal women with a history of low-trauma fracture and 88 age-matched controls from the Calgary cohort of the Canadian Multicentre Osteoporosis Study (CaMos) study. We estimated bone strength using FE analysis and simulated distal radius aBMD from the HR-pQCT scans. Femoral neck (FN) and lumbar spine (LS) aBMD were measured with DXA. We used support vector machines (SVM) and a tenfold cross-validation to classify the fracture cases and controls and to determine accuracy. The combination of HR-pQCT measures of microarchitecture and FE estimates of bone strength had the highest area under the receiver operating characteristic (ROC) curve of 0.82 when classifying forearm fractures compared to an area under the curve (AUC) of 0.71 from DXA-derived aBMD of the forearm and 0.63 from FN and spine DXA. For all fracture types, FE estimates of bone strength at the forearm alone resulted in an AUC of 0.69. Models based on HR-pQCT measurements of bone microarchitecture and estimates of bone strength performed better than DXA-derived aBMD at classifying women with and without prior fracture. In future, these models may improve prediction of individuals at risk of low-trauma fracture.

  18. Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness.

    PubMed

    Cui, Sen; Cui, Chunxiang; Xie, Jiaqi; Liu, Shuangjin; Shi, Jiejie

    2018-02-05

    To meet the more rigorous requirement in aerospace industry, recent studies on strengthening and toughening TiAl alloys mostly focus on high Nb addition, which inevitably bring in an increasing of density. In this study, a carbon fibers coated with graphene reinforced TiAl alloy composite was fabricated by powder metallurgy, melt spun and vacuum melting. This composite got remarkable mechanical properties combined with a prominent density reduction. In contrast with pure TiAl ingots, this sample exhibits an average fracture strain from 16% up to 26.27%, and an average strength from 1801 MPa up to 2312 MPa. Thus, we can achieve a new method to fabricate this low-density, good mechanical performance TiAl composite which could bring in more opportunities for application in aerospace industry.

  19. Combined Volar and Dorsal Approach for Fixation of Comminuted Intra-Articular Distal Radial Fractures.

    PubMed

    Medlock, G; Smith, M; Johnstone, A J

    2018-07-01

    Purpose  Multifragmentary intra-articular fractures displaced in multiple planes are a challenge. We use a reproducible technique of fracture and articular reduction using an initial volar approach targeting reduction in the volar lunate facet first with plate and unicortical locking screws. This creates a template for reduction in dorsal fragments through a dorsal approach. Our study investigated the radiological, clinical, and functional outcomes of patients treated with this technique. Materials and Methods  We reviewed the postoperative radiographs and notes of 18 patients that had this method of fixation between the years 2008 and 2015, the mean age being 43. These patients were reviewed functionally on average 2 years and 3 months following their definitive operation. Results  Normal alignment and length to the distal radius were restored with on average a 0.6 mm articular step. The average range of motion was 64% and preservation of grip strength was 71% compared with the uninjured wrist. Functional assessment averages were 29 for both the quick Disabilities of the Arm, Shoulder and Hand (DASH) and for Patient Rated Wrist Evaluation. The modified system of Green and O'Brien had results of good in 10, fair in 7, and poor in 1. With respect to the Gartland and Werley system, three patients had an excellent result, four had a good result, six had a fair result, and five had a poor result. The mean arthritic grading was 1 (grading 0-3) according to Knirk and Jupiter. Conclusion  This reproducible technique provides an option for these devastating fractures providing a functioning wrist with all of the patients returning to their original form of employment.

  20. Conservative Treatment of Distal Radius Fractures: A Prospective Descriptive Study.

    PubMed

    Aparicio, Pilar; Izquierdo, Óscar; Castellanos, Juan

    2017-06-01

    Disability of the upper limb is one of the consequences of distal radius fracture (DRF). The outcome of DRF treatment is based on objective clinical variables, as strength or range of movement (ROM); sometimes these variables do not correlate with the functional level of the patient. The principal objective of our study was to assess the repercussion of conservative treatment of DRF on upper limb disability. This is a retrospective review of prospectively collected data. We collected data of 61 nonconsecutive DRFs treated conservatively from July 2007 to August 2008. Average Disabilities of the Arm, Shoulder and Hand (DASH) score before fracture was 20.8 points; average DASH score after the fracture was 42.6. There was a significant increase in the upper limb disability after 1 year of follow-up in the patients treated conservatively ( P < .001; size effect, 1.06). Average radial inclination, radial tilt, and radial length were 18.18°, 3.35°, and 5.76 mm, respectively. Average ROM for flexion-extension was 100.6° and for pronation-supination 144.0°. ROM for flexion-extension of the unaffected wrist was 128.2° and for pronation-supination 172.4°. We did not find any significant statistical correlation between the increase in disability and the decrease in the ROM ( P > .05). We did not find any significant statistical correlation between the increase in the disability and the worsening in the radiological parameters ( P > .05). Our results confirm the hypothesis that the conservative treatment of DRF produced an increase in the upper limb disability after 1 year of follow-up. Our study does not show a correlation between the increase in upper limb disability and the decrease in wrist ROM. Our study did not find a correlation between radiological measures and DASH scores.

  1. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  2. Assessment of intra-granular and extra-granular fracture in the development of tablet tensile strength.

    PubMed

    Mitra, Biplob; Hilden, Jon; Litster, James D

    2018-05-24

    When a tablet is compacted from deformable granules and then broken, the fracture plane may cleave granules in two (intra-granular fracture) or separate neighboring granules (extra-granular fracture). In this study, a novel method was developed to quantify the extent of intra- versus extra-granular fracture by compacting tablets from multi-colored ideal granules and evaluating fracture surfaces. The proportions of intra-granular and extra-granular fracture were quantified and modeled in light of a new metric, the deformation potential, Δ, reflecting the solid fraction increase as an initial granule bed is compressed into a final tablet. Results show that a measurable tablet strength is achieved at Δ > 0.18, but intra-granular fracture is not observed until Δ > 0.21. At very large Δ, tablets experience almost exclusively intra-granular fracture, yet the tablet tensile strength is considerably lower than that of a tablet compacted from raw powders versus pre-compacted granules. Thus, secondary compaction of granules appears to weaken the granule matrix, leading to reduced tablet tensile strength even in the presence of strong extra-granular bonding. Copyright © 2018. Published by Elsevier Inc.

  3. Method of Evaluating Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel Showing Intergranular Fracture

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yu; Takai, Kenichi

    2018-02-01

    A stress application method in delayed fracture susceptibility tests was investigated using 1450 MPa class tempered martensitic steel. Its fracture mode under hydrogen charging was mainly intergranular because of its relatively small Si content of 0.21 mass pct. The conditions for consistency in fracture strength between tensile tests and constant load tests (CLTs) were clarified: first, to conduct hydrogen precharging before stress application; and second, to choose a sufficiently low crosshead speed in tensile tests. When hydrogen precharging was not conducted before CLTs, the fracture strength was higher than the values in CLTs with hydrogen charging and in tensile tests. If the crosshead speed was too high, the fracture strength obtained was higher than the values in CLTs. The dependence of the fracture strength on crosshead speed was seen for both notched and smooth bar specimens. These results suggested that plastic deformation, i.e., dislocation motion, was related to intergranular fracture with a tear pattern as well as to quasi-cleavage fracture. In addition, cathodic electrolysis in an alkaline solution containing NaOH should be used as the hydrogen charging method to avoid the effects of corrosion.

  4. Over-Aging Effect on Fracture Toughness of Beryllium Copper Alloy C17200

    NASA Astrophysics Data System (ADS)

    Jen, Kei-Peng; Xu, Liqun; Hylinski, Steven; Gildersleeve, Nate

    2008-10-01

    This study experimentally increased the fracture toughness of Beryllium Copper (CuBe) UNS C17200 alloy using three different age hardening processes. At the same time, the micro- and macro-fracture behavior of this alloy were comprehensively studied. ASTM E399 fracture toughness, tensile, and Charpy impact tests were conducted for all three heat-treated rods. The fracture surfaces were examined under both an optical microscope and a scanning electron microscope to investigate the failure mechanisms. Multiple test orientations were considered to explore isotropy. Increasing the temperature and duration at which age hardening was performed increased fracture toughness while decreasing ultimate tensile strength. The maximum fracture toughness was reached on the most overaged specimen, while retaining a serviceable tensile strength. The specimen test data allowed a relationship to be established among Charpy impact toughness, fracture toughness, and yield strength. Analysis of fracture behavior revealed an interesting relationship between fracture toughness and pre-cracking fatigue propagation rate.

  5. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    PubMed

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.

  6. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOEpatents

    Huckabee, Marvin; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A process for producing a silicon nitride-based article of improved fracture toughness and strength. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12 m.sup.2 /g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  7. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOEpatents

    Huckabee, M.; Buljan, S.T.; Neil, J.T.

    1991-09-10

    A process for producing a silicon nitride-based article of improved fracture toughness and strength is disclosed. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12 m[sup 2]/g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  8. Power mixture and green body for producing silicon nitride base articles of high fracture toughness and strength

    DOEpatents

    Huckabee, M.L.; Buljan, S.T.; Neil, J.T.

    1991-09-17

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength are disclosed. The powder mixture includes (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12m[sup 2]g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder. No Drawings

  9. Power mixture and green body for producing silicon nitride base & articles of high fracture toughness and strength

    DOEpatents

    Huckabee, Marvin L.; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength. The powder mixture includes 9a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon mitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12m.sup.2 g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified articel an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder.

  10. Effect of overglazed and polished surface finishes on the compressive fracture strength of machinable ceramic materials.

    PubMed

    Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi

    2010-11-01

    Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.

  11. Monolithic ceramic analysis using the SCARE program

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.

    1988-01-01

    The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.

  12. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  13. Analysis of Shock and High-Rate Data for Ceramics: Strength and Failure of Brittle Solids

    DTIC Science & Technology

    2007-07-01

    Fracture Damage............................................................................... 31 Residual Projectile Velocity... Fracture ............................................................................................ 36 VI Closure...Project No. 17168 2 exploration of ceramic strength in the ballistic event – in particular the failure, or fracture , wave phenomena. Another objective is

  14. Investigation of the Effect of Cemented Fractures on Fracturing Network Propagation in Model Block with Discrete Orthogonal Fractures

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.

    2017-07-01

    Researchers have recently realized that the natural fractures in shale reservoirs are often cemented or sealed with various minerals. However, the influence of cement characteristics of natural fracture on fracturing network propagation is still not well understood. In this work, laboratory-scaled experiments are proposed to prepare model blocks with discrete orthogonal fractures network with different strength of natural fracture, in order to reveal the influence of cemented natural fractures on the interactions between hydraulic fractures and natural fractures. A series of true triaxial hydraulic fracturing experiments were conducted to investigate the mechanism of hydraulic fracture initiation and propagation in model blocks with natural fractures of different cement strength. The results present different responses of interactions between hydraulic and natural fractures, which can be reflected on the pump pressure profiles and block failure morphology. For model blocks with fluctuated pump pressure curves, the communication degree of hydraulic and natural fractures is good, which is confirmed by a proposed new index of "P-SRV." The most significant finding is that too high and too low strength properties of cemented natural fracture are adverse to generate complex fracturing network. This work can help us better understand how cemented natural fractures affect the fracturing network propagation subsurface and give us reference to develop more accurate hydraulic fracturing models.

  15. [Clinical observation on the effect of joint mobilization in treating elderly patients after distal radius fractures operation].

    PubMed

    Jia, Xue-Feng; Cai, Hong-Xin; Lin, Ge-Sheng; Fang, Ji-Shi; Wang, Yong; Wu, Zhi-Yong; Tu, Xu-Hui

    2017-07-25

    To investigate the effect of joint mobilization on postoperative wrist joint function, pain and grip strength for elderly patients with distal radius fracture. From January 2015 to June 2016, a total of 67 elderly patients with distal radius fracture were randomly divided into routine exercise group and joint mobilization group. Among them, 37 patients in the routine exercise group underwent conventional distal radius fracture postoperative joint function exercise regimen, including 16 males and 21 females with a mean age of (67.8±3.2) years old ranging from 60 to 72 years old;the injured side was dominant in 23 cases and non-dominant in 14 cases;injury mechanism was fall in 26 cases, traffic accident in 11 cases; for AO type, 6 cases were type B3, 18 cases were type C1, 7 cases were type C2, 6 cases was type C3. Other 30 patients in the joint mobilization group underwent joint mobilization on the basis of the routine exercise group including 14 males and 16 females with a mean age of (67.1±4.0) years old ranging from 61 to 74 years old; the injured side was dominant in 21 cases and non-dominant in 9 cases;injury mechanism was fall in 25 cases, traffic accident in 5 cases;for AO type, 8 cases were type B3, 13 cases were type C1, 6 cases were type C2, 9 cases were type C3. The wrist joint activity, Gartland-Werley wrist joint function score, VAS pain score and grip strength were observed at 3 months afrer treatment. After 3 months' treatment, the VAS in the routine exercise group was higher than that of the joint mobilization group ( P <0.05). The grip strength of affected side in both groups were lower than that of contralateral side, but the average grip strength of affected side in joint mobilization group was higher than that in routine exercise group( P <0.05). In routine exercise group, the average angle of flexion, extension, radial deviation were significantly higher than those of joint mobilization group( P <0.05). But ulnar deviation angle in routine exercise group compared with joint mobilization group had no significant difference ( P >0.05). In the comparison of each item of Gartland-Werley, there was no significant difference between two groups in residual deformity and complication( P >0.05); the average score of subjective score, objective score and total score in routine exercise group were significantly higher than those of the joint mobilization group ( P <0.05). The wrist function Gartland-Werley score in routine exercise group after treatment was excellent in 21 cases, good in 10, 6 in fair, while in joint mobilization group, excellent in 23, good in 6, fair in 1( P <0.05). The application of joint mobilization in the treatment of elderly patients with distal radius fracture can improve the joint activity and obtain better wrist function after surgery.

  16. Machinable glass-ceramics forming as a restorative dental material.

    PubMed

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  17. Effect of Pulse Shape on Spall Strength

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Petrov, Yu. V.

    2018-03-01

    This paper analyzes the effect of the time-dependent shape of a load pulse on the spall strength of materials. Within the framework of a classical one-dimensional scheme, triangular pulses with signal rise and decay portions and with no signal rise portions considered. Calculation results for the threshold characteristics of fracture for rail steel are given. The possibility of optimization of fracture by selecting a loading time with the use of an introduced characteristic of dynamic strength (pulse fracture capacity) is demonstrated. The study is carried out using a structure-time fracture criterion.

  18. Radiographic and ultrasonic characterization of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Abel, P. B.

    1988-01-01

    The capabilities were investigated of projection microfocus X-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  19. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  20. Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.

    2017-07-01

    Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105-106 s-1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.

  1. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace structural applications

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.

    1980-01-01

    The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.

  2. Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Tian, Baohong; Volinsky, Alex A.; Sun, Huili; Chai, Zhe; Liu, Ping; Chen, Xiaohong; Liu, Yong

    2016-04-01

    Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.

  3. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.

    PubMed

    Keyak, J H; Sigurdsson, S; Karlsdottir, G S; Oskarsdottir, D; Sigmarsdottir, A; Kornak, J; Harris, T B; Sigurdsson, G; Jonsson, B Y; Siggeirsdottir, K; Eiriksdottir, G; Gudnason, V; Lang, T F

    2013-11-01

    Proximal femoral (hip) strength computed by subject-specific CT scan-based finite element (FE) models has been explored as an improved measure for identifying subjects at risk of hip fracture. However, to our knowledge, no published study has reported the effect of loading condition on the association between incident hip fracture and hip strength. In the present study, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) quantitative CT (QCT) scans of 5500 older male and female subjects were obtained. During 4-7years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as controls from a pool of age- and sex-matched subjects. From the QCT data, FE models employing nonlinear material properties computed FE-strength of the left hip of each subject in loading from a fall onto the posterolateral (FPL), posterior (FP) and lateral (FL) aspects of the greater trochanter (patent pending). For comparison, FE strength in stance loading (FStance) and total femur areal bone mineral density (aBMD) were also computed. For all loading conditions, the reductions in strength associated with fracture in men were more than twice those in women (p≤0.01). For fall loading specifically, posterolateral loading in men and posterior loading in women were most strongly associated with incident hip fracture. After adjusting for aBMD, the association between FP and fracture in women fell short of statistical significance (p=0.08), indicating that FE strength provides little advantage over aBMD for identifying female hip fracture subjects. However, in men, after controlling for aBMD, FPL was 424N (11%) less in subjects with fractures than in controls (p=0.003). Thus, in men, FE models of posterolateral loading include information about incident hip fracture beyond that in aBMD. © 2013.

  4. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  5. Treatment of Lateral Tibial Condylar Fractures Using Bioactive, Bioresorbable Forged Composites of Raw Particulate Unsintered Hydroxyapatite/Poly-L-Lactide Screws.

    PubMed

    Kuroyanagi, Gen; Yoshihara, Hiroyuki; Yamamoto, Naohiro; Suzuki, Hiroyuki; Yamada, Kunio; Yoshida, Yukio; Otsuka, Takanobu; Takada, Naoya

    2018-05-01

    Forged composites of raw particulate unsintered hydroxyapatite/poly-L-lactide (F-u-HA/PLLA) devices possess high mechanical strength, bioactivity, and radio-opacity. The aim of this study was to assess the efficacy of F-u-HA/PLLA screws in the treatment of lateral tibial condylar fractures. From January 2005 to December 2010, a total of 7 patients with displaced closed lateral tibial condylar fractures (Schatzker type II) were treated using F-u-HA/PLLA screws. Open reduction and internal fixation was performed using 2 or 3 F-u-HA/PLLA screws. After surgery, weight bearing was not allowed for 6 weeks. Range of motion exercise was initiated after removal of the plaster splint. Radiographs were evaluated for fracture healing, joint depression, and the radioopacity of F-u-HA/PLLA screws. Clinical outcomes and postoperative complications were also assessed. Average follow-up was 44 months. All fractures were successfully healed. Average values for joint depression were 4.7 mm (range, 2-9 mm) preoperatively, 0.4 mm (range, 0-1 mm) postoperatively, and 0.4 mm (range, 0-1 mm) at final follow-up. Whole shadows of F-u-HA/PLLA screws were observed during the follow-up period. Breakage of screws, osteolysis, and a radiolucent zone around the screws were not observed at final follow-up. Average knee flexion and extension were 134° (range, 110° to 150°) and -1° (range, -10° to 0°), respectively. No patient had wound infection, late aseptic tissue response, or foreign body reaction postoperatively. None of the patients reported pain at final follow-up. These results suggest that F-u-HA/PLLA screws could be an alternative option for the treatment of lateral tibial condylar fractures. [Orthopedics. 2018; 41(3):e365-e368.]. Copyright 2018, SLACK Incorporated.

  6. In-vitro performance and fracture strength of thin monolithic zirconia crowns

    PubMed Central

    Weigl, Paul; Wu, Yanyun; Felber, Roland; Lauer, Hans-Christoph

    2018-01-01

    PURPOSE All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: 5℃ and 55℃, 2×3,000 cycles, 2 min/cycle; ML: 50 N, 1.2×106 cycles), while the other samples were stored in water (37℃/24 h). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; α=.05). The fracture mode was analyzed. RESULTS In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application. PMID:29713427

  7. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less

  8. Effect of silica coating on fracture strength of glass-infiltrated alumina ceramic cemented to dentin.

    PubMed

    Xie, Haifeng; Zhu, Ye; Chen, Chen; Gu, Ning; Zhang, Feimin

    2011-10-01

    To examine the availability of sol-gel processed silica coating for alumina-based ceramic bonding, and determine which silica sol concentration was appropriate for silica coating. Sixty disks of In-Ceram alumina ceramic were fabricated and randomly divided into 5 main groups. The disks received 5 different surface conditioning treatments: Group Al, sandblasted; Group AlC, sandblasted + silane coupling agent applied; Groups Al20C, Al30C, and Al40C, sandblasted, silica coating via sol-gel process prepared using 20 wt%, 30 wt%, and 40 wt% silica sols, and then silane coupling agent applied. Before bonding, one-step adhesives were applied on pre-prepared ceramic surfaces of all groups. Then, 60 dentin specimens were prepared and conditioned with phosphoric acid and one-step adhesive. Ceramic disks of all groups were cemented to dentin specimens with dual-curing resin cements. Fracture strength was determined at 24 h and after 20 days of storage in water. Groups Al20C, Al30C, and Al40C revealed significantly higher fracture strength than groups Al and AlC. No statistically significant difference in fracture strength was found between groups Al and AlC, or among groups Al20C, Al30C, and Al40C. Fracture strength values of all the groups did not change after 20 days of water storage. Sol-gel processed silica coating can enhance fracture strength of In-Ceram alumina ceramic after bonding to dentin, and different silica sol concentrations produced the same effects. Twenty days of water storage did not decrease the fracture strength.

  9. Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing.

    PubMed

    Warden, Stuart J; Komatsu, David E; Rydberg, Johanna; Bond, Julie L; Hassett, Sean M

    2009-03-01

    Fracture healing is thought to be naturally optimized; however, recent evidence indicates that it may be manipulated to occur at a faster rate. This has implications for the duration of morbidity associated with bone injuries. Two interventions found to accelerate fracture healing processes are recombinant human parathyroid hormone [1-34] (PTH) and low-intensity pulsed ultrasound (LIPUS). This study aimed to investigate the individual and combined effects of PTH and LIPUS on fracture healing. Bilateral midshaft femur fractures were created in Sprague-Dawley rats, and the animals treated 7 days/week with PTH (10 microg/kg) or a vehicle solution. Each animal also had one fracture treated for 20 min/day with active-LIPUS (spatial-averaged, temporal-averaged intensity [I(SATA)]=100 mW/cm(2)) and the contralateral fracture treated with inactive-LIPUS (placebo). Femurs were harvested 35 days following injury to permit micro-computed tomography, mechanical property and histological assessments of the fracture calluses. There were no interactions between PTH and LIPUS indicating that their effects were additive rather than synergistic. These additive effects were contrasting with LIPUS primarily increasing total callus volume (TV) without influencing bone mineral content (BMC), and PTH having the opposite effect of increasing BMC without influencing TV. As a consequence of the effect of LIPUS on TV but not BMC, it decreased volumetric bone mineral density (vBMD) resulting in a less mature callus. The decreased maturity and persistence of cartilage at the fracture site when harvested offset any beneficial mechanical effects of the increased callus size with LIPUS. In contrast, the effect of PTH on callus BMC but not TV resulted in increased callus vBMD and a more mature callus. This resulted in PTH increasing fracture site mechanical strength and stiffness. These data suggest that PTH may have utility in the treatment of acute bone fractures, whereas LIPUS at an I(SATA) of 100 mW/cm(2) does not appear to be indicated in the management of closed, diaphyseal fractures.

  10. In Tropical Lowland Rain Forests Monocots have Tougher Leaves than Dicots, and Include a New Kind of Tough Leaf

    PubMed Central

    Dominy, Nathaniel J.; Grubb, Peter J.; Jackson, Robyn V.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.

    2008-01-01

    Background and Aims There has been little previous work on the toughness of the laminae of monocots in tropical lowland rain forest (TLRF) despite the potential importance of greater toughness in inhibiting herbivory by invertebrates. Of 15 monocot families with >100 species in TLRF, eight have notably high densities of fibres in the lamina so that high values for toughness are expected. Methods In north-eastern Australia punch strength was determined with a penetrometer for both immature leaves (approx. 30 % final area on average) and fully expanded, fully toughened leaves. In Singapore and Panama, fracture toughness was determined with an automated scissors apparatus using fully toughened leaves only. Key Results In Australia punch strength was, on average, 7× greater in shade-tolerant monocots than in neighbouring dicots at the immature stage, and 3× greater at the mature stage. In Singapore, shade-tolerant monocots had, on average, 1·3× higher values for fracture toughness than neighbouring dicots. In Panama, both shade-tolerant and gap-demanding monocots were tested; they did not differ in fracture toughness. The monocots had markedly higher values than the dicots whether shade-tolerant or gap-demanding species were considered. Conclusions It is predicted that monocots will be found to experience lower rates of herbivory by invertebrates than dicots. The tough monocot leaves include both stiff leaves containing relatively little water at saturation (e.g. palms), and leaves which lack stiffness, are rich in water at saturation and roll readily during dry weather or even in bright sun around midday (e.g. gingers, heliconias and marants). Monocot leaves also show that it is possible for leaves to be notably tough throughout the expansion phase of development, something never recorded for dicots. The need to broaden the botanist's mental picture of a ‘tough leaf’ is emphasized. PMID:18387969

  11. In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf.

    PubMed

    Dominy, Nathaniel J; Grubb, Peter J; Jackson, Robyn V; Lucas, Peter W; Metcalfe, Daniel J; Svenning, Jens-Christian; Turner, Ian M

    2008-06-01

    There has been little previous work on the toughness of the laminae of monocots in tropical lowland rain forest (TLRF) despite the potential importance of greater toughness in inhibiting herbivory by invertebrates. Of 15 monocot families with >100 species in TLRF, eight have notably high densities of fibres in the lamina so that high values for toughness are expected. In north-eastern Australia punch strength was determined with a penetrometer for both immature leaves (approx. 30 % final area on average) and fully expanded, fully toughened leaves. In Singapore and Panama, fracture toughness was determined with an automated scissors apparatus using fully toughened leaves only. In Australia punch strength was, on average, 7x greater in shade-tolerant monocots than in neighbouring dicots at the immature stage, and 3x greater at the mature stage. In Singapore, shade-tolerant monocots had, on average, 1.3x higher values for fracture toughness than neighbouring dicots. In Panama, both shade-tolerant and gap-demanding monocots were tested; they did not differ in fracture toughness. The monocots had markedly higher values than the dicots whether shade-tolerant or gap-demanding species were considered. It is predicted that monocots will be found to experience lower rates of herbivory by invertebrates than dicots. The tough monocot leaves include both stiff leaves containing relatively little water at saturation (e.g. palms), and leaves which lack stiffness, are rich in water at saturation and roll readily during dry weather or even in bright sun around midday (e.g. gingers, heliconias and marants). Monocot leaves also show that it is possible for leaves to be notably tough throughout the expansion phase of development, something never recorded for dicots. The need to broaden the botanist's mental picture of a 'tough leaf' is emphasized.

  12. Graph-Cut Methods for Grain Boundary Segmentation (Preprint)

    DTIC Science & Technology

    2011-06-01

    metals and metal alloys ) are among the strongest determinants of many material properties, such as mechanical strength or fracture resistance. In materials...cropped) Ni-based alloy image (a) using normalized cut (b) and ratio cut (c). Similar to normalized cut is the average-cut approach [11], where the...framework [2]. (a) (b) (c) Figure 3: Segmentation of a (cropped) Ni-based alloy image by optimal labeling. (a) Segmented grain bound- aries in a template

  13. Thermal effects on shearing resistance of fractures in Tak granite

    NASA Astrophysics Data System (ADS)

    Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.

    2018-06-01

    Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.

  14. Strength advantages of chemically polished boron fibers before and after reaction with aluminum

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Smith, R. J.

    1982-01-01

    In order to determine their strength potential, the fracture properties of different types of commercial boron fibers were measured before and after application of secondary strengthening treatments. The principal treatments employed were a slight chemical polish, which removed low strength surface flaws, and a heat treatment in oxygen, which contracted the fibers and thereby compressed intrinsic bulk flaws. Those fiber types most significantly strengthened were 200 to 400 micrometers (8 to 16 mil) diameter boron on tungsten fibers produced in a single chemical vapor deposition reactor. The slight polish increased average tensile strenghts from 3.4 to 4.4 CN/m2 (500 to 640 ksi) and reduced coefficients of variation from about 15 to 3 percent. The oxygen heat treatment plus slight polish further improved average strengths to 5.5 GN/m2 (800 ksi) with coefficients near 3 percent. To ascertain whether these excellent properties could be retained after fabrication of B/Al composites, as produced and polished 203 micrometers (8 mil) fibers were thinly coated with aluminum, heat treated at B/Al fabrication temperatures, and then tested in tension and flexure at room temperature. The pre-polished fibers were observed to retain their superior strengths to higher temperatures than the as-produced fibers even though both were subjected to the same detrimental reaction with aluminum.

  15. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density

    PubMed Central

    Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.

    2017-01-01

    Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534

  16. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.

    PubMed

    Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R

    2005-09-01

    The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.

  17. Analysis of Vertebral Bone Strength, Fracture Pattern, and Fracture Location: A Validation Study Using a Computed Tomography-Based Nonlinear Finite Element Analysis

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476

  18. Improving the toughness of ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Sato, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors. Chapter 1 reviews the mechanical properties of ultrahigh strength steels and the physical metallurgy of AerMet 100. It also describes the fracture mechanisms of steel, i.e. ductile microvoid coalescence, brittle transgranular cleavage, and intergranular separation. Chapter 2 examines the strength-toughness relationship for three heats of AerMet 100. A wide variation of toughness is obtained at the same strength level. The toughness varies despite the fact that all heat fracture in the ductile fracture mode. The difference originates from the inclusion content. Lower inclusion volume fraction and larger inclusion spacing gives rise to a greater void growth factor and subsequently a higher fracture toughness. The fracture toughness value, JIc, is proportional to the particle spacing of the large non-metallic inclusions. Chapter 3 examines the ductile-brittle transition of AerMet 100 and the effect of a higher austenitization temperature, using the Charpy V-notch test. The standard heat treatment condition of AerMet 100 shows a gradual ductile-brittle transition due to its fine effective grain size. Austenitization at higher temperature increases the prior austenite grain size and packet size, leading to a steeper transition at a higher temperature. Both transgranular cleavage and intergranular separation are observed in the brittle fracture mode. Chapter 4 examines the effect of inclusion content, prior austenite grain size, and the amount of austenite on the strength-toughness relationship. The highest toughness is achieved by low inclusion content, small prior austenite grain size, and a small content of stable austenite. The low inclusion content increases the strain at the fracture. The reduction in prior austenite grain size prevents the fast unstable crack propagation by cleavage. And the stable austenite decreases the strength of the intergranular separation at the prior austenite grain boundary, which provides the stress relief at the crack tip.

  19. Perceived pain, fear of falling and physical function in women with osteoporosis.

    PubMed

    Hübscher, Markus; Vogt, Lutz; Schmidt, Katharina; Fink, Matthias; Banzer, Winfried

    2010-07-01

    The aim of this cross-sectional study was to evaluate pain intensity-related differences in physical performance and fear of falling in elderly women with osteoporosis. A sample of 82 osteoporotic women (73.8±8.1 years) with and without vertebral fractures was included. Numeric rating scale (NRS) measures (0=no pain, 10=unbearable) were applied to obtain actual pain intensity and to stratify between patients with mild (0-3), moderate (4-6) and severe (7-10) pain. Activity-related fear of falling was evaluated with the Falls Efficacy Scale-International Version (FES-I). Physical performance measures included maximum voluntary quadriceps strength, postural sway and gait speed measures. Controlling for age, fractures, and history of falls ANCOVA with Scheffe's post hoc test indicated significant slower walking velocities and greater postural sway for patients with severe pain. Furthermore, significant group differences could be detected for muscle strength and fear of falling. Patients with more intense pain (NRS≥5) were 6.4 times (odds ratio; 95%CI: 1.5-26.7) more likely to score below average in fall-related self-efficacy and all physical performance tests. Among women with osteoporosis, heightened back pain intensity increases fear of falling and decreases physical performance irrespective of vertebral fractures and history of falls. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The effects of once-weekly teriparatide on hip geometry assessed by hip structural analysis in postmenopausal osteoporotic women with high fracture risk.

    PubMed

    Sone, Teruki; Ito, Masako; Fukunaga, Masao; Tomomitsu, Tatsushi; Sugimoto, Toshitsugu; Shiraki, Masataka; Yoshimura, Takeshi; Nakamura, Toshitaka

    2014-07-01

    Weekly administration of teriparatide has been shown to reduce the risk of vertebral and non-vertebral fractures in patients with osteoporosis at higher fracture risk in Japan. However, its efficacy for hip fracture has not been established. To gain insight into the effect of weekly teriparatide on the hip, hip structural analysis (HSA) based on dual-energy X-ray absorptiometry (DXA) was performed using the data of 209 postmenopausal osteoporotic women who had participated in the original randomized, multicenter, double-blind, placebo-controlled trial assessing the effects of once-weekly 56.5 μg teriparatide for 72 weeks. The DXA scans, obtained at baseline, 48 weeks and 72 weeks, were analyzed to extract bone mineral density (BMD) and cross-sectional geometrical indices at the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft. Compared with placebo after 72 weeks, the teriparatide group showed significantly higher BMD, average cortical thickness, bone cross-sectional area, and section modulus, and lower buckling ratio at both the NN and IT regions. No significant expansion of periosteal diameter was observed at these regions. There were no significant differences in BMD and HSA indices at the shaft region. The results indicate that overall structural strength in the proximal femur increased compared to placebo, suggesting that once-weekly teriparatide effectively reverses changes in hip geometry and strength with aging. Copyright © 2014. Published by Elsevier Inc.

  1. Investigation of the plastic fracture of high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Merchant, R. H.; Low, J. R., Jr.

    1974-01-01

    In a study of plastic fracture in five high-strength aluminum alloys (2014, 2024, 2124, 7075, and 7079), it has been shown that fracture toughness is affected primarily by the size and volume fraction of the larger (2 to 10 microms) second-phase particles. Certain of these particles crack at small plastic strains, nucleating voids which, with further plastic strain, coalesce to cause fracture. Not all second-phase particles crack at small plastic strains, and qualitative analysis of those which are primarily responsible for void nucleation shows that they contain iron or silicon or both. This result suggests that a reduction in the iron and silicon impurity content of the alloys should improve fracture toughness without loss of strength.

  2. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain ratemore » during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes in the tritium-exposed specimens were similar for all forgings. Another FY16 objective was to prepare fracture toughness specimens from Types 304L and 21-6-9 stainless steel weldments and heat-affected zones (HAZ) for tritium charging.« less

  3. Water Pressure Effects on Strength and Deformability of Fractured Rocks Under Low Confining Pressures

    NASA Astrophysics Data System (ADS)

    Noorian Bidgoli, Majid; Jing, Lanru

    2015-05-01

    The effect of groundwater on strength and deformation behavior of fractured crystalline rocks is one of the important issues for design, performance and safety assessments of surface and subsurface rock engineering problems. However, practical difficulties make the direct in situ and laboratory measurements of these properties of fractured rocks impossible at present, since effects of complex fracture system hidden inside the rock masses cannot be accurately estimated. Therefore, numerical modeling needs to be applied. The overall objective of this paper is to deepen our understanding on the validity of the effective stress concept, and to evaluate the effects of water pressure on strength and deformation parameters. The approach adopted uses discrete element methods to simulate the coupled stress-deformation-flow processes in a fractured rock mass with model dimensions at a representative elementary volume (REV) size and realistic representation of fracture system geometry. The obtained numerical results demonstrate that water pressure has significant influence on the strength, but with minor effects on elastic deformation parameters, compared with significant influence by the lateral confining pressure. Also, the classical effective stress concept to fractured rock can be quite different with that applied in soil mechanics. Therefore, one should be cautious when applying the classical effective stress concept to fractured rock media.

  4. Long-term effects of functional impairment on fracture risk and mortality in postmenopausal women.

    PubMed

    Rikkonen, T; Poole, K; Sirola, J; Sund, R; Honkanen, R; Kröger, H

    2018-06-02

    Our findings imply that simple functional tests can predict both hip fracture risk and excess mortality in postmenopausal women. Since the tests characterize general functional capacity (one-legged stance, squatting down, and grip strength), these simple measures should have clinical utility in the assessment of women at risk of falls and fragility fracture. Functional impairment is associated with the risk of fall, which is the leading cause of hip fracture. We aimed to determine how clinical assessments of functional impairment predict long-term hip fracture and mortality. A population-based prospective cohort involved 2815 Caucasian women with the average baseline age of 59.1 years. The mean follow-up time in 1994-2014 was 18.3 years. Three functional tests and their combinations assessed at baseline were treated as dichotomous risk factors: (1) inability to squat down and touch the floor (SQ), (2) inability to stand on one leg for 10 s (SOL), and (3) having grip strength (GS) within the lowest quartile (≤ 58 kPa, mean 45.6 kPa). Bone mineral density (BMD) at the proximal femur was measured by DXA. Fractures and deaths were verified from registries. Hazard ratios were determined by using Cox proportional models. Age, body mass index (BMI), and BMD were included as covariates for fracture risk estimates. Age, BMI, and smoking were used for mortality. Altogether, 650 (23.1%) women had 718 follow-up fractures, including 86 hip fractures. The mortality during the follow-up was 16.8% (n = 473). Half of the women (56.8%, n = 1600) had none of the impairments and were regarded as the referent group. Overall, women with any of the three impairments (43.2%, n = 1215) had higher risks of any fracture, hip fracture, and death, with hazard ratios (HR) of 1.3 ((95% CI) 1.0-1.5, p < 0.01), 2.4 (1.5-3.4, p < 0.001), and 1.5 (1.3-1.8, p < 0.001), respectively. The strongest single predictor for hip fracture was failing to achieve a one-leg stand for 10 s (prevalence 7.1%, n = 200), followed by inability to squat down (27.0%, n = 759) and weak grip strength (24.4%, n = 688), with their respective HRs of 4.3 (2.3-8.0, p < 0.001), 3.1 (2.0-5.0, p < 0.001), and 2.0 (1.2-3.4, p < 0.001). In addition, age, lower BMD, BMI, and smoking were significant covariates. These findings suggest that functional tests provide long-term prediction of fracture and death in postmenopausal women. Whether reversal of these impairments is associated with a reduction in adverse outcomes is an area for future trials.

  5. [Stress test and clinical application of the minimal-invasive dynamic hip screw].

    PubMed

    Tong, Song-Lin; Chen, Jian-Lie; Lu, Wen-Jie; Pan, Zhi-Jun; Wang, Yi-Jin

    2008-05-01

    To recognize the effect of minimal-invasive dynamic hip screw (MIDHS) on the treatment of intertrochanteric fracture of the hip by biomechanical test and preliminary clinical application. Ten artifical made intertrochanteric fractures of femoral specimen from five cadavers were divided into two groups randomly. The fractures in first group were fixed by MIDHS and other group were fixed by dynamic hip (DHS). Biomechanical characteristics of two different devices were compared with the biomechanical character of load-straining, load-displacing, rigidity and strength of femur by statistic analysis. According to the Harris evaluation, healing effect of intertrochanteric fractures was evaluated clinically on the 15 cases. Straining changes of MIDHS were 14% and 11% less than that of DHS on the tensile side and the pressure side respectively; Sinking and horizontal displacement, were 19% and 22% less than that of DHS respectivly. But external and internal stress intensity,axial and bending rigidity were all higher than that of DHS, they were 12%, 11%, 19% and 37%. Maximal destroyed twisting moment (15%) and average twisting rigidity (15%) were both higher than that of DHS, but twisting angle was 18% less. Under the force, of 1 800 N, the open angle of the fracture on transverse section was 2.28 degrees,while the DHS's was 3.60 degrees . The data above were significant differences statistically (P < 0.01). The average Harris score of the 15 cases with intertrochanteric fractures treated by MIDHS was 91, excellent and good rate was 92.7%, without complications of internal fixation failure,postoperative infection and so on. The design of minimal-invasive dynamic hip screw is reasonable and effective against rotating, shearing and varus stress force of the fracture, and it provides possibility of implanting the internal fixation with minimal incision. So it is an ideal internal fixation device for the treatment of intertrochanteric fractures.

  6. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  7. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    PubMed

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An investigation of the plastic fracture of high strength steels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1973-01-01

    Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation.

  9. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    PubMed

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  10. Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture.

    PubMed

    Gumieiro, David Nicoletti; Murino Rafacho, Bruna Paola; Buzati Pereira, Bruna Letícia; Cavallari, Karelin Alvisi; Tanni, Suzana Erico; Azevedo, Paula Schmidt; Polegato, Bertha Furlan; Mamede Zornoff, Leonardo Antonio; Dinhane, Daniel Innocenti; Innocenti Dinhane, Kandir Genésio; Cação Pereira, Gilberto José; de Paiva, Sergio Alberto Rupp; Minicucci, Marcos Ferreira

    2015-01-01

    The aim of this study was to evaluate the association between serum levels of 25(OH) vitamin D3 with midupper arm muscle circumference (MUAMC), handgrip strength and length of hospital stay (LOS) after hip fracture. In total, 102 consecutive patients with hip fracture over the age of 65 were admitted to the orthopedic unit and prospectively evaluated. All of the patients were treated according to specific protocols depending on the type of fracture. Anthropometric measurements and handgrip strength were performed, and blood samples were taken for serum biochemistry and 25(OH) vitamin D3 analysis within the first 72 h of admission. All of the patients were followed during their hospital stay, and the length of stay was recorded. Of the patients, two were excluded because of pathologic fractures. In total, 100 patients with a mean age of 80 ± 7 y were included in the analysis. Among these patients, 73% were female, and 37% had vitamin D deficiency. The median LOS was 7 (5-11) d. Patients with vitamin D deficiency had lower handgrip strength in univariate analysis. In the multiple linear regression analysis with robust standard error, serum vitamin D levels adjusted by age and sex were associated with handgrip strength but not with MUAMC and LOS after hip fracture. In conclusion, vitamin D serum levels were associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study.

    PubMed

    Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap

    2007-11-01

    We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p < 0.00001), whereas no significant difference in buckling ratios was seen. Modeled fracture distribution by BMD and buckling ratio levels were in concordance to the prospective data and showed that hip fractures seem to occur at the same absolute levels of bone instability (buckling ratio) in both men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in expanded bones plays a key role on local susceptibility to fracture. Even though the buckling ratio does not offer additional predictive value, these findings improve our understanding of why low BMD is a good predictor of fragility fractures.

  12. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  13. Heat damage-free laser-microjet cutting achieves highest die fracture strength

    NASA Astrophysics Data System (ADS)

    Perrottet, Delphine; Housh, Roy; Richerzhagen, Bernold; Manley, John

    2005-04-01

    Unlike conventional laser-based technologies, the water jet guided laser does not generate heat damage and contamination is also very low. The negligible heat-affected zone is one reason why die fracture strength is higher than with sawing. This paper first presents the water jet guided laser technology and then explains how it differs from conventional dry laser cutting. Finally, it presents the results obtained by three recent studies conducted to determine die fracture strength after Laser-Microjet cutting.

  14. Damage Tolerant Design Handbook. A Compilation of Fracture and Crack- Growth Data for High-Strength Alloys. Volume 4

    DTIC Science & Technology

    1983-12-01

    DAMAGTE (aduiTOLEATDSG ANBO.A TYPE OF REPORT 6 PERIOD COVERED DAMAE TLERAT DSIG HANBOO. ACOMPILATION OF FRACTURE AND CRACK GROWTH...4 Volumes (No copies furnished by DTIC) 13 KEY WORDS (Conitnue ate reverse side it necessa.ry and idenn’fy by. black flueoebr) * Fracture (Mechanics...Handbooks, *Titanium Alloys, *Nickel Alloys, *Stainless Steel, *Aluminum Alloys, High Strength Alloys, Structural Steel, Fracture Toughness, Damage

  15. Upper-limb motor and sensory function in patients with hip fracture: Comparison with community-dwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2017-11-06

    Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.

  16. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  17. Fracture strength of different soldered and welded orthodontic joining configurations with and without filling material.

    PubMed

    Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-01-01

    The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band.

  18. FRACTURE STRENGTH OF DIFFERENT SOLDERED AND WELDED ORTHODONTIC JOINING CONFIGURATIONS WITH AND WITHOUT FILLING MATERIAL

    PubMed Central

    Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-01-01

    The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band. PMID:19089229

  19. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    NASA Astrophysics Data System (ADS)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  20. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.

    PubMed

    Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J

    2007-01-01

    High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.

  1. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  2. Fundamental mechanisms of tensile fracture in aluminum sheet undirectionally reinforced with boron filament

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1972-01-01

    Results are presented from an experimental study of the tensile-fracture process in aluminum sheet unidirectionally reinforced with boron filament. The tensile strength of the material is severely limited by a noncumulative fracture mechanism which involves the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level. Matrix fracture follows in a completely ductile manner. The minimum filament stress for initiation of the fracture mechanism is shown to be approximately 1.17 GN/sq m (170 ksi), and appears to be independent of filament diameter, number of filament layers, and the strength of the filament-matrix bond. All the commonly observed features of tensile fracture surfaces are explained in terms of the observed noncumulative fracture mechanism.

  3. Implementation of ERDC HEP Geo-Material Model in CTH and Application

    DTIC Science & Technology

    2011-11-02

    used TARDEC JWL inputs for C4 and Johnson- Cook Strength inputs   TARDEC JC fracture model inputs for 5083 plate changed due to problems seen in...fracture inputs from IMD tests -  LS-DYNA C4 JWL and Johnson-Cook strength inputs used in CTH runs -  Results indicate that TARDEC JC fracture model

  4. The effect of microstructure and strength on the fracture toughness of an 18 ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1974-01-01

    Methods for increasing the strength of maraging steels are discussed. An investigation was conducted to systematically vary the strength of 18 weight percent nickel, 300 grade maraging steel, to isolate any attending microstructural changes, and to study the effects of these changes on the fracture toughness of the alloy. A study aimed at determining the aging behavior of the program alloy was carried out to provide data by which to estimate yield strength. The effects of various alloying materials on the strength of the maraging steel are examined. The mechanical properties of the 300 grade maraging steel were determined by tension tests, fatigue precracked Charpy impact tests, and plane strain fracture toughness tests.

  5. Design of ceramic components with the NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    The ceramics analysis and reliability evaluation of structures (CARES) computer program is described. The primary function of the code is to calculate the fast-fracture reliability or failure probability of macro-scopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. CARES uses results from MSC/NASTRAN or ANSYS finite-element analysis programs to evaluate how inherent surface and/or volume type flaws component reliability. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for a single or multiple failure modes by using a least-squares analysis or a maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-to-fit-tests, 90 percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan 90 percent confidence band values are also provided. Examples are provided to illustrate the various features of CARES.

  6. Evaluating the fracture toughness and flexural strength of pressable dental ceramics: an in vitro study.

    PubMed

    Gurram, Ravi; Krishna, C H Vamsi; Reddy, K Mahendranadh; Reddy, G V K Mohan; Shastry, Y Mahadev

    2014-12-01

    The study was undertaken to evaluate the biaxial flexural strength, biaxial flexural strength after etching with 9 % HF acid and fracture toughness of three commonly used pressable all ceramic core materials. Ninety glass ceramic specimens were fabricated from three commercially available leucite based core ceramic material (1) Esthetic Empress, (2) Cergo, and (3) Performance Plus. Thirty discs of each material were divided into three groups of 10 discs each. Biaxial flexural strength (30 discs,) Biaxial flexural strength for samples treated with 9 % HF acid (30 discs) and fracture toughness (30 discs) were evaluated. Core material Performance Plus had the lowest biaxial strength of 124.89 MPa, Cergo had strength of 152.22 MPa and the highest value of 163.95 was reported for Esthetic Empress. For samples treated 9 % HF, Performance Plus had the lowest biaxial strength of 98.37 MPa, Cergo had strength of 117.42 MPa and the highest value of 143.74 was reported for Esthetic Empress. Core material Performance Plus had the lowest fracture toughness of 1.063 MPa, Cergo had strength of 1.112 MPa and the highest value of 1.225 was reported for Esthetic Empress. The results shows that Esthetic Empress had better mechanical properties compared to Cergo had Performance Plus in relation to the parameters tested.

  7. Cotton properties: relative humidity and its effect on flat bundle strength elongation and fracture morphology

    USDA-ARS?s Scientific Manuscript database

    The effects of the relative humidity (RH) of testing conditions on stelometer cotton flat bundle strength and elongation measurements, and on the morphology of fiber fractures will be discussed in this talk. We observed a trend for stelometer strength and elongations measurements. Testing in conditi...

  8. Why is the age-standardized incidence of low-trauma fractures rising in many elderly populations?

    PubMed

    Kannus, Pekka; Niemi, Seppo; Parkkari, Jari; Palvanen, Mika; Heinonen, Ari; Sievänen, Harri; Järvinen, Teppo; Khan, Karim; Järvinen, Markku

    2002-08-01

    Low-trauma fractures of elderly people are a major public health burden worldwide, and as the number and mean age of older adults in the population continue to increase, the number of fractures is also likely to increase. Epidemiologically, however, an additional concern is that, for unknown reasons, the age-standardized incidence (average individual risk) of fracture has also risen in many populations during the recent decades. Possible reasons for this rise include a birth cohort effect, deterioration in the average bone strength by time, and increased average risk of (serious) falls. Literature provides evidence that the rise is not due to a birth cohort effect, whereas no study shows whether bone fragility has increased during this relatively short period of time. This osteoporosis hypothesis could, however, be tested if researchers would now repeat the population measurements of bone mass and density that were made in the late 1980s and the 1990s. If such studies proved that women's and men's age-standardized mean values of bone mass and density have declined over time, the osteoporosis hypothesis would receive scientific support. The third explanation is based on the hypothesis that the number and/or severity of falls has risen in elderly populations during the recent decades. Although no study has directly tested this hypothesis, a great deal of indirect epidemiologic evidence supports this contention. For example, the age-standardized incidence of fall-induced severe head injuries, bruises and contusions, and joint distortions and dislocations has increased among elderly people similarly to the low-trauma fractures. The fall hypothesis could also be tested in the coming years because the 1990s saw many research teams reporting age- and sex-specific incidences of falling for elderly populations, and the same could be done now to provide data comparing the current incidence rates of falls with the earlier ones.

  9. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  10. A Dataset of Rock Strength Along the Mixed Bedrock-alluvial Colorado River-Quantifying a Fundamental Control in Geomorphology

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Bursztyn, N.

    2014-12-01

    Bedrock strength is a key parameter in slope stability, landscape erosion, and fluvial incision, though it is typically ignored or at best indirectly constrained in models, as with the k erodability parameter in stream-power formulations. Indeed, empirical datasets of rock strength suited to address geomorphic questions are rare, in part because of the difficulty in measuring those rocks that are heterolithic, weak, or poorly exposed. We have completed a large dataset of measured bedrock strength organized by rock units exposed along the length of the trunk Colorado-Green river through the Colorado Plateau of the western U.S. Measurements include Selby RMS, fracturing, and field compressive tests at 168 localities, as well as 672 individual-sample tensile-strength tests in the laboratory. These rock strength results are compared to geomorphic metrics of unit stream power, river gradient, valley-bottom width, and local relief through the arid Colorado Plateau. Our measurements trend coherently and logically with bedrock type and age/induration, especially in the case of tensile strength and when the influence of fracturing is also considered, signs that the dataset is robust. Focusing on bedrock (rather than alluvial) reaches of the fluvial transect and tensile strength, there is a positive rank-correlation and a strong power-law correlation between reach-averaged rock strength and unit stream power, as well as an elegant linear relation between tensile strength and river gradient. To address the problem of immeasureable rock types, we utilize the inverse power-law scaling between tensile strength and valley-bottom width to estimate the "effective" tensile strength of heterolithic, shale-rich bedrock in alluvial reaches. These results suggest that tensile strength varies to at least an order-of-magnitude smaller values than evident with directly testable rocks in this landscape, with implications for scaling erodibility parameters. Overall, results lead to the conclusion that bedrock strength is, in fact, the first-order control on large-scale fluvial geomorphology in the Colorado Plateau. On one hand this is intuitive, yet it highlights the erroneous but common assumption that bedrock erodibility is uniform or of secondary importance in fluvial morphology and landscape evolution.

  11. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.

  12. Effect of framework design on crown failure.

    PubMed

    Bonfante, Estevam A; da Silva, Nelson R F A; Coelho, Paulo G; Bayardo-González, Daniel E; Thompson, Van P; Bonfante, Gerson

    2009-04-01

    This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.

  13. Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Terrazas, Oscar R.

    The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.

  14. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test

    PubMed Central

    Yu, Miao; Wei, Chenhui; Niu, Leilei; Li, Shaohua; Yu, Yongjun

    2018-01-01

    Tensile strength and fracture toughness, important parameters of the rock for engineering applications are difficult to measure. Thus this paper selected three kinds of granite samples (grain sizes = 1.01mm, 2.12mm and 3mm), used the combined experiments of physical and numerical simulation (RFPA-DIP version) to conduct three-point-bending (3-p-b) tests with different notches and introduced the acoustic emission monitor system to analyze the fracture mechanism around the notch tips. To study the effects of grain size on the tensile strength and toughness of rock samples, a modified fracture model was established linking fictitious crack to the grain size so that the microstructure of the specimens and fictitious crack growth can be considered together. The fractal method was introduced to represent microstructure of three kinds of granites and used to determine the length of fictitious crack. It is a simple and novel method to calculate the tensile strength and fracture toughness directly. Finally, the theoretical model was verified by the comparison to the numerical experiments by calculating the nominal strength σn and maximum loads Pmax. PMID:29596422

  15. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test.

    PubMed

    Yu, Miao; Wei, Chenhui; Niu, Leilei; Li, Shaohua; Yu, Yongjun

    2018-01-01

    Tensile strength and fracture toughness, important parameters of the rock for engineering applications are difficult to measure. Thus this paper selected three kinds of granite samples (grain sizes = 1.01mm, 2.12mm and 3mm), used the combined experiments of physical and numerical simulation (RFPA-DIP version) to conduct three-point-bending (3-p-b) tests with different notches and introduced the acoustic emission monitor system to analyze the fracture mechanism around the notch tips. To study the effects of grain size on the tensile strength and toughness of rock samples, a modified fracture model was established linking fictitious crack to the grain size so that the microstructure of the specimens and fictitious crack growth can be considered together. The fractal method was introduced to represent microstructure of three kinds of granites and used to determine the length of fictitious crack. It is a simple and novel method to calculate the tensile strength and fracture toughness directly. Finally, the theoretical model was verified by the comparison to the numerical experiments by calculating the nominal strength σn and maximum loads Pmax.

  16. Constraining the Dynamic Rupture Properties with Moment Tensor Derived Vp/Vs Ratios.

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Baig, A. M.; Urbancic, T.; Viegas, G. F.

    2014-12-01

    The goal of hydraulic fracturing is to increase the permeability of rocks to extract hydrocarbons from "tight" formations. This process stimulates fluid-driven fractures which induce microseismic events. Successfully treating the formations, stimulating large volumes of the reservoir, depends on targeting parts of the formation with more "brittleness", a property which is frequently characterized from the mechanical properties of the rock. Typically, these properties are constrained using well-logs, vertical seismic profiles and 3-D seismic surveys. Such tools provide a static view of the reservoir on very large or very small scales. While lithology controls the average rock strength within a unit, the content (gas or fluid filled), the shape of the pore space and the concentration of micro-fractures alters the mechanical properties of the reservoir. Seismic moment tensor inversion of the events generated during these stimulations reveals that they are significantly non-double-couple, and are described by a tensile angle and a Poisson's ratio (or, equivalently, ratio of shear to compressional velocities, Vp/Vs) of the rock-fracture system. Following Vavryčuk (2011), the mechanical properties of the reservoir (i.e. Vp/Vs ratio) are estimated as the hydraulic fracture progresses from an extensive catalog of microseismic events spanning magnitudes of -1.5 to 0.8 in the Horn-River Basin, Canada. Studying several fracture stages in the reservoir reveals temporal and spatial variations in the rock strength within a unit as hydraulic fracturing proceeds. Initially, the estimated values of Vp/Vs are quite close to those determined from 3-D seismic surveys. As the stage progresses, previously fractured regions have lower Vp/Vs values. At the onset of maximum treating pressure, regions have anomalously high Vp/Vs values, which could reflect short-term local concentrations of high pore pressures or other interactions of the treatment with the formation. The relationship between source parameters and variations in Vp/Vs are also examined. This technique has the potential to provide a unique and dynamic view of variations in the reservoir both spatially and temporally.

  17. Fracture toughness of dentin/resin-composite adhesive interfaces.

    PubMed

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  18. Fracture Strength of Endodontically Treated Teeth with Different Access Cavity Designs.

    PubMed

    Plotino, Gianluca; Grande, Nicola Maria; Isufi, Almira; Ioppolo, Pietro; Pedullà, Eugenio; Bedini, Rossella; Gambarini, Gianluca; Testarelli, Luca

    2017-06-01

    The purpose of this study was to compare in vitro the fracture strength of root-filled and restored teeth with traditional endodontic cavity (TEC), conservative endodontic cavity (CEC), or ultraconservative "ninja" endodontic cavity (NEC) access. Extracted human intact maxillary and mandibular premolars and molars were selected and assigned to control (intact teeth), TEC, CEC, or NEC groups (n = 10/group/type). Teeth in the TEC group were prepared following the principles of traditional endodontic cavities. Minimal CECs and NECs were plotted on cone-beam computed tomographic images. Then, teeth were endodontically treated and restored. The 160 specimens were then loaded to fracture in a mechanical material testing machine (LR30 K; Lloyd Instruments Ltd, Fareham, UK). The maximum load at fracture and fracture pattern (restorable or unrestorable) were recorded. Fracture loads were compared statistically, and the data were examined with analysis of variance and the Student-Newman-Keuls test for multiple comparisons. The mean load at fracture for TEC was significantly lower than the one for the CEC, NEC, and control groups for all types of teeth (P < .05), whereas no difference was observed among CEC, NEC, and intact teeth (P > .05). Unrestorable fractures were significantly more frequent in the TEC, CEC, and NEC groups than in the control group in each tooth type (P < .05). Teeth with TEC access showed lower fracture strength than the ones prepared with CEC or NEC. Ultraconservative "ninja" endodontic cavity access did not increase the fracture strength of teeth compared with the ones prepared with CEC. Intact teeth showed more restorable fractures than all the prepared ones. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Deferoxamine restores callus size, mineralization, and mechanical strength in fracture healing after radiotherapy.

    PubMed

    Donneys, Alexis; Ahsan, Salman; Perosky, Joseph E; Deshpande, Sagar S; Tchanque-Fossuo, Catherine N; Levi, Benjamin; Kozloff, Ken M; Buchman, Steven R

    2013-05-01

    Therapeutic augmentation of fracture-site angiogenesis with deferoxamine has proven to increase vascularity, callus size, and mineralization in long-bone fracture models. The authors posit that the addition of deferoxamine would enhance pathologic fracture healing in the setting of radiotherapy in a model where nonunions are the most common outcome. Thirty-five Sprague-Dawley rats were divided into three groups. Fracture, irradiated fracture, and irradiated fracture plus deferoxamine. The irradiated fracture and irradiated fracture plus deferoxamine groups received a human equivalent dose of radiotherapy [7 Gy/day for 5 days, (35 Gy)] 2 weeks before mandibular osteotomy and external fixation. The irradiated fracture plus deferoxamine group received injections of deferoxamine into the fracture callus after surgery. After a 40-day healing period, mandibles were dissected, clinically assessed for bony union, imaged with micro-computed tomography, and tension tested to failure. Compared with irradiated fractures, metrics of callus size, mineralization, and strength in deferoxamine-treated mandibles were significantly increased. These metrics were restored to a level demonstrating no statistical difference from control fractures. In addition, the authors observed an increased rate of achieving bony unions in the irradiated fracture plus deferoxamine-treated group when compared with irradiated fracture (67 percent and 20 percent, respectively). The authors' data demonstrate nearly total restoration of callus size, mineralization, and biomechanical strength, and a threefold increase in the rate of union with the use of deferoxamine. The authors' results suggest that the administration of deferoxamine may have the potential for clinical translation as a new treatment paradigm for radiation-induced pathologic fractures.

  20. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk.

    PubMed

    Bouxsein, Mary L; Szulc, Pawel; Munoz, Fracoise; Thrall, Erica; Sornay-Rendu, Elizabeth; Delmas, Pierre D

    2007-06-01

    We compared trochanteric soft tissue thickness, femoral aBMD, and the ratio of fall force to femoral strength (i.e., factor of risk) in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Reduced trochanteric soft tissue thickness, low femoral aBMD, and increased ratio of fall force to femoral strength (i.e., factor of risk) were associated with increased risk of hip fracture. The contribution of trochanteric soft tissue thickness to hip fracture risk is incompletely understood. A biomechanical approach to assessing hip fracture risk that compares forces applied to the hip during a sideways fall to femoral strength may by improved by incorporating the force-attenuating effects of trochanteric soft tissues. We determined the relationship between femoral areal BMD (aBMD) and femoral failure load in 49 human cadaveric specimens, 53-99 yr of age. We compared femoral aBMD, trochanteric soft tissue thickness, and the ratio of fall forces to bone strength (i.e., the factor of risk for hip fracture, phi), before and after accounting for the force-attenuating properties of trochanteric soft tissue in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Femoral aBMD correlated strongly with femoral failure load (r2 = 0.73-0.83). Age, height, and weight did not differ; however, women with hip fracture had lower total femur aBMD (OR = 2.06; 95% CI, 1.19-3.56) and trochanteric soft tissue thickness (OR = 1.82; 95% CI, 1.01, 3.31). Incorporation of trochanteric soft tissue thickness measurements reduced the estimates of fall forces by approximately 50%. After accounting for force-attenuating properties of trochanteric soft tissue, the ratio of fall forces to femoral strength was 50% higher in cases than controls (0.92 +/- 0.44 versus 0.65 +/- 0.50, respectively; p = 0.04). It is possible to compute a biomechanically based estimate of hip fracture risk by combining estimates of femoral strength based on an empirical relationship between femoral aBMD and bone strength in cadaveric femora, along with estimates of loads applied to the hip during a sideways fall that account for thickness of trochanteric soft tissues. Our findings suggest that trochanteric soft tissue thickness may influence hip fracture risk by attenuating forces applied to the femur during a sideways fall and provide rationale for developing improved measurements of trochanteric soft tissue and for studying a larger cohort to determine whether trochanteric soft tissue thickness contributes to hip fracture risk independently of aBMD.

  1. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations.

    PubMed

    Schwaiger, Benedikt J; Kopperdahl, David L; Nardo, Lorenzo; Facchetti, Luca; Gersing, Alexandra S; Neumann, Jan; Lee, Kwang J; Keaveny, Tony M; Link, Thomas M

    2017-08-01

    Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm 3 , femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. All measurements from PET/CT versus MDCT were strongly correlated (R 2 =0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm 2 , 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm 3 , 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm 2 ; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Faltermeier, Rupert; Müssig, Dieter

    2007-06-01

    In spite of their popularity in fulfilling aesthetic requirements, plastic brackets still present some disadvantages because of their low elastic modulus, decreased fracture toughness, and reduced wear resistance. Fibre-reinforced composites are well established in dentistry and consist of a polymer matrix in which reinforcing fibres are embedded. Stress is transferred from the polymer matrix to the fibres which present a high tensile strength. Hence, the mechanical properties of polymers could be improved. The purpose of this study was to compare fracture strength, fracture toughness and flexural strength of an experimental fibre-reinforced bracket material, an SiO(2) filler-reinforced bracket and an unfilled plastic bracket material (control group). Experimental brackets and specialized bars were manufactured. Tests were performed after thermal cycling (5 degrees C/55 degrees C) the samples in an artificial oral environment of a device to simulate mastication. Statistical evaluation was undertaken. The median, 25th and 75th percentiles were calculated and a Mann-Whitney U-test was performed. In this study two findings were obvious. (1) Filler reinforcement of plastic brackets improved fracture strength and fracture toughness in comparison with the unfilled bracket material. (2) Glass fibre reinforcement of orthodontic bracket materials resulted in the greatest enhancement of the mechanical properties in comparison with the other test groups. Therefore, the application of glass fibres in plastic brackets is a successful method to enhance fracture strength.

  3. In vitro Fracture strength and hardness of different computer-aided design/computer-aided manufacturing inlays.

    PubMed

    Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A

    2018-03-01

    The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.

  4. Fabrication of mandible fracture plate by indirect additive manufacturing

    NASA Astrophysics Data System (ADS)

    Aizat, M.; Khan, S. F.

    2017-10-01

    Bone fracture is a serious skeletal injury due to accidents and fragility of the bones at a certain age. In order to accelerate fracture healing process, fracture bone plate is use to hold the fracture segment for more stability. The purpose of this study is to fabricate mandibular fracture plate by using indirect additive manufacturing methods in order to reduce time taken during bending and shaping the fracture fixation plate that conform to the anatomy of the fractured bone site. The design and analysis of the plates are performed using CATIA and ANSYS software. The 3D-CAD data were sent to an additive manufacturing machine (fused filament fabricated) to generate master pattern using PLA and the mould were fabricated using Plaster of Paris. A melt ZAMAK 3 was poured directly into the moulds, and left it until completely harden. 3point bending test was performed on the prototype plate using universal testing machine. Stress-strain curve shows the graph exhibited a linear relationship of stress-strain up to a strain value of 0.001. Specimens give a maximum yielding stress and then break before the conventional deflection. Since the maximum flexural stress and the breaking stress are far apart with a plateau stating at strain value of 0.003mm/mm in most specimens, the specimen’s failure types are considered plastic failure mode. The average thickness and width are 1.65mm and 2.18mm respectively. The flexural modulus and flexural strength are 189.5GPa and 518.1MPa, respectively.

  5. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique.

    PubMed

    Oz, F D; Bolay, S

    2018-01-01

    The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups ( n =15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal-Wallis for marginal gap data ( p =0.05). The mean marginal gap size of EC, LU, EL, and EP were 33.54  µ m, 33.77  µ m, 34.23  µ m, and 85.34  µ m, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30). Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique.

  6. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique

    PubMed Central

    Bolay, S.

    2018-01-01

    Objective The aim of this in vitro study was to evaluate marginal adaptation and fracture strength of inlays produced by CEREC Omnicam using different types of blocs and heat-pressed technique. Methods: Seventy-five extracted human mandibular molars were divided randomly into 5 groups (n=15). 60 molars in four groups received MOD inlay preparations. Experimental groups were CO: Intact teeth, EC: IPS e.max CAD and CEREC, LU: Lava Ultimate and CEREC, EL: IPS Empress CAD and CEREC, EP: IPS Empress Esthetic ingots and heat-pressed technique. Marginal gap measurements were taken with a stereomicroscope. Restorations were cemented with Variolink N and stored in distilled water at 37°C for 24 hours. All samples were subjected to thermocycling. The fracture strength of specimens was determined at a 0.5 mm/min crosshead speed until fracture. Fracture modes were determined. Statistical analyses were performed using one-way analysis of variance for fracture strength data and Kruskal–Wallis for marginal gap data (p=0.05). Results The mean marginal gap size of EC, LU, EL, and EP were 33.54 µm, 33.77 µm, 34.23 µm, and 85.34 µm, respectively. EP had statistically higher values than other groups. The fracture strength values were significantly higher in the intact teeth group (3959,00 ± 1279,79 N) than those of restored groups EC (2408,00 ± 607,97 N), LU (2206,73 ± 675,16), EL (2573.27 ± 644,73) ve EP (2879,53 ± 897,30). Conclusion Inlays fabricated using CEREC Omnicam demonstrated better marginal adaptation than inlays produced with heat-pressed technique, whereas fracture strength values of inlays fabricated with different type of blocks using CEREC Omnicam exhibited similarity to those fabricated with heat-pressed technique. PMID:29853894

  7. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    PubMed

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (p<0.05). These findings indicate that estimated bone strength at the mid-tibia and mean pkZ GRFs are lower in runners with a history of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  8. Understanding the Interdependencies Between Composition, Microstructure, and Continuum Variables and Their Influence on the Fracture Toughness of α/β-Processed Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Koduri, S.; Dixit, V.; Fraser, H. L.

    2018-03-01

    The fracture toughness of a material depends upon the material's composition and microstructure, as well as other material properties operating at the continuum level. The interrelationships between these variables are complex, and thus difficult to interpret, especially in multi-component, multi-phase ductile engineering alloys such as α/β-processed Ti-6Al-4V (nominal composition, wt pct). Neural networks have been used to elucidate how variables such as composition and microstructure influence the fracture toughness directly ( i.e., via a crack initiation or propagation mechanism)—and independent of the influence of the same variables influence on the yield strength and plasticity of the material. The variables included in the models and analysis include (i) alloy composition, specifically, Al, V, O, and Fe; (ii) materials microstructure, including phase fractions and average sizes of key microstructural features; (iii) the yield strength and reduction in area obtained from uniaxial tensile tests; and (iv) an assessment of the degree to which plane strain conditions were satisfied by including a factor related to the plane strain thickness. Once trained, virtual experiments have been conducted which permit the determination of each variable's functional dependency on the resulting fracture toughness. Given that the database includes both K 1 C and K Q values, as well as the in-plane component of the stress state of the crack tip, it is possible to quantitatively assess the effect of sample thickness on K Q and the degree to which the K Q and K 1 C values may vary. These interpretations drawn by comparing multiple neural networks have a significant impact on the general understanding of how the microstructure influences the fracture toughness in ductile materials, as well as an ability to predict the fracture toughness of α/β-processed Ti-6Al-4V.

  9. Factors affecting the pullout strength of cancellous bone screws.

    PubMed

    Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D

    1996-08-01

    Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal threads in the porous material.

  10. Effect of heat treatment on microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy

    NASA Astrophysics Data System (ADS)

    Jia, Guilong; Guo, Erjun; Feng, Yicheng; Wang, Liping; Wang, Changliang

    2018-03-01

    Microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy during heat treatments were investigated, while the room-temperature tensile fractographs were observed and analyzed. The results show that the eutectic phases almost dissolve into the matrix after being solutionized at 525 °C for 8 h. The ultimate tensile strength, yield strength and elongation reach 300 MPa, 219 MPa, 6.5% respectively after being under-aged at 200 °C for 16 h. The ultimate tensile strength and yield strength of the alloy decrease gradually, while the elongation increases gradually with increasing the test temperatures. The room-temperature tensile fracture modes of the as-cast alloy, solutionized alloy, aged alloy are mixed fracture of transgranular and intergranular, transgranular cleavage fracture, transgranular fracture, respectively.

  11. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less

  12. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    PubMed

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Strain Rate Dependency of Fracture Toughness, Energy Release Rate and Geomechanical Attributes of Select Indian Shales

    NASA Astrophysics Data System (ADS)

    Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.

    2016-12-01

    In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.

  14. Separate vertical wiring for the fixation of comminuted fractures of the inferior pole of the patella.

    PubMed

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun

    2014-05-01

    Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.

  15. A parametric study of fracture toughness of fibrous composite materials

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1987-01-01

    Impacts to fibrous composite laminates by objects with low velocities can break fibers giving crack-like damage. The damage may not extend completely through a thick laminate. The tension strength of these damage laminates is reduced much like that of cracked metals. The fracture toughness depends on fiber and matrix properties, fiber orientations, and stacking sequence. Accordingly, a parametric study was made to determine how fiber and matrix properties and fiber orientations affect fracture toughness and notch sensitivity. The values of fracture toughness were predicted from the elastic constants of the laminate and the failing strain of the fibers using a general fracture toughness parameter developed previously. For a variety of laminates, values of fracture toughness from tests of center-cracked specimens and values of residual strength from tests of thick laminates with surface cracks were compared to the predictions to give credibility to the study. In contrast to the usual behavior of metals, it is shown that both ultimate tensile strength and fracture toughness of composites can be increased without increasing notch sensitivity.

  16. The effect of early operative stabilization on late displacement of zone I and II sacral fractures.

    PubMed

    Emohare, Osa; Slinkard, Nathaniel; Lafferty, Paul; Vang, Sandy; Morgan, Robert

    2013-02-01

    This study was designed to evaluate the effect on displacement of early operative stabilization on unstable fractures when compared to stable fractures of the sacrum. Patient consisted of those sustaining traumatic pelvic fractures that also included sacral fractures of Denis type I and type II classification, who were over 18 at the time of the study. Patients were managed emergently, as judged appropriate at the time and then subsequently divided into two cohorts, comprising those who were either treated operatively or non-operatively. The operative group comprised those treated with either internal fixation or external fixation. Twenty-eight patients had zone II fractures, and 20 had zone I fractures. Zone II fractures showed average displacements of 6.5mm and 6.9mm in the rostral-caudal and anteroposterior directions, respectively, at final follow up. Zone I fractures had average displacements of 6.6mm and 6.1mm in both directions. There were no significant differences between zone I and II sacral fractures (rostral-caudal P=0.74, anteroposterior P=0.24). Average changes in fracture displacement in patients with zone I fractures were 0.6-1.0mm in both directions. Average changes in zone II fractures were 1.8-1.5mm in both directions. There were no significant differences between the average changes in zone I and II fractures in any direction (rostral-caudal P=0.64, anteroposterior P=0.68) or in average displacements at final follow up in any of zone or the entire cohort. Statistically significant differences were noted in average changes in displacement in zone II fractures in the anteroposterior plane (P=0.03) and the overall cohort in the anteroposterior plane (P=0.02). Operative fixation for unstable sacral fractures ensures displacement at follow up is comparable with stable fractures treated non operatively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Fabric controls on the brittle failure of folded gneiss and schist

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.

    2014-12-01

    We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.

  18. Fracture Strength of AlLiB14

    NASA Astrophysics Data System (ADS)

    Wan, L. F.; Beckman, S. P.

    2012-10-01

    The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.

  19. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  20. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials

    PubMed Central

    Pippan, R.; Hohenwarter, A.

    2016-01-01

    ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712

  1. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    PubMed

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (p<0.001). Thermal veneering treatment reversed the transformation of monoclinic phase observed after initial grinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its application on rough zirconia cores may be preferred to enhance bond strength. Copyright © 2016. Published by Elsevier Ltd.

  2. Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone

    NASA Astrophysics Data System (ADS)

    Caulk, R.; Tomac, I.

    2017-12-01

    This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.

  3. Fractures of the scapula: long-term results after conservative treatment.

    PubMed

    Schofer, Markus D; Sehrt, Axel C; Timmesfeld, Nina; Störmer, Sabine; Kortmann, Horst R

    2009-11-01

    The aim of this study was to determine the long-term prognoses for conservatively treated fractures of the scapula. Ascertainment of functional long-term results in 50 patients treated for a total of 51 scapular fractures in a retrospective cohort study with an average follow-up period of 65 months. The breakdown of these scapular fractures was as follows: simple (22%) and fragmented (51%) fractures of the scapular body, fractures through the scapular neck (41%), fractures of the coracoid process, spine and acromion of the scapula (10%) and glenoid fractures (8%). In 17 of these cases of scapular fracture two or more types were present. At the follow-up examination a restricted range of movement was found in all directions. In abduction, flexion and external rotation the range of motion on the affected as against the unaffected side was significantly restricted, but the observed restriction did not substantially affect the functional results. The Constant score on the affected side was 79 points, with 23% very good, 51% good, 20% satisfactory and 6% poor results. Isokinetic testing carried out on both sides for comparison revealed lower peak torque values and lower mean power output in all planes of movement, and lower speeds on the affected side. There was a correlation between extent of restriction on movement and diminution of isokinetic muscular strength. Determination of the external rotation is recommended as a clinical test value, as it highlights significant deficits both in restriction of range of motion and in isokinetic test measurements. The outcome of treatment was not influenced by fracture type, associated injuries or handedness. After conservative treatment, scapular fractures heal with a good functional result despite measurable restrictions.

  4. In vitro evaluation of five core materials.

    PubMed

    Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L

    2007-01-01

    This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.

  5. Characterization of sintered SiC by using NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1988-01-01

    Capabilities of projection microfocus X-radiography and of ultrasonic velocity and attenuation for characterizing silicon carbide specimens were assessed. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room-temperature, four-point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined. Radiography proved useful in detecting high-density inclusions and isolated voids, but failed in detecting surface and subsurface agglomerates and large grains as fracture origins. Ultrasonic velocity dependency on density was evident. Attenuation dependency on density and mean pore size was clearly demonstrated. Understanding attenuation as a function of toughness was limited by shortcomings in K sub IC determination.

  6. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  7. Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features

    NASA Astrophysics Data System (ADS)

    Liang, Yanjie

    2016-06-01

    In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.

  8. Sensitivity Analysis of the Bone Fracture Risk Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including environmental factors, factors associated with the fall event, mass and anthropometric values of the astronaut, BMD characteristics, characteristics of the relationship between BMD and bone strength and bone fracture characteristics. The uncertainty in these factors is captured through the use of parameter distributions and the fracture predictions are probability distributions with a mean value and an associated uncertainty. To determine parameter sensitivity, a correlation coefficient is found between the sample set of each model parameter and the calculated fracture probabilities. Each parameters contribution to the variance is found by squaring the correlation coefficients, dividing by the sum of the squared correlation coefficients, and multiplying by 100. Results: Sensitivity analyses of BFxRM simulations of preflight, 0 days post-flight and 365 days post-flight falls onto the hip revealed a subset of the twelve factors within the model which cause the most variation in the fracture predictions. These factors include the spring constant used in the hip biomechanical model, the midpoint FRI parameter within the equation used to convert FRI to fracture probability and preflight BMD values. Future work: Plans are underway to update the BFxRM by incorporating bone strength information from finite element models (FEM) into the bone strength portion of the BFxRM. Also, FEM bone strength information along with fracture outcome data will be incorporated into the FRI to fracture probability.

  9. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.

    PubMed

    Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas

    2006-07-01

    Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.

  10. Ground reaction forces and bone parameters in females with tibial stress fracture.

    PubMed

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  11. Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study.

    PubMed

    Sosa, Daysi Duarte; Eriksen, Erik Fink

    2017-07-01

    The aim of the study was to test, whether bone material strength differs between different subtypes of osteoporotic fracture and assess whether it relates to vertebral fracture severity. Cortical bone material strength index (BMSi) was measured by impact microindentation in 66 women with osteoporotic fracture and 66 age- and sex-matched controls without fracture. Bone mineral density (BMD) and bone turnover markers were also assessed. Vertebral fracture severity was graded by semiquantitative (SQ) grading. Receiver operator characteristic (ROC) curves were used to examine the ability of BMSi to discriminate fractures. Subjects with osteoporotic fractures exhibited lower BMSi than controls (71.5 ± 7.3 vs. 76.4 ± 6.2, p < 0.001). After adjusting for age and hip BMD, a significant negative correlation was seen between BMSi and vertebral fracture severity (r 2  = 0.19, p = 0.007). A decrease of one standard deviation (SD) in BMSi was associated with increased risk of fracture (OR 2.62; 95% CI 1.35, 5.10, p = 0.004). ROC curve areas under the curve (AUC) for BMSi in subjects with vertebral fracture (VF), hip fracture (HF), and non-vertebral non-hip fracture (NVNHFx), (mean; 95% CI) were 0.711 (0.608; 0.813), 0.712 (0.576; 0.843), 0.689 (0.576; 0.775), respectively. Combining BMSi and BMD provided further improvement in the discrimination of fractures with AUC values of 0.777 (0.695; 0.858), 0.789 (0.697; 0.882), and 0.821 (0.727; 0.914) for VFx, HFx, and NVNHFx, respectively. Low BMSi of the tibial cortex is associated with increased risk of all osteoporotic fractures and severity of vertebral fractures.

  12. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman

    2018-02-01

    Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.

  13. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study.

    PubMed

    Dufour, A B; Roberts, B; Broe, K E; Kiel, D P; Bouxsein, M L; Hannan, M T

    2012-02-01

    We examined the relation between a biomechanical measure, factor-of-risk, and hip fracture risk in 1,100 men and women from the Framingham Study and found that it predicted hip fracture (men, ORs of 1.8; women, 1.2-1.4). Alternative methods of predicting hip fracture are needed since 50% of adults who fracture do not have osteoporosis by bone mineral density (BMD) measurements. One method, factor-of-risk (Φ), computes the ratio of force on the hip in a fall to femoral strength. We examined the relation between Φ and hip fracture in 1,100 subjects from the Framingham Study with measured hip BMD, along with weight, height, and age, collected in 1988-1989. We estimated both peak and attenuated force applied to the hip in a sideways fall from standing height, where attenuated force incorporated cushioning effects of trochanteric soft tissue. Femoral strength was estimated from femoral neck BMD, using cadaveric femoral strength data. Sex-specific, age-adjusted survival models were used to calculate hazard ratios (HR) and 95% confidence intervals for the relation between Φ (peak), Φ (attenuated), and their components with hip fracture. In 425 men and 675 women (mean age, 76 years), 136 hip fractures occurred over median follow-up of 11.3 years. Factor-of-risk, Φ, was associated with increased age-adjusted risk for hip fracture. One standard deviation increase in Φ (peak) and Φ (attenuated) was associated with HR of 1.88 and 1.78 in men and 1.23 and 1.41 in women, respectively. Examining components of Φ, in women, we found fall force and soft tissue thickness were predictive of hip fracture independent of femoral strength (was estimated from BMD). Thus, both Φ (peak) and Φ (attenuated) predict hip fracture in men and women. These findings suggest additional studies of Φ predicting hip fracture using direct measurements of trochanteric soft tissue.

  14. On the impact bending test technique for high-strength pipe steels

    NASA Astrophysics Data System (ADS)

    Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.

    2015-10-01

    It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.

  15. Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status.

    PubMed

    Domun, N; Hadavinia, H; Zhang, T; Sainsbury, T; Liaghat, G H; Vahid, S

    2015-06-21

    The incorporation of nanomaterials in the polymer matrix is considered to be a highly effective technique to improve the mechanical properties of resins. In this paper the effects of the addition of different nanoparticles such as single-walled CNT (SWCNT), double-walled CNT (DWCNT), multi-walled CNT (MWCNT), graphene, nanoclay and nanosilica on fracture toughness, strength and stiffness of the epoxy matrix have been reviewed. The Young's modulus (E), ultimate tensile strength (UTS), mode I (GIC) and mode II (GIIC) fracture toughness of the various nanocomposites at different nanoparticle loadings are compared. The review shows that, depending on the type of nanoparticles, the integration of the nanoparticles has a substantial effect on mode I and mode II fracture toughness, strength and stiffness. The critical factors such as maintaining a homogeneous dispersion and good adhesion between the matrix and the nanoparticles are highlighted. The effect of surface functionalization, its relevancy and toughening mechanism are also scrutinized and discussed. A large variety of data comprised of the mechanical properties of nanomaterial toughened composites reported to date has thus been compiled to facilitate the evolution of this emerging field, and the results are presented in maps showing the effect of nanoparticle loading on mode I fracture toughness, stiffness and strength.

  16. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    PubMed

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  17. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    PubMed Central

    Zhang, Zhaobin; Li, Xiao

    2016-01-01

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834

  18. [Separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella].

    PubMed

    Zhang, J; Jiang, X Y; Huang, X W

    2016-06-18

    To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and uneventful healing. By this surgical treatment, excellent results in knee function can be expected for cases of displaced inferior pole fractures of the patella.

  19. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  20. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  1. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  2. Influence of the Conditioning Method for Pre-Sintered Zirconia on the Shear Bond Strength of Bilayered Porcelain/Zirconia

    PubMed Central

    Spintzyk, Sebastian; Yamaguchi, Kikue; Sawada, Tomofumi; Schille, Christine; Schweizer, Ernst; Ozeki, Masahiko; Geis-Gerstorfer, Jürgen

    2016-01-01

    This study evaluated the bond strength of veneering porcelain with an experimental conditioner-coated zirconia. Pre-sintered Y-TZP specimens (n = 44) were divided in two groups based on conditioning type. After sintering, all sample surfaces were sandblasted and layered with veneering porcelain. Additionally, half of the specimens in each group underwent thermal cycling (10,000 cycles, 5–55 °C), and all shear bond strengths were measured. After testing, the failure mode of each fractured specimen was determined. Differences were tested by parametric and Fisher’s exact tests (α = 0.05). The differences in bond strength were not statistically significant. Adhesive fractures were dominantly observed for the non-thermal cycled specimens. After thermal cycling, the conditioner-coated group showed cohesive and mixed fractures (p = 0.0021), whereas the uncoated group showed more adhesive fractures (p = 0.0021). Conditioning of the pre-sintered Y-TZP did not change the shear bond strength of the veneering porcelain, but did improve the failure mode after thermal cycling. PMID:28773885

  3. Elevated temperature mechanical behavior of monolithic and SiC whisker-reinforced silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Choi, Sung R.; Sanders, William A.; Fox, Dennis S.

    1991-01-01

    The mechanical behavior of a 30 volume percent SiC whisker reinforced silicon nitride and a similar monolithic silicon nitride were measured at several temperatures. Measurements included strength, fracture toughness, crack growth resistance, dynamic fatigue susceptibility, post oxidation strength, and creep rate. Strength controlling defects were determined with fractographic analysis. The addition of SiC whiskers to silicon nitride did not substantially improve the strength, fracture toughness, or crack growth resistance. However, the fatigue resistance, post oxidation strength, and creep resistance were diminished by the whisker addition.

  4. Impact Damage and Erosion of Ceramics and Composites.

    DTIC Science & Technology

    1980-12-31

    local fracture toughness, Keff’ with crack length, a, was used to determine the fracture criticality. Specifically, the fracture toughness was chosen...A complete description of strength behaviors thus requires an experimental determination of the local toughness, One of us (A. V. Virkar) is currently...34Simulated Strength - Grain Size Study Using Glass- Glass Ceramic Composite System," submitted to Journal of Materials Science, (1979). -~_ 6 I ~ -_- 0

  5. Effect of polymer properties and adherend surfaces on adhesion

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1976-01-01

    High temperature polymer surface characteristics associated with joint strength were evaluated. Selected samples represented composite adherends, aluminum filler and fiber glass carrier cloth. Detailed analysis of fractured joint surfaces revealed unique characteristics typical of the specific adhesive formulations and test conditions. A fracture mechanism model was developed for correlating macroscopic shear strength and microstructure of fracture surfaces. Applications were made to unpublished data on polyimides and fluoropolymers.

  6. Tensile strength of Fe-Ni and Mg-Al nanocomposites: Molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2018-01-01

    In this work, molecular dynamic simulations of the tensile strength of Fe-Ni and Mg-Al nanocomposites in the conditions of high-rate uniaxial tension were carried out. Two different mechanisms of fracture were identified. In the case of nickel inclusion in iron matrix, the fracture begins on the interface between the inclusion and the matrix, a formed void penetrates both into the inclusion and into the matrix; presence of inclusion reduces the tensile strength. In the case of aluminum inclusion in magnesium matrix, fracture takes place into magnesium matrix and does not touch the inclusion; presence of inclusion has practically no effect on the tensile strength. Molecular dynamic simulations were carried out in a wide range of strain rates and temperatures.

  7. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  8. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  9. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  10. Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling

    PubMed Central

    Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua

    2017-01-01

    Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture—including mineral constituents, grain shape, size, and distribution—controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks. PMID:28773201

  11. Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling.

    PubMed

    Zhou, Jian; Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua

    2017-07-21

    Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture-including mineral constituents, grain shape, size, and distribution-controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.

  12. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    PubMed

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P

  13. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lapmore » shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.« less

  14. Clinical prediction rule for suspected scaphoid fractures: A prospective cohort study.

    PubMed

    Rhemrev, S J; Beeres, F J P; van Leerdam, R H; Hogervorst, M; Ring, D

    2010-10-01

    The low prevalence of true fractures amongst suspected fractures magnifies the shortcomings of the diagnostic tests used to triage suspected scaphoid fractures. The objective was to develop a clinical prediction rule that would yield a subset of patients who were more likely to have a scaphoid fracture than others who lacked the subset criteria. Seventy-eight consecutive patients diagnosed with a suspected scaphoid fracture were included. Standardised patient history, physical examination, range of motion (ROM) and strength measurements were studied. The reference standard for a true fracture was based on the results of magnetic resonance imaging, bone scintigraphy, follow-up radiographs and examination. Analysis revealed three significant independent predictors: extension <50%, supination strength ≤ 10% and the presence of a previous fracture. Clinical prediction rules have the potential to increase the prevalence of true fractures amongst patients with suspected scaphoid fractures, which can increase the diagnostic performance characteristics of radiological diagnostic tests used for triage. 2010 Elsevier Ltd. All rights reserved.

  15. Strength and Fracture Toughness of Solid Oxide Fuel Cell Electrolyte Material Improved

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2002-01-01

    Solid oxide fuel cells (SOFC) are being developed for various applications in the automobile, power-generation, and aeronautics industries. Recently, the NASA Glenn Research Center has been exploring the possibility of using SOFC's for aeropropulsion under its Zero Carbon Dioxide Emission Technology (ZCET) Program. 10-mol% yttriastabilized zirconia (10YSZ) is a very good anionic conductor at high temperatures and is, therefore, used as an oxygen solid electrolyte in SOFC. However, it has a high thermal expansion coefficient, low thermal shock resistance, low fracture toughness, and poor mechanical strength. For aeronautic applications, the thin ceramic electrolyte membrane of the SOFC needs to be strong and tough. Therefore, we have been investigating the possibility of enhancing the strength and fracture toughness of the 10YSZ electrolyte without degrading its electrical conductivity to an appreciable extent. We recently demonstrated that the addition of alumina to zirconia electrolyte increases its strength as well as its fracture toughness. Zirconia-alumina composites containing 0 to 30 mol% of alumina were fabricated by hot pressing. The hot pressing procedure was developed and various hot pressing parameters were optimized, resulting in dense, crackfree panels of composite materials. Cubic zirconia and a-alumina were the only phases detected, indicating that there was no chemical reaction between the constituents during hot pressing at elevated temperatures. Flexure strength sf and fracture toughness K(sub IC) of the various zirconia-alumina composites were measured at room temperature as well as at 1000 C in air. Both properties showed systematic improvement with increased alumina addition at room temperature and at 1000 C. Use of these modified electrolytes with improved strength and fracture toughness should prolong the life and enhance the performance of SOFC in aeronautics and other applications.

  16. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William; Fitzpatrick, Daniel; Madey, Steven

    2010-05-01

    This study evaluated intramedullary fixation of rib fractures with Kirschner wires and novel ribs splints. We hypothesized that rib splints can provide equivalent fixation strength while avoiding complications associated with Kirschner wires, namely wire migration and cutout. The durability, strength, and failure modes of rib fracture fixation with Kirschner wires and rib splints were evaluated in 22 paired human ribs. First, intact ribs were loaded to failure to determine their strength. After fracture fixation with Kirschner wires and rib splints, fixation constructs were dynamically loaded to 360,000 cycles at five times the respiratory load to determine their durability. Finally, constructs were loaded to failure to determine residual strength and failure modes. All constructs sustained dynamic loading without failure. Dynamic loading caused three times more subsidence in Kirschner wire constructs (1.2 mm +/- 1.4 mm) than in rib splint constructs (0.4 mm +/- 0.2 mm, p = 0.09). After dynamic loading, rib splint constructs remained 48% stronger than Kirschner wire constructs (p = 0.001). Five of 11 Kirschner wire constructs failed catastrophically by cutting through the medial cortex, leading to complete loss of stability and wire migration through the lateral cortex. The remaining six constructs failed by wire bending. Rib splint constructs failed by development of fracture lines along the superior and interior cortices. No splint construct failed catastrophically, and all splint constructs retained functional reduction and fixation. Because of their superior strength and absence of catastrophic failure mode, rib splints can serve as an attractive alternative to Kirschner wires for intramedullary stabilization of rib fractures, especially in the case of posterior rib fractures where access for plating is limited.

  17. The fracture strength by a torsion test at the implant-abutment interface.

    PubMed

    Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko

    2015-12-01

    Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.

  18. Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon.

    PubMed

    Taylor, J C; Hondrum, S O; Prasad, A; Brodersen, C A

    1998-03-01

    Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to minimize heat effects and oxygen contamination.

  19. The Effect of Isometric Massage on Global Grip Strength after Conservative Treatment of Distal Radial Fractures. Pilot Study.

    PubMed

    Ratajczak, Karina; Płomiński, Janusz

    2015-01-01

    The most common fracture of the distal end of the radius is Colles' fracture. Treatment modalities available for use in hand rehabilitation after injury include massage. The aim of this study was to evaluate the effect of isometric massage on the recovery of hand function in patients with Colles fractures. For this purpose, the strength of the finger flexors was assessed as an objective criterion for the evaluation of hand function. The study involved 40 patients, randomly divided into Group A of 20 patients and Group B of 20 patients. All patients received physical therapy and exercised individually with a physiotherapist. Isometric massage was additionally used in Group A. Global grip strength was assessed using a pneumatic force meter on the first and last day of therapy. Statistical analysis was performed using STATISTICA. Statistical significance was defined as a P value of less than 0.05. In both groups, global grip strength increased significantly after the therapy. There was no statistically significant difference between the groups. The men and women in both groups equally improved grip strength. A statistically significant difference was demonstrated between younger and older patients, with younger patients achieving greater gains in global grip strength in both groups. The incorporation of isometric massage in the rehabilitation plan of patients after a distal radial fracture did not significantly contribute to faster recovery of hand function or improve their quality of life.

  20. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  1. Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin.

    PubMed

    Ehrnford, L E; Fransson, H

    1994-01-01

    Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.

  2. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is a better technique in estimating the toughness of bone.

  3. A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1998-01-01

    The translaminate fracture behavior of carbon/epoxy structural laminates with through-penetration notches was investigated to develop a residual strength prediction methodology for composite structures. An experimental characterization of several composite materials systems revealed a fracture resistance behavior that was very similar to the R-curve behavior exhibited by ductile metals. Fractographic examinations led to the postulate that the damage growth resistance was primarily due to fractured fibers in the principal load-carrying plies being bridged by intact fibers of the adjacent plies. The load transfer associated with this bridging mechanism suggests that a progressive damage analysis methodology will be appropriate for predicting the residual strength of laminates with through-penetration notches. A progressive damage methodology developed by the authors was used to predict the initiation and growth of matrix cracks and fiber fracture. Most of the residual strength predictions for different panel widths, notch lengths, and material systems were within about 10% of the experimental failure loads.

  4. Transverse stresses and modes of failure in tree branches and other beams.

    PubMed

    Ennos, A R; van Casteren, A

    2010-04-22

    The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved 'hazard beams' that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic 'greenstick fracture'. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength.

  5. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  6. Effect of Gamma Ray Irradiation on Interlaminar Shear Strength of Glass Fiber Reinforced Plastics at 77 K

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-03-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation.

  7. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  8. The effects of shot-peening residual stresses on the fracture and crack growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1973-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.

  9. Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1974-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.

  10. Fracture Characteristics of Two High-Strength, Low-Alloy and Two Stainless Steels

    DTIC Science & Technology

    1977-01-01

    conditions. The effects of hydrogen. and temper. embrittlement on the materials’ behavior when fractured under tensile and fatigue fonditions were... effects of hydrogen- and tomper-embrittlement have a bet, crystal structure, this plane has the type on the materials’ behavior when fractured under...A. Troiano, "The Role of lydrogen and Other Intersiftials high-strength, low-alloy structural steels generally used in the Mechanical Behavior ot

  11. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  12. Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.

    PubMed

    Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin

    2016-01-01

    The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However, the fracture strength was significantly higher for PSZirLS, PolyFSP, ResNC, and LiDS ceramics than for the FSP, LrGC, and the FcZirLS ceramic with all luting agents tested.

  13. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review.

    PubMed

    Heintze, Siegward D; Ilie, Nicoleta; Hickel, Reinhard; Reis, Alessandra; Loguercio, Alessandro; Rousson, Valentin

    2017-03-01

    To evaluate a range of mechanical parameters of composite resins and compare the data to the frequency of fractures and wear in clinical studies. Based on a search of PubMed and SCOPUS, clinical studies on posterior composite restorations were investigated with regard to bias by two independent reviewers using Cochrane Collaboration's tool for assessing risk of bias in randomized trials. The target variables were chipping and/or fracture, loss of anatomical form (wear) and a combination of both (summary clinical index). These outcomes were modelled by time and material in a linear mixed effect model including random study and experiment effects. The laboratory data from one test institute were used: flexural strength, flexural modulus, compressive strength, and fracture toughness (all after 24-h storage in distilled water). For some materials flexural strength data after aging in water/saliva/ethanol were available. Besides calculating correlations between clinical and laboratory outcomes, we explored whether a model including a laboratory predictor dichotomized at a cut-off value better predicted a clinical outcome than a linear model. A total of 74 clinical experiments from 45 studies were included involving 31 materials for which laboratory data were also available. A weak positive correlation between fracture toughness and clinical fractures was found (Spearman rho=0.34, p=0.11) in addition to a moderate and statistically significant correlation between flexural strength and clinical wear (Spearman rho=0.46, p=0.01). When excluding those studies with "high" risk of bias (n=18), the correlations were generally weaker with no statistically significant correlation. For aging in ethanol, a very strong correlation was found between flexural strength decrease and clinical index, but this finding was based on only 7 materials (Spearman rho=0.96, p=0.0001). Prediction was not consistently improved with cutoff values. Correlations between clinical and laboratory outcomes were moderately positive with few significant results, fracture toughness being correlated with clinical fractures and flexural strength with clinical wear. Whether artificial aging enhances the prognostic value needs further investigations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants.

    PubMed

    Qasim, M; Farinella, G; Zhang, J; Li, X; Yang, L; Eastell, R; Viceconti, M

    2016-09-01

    A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMDNeck, MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design.

  16. Fracture toughness, diametrical strength, and fractography of amalgam and of amalgam to amalgam bonds.

    PubMed

    Bapna, M S; Mueller, H J

    1993-01-01

    Chevron-notch fracture toughness, diametrical tensile strength and fractography were evaluated for bulk amalgams and for bonds formed between new and 1-day-old amalgams of the same type. Three types of bonded specimens were prepared: 1) by mechanically roughening the 1-day-old amalgam with 600-grit paper; 2) using a new mercury-rich amalgam; and 3) using a bonding resin, either 4-META or a phosphate ester monomer. Similar values in bond properties were obtained with all bonding techniques for two commercial dispersed-phase bonded amalgams, one of which contained palladium; however, bulk fracture toughness of the palladium-containing amalgam was significantly less than for the palladium-free amalgam. This result reveals that the bonding of amalgam to amalgam, at least for these two amalgams, is a surface-related phenomenon, and thus, the traditional reporting of bonding properties as a percentage of bulk properties loses meaning. Short-rod geometry was more representative of the interfacial bond properties since these samples fractured within the interfacial bonds, while diametrical strength samples often fractured slightly away from the interface. The use of bonding resins did not improve bond fracture toughness for either amalgam, while the diametrical strength improved for one of the amalgams. The use of mercury-rich amalgam significantly improved the fracture toughness over all other techniques for one amalgam while proving to be similar to a 600-grit preparation for the second amalgam.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Fracture of Polymers and Interfaces: A Universal Molecular Approach

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2003-03-01

    Fracture of polymers, linear or crosslinked, can be viewed as a breaking of molecular connectivity via disentanglement or bond rupture. When treated as a vector percolation phenomenon, we find that it captures the essential physics of fracture and makes broad accurate predictions for strength S, and fracture energy G, of polymers and their interfaces. In the bulk, we find that G ˜ [p-pc], and S ˜ [p-pc]^1/2, where p is the local normalized entanglement density and pc is the percolation threshold. For interfaces, p = nL/w, where n is the areal density of chains of length L ˜M (mol wt) in an interface of width w. For incompatible interfaces of width w, G ˜ [w-wc]; when reinforced with n compatibilizers, G ˜ (n - nc]. For welding, p ˜ L, the welding time tw ˜ L. For adhesion with sticker group X on the polymer and receptor groups Y on the solid, the strength first increases with X, Y and X-Y strength and then decreases after a predictable maximum. For thermosets, the modulus E ˜ [p-pc]^3 and the strength S ˜ [p-pc]^2. Numerous experimental examples are given to support the above universal relations for fracture.

  18. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.

    PubMed

    Gao, Honghong; Qiang, Tao

    2017-06-07

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.

  19. Effect of a crown ferrule on the fracture strength of endodontically treated canines restored with fiber posts and metal-ceramic or all-ceramic crowns.

    PubMed

    Evangelinaki, Evangelia; Tortopidis, Dimitrios; Kontonasaki, Eleana; Fragou, Theodora; Gogos, Christos; Koidis, Petros

    2013-01-01

    The aim of this study was to comparatively evaluate the fracture strength of endodontically treated canines restored with glass-fiber posts (GFPs) and either metal-ceramic (MC) or all-ceramic (AC) crowns in the presence or absence of 2 mm of ferrule height. Fifty human maxillary canines were endodontically treated and randomly divided into five groups of 10 specimens each. The first group remained intact (control), while the remainder were restored with GFPs and composite cores with either MC or AC crowns. Each of the AC and MC groups was equally divided between teeth with or without ferrule. Teeth were embedded in acrylic resin and loaded at a 135-degree angle to their long axis until fracture. Fracture strength was not significantly different between ferrule and no ferrule groups (P = .571), but was significantly larger for the MC groups compared with the control and AC groups (P = .009 and P = .024, respectively). A significant effect of the type of restoration was found as teeth restored with MC crowns presented significantly higher fracture strength, independently of ferrule.

  20. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites

    PubMed Central

    Gao, Honghong; Qiang, Tao

    2017-01-01

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983

  1. Ketorolac administration does not delay early fracture healing in a juvenile rat model: a pilot study.

    PubMed

    Cappello, Teresa; Nuelle, Julia A V; Katsantonis, Nicolas; Nauer, Rachel K; Lauing, Kristen L; Jagodzinski, Jason E; Callaci, John J

    2013-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4 wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures.

  2. Ketorolac Administration Does Not Delay Early Fracture Healing in a Juvenile Rat Model

    PubMed Central

    Cappello, Teresa; Nuelle, Julia A.V.; Katsantonis, Nicolas; Nauer, Rachel K.; Lauing, Kristen L.; Jagodzinski, Jason E.; Callaci, John J.

    2014-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Methods Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Results Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. Conclusions In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. Clinical Relevance The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures. PMID:23653032

  3. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    PubMed Central

    Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha

    2017-01-01

    With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  4. Heat resistance study of basalt fiber material via mechanical tests

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.

    2017-12-01

    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  5. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  6. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1975-01-01

    A 300 grade maraging steel was chosen as a vehicle by which to understand the inverse relationship between strength and toughness in high strength alloys such as the 18 Ni maraging steels. The 18 Ni, 300 grade maraging material was a commercial grade consumable-electrode, vacuum arc remelted heat obtained in the form of forged and annealed plate. The matrix contained a population of second-phase impurity inclusions which was a product of the casting and hot working processes. These inclusions did not change with subsequent precipitation hardening. Changes in microstructure resulting in strength increases were brought about by variations in aging temperature and time. Maximum strength was attained in the 300 grade maraging steel by aging at 427 C (800 F) for 100 hours. Tensile, fatigue precracked Charpy impact, and plane-strain fracture toughness tests were performed at room temperature, 20 C (68 F). With increasing strength the fracture toughness decreases as smaller and smaller inclusions act as sites for void initiation.

  7. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  8. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    NASA Astrophysics Data System (ADS)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  9. Probabilistic thermal-shock strength testing using infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.

    1999-12-01

    A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.

  10. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    PubMed

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  12. Separate Vertical Wiring for the Fixation of Comminuted Fractures of the Inferior Pole of the Patella

    PubMed Central

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo

    2014-01-01

    Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149

  13. Cross-education for improving strength and mobility after distal radius fractures: a randomized controlled trial.

    PubMed

    Magnus, Charlene R A; Arnold, Cathy M; Johnston, Geoffrey; Dal-Bello Haas, Vanina; Basran, Jenny; Krentz, Joel R; Farthing, Jonathan P

    2013-07-01

    To evaluate the effects of cross-education (contralateral effect of unilateral strength training) during recovery from unilateral distal radius fractures on muscle strength, range of motion (ROM), and function. Randomized controlled trial (26-wk follow-up). Hospital, orthopedic fracture clinic. Women older than 50 years with a unilateral distal radius fracture. Fifty-one participants were randomized and 39 participants were included in the final data analysis. Participants were randomized to standard rehabilitation (Control) or standard rehabilitation plus strength training (Train). Standard rehabilitation included forearm casting for 40.4±6.2 days and hand exercises for the fractured extremity. Nonfractured hand strength training for the training group began immediately postfracture and was conducted at home 3 times/week for 26 weeks. The primary outcome measure was peak force (handgrip dynamometer). Secondary outcomes were ROM (flexion/extension; supination/pronation) via goniometer and the Patient Rated Wrist Evaluation questionnaire score for the fractured arm. For the fractured hand, the training group (17.3±7.4kg) was significantly stronger than the control group (11.8±5.8kg) at 12 weeks postfracture (P<.017). There were no significant strength differences between the training and control groups at 9 (12.5±8.2kg; 11.3±6.9kg) or 26 weeks (23.0±7.6kg; 19.6±5.5kg) postfracture, respectively. Fractured hand ROM showed that the training group had significantly improved wrist flexion/extension (100.5°±19.2°) than the control group (80.2°±18.7°) at 12 weeks postfracture (P<.017). There were no significant differences between the training and control groups for flexion/extension ROM at 9 (78.0°±20.7°; 81.7°±25.7°) or 26 weeks (104.4°±15.5°; 106.0°±26.5°) or supination/pronation ROM at 9 (153.9°±23.9°; 151.8°±33.0°), 12 (170.9°±9.3°; 156.7°±20.8°) or 26 weeks (169.4°±11.9°; 162.8°±18.1°), respectively. There were no significant differences in Patient Rated Wrist Evaluation questionnaire scores between the training and control groups at 9 (54.2±39.0; 65.2±28.9), 12 (36.4±37.2; 46.2±35.3), or 26 weeks (23.6±25.6; 19.4±16.5), respectively. Strength training for the nonfractured limb after a distal radius fracture was associated with improved strength and ROM in the fractured limb at 12 weeks postfracture. These results have important implications for rehabilitation strategies after unilateral injuries. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Fracture strength of flawed cylindrical pressure vessels under cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Christopher, T.; Sankarnarayanasamy, K.; Nageswara Rao, B.

    2002-11-01

    Damage tolerant and fail-safe approaches have been employed increasingly in the design of critical engineering components. In these approaches, one has to assess the residual strength of a component with an assumed pre-existing crack. In other cases, cracks may be detected during service. Then, there is a need to evaluate the residual strength of the cracked components in order to decide whether they can be continued safely or repair and replacement are imperative. A three-parameter fracture criterion is applied to correlate the fracture data on aluminium, titanium and steel materials from test results on cylindrical tanks/pressure vessels at cryogenic temperatures. Fracture parameters to generate the failure assessment diagram are determined for the materials considered in the present study. Failure pressure estimates were found to be in good agreement with test results.

  15. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate.

    PubMed

    Gomes, Rafael Soares; Souza, Caroline Mathias Carvalho de; Bergamo, Edmara Tatiely Pedroso; Bordin, Dimorvan; Del Bel Cury, Altair Antoninha

    2017-01-01

    In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student's t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson's correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits.

  16. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    The layups of the studied laminates are (0, + or - 60) sub s, (0, + or - 45, 90) sub s, (0, + or - 30, + or - 60, 90) sub s (0, + or - 22 1/2, + or - 45, + or - 67 1/2, 90) sub s. The properties determined were tensile modulus, Poisson's ratio, bending stiffness, fracture strength and fracture strain. Measured properties and properties predicted using laminate theory were found to be in reasonable agreement. Reasons for data scatter were determined.

  17. The effect of Amifostine prophylaxis on bone densitometry, biomechanical strength and union in mandibular pathologic fracture repair.

    PubMed

    Tchanque-Fossuo, Catherine N; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S; Weiss, Daniela M; Buchman, Steven R

    2013-11-01

    Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. © 2013.

  18. Amifostine Prophylaxis on Bone Densitometry, Biomechanical Strength and Union in Mandibular Pathologic Fracture Repair

    PubMed Central

    Tchanque-Fossuo, Catherine N.; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S.; Weiss, Daniela M.

    2013-01-01

    Background Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine’s effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Materials and Methods Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. Results All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Conclusion Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. PMID:23860272

  19. An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.

  20. Assessment of Incident Spine and Hip Fractures in Women and Men using Finite Element Analysis of CT Scans

    PubMed Central

    Kopperdahl, David L.; Aspelund, Thor; Hoffmann, Paul F.; Sigurdsson, Sigurdur; Siggeirsdottir, Kristin; Harris, Tamara B.; Gudnason, Vilmundur; Keaveny, Tony M.

    2013-01-01

    Finite element analysis of computed tomography (CT) scans provides non-invasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a five-year case-control study of 1110 women and men over age 65 from the AGES-Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture, respectively). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that, for incident radiographically-confirmed spine fractures (n=167), the age-adjusted odds ratio for vertebral strength was significant for women (2.8, 95% CI: 1.8–4.3) and men (2.2, 95% CI: 1.5–3.2), and for men, remained significant (p=0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n=171), the age-adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI: 2.6–6.9) and men (3.5, 95% CI: 2.3–5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p=0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD-based interventional thresholds for osteoporosis and at corresponding pre-established thresholds for “fragile bone strength” (spine: women ≤ 4,500 N, men ≤ 6,500 N; hip: women ≤ 3,000 N, men ≤ 3,500 N). Since it is well established that individuals over age 65 who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have “fragile bone strength” at the hip or spine should also be considered at high risk of fracture. PMID:23956027

  1. Parity, Lactation, Bone Strength, and 16-year Fracture Risk in Adult Women: Findings From the Study of Women’s Health Across the Nation (SWAN)

    PubMed Central

    Mori, Takahiro; Ishii, Shinya; Greendale, Gail A.; Cauley, Jane A.; Ruppert, Kristine; Crandall, Carolyn J.; Karlamangla, Arun S.

    2015-01-01

    Our objective was to examine the associations of lifetime parity and accumulated length of lactation with bone strength in women prior to the menopause transition and fracture risk during and after the transition. Participants were 2239 pre- or early perimenopausal women from the Study of Women's Health Across the Nation (SWAN), ages 42–53 at baseline, who had no childbirths after age 42. Bone mineral density (BMD) was measured in the femoral neck and the lumbar spine at the baseline SWAN visit using dual-energy x-ray absorptiometry, and composite indices of femoral neck strength relative to load (in three failure modes: compression, bending, and impact) were calculated from femoral neck BMD, femoral neck size, and body size. Data on fractures after age 42 were collected for a median follow-up of 15.7 years (interquartile range, 11.4 –18.5 years). In multiple linear regression adjusted for covariates, lifetime parity was associated positively with femoral neck strength relative to load (0.024 standard deviation (SD) increment in impact strength index per childbirth, p= 0.049), but accumulated length of lactation was associated negatively with lumbar spine BMD (0.018 SD decrement per every additional 6 months of lactation p=0.040). In Cox proportional hazards regression adjusted for covariates, neither parity nor lactation was associated with fracture hazard after age 42. In conclusion, parity and lactation have little impact on peak bone strength prior to menopause, and do not affect fracture risk after age 42 over 16-year follow-up. PMID:25528102

  2. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  3. Fracture resistance of five pin-retained core build-up materials on teeth with and without extracoronal preparation.

    PubMed

    Burke, F J; Shaglouf, A G; Combe, E C; Wilson, N H

    2000-01-01

    Core build-ups should provide satisfactory strength and resistance to fracture both before and after crown preparation. This paper examines the resistance to fracture of core build-ups in different materials and the fracture resistance of core build-ups when these have been reduced for full crown preparation. Standardized core build-ups were made on groups of extracted molar teeth of similar size, with 10 teeth per group. Three resin-composite (prisma APH: Dentsply, Weybridge, UK; Ti-Core, Essential Dental Systems, NJ, US and Coradent, Vivadent, Liechtenstein), one cermet (Ketac-Silver, ESPE GmbH, Seefeld, Germany) and one amalgam material (Duralloy, Degussa Ltd, Cheshire, UK). These specimens were subjected to compressive force on a universal testing machine and the force at fracture noted. Standardized full crown preparations were made on a further five groups of core build-up specimens using the same materials as above. These prepared specimens were subjected to compressive force on a universal testing machine and the force to fracture noted. The results indicated that amalgam core build-ups demonstrated higher fracture resistance than the other materials examined. There was a general decrease in the fracture strength of the specimens following crown preparation, with the teeth restored with the amalgam core build-ups showing a greater percentage reduction in fracture strength than the other materials tested. Prepared core build-ups in a hybrid composite material provided the highest fracture resistance. The cermet material used provided the lowest resistance to fracture in both the core build-up and crown preparation specimens. In terms of fracture resistance, no advantage was apparent in using the two composite materials designated as being specifically appropriate for core build-ups.

  4. Outcome of low profile mesh plate in management of comminuted displaced fracture patella.

    PubMed

    Singer, Mohamed S; Halawa, Abdelsamie M; Adawy, Adel

    2017-06-01

    To assess the clinical results of using mesh plate in management of displaced comminuted fracture patella. Between January 2014 and October 2015, nine patients with closed displaced comminuted fracture patella were fixed using mesh plate and 2mm mini screws. All fractures united after an average of 10 weeks. At final follow-up of an average 19.6 months, average postoperative Lysholm score was 89.1±4.9, and average Postoperative Böstman scale was 27.2±3.1. No hardware related complications were recorded. Low profile mesh plate is a good option in management of comminuted fracture patella with good clinical outcome. This new surgical technique may be particularly useful in comminuted fractures when patellectomy would otherwise be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    NASA Astrophysics Data System (ADS)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  6. Heavy section fracture toughness screening specimen

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Donald, J. K.; Brown, W. F., Jr.

    1976-01-01

    Size requirements for a pin loaded double edge notch + crack tension specimen proposed for fracture toughness screening heavy section alloys were studied. Ranking of eight selected alloys based on the specimen's net strength was compared with that based on the valid plane strain fracture toughness separately determined. Performance of the specimen was judged on the basis of that comparison. The specimen's net strength was influenced by three critical specimen dimensions: distance between the crack plane and the loading hole, specimen width, and specimen thickness. Interaction between the stress fields of the crack and the loading holes reduced the net strength, but this effect disappeared as the separation reached a dimension equal to the specimen width. The effects of specimen width and thickness are interrelated and affect the net strength through their influence on the development of the crack tip plastic zone.

  7. Biomechanical comparison of straight DCP and helical plates for fixation of transverse and oblique bone fractures.

    PubMed

    Aksakal, Bunyamin; Gurger, Murat; Say, Yakup; Yilmaz, Erhan

    2014-01-01

    Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems was in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved in torsional testing for the TF-HP fixations. From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.

  8. Probabilistic Simulation for Nanocomposite Fracture

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A unique probabilistic theory is described to predict the uniaxial strengths and fracture properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths and fracture of a nanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions from low probability to high.

  9. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating M<3 earthquakes. Seismic inversion studies indicate that the ruptures occur on clusters of stationary patches making up 1% or less of the total fault surface area. The existence of these so-called asperity patches, although not critical in determining the fault strength, suggests interaction of different deformation mechanisms. What are the deformation mechanisms, and how do the mechanisms couple and factor into the current strength models for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.

  10. Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

    PubMed

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-03-04

    This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr-Sb.

  11. Effects of Complex Modification by Sr–Sb on the Microstructures and Mechanical Properties of Al–18 wt % Mg2Si–4.5Cu Alloys

    PubMed Central

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-01-01

    This research was carried out to investigate the influence of Sr–Sb on the microstructures and mechanical properties of Al–18 wt % Mg2Si–4.5Cu alloys. After the addition of 0.2 wt % Sr–Sb, the morphologies of primary Mg2Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg2Si decreased from ~50 to ~20 μm. The shape of eutectic Mg2Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr–Sb. PMID:28773282

  12. Cryogenic Fracture Toughness Improvement for the Super Lightweight Tank's Main Structural Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Stanton, W. P.

    2002-01-01

    Marshall Space Flight Center has developed a two-step (TS) artificial aging technique that can significantly enhance cryogenic fracture toughness and resistance to stress corrosion cracking (SCC) in aluminum-copper-lithium alloy 2195. The new TS aging treatment consists of exposures at 132 C (270 F)/20 hr + 138 C (280 F)/42 hr, which can be readily applied to flight hardware production. TS aging achieves the same yield strength levels as conventional aging, while providing much improved ductility in the short transverse direction. After TS aging, five previously rejected lots of alloy 2195 (lots 950M029B, 960M030F, 960M030J, 960M030K, and 960M030L) passed simulated service testing for use in the super lightweight tank program. Each lot exhibited higher fracture toughness at cryogenic temperature than at ambient temperature. Their SCC resistance was also enhanced. All SCC specimens passed the minimum 10-day requirement in 3.5-percent sodium chloride alternate immersion at a stress of 45 ksi. The SCC lives ranged from 57 to 83 days, with an average of 70 days.

  13. Influence of Fracture Width on Sealability in High-Strength and Ultra-Low-Permeability Concrete in Seawater.

    PubMed

    Fukuda, Daisuke; Nara, Yoshitaka; Hayashi, Daisuke; Ogawa, Hideo; Kaneko, Katsuhiko

    2013-06-25

    For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC) specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT). In particular, the influence of fracture width (0.10 and 0.25 mm) on fracture sealing was investigated. Precipitation occurred mainly at the outermost parts of the fractured surface of the specimen for both fracture widths. While significant sealing was observed for the fracture width of 0.10 mm, sealing was not attained for the fracture width of 0.25 mm within the observation period (49 days). Examination of the sealed regions on the macro-fracture was performed using a three-dimensional image registration technique and applying image subtraction between the CT images of the HSULPC specimen before and after maintaining the specimen in simulated seawater. The temporal change of the sealing deposits for the fracture width of 0.10 mm was much larger than that for the fracture width of 0.25 mm. Therefore, it is concluded that the sealability of the fracture in the HSULPC is affected by the fracture width.

  14. Mechanical property studies of human gallstones.

    PubMed

    Stranne, S K; Cocks, F H; Gettliffe, R

    1990-08-01

    The recent development of gallstone fragmentation methods has increased the significance of the study of the mechanical properties of human gallstones. In the present work, fracture strength data and microhardness values of gallstones of various chemical compositions are presented as tested in both dry and simulated bile environments. Generally, both gallstone hardness and fracture strength values were significantly less than kidney stone values found in previous studies. However, a single calcium carbonate stone was found to have an outer shell hardness exceeding those values found for kidney stones. Diametral compression measurements in simulated bile conclusively demonstrated low gallstone fracture strength as well as brittle fracture in the stones tested. Based on the results of this study, one may conclude that the wide range of gallstone microhardnesses found may explain the reported difficulties previous investigators have experienced using various fragmentation techniques on specific gallstones. Moreover, gallstone mechanical properties may be relatively sensitive to bile-environment composition.

  15. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tianhao; Sidhar, Harpreet; Mishra, Rajiv S.

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore,more » in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position« less

  16. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    PubMed

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  17. Handgrip strength is an independent predictor of functional outcome in hip-fracture women: a prospective study with 6-month follow-up.

    PubMed

    Di Monaco, Marco; Castiglioni, Carlotta; De Toma, Elena; Gardin, Luisa; Giordano, Silvia; Tappero, Rosa

    2015-02-01

    The objective of this study was to investigate the contribution of handgrip strength in predicting the functional outcome after hip fracture in women.We prospectively investigated white women (N = 193 of 207) who were consecutively admitted to a rehabilitation hospital after a hip fracture. We measured handgrip strength with a Jamar dynamometer (Lafayette Instrument Co, Lafayette, IN), on admission to rehabilitation. Ability to function in activities of daily living was assessed by the Barthel index both on discharge from rehabilitation and at a 6-month follow-up.We found significant correlations between handgrip strength measured before rehabilitation and Barthel index scores assessed both on discharge from rehabilitation (ρ = 0.52, P < 0.001) and after 6 months (ρ = 0.49, P < 0.001). Significant associations between handgrip strength and Barthel index scores persisted after adjustment for age, comorbidities, pressure ulcers, medications in use, concomitant infections, body mass index, hip-fracture type, and Barthel index scores assessed both preinjury and on admission to rehabilitation (P = 0.001). Further adjustments for both Barthel index scores and Timed Up-and-Go test assessed at rehabilitation ending did not erase the significant association between handgrip strength and the Barthel index scores at the 6-month evaluation (P = 0.007). To define successful rehabilitation, we categorized the Barthel index scores as either high (85 or higher) or low (<85). The adjusted odds ratio for 1 SD increase in grip strength was 1.73 (95% confidence interval [CI] 1.05-2.84, P = 0.032) for having a high Barthel index score at the end of inpatient rehabilitation and 2.24 (95% CI 1.06-5.18) for having a high Barthel index score at the 6-month follow-up.Handgrip strength assessed before rehabilitation independently predicted the functional outcome both after inpatient rehabilitation and at a 6-month follow-up in hip-fracture women.

  18. Computational modeling and simulation of spall fracture in polycrystalline solids by an atomistic-based interfacial zone model

    PubMed Central

    Lin, Liqiang; Zeng, Xiaowei

    2015-01-01

    The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546

  19. A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software

    NASA Technical Reports Server (NTRS)

    Boppana, Abhishektha; Sefcik, Ryan; Myers, Jerry G.; Lewandowski, Beth

    2016-01-01

    Individuals who experience decreases in load-bearing bone densities can be subject to a higher risk of bone fracture during daily activity. Astronauts may lose up to nine percent of their load-bearing bone density for every month they spend in space [1]. Because of this, specialized countermeasures reduce percent loss in bone density and reduce fracture risk upon returning to Earth. Astronauts will typically not be at risk for fracture during spaceflight, because of the lesser loads experienced in microgravity conditions. However, once back on Earth, astronauts have an increased risk for bone fracture as a result of weakened bone and return to 1G conditions [2]. It is therefore important to understand the significance of any bone density loss in addition to developing exercises in an attempt to limit losses in bone strength. NASA seeks to develop a deeper understanding of fracture risk through the development of a computational bone strength model to assess the bone fracture risk of astronauts pre-flight and post-flight. This study addresses the several key processes needed to develop such strength analyses using medical image processing and finite element modeling.

  20. Analysis of Fracture Mechanism for Al-Mg/SiCp Composite Materials

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Adebisi, A. A.; Izzati, N.

    2017-03-01

    The present study aims to examine the fracture mechnism of silicon carbide particle (SiCp) reinforced aluminium matrix composite (AMC) material with 1 wt% addition of magnesium is fabricated using the stir casting process. The aluminium composite (Al-Mg/SiCp) is investigated for fatigue life and impact strength considering reinforcement weight fraction and influence of temperature on fracture toughness. The fabricated composite was tested using fatigue testing machine and charpy impact tester. Fractographic observations were evaluated with the scanning electron microscopy (SEM) on the fracture surface. It was found that increasing the SiCp weight fraction increased the fatigue life of the composite. Moreover, the 20 wt% SiCp Al-Mg composite attained the highest number of cycle and fatigue life compared to other variations. The mechanism responsible for the phenomena includes load transfer from the Al matrix alloy phase to the high strength and stiffness of the incorporated SiCp. The temperature variation influenced the impact strength of the composite and improved fracture toughness is achieved at 150 °C. It can be concluded from this study that reinforcement weight fraction and temperature affects the fracture behavior of the composites.

  1. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  2. Preliminary examination of the effects of relative humidity on the fracture morphology of cotton flat bundles

    USDA-ARS?s Scientific Manuscript database

    The effects of the relative humidity (RH) of testing conditions on stelometer cotton flat bundle strength and elongation measurements, and on the morphology of fiber fractures are presented herein. A trend is observed for stelometer strength and elongations measurements; testing in conditions with h...

  3. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  4. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    DOEpatents

    Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  5. Examination of Relationship Between Photonic Signatures and Fracture Strength of Fused Silica Used in Orbiter Windows

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon

    2011-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.

  6. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  7. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.

    PubMed

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-06-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.

  8. Effects of intensive strength-power training on sense of coherence among 60-85-year-old people with hip fracture: a randomized controlled trial.

    PubMed

    Pakkala, Inka; Read, Sanna; Sipilä, Sarianna; Portegijs, Erja; Kallinen, Mauri; Heinonen, Ari; Alen, Markku; Kiviranta, Ilkka; Rantanen, Taina

    2012-06-01

    Older people with disabilities are at increased risk of psychological health decline. There are no earlier studies on the effects of resistance training on sense of coherence (SOC) among older people with a history of hip fracture. The aim of this study is to test the effects of intensive 12-week strength-power training on SOC among older adults after hip fracture. A clinical sample of 60-85-year-old community-dwelling men and women was studied, 0.5. to 7.0 years after hip fracture. Forty-six had no contraindications for participation and were randomized into training (n=24) and control groups (n=22). The training group participated in a 12-week, individually tailored, strength-power training program, twice a week in a senior gym and supervised by an experienced physiotherapist. SOC was assessed with Antonovsky's short 13-item scale. Data were collected at baseline and after intervention. Intensive 12-week strength-power training had no effect on participants' SOC level. Results indicated no change in SOC after 12-week physical exercise training among participants after hip fracture. Further studies on SOC among older people with disabilities and potential ways of increasing it are needed.

  9. Effect of luting cements on the compressive strength of Turkom-Cera all-ceramic copings.

    PubMed

    Al-Makramani, Bandar M A; Razak, Abdul A A; Abu-Hassan, Mohamed I

    2008-02-01

    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings. Standardized metal dies were duplicated from a prepared maxillary first premolar tooth using non-precious metal alloy (Wiron 99). Thirty Turkom-Cera copings of 0.6 mm thickness were then fabricated. Three types of luting agents were used: zinc phosphate cement (Elite), glass-ionomer cement (Fuji I), and a dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. All copings were cemented to their respective dies according to manufacturer's instructions and received a static load of 5 kg for ten minutes. After 24 hours of storage in distilled water at 37 degrees C, the copings were vertically loaded until fracture using an Instron Universal Testing Machine at a crosshead speed of 1 mm/minute. The mode of fracture was then determined. Statistical analysis carried out using analysis of variance (ANOVA) revealed significant differences in the compressive strength between the three groups (P<0.001). The mean fracture strength (in Newtons) of Turkom-Cera copings cemented with Elite, Fuji I, and Panavia F were 1537.4 N, 1294.4 N, and 2183.6 N, respectively. Luting agents have an influence on the fracture resistance of Turkom-Cera copings.

  10. The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.

    PubMed

    Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol

    2017-01-01

    This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  12. Two Simple Models for Fracking

    NASA Astrophysics Data System (ADS)

    Norris, Jaren Quinn

    Recent developments in fracking have enable the recovery of oil and gas from tight shale reservoirs. These developments have also made fracking one of the most controversial environmental issues in the United States. Despite the growing controversy surrounding fracking, there is relatively little publicly available research. This dissertation introduces two simple models for fracking that were developed using techniques from non-linear and statistical physics. The first model assumes that the volume of induced fractures must be equal to the volume of injected fluid. For simplicity, these fractures are assumed to form a spherically symmetric damage region around the borehole. The predicted volumes of water necessary to create a damage region with a given radius are in good agreement with reported values. The second model is a modification of invasion percolation which was previously introduced to model water flooding. The reservoir rock is represented by a regular lattice of local traps that contain oil and/or gas separated by rock barriers. The barriers are assumed to be highly heterogeneous and are assigned random strengths. Fluid is injected from a central site and the weakest rock barrier breaks allowing fluid to flow into the adjacent site. The process repeats with the weakest barrier breaking and fluid flowing to an adjacent site each time step. Extensive numerical simulations were carried out to obtain statistical properties of the growing fracture network. The network was found to be fractal with fractal dimensions differing slightly from the accepted values for traditional percolation. Additionally, the network follows Horton-Strahler and Tokunaga branching statistics which have been used to characterize river networks. As with other percolation models, the growth of the network occurs in bursts. These bursts follow a power-law size distribution similar to observed microseismic events. Reservoir stress anisotropy is incorporated into the model by assigning horizontal bonds weaker strengths on average than vertical bonds. Numerical simulations show that increasing bond strength anisotropy tends to reduce the fractal dimension of the growing fracture network, and decrease the power-law slope of the burst size distribution. Although simple, these two models are useful for making informed decisions about fracking.

  13. Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes

    PubMed Central

    Ackerman, Kathryn E.; Cano Sokoloff, Natalia; Maffazioli, Giovana De Nardo; Clarke, Hannah; Lee, Hang; Misra, Madhusmita

    2014-01-01

    Introduction To compare fracture prevalence in oligo-amenorrheic athletes (AA), eumenorrheic athletes (EA), and non-athletes (NA) and determine relationships with bone density, structure and strength estimates. Methods 175 females (100 AA, 35 EA, and 40 NA) 14–25 yo were studied. Lifetime fracture history was obtained through participant interviews. Areal BMD was assessed by DXA at the spine, hip and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. Results AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (p≤0.001). BMD Z-scores were lower in AA vs. EA at the total hip, femoral neck, spine, and whole body (p≤0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%, p≤0.001), largely driven by stress fractures in AA vs. EA and NA (32% vs. 5.9% vs. 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, vBMD of outer trabecular region in radius and tibia, and trabecular thickness of the radius (p≤0.05). In AA, those who had 2 stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness and failure load at radius; and lower stiffness and failure load at tibia versus those with <2 stress fracture (p≤0.05). Conclusion Weight-bearing athletic activity increases BMD, but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes. PMID:25397605

  14. Women with previous stress fractures show reduced bone material strength

    PubMed Central

    Duarte Sosa, Daysi; Fink Eriksen, Erik

    2016-01-01

    Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443

  15. Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.

    1987-01-01

    An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.

  16. Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae

    2012-05-01

    The effect of interfacial microstructures on the bonding strength of Sn-3.0Ag-0.5Cu Pb-free solder bumps with respect to the loading speed, annealing time, and surface finish was investigated. The shear strength increased and the ductility decreased with increasing shear speed, primarily because of the time-independent plastic hardening and time-dependent strain-rate sensitivity of the solder alloy. The shear strength and toughness decreased for all surface finishes under the high-speed shear test of 500 mm/s as a result of increasing intermetallic compound (IMC) growth and pad interface weakness associated with increased annealing time. The immersion Sn and organic solderability preservative (OSP) finishes showed lower shear strength compared to the electroless nickel immersion gold (ENIG) finish. With increasing annealing time, the ENIG finish exhibited the pad open fracture mode, whereas the immersion Sn and OSP finishes exhibited the brittle fracture mode. In addition, the shear strength of the solder joints was correlated with each fracture mode.

  17. Social inequalities in osteoporosis and fracture among community-dwelling older men and women: findings from the Hertfordshire Cohort Study.

    PubMed

    Syddall, Holly E; Evandrou, Maria; Dennison, Elaine M; Cooper, Cyrus; Sayer, Avan Aihie

    2012-01-01

    It is unknown whether osteoporosis is socially patterned. Using data from the Hertfordshire Cohort Study we found no consistent evidence for social inequalities in prevalent or incident fracture, bone mineral density or loss rates, or bone strength. Public health strategies for prevention of osteoporosis should focus on the whole population. Osteoporosis and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. It is unclear whether osteoporosis and osteoporotic fracture are socially patterned. This study aims to analyse social inequalities in osteoporosis and osteoporotic fracture among the 3,225 community-dwelling men and women, aged 59-73 years, who participated in the Hertfordshire Cohort Study (HCS), UK. A panel of markers of bone health (fracture since 45 years of age; DXA bone mineral density and loss rate at the total femur; pQCT strength strain indices for the radius and tibia; and incident fracture) were analysed in relation to the social circumstances of the HCS participants (characterised at the individual level by: age left full time education; current social class; housing tenure and car availability). We found little strong or consistent evidence among men, or women, for social inequalities in prevalent or incident fracture, DXA bone mineral density, bone loss rates, or pQCT bone strength, with or without adjustment for age, anthropometry, lifestyle and clinical characteristics. Reduced car availability at baseline was associated with lower pQCT radius and tibia strength strain indices at follow-up among men only (p = 0.02 radius and p < 0.01 tibia unadjusted; p = 0.05 radius and p = 0.01 tibia, adjusted for age, anthropometry, lifestyle and clinical characteristics). Our results suggest that fracture and osteoporosis do not have a strong direct social gradient and that public health strategies for prevention and treatment of osteoporosis should continue to focus on the whole population.

  18. Influence of UFG structure formation on mechanical and fatigue properties in Ti-6Al-7Nb alloy

    NASA Astrophysics Data System (ADS)

    Polyakova, V. V.; Anumalasetty, V. N.; Semenova, I. P.; Valiev, R. Z.

    2014-08-01

    Ultrafine-grained (UFG) Ti alloys have potential applications in osteosynthesis and orthopedics due to high bio-compatibility and increased weight-to- strength ratio. In current study, Ti6Al7Nb ELI alloy is processed through equal channel angular pressing-conform (ECAP-Conform) and subsequent thermomechanical processing to generate a UFG microstructure. The fatigue properties of UFG alloys are compared to coarse grained (CG) alloys. Our study demonstrates that the UFG alloys with an average grain size of ~180 nm showed 35% enhancement of fatigue endurance limit as compared to coarse-grained alloys. On the fracture surfaces of the UFG and CG samples fatigue striations and dimpled relief were observed. However, the fracture surface of the UFG sample looks smoother; fewer amounts of secondary micro-cracks and more ductile rupture were also observed, which testifies to the good crack resistance in the UFG alloy after high-cyclic fatigue tests.

  19. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process

    PubMed Central

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-01-01

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708

  20. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    PubMed

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  1. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    PubMed

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709

  3. Effects of exercise improves muscle strength and fat mass in patients with high fracture risk: A randomized control trial.

    PubMed

    Chan, Ding-Cheng; Chang, Chirn-Bin; Han, Der-Sheng; Hong, Cian-Hui; Hwang, Jawl-Shan; Tsai, Keh-Sung; Yang, Rong-Sen

    2017-10-26

    The deterioration of the musculoskeletal system imposes significant impact on physical activity. Exercise is an important strategy which minimizes these changes. It is not clear which type of exercise provides better improvement on low physical performance, low muscle mass and low strength of sarcopenia. We aim to develop an integrated care (IC) model and compare its relative efficacy in limb fat free mass, muscle strength, and physical performance with low extremities exercise (LEE) in community dwelling older adults with high risk of fractures (Fracture Risk Assessment Tool (FRAX ® )) ≧3% for hip fracture, ≧20% for major osteoporotic fracture or 1-min osteoporosis risk test (≧1 point) or fall (≧2 falls in previous year). Patients were assigned randomized to participate in either IC or LEE group (n = 55 each) for 3 months. All participants received education including home-based exercise. The IC group consisted of different modalities of exercise while the LEE group performed machine-based low extremities exercise. Fat free mass, muscle strength, and physical performance were measured at their baseline and 3-months follow-up. Mean age was 73.8 ± 7 years with 69.1% women. Entire cohort demonstrated significant increment in fat free mass, muscle strength (4 indicators) and physical performance (3 indicators). However, between group differences were not significant. With regular supervise exercise; both groups are equally effective in decreasing fat mass and increasing physical performance, muscle mass and strength. However, the IC group required fewer resources and thus more financially feasible in a community setting. Copyright © 2017. Published by Elsevier B.V.

  4. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  5. Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Goldsby, John C.; Choi, Sung R.

    2004-01-01

    Tests have shown that modification of chemical compositions can increase the strengths and fracture toughnesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria-stabilized zirconia, which is highly conductive for oxygen ions at high temperatures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications. The modifications of chemical composition that lead to increased strength and fracture toughness consist in addition of alumina to the basic yttria-stabilized zirconia formulations. Techniques for processing of yttria-stabilized zirconia/alumina composites containing as much as 30 mole percent of alumina have been developed. The composite panels fabricated by these techniques have been found to be dense and free of cracks. The only material phases detected in these composites has been cubic zirconia and a alumina: this finding signifies that no undesired chemical reactions between the constituents occurred during processing at elevated temperatures. The flexural strengths and fracture toughnesses of the various zirconia-alumina composites were measured in air at room temperature as well as at a temperature of 1,000 C (a typical SOFC operating temperature). The measurements showed that both flexural strength and fracture toughness increased with increasing alumina content at both temperatures. In addition, the modulus of elasticity and the thermal conductivity were found to increase and the density to decrease with increasing alumina content. The oxygen-ion conductivity at 1,000 C was found to be unchanged by the addition of alumina.

  6. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  7. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  8. Experimental investigation of mode I fracture for brittle tube-shaped particles

    NASA Astrophysics Data System (ADS)

    Stasiak, Marta; Combe, Gaël; Desrues, Jacques; Richefeu, Vincent; Villard, Pascal; Armand, Gilles; Zghondi, Jad

    2017-06-01

    We focus herein on the mechanical behavior of highly crushable grains. The object of our interest, named shell, is a hollow cylinder grain with ring cross-section, made of baked clay. The objective is to model the fragmentation of such shells, by means of discrete element (DE) approach. To this end, fracture modes I (opening fracture) and II (in-plane shear fracture) have to be investigated experimentally. This paper is essentially dedicated to mode I fracture. Therefore, a campaign of Brazilian-like compression tests, that result in crack opening, has been performed. The distribution of the occurrence of tensile strength is shown to obey a Weibull distribution for the studied shells, and Weibull's modulus was quantified. Finally, an estimate of the numerical/physical parameters required in a DE model (local strength), is proposed on the basis of the energy required to fracture through a given surface in mode I or II.

  9. Avalanche weak layer shear fracture parameters from the cohesive crack model

    NASA Astrophysics Data System (ADS)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0.08 N/m (non-linear) to 0.18 N/m (LEFM) for median slab density around 200 kg/m3. Schulson and Duval (2009) estimated the fracture energy of solid ice (mode I) to be about 0.22-1 N/m which yields rough theoretical limits of about 0.05- 0.2 N/m for density 200 kg/m3 when the ice volume fraction is accounted for. Mode I results from lab tests (Sigrist, 2006) gave 0.1 N/m (200 kg/m3). The median effective mode II shear fracture toughness was calculated between 0.31 to 0.35 kPa(m)1/2 for the avalanche data. All the fracture energy results are much lower than previously calculated from propagation saw tests (PST) results for a weak layer collapse model (1.3 N/m) (Schweizer et al., 2011). The differences are related to model assumptions and estimates of the effective slab modulus. The calculations in this paper apply to quasi-static deformation and mode II weak layer fracture whereas the weak layer collapse model is more appropriate for dynamic conditions which follow fracture initiation (McClung and Borstad, 2012). References: Bažant, Z.P. et al. (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res. 108(B2): 2119, doi:10.1029/2002JB))1884.2003. McClung, D.M. and C.P. Borstad (2012) Deformation and energy of dry snow slabs prior to fracture propagation, J. Glaciol. 58(209), 2012 doi:10.3189/2012JoG11J009. Schulson, E.M and P. Duval (2009) Creep and fracture of ice, Cambridge University Press, 401 pp. Schweizer, J. et al. (2011) Measurements of weak layer fracture energy, Cold Reg. Sci. and Tech. 69: 139-144. Sigrist, C. (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D thesis: 16736, ETH, Zuerich: 139 pp.

  10. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  11. A poisson process model for hip fracture risk.

    PubMed

    Schechner, Zvi; Luo, Gangming; Kaufman, Jonathan J; Siffert, Robert S

    2010-08-01

    The primary method for assessing fracture risk in osteoporosis relies primarily on measurement of bone mass. Estimation of fracture risk is most often evaluated using logistic or proportional hazards models. Notwithstanding the success of these models, there is still much uncertainty as to who will or will not suffer a fracture. This has led to a search for other components besides mass that affect bone strength. The purpose of this paper is to introduce a new mechanistic stochastic model that characterizes the risk of hip fracture in an individual. A Poisson process is used to model the occurrence of falls, which are assumed to occur at a rate, lambda. The load induced by a fall is assumed to be a random variable that has a Weibull probability distribution. The combination of falls together with loads leads to a compound Poisson process. By retaining only those occurrences of the compound Poisson process that result in a hip fracture, a thinned Poisson process is defined that itself is a Poisson process. The fall rate is modeled as an affine function of age, and hip strength is modeled as a power law function of bone mineral density (BMD). The risk of hip fracture can then be computed as a function of age and BMD. By extending the analysis to a Bayesian framework, the conditional densities of BMD given a prior fracture and no prior fracture can be computed and shown to be consistent with clinical observations. In addition, the conditional probabilities of fracture given a prior fracture and no prior fracture can also be computed, and also demonstrate results similar to clinical data. The model elucidates the fact that the hip fracture process is inherently random and improvements in hip strength estimation over and above that provided by BMD operate in a highly "noisy" environment and may therefore have little ability to impact clinical practice.

  12. Experimental Study of Hybrid Fractures and the Transition From Joints to Faults

    NASA Astrophysics Data System (ADS)

    Ramsey, J. M.; Chester, F. M.

    2003-12-01

    Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.

  13. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics

    PubMed Central

    Wang, Ruzhuan; Li, Weiguo

    2015-01-01

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS. PMID:28793488

  14. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics.

    PubMed

    Wang, Ruzhuan; Li, Weiguo

    2015-08-05

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse's minor axes has great effect on the material strength when the ratio of ellipse's minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse's minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse's minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.

  15. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.

    PubMed

    Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing

    2012-06-01

    The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface with powder coating could significantly increase the shear bond strength of zirconia to veneering porcelain. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  16. Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Wang, Moran

    2017-05-01

    Hydrofracturing is an important technique in petroleum industry to stimulate well production. Yet the mechanism of induced fracture growth is still not fully understood, which results in some unsatisfactory wells even with hydrofracturing treatments. In this work we establish a more accurate numerical framework for hydromechanical coupling, where the solid deformation and fracturing are modeled by discrete element method and the fluid flow is simulated directly by lattice Boltzmann method at pore scale. After validations, hydrofracturing is simulated with consideration on the strength heterogeneity effects on fracture geometry and microfailure mechanism. A modified topological index is proposed to quantify the complexity of fracture geometry. The results show that strength heterogeneity has a significant influence on hydrofracturing. In heterogeneous samples, the fracturing behavior is crack nucleation around the tip of fracture and connection of it to the main fracture, which is usually accompanied by shear failure. However, in homogeneous ones the fracture growth is achieved by the continuous expansion of the crack, where the tensile failure often dominates. It is the fracturing behavior that makes the fracture geometry in heterogeneous samples much more complex than that in homogeneous ones. In addition, higher pore pressure leads to more shear failure events for both heterogeneous and homogeneous samples.

  17. Vitamin D status and falls, frailty, and fractures among postmenopausal Japanese women living in Hawaii.

    PubMed

    Pramyothin, P; Techasurungkul, S; Lin, J; Wang, H; Shah, A; Ross, P D; Puapong, R; Wasnich, R D

    2009-11-01

    Vitamin D status and its relationship to physical performance, falls, and fractures in 495 postmenopausal women of Japanese ancestry in Hawaii were investigated. The mean 25-hydroxyvitamin D (25-OHD) was 31.94 ng/mL. No significant association of 25-OHD was demonstrated with most outcomes, possibly due to higher 25-OHD levels in this population. In this study, we investigated vitamin D status and its relationship to physical performance, muscle strength, falls, and fractures in postmenopausal Japanese females living in Hawaii. Of 510 community-dwelling women who participated in the eighth examination of the Hawaii Osteoporosis Study, 495 were included in these analyses. Multivariate regression models were used to evaluate the relationship of 25-OHD (D(3) and total) to eight performance-based measurements, 12 activities of daily living (ADLs), and muscle strength (grip, triceps, and quadriceps). Logistic regression analyses were performed to evaluate the relationship of 25-OHD to falls, vertebral fractures, and non-vertebral fractures. The mean total 25-OHD was 31.94 +/- 9.46 ng/mL; 44% of subjects had values <30 ng/mL, while none had values <10-12 ng/mL. There was little evidence of seasonal variation. Among performance-based measures, ADLs, and strength tests, only quadriceps strength was significantly associated with total 25-OHD (p = 0.0063) and 25-OHD(3) (p = 0.0001). No significant association of 25-OHD was found with vertebral or non-vertebral fractures, or incidence of one or more falls. Lack of serum 25-OHD relationship with falls and fractures or most physical performance measures in this study may be related to the low prevalence of very low 25-OHD levels in this population.

  18. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  20. Fractography of cast gypsum.

    PubMed

    Mori, T; Yamane, M

    1982-02-01

    A fractographical study of dental cast gypsum was made in order to correlate the mechanical properties with the microstructure. Wet specimens fractured under tensile stress showed intercrystalline fracture and the tensile strength depended on the porosity present. Thus, it was assumed that tensile strength was dependent on the contact area between individual gypsum crystals and changes in porosity approximated to changes in contact area. Strength differences among specimens of a given W/P ratio, therefore, can be related to differences in intercrystalline contact areas. These theoretical considerations suggest that the classification of dental die stone and dental stone into high and low strength types based on strength properties only would be more practical and less confusing than at present.

  1. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    DOE PAGES

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; ...

    2016-02-16

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibrilmore » deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. We find the significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.« less

  2. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    NASA Astrophysics Data System (ADS)

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; Tang, Simon; Amling, Michael; Ritchie, Robert O.; Busse, Björn

    2016-02-01

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.

  3. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibrilmore » deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. We find the significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.« less

  4. On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian

    2017-04-01

    There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation.

  5. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay

    2013-01-01

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less

  6. Evaluation of a novel multiple phase veneering ceramic.

    PubMed

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Clougherty, E. V.; Pober, R. L.; Kaufman, L.

    1972-01-01

    Significant results were obtained in fabrication studies of the role of metallic additives of Zr, Ti, Ni, Fe and Cr on the densification of ZrB2. All elemental additions lower the processing temperatures required to effect full densification of ZrB2. Each addition effects enhanced densification by a clearly distinguishable and different mechanism and the resulting fabricated materials are different. A significant improvement in strength and fracture toughness was obtained for the ZrB2/Ti composition. Mechanical characterization studies for the ZrB2/SiC/C composites and the new ZrB2/Metal materials produced data relevant to the effect of impacting load on measured impact energies, a specimen configuration for which controlled fracture could occur in a suitably hard testing apparatus, and fracture strength data. Controlled fracture--indicative of measurable fracture toughness--was obtained for the ZrB2-SiC-C composite, and a ZrB2/Ti composite fabricated from ZrB2 with an addition of 30 weight per cent Ti. The increased strength and toughness of the ZrB2/Ti composite is consistent with the presence of a significantly large amount of a fine grained acicular phase formed by reaction of Ti with ZrB2 during processing.

  8. Graphene and its elemental analogue: A molecular dynamics view of fracture phenomenon

    NASA Astrophysics Data System (ADS)

    Rakib, Tawfiqur; Mojumder, Satyajit; Das, Sourav; Saha, Sourav; Motalab, Mohammad

    2017-06-01

    Graphene and some graphene like two dimensional materials; hexagonal boron nitride (hBN) and silicene have unique mechanical properties which severely limit the suitability of conventional theories used for common brittle and ductile materials to predict the fracture response of these materials. This study revealed the fracture response of graphene, hBN and silicene nanosheets under different tiny crack lengths by molecular dynamics (MD) simulations using LAMMPS. The useful strength of these two dimensional materials are determined by their fracture toughness. Our study shows a comparative analysis of mechanical properties among the elemental analogues of graphene and suggested that hBN can be a good substitute for graphene in terms of mechanical properties. We have also found that the pre-cracked sheets fail in brittle manner and their failure is governed by the strength of the atomic bonds at the crack tip. The MD prediction of fracture toughness shows significant difference with the fracture toughness determined by Griffth's theory of brittle failure which restricts the applicability of Griffith's criterion for these materials in case of nano-cracks. Moreover, the strengths measured in armchair and zigzag directions of nanosheets of these materials implied that the bonds in armchair direction have the stronger capability to resist crack propagation compared to zigzag direction.

  9. Spacing of bending-induced fractures at saturation: Numerical models and approximate analytical solution

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin; Lehner, Florian; Grasemann, Bernhard; Kaserer, Klemens; Hinsch, Ralph

    2017-04-01

    John G. Ramsay's sketch of structures developed in a layer progressively folded and deformed by tangential longitudinal strain (Figure 7-65 in Folding and Fracturing of Rocks) and the associated strain pattern analysis have been reproduced in many monographs on Structural Geology and are referred to in numerous publications. Although the origin of outer-arc extension fractures is well-understood and documented in many natural examples, geomechanical factors controlling their (finite or saturation) spacing are hitherto unexplored. This study investigates the formation of bending-induced fractures during constant-curvature forced folding using Distinct Element Method (DEM) numerical modelling. The DEM model comprises a central brittle layer embedded within weaker (low modulus) elastic layers; the layer interfaces are frictionless (free slip). Folding of this three-layer system is enforced by a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The models illustrate several key stages of fracture array development: (i) Prior to the onset of fracture, the neutral surface is located midway between the layer boundaries; (ii) A first set of regularly spaced fractures develops once the tensile stress in the outer-arc equals the tensile strength of the layer. Since the layer boundaries are frictionless, these bending-induced fractures propagate through the entire layer; (iii) After the appearance of the first fracture set, the rate of fracture formation decreases rapidly and so-called infill fractures develop approximately midway between two existing fractures (sequential infilling); (iv) Eventually no new fractures form, irrespective of any further increase in fold curvature (fracture saturation). Analysis of the interfacial normal stress distributions suggests that at saturation the fracture-bound blocks are subjected to a loading condition similar to three-point bending. Using classical beam theory an analytical solution is derived for the critical fracture spacing, i.e. the spacing below which the maximum tensile stress cannot reach the layer strength. The model results are consistent with an approximate analytical solution, and illustrate that the spacing of bending-induced fractures is proportional to layer thickness and a square root function of the ratio of layer tensile strength to confining pressure. Although highly idealised, models and analysis presented in this study offer an explanation for fracture saturation during folding and point towards certain key factors that may control fracture spacing in natural systems.

  10. Strength, Fracture Toughness, and Slow Crack Growth of Zirconia/alumina Composites at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Various electrolyte materials for solid oxide fuel cells were fabricated by hot pressing 10 mol% yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol% alumina. Flexure strength and fracture toughness of platelet composites were determined as a function of alumina content at 1000 C in air and compared with those of particulate composites determined previously. In general, elevated-temperature strength and fracture toughness of both composite systems increased with increasing alumina content. For a given alumina content, flexure strength of particulate composites was greater than that of platelet composites at higher alumina contents (greater than or equal to 20 mol%), whereas, fracture toughness was greater in platelet composites than in particulate composites, regardless of alumina content. The results of slow crack growth (SCG) testing, determined at 1000 C via dynamic fatigue testing for three different composites including 0 mol% (10-YSZ matrix), 30 mol % particulate and 30 mol% platelet composites, showed that susceptibility to SCG was greatest with SCG parameter n = 6 to 8 for both 0 and 30 mol% particulate composites and was least with n = 33 for the 30 mol% platelet composite.

  11. Procedure for estimating fracture energy from fracture surface roughness

    DOEpatents

    Williford, Ralph E.

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  12. Effect of CAD/CAM glass fiber post-core on cement micromorphology and fracture resistance of endodontically treated roots.

    PubMed

    da Costa, Rogério Goulart; Freire, Andrea; Caregnatto de Morais, Eduardo Christiano; Machado de Souza, Evelise; Correr, Giselle Maria; Rached, Rodrigo Nunes

    2017-02-01

    To investigate the fracture resistance of weakened roots restored with prefabricated or CAD/CAM-customized posts and cores as well as the thickness of the cement film and the presence of voids in the cement. The roots of 40 human premolars were weakened by removing internal dentin with a diamond bur (2.5 mm in the coronal third and 1.5 mm in the apical third) and restored with prefabricated posts (PPs) or customized posts (CPs) with or without a zirconia crown (n= 10). Posts and crowns were cemented with resin cement. Microtomography was used to determine the thickness of the cement film and whether voids were present. After fatigue testing (1 million cycles, 50 N, 5 Hz, 36.5°C), the specimens underwent compression testing with an oblique load (30°, 1 mm/minute) and fracture strengths were recorded (N). Fracture strength and film thickness were analyzed with ANOVA and the Games-Howell test; the variable presence of voids was analyzed with the Mann-Whitney test (α= 5%). Mean fracture strengths varied between 640.4 and 792.9 N and did not differ significantly between groups. The CP group had a thinner cement film and fewer voids than the PP group. There was a positive, statistically significant correlation (Spearman, R=0.488, P= 0.029) between these variables. CAD/CAM-manufactured glass-fiber posts and cores do not affect the fracture strength of flared root canals or cause catastrophic failure of the root when used with zirconia crowns.

  13. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2017-02-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  14. Torsional strength of computer-aided design/computer-aided manufacturing-fabricated esthetic orthodontic brackets.

    PubMed

    Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell

    2017-01-01

    To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°. Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.

  15. Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry

    NASA Astrophysics Data System (ADS)

    Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.

    2013-12-01

    The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than the other two orientations. This anisotropy and variability in fracture properties is seen to cause deviation of the fracture direction during experiments on Arrester and Short-Transverse oriented samples, and can be expected to influence the geometry of propagating fractures. A comparison between the anisotropic tensile strength of the material and the crack-tip stress field in a transversely isotropic material has been used to develop a crack-tip deflection criterion in terms of the elasticity theory of cracks. This criterion suggests that a small perturbation in the incident angle of a mode-I crack propagating perpendicular to the bedding is likely to lead to a substantial deflection towards bedding-parallel (Short-Transverse) propagation. Further experimental work is currently underway on anisotropic Fracture Toughness measurements at elevated pressures and temperatures, simulating conditions in Shale Gas reservoirs at depths up to around 4km.

  16. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    NASA Astrophysics Data System (ADS)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  17. Tensile behavior of the L(1)2 compound Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Temperature-related variations in tensile yield strength and ductility were studied on cast, homogenized and isothermally forged Al67Ti25Cr8. Yield strength dropped discontinuously between 623 K and 773 K and then decreased gradually with increasing temperature. Below 623 K, fracture occurred prior to macroscopic yielding. Ductility decreased from 0.2 percent at 623 K to zero at 773 K, but increased again at higher temperatures. At 1073 K, an elongation of 19 percent was obtainable, and ultimate tensile strength and localized necking were observed. Fracture surfaces and deformed microstructures were examined. The 1073 K tensile specimen that exhibited 19 percent elongation showed grain boundary serrations and some evidence of recrystallization (likely dynamic) although fracture occurred predominantly via an intergranular mode.

  18. Utilization of fractography in the evaluations of high temperature dynamic fatigue experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.; Tennery, V.J.; Mroz, T.J.

    1996-12-31

    The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less

  19. Utilization of fractography in the evaluation of high temperature dynamic fatigue experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breder, K.; Wereszczak, A.A.; Tennery, V.J.

    1995-12-31

    The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less

  20. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  1. C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali

    2001-01-01

    A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.

  2. Mechanical properties of Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites with interpenetrating networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knechtel, M.; Prielipp, H.; Claussen, N.

    The rising fracture resistance with crack length in metal-toughened ceramics due to ductile bridging has been discussed from some selected microstructures and metal-ceramic combinations. An intriguing feature of these composites is the influence of interfacial fracture strength. Strong interfacial bonding leads to high geometrical constraint for the metal and high degree of triaxial tension in the metal ligament, thereby increasing the uniaxial yield strength by a factor of 5--7. This in turn increases the closure stress of the metal ligament, but ultimately limits the total plastic dissipation in the ductile reinforcement. The intent of this paper is to provide somemore » insight on the influence of metal ligament size on both fracture toughness and fracture strength. The materials chosen are Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites, both prepared by gas-pressure metal-infiltration of porous alumina preforms. SEM observations of fracture surfaces in conjunction with preliminary TEM and PEELS investigations of the metal-ceramic interfaces are used to explain the trends in mechanical property data.« less

  3. Elastic and fracture properties of free-standing amorphous ALD Al2O3 thin films measured with bulge test

    NASA Astrophysics Data System (ADS)

    Rontu, Ville; Nolvi, Anton; Hokkanen, Ari; Haeggström, Edward; Kassamakov, Ivan; Franssila, Sami

    2018-04-01

    We have investigated elastic and fracture properties of amorphous Al2O3 thin films deposited by atomic layer deposition (ALD) with bulge test technique using a free-standing thin film membrane and extended applicability of bulge test technique. Elastic modulus was determined to be 115 GPa for a 50 nm thick film and 170 GPa for a 15 nm thick film. Residual stress was 142 MPa in the 50 nm Al2O3 film while it was 116 MPa in the 15 nm Al2O3 film. Density was 3.11 g cm‑3 for the 50 nm film and 3.28 g cm‑3 for the 15 nm film. Fracture strength at 100 hPa s‑1 pressure ramp rate was 1.72 GPa for the 50 nm film while for the 15 nm film it was 4.21 GPa, almost 2.5-fold. Fracture strength was observed to be positively strain-rate dependent. Weibull moduli of these films were very high being around 50. The effective volume of a circular film in bulge test was determined from a FEM model enabling future comparison of fracture strength data between different techniques.

  4. Investigation of Weibull statistics in fracture analysis of cast aluminum

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1989-01-01

    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.

  5. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women.

    PubMed

    Bachmann, Katherine Neubecker; Fazeli, Pouneh K; Lawson, Elizabeth A; Russell, Brian M; Riccio, Ariana D; Meenaghan, Erinne; Gerweck, Anu V; Eddy, Kamryn; Holmes, Tara; Goldstein, Mark; Weigel, Thomas; Ebrahimi, Seda; Mickley, Diane; Gleysteen, Suzanne; Bredella, Miriam A; Klibanski, Anne; Miller, Karen K

    2014-12-01

    Data suggest that anorexia nervosa (AN) and obesity are complicated by elevated fracture risk, but skeletal site-specific data are lacking. Traditional bone mineral density (BMD) measurements are unsatisfactory at both weight extremes. Hip structural analysis (HSA) uses dual-energy X-ray absorptiometry data to estimate hip geometry and femoral strength. Factor of risk (φ) is the ratio of force applied to the hip from a fall with respect to femoral strength; higher values indicate higher hip fracture risk. The objective of the study was to investigate hip fracture risk in AN and overweight/obese women. This was a cross-sectional study. The study was conducted at a Clinical Research Center. PATIENTS included 368 women (aged 19-45 y): 246 AN, 53 overweight/obese, and 69 lean controls. HSA-derived femoral geometry, peak factor of risk for hip fracture, and factor of risk for hip fracture attenuated by trochanteric soft tissue (φ(attenuated)) were measured. Most HSA-derived parameters were impaired in AN and superior in obese/overweight women vs controls at the narrow neck, intertrochanteric, and femoral shaft (P ≤ .03). The φ(attenuated) was highest in AN and lowest in overweight/obese women (P < .0001). Lean mass was associated with superior, and duration of amenorrhea with inferior, HSA-derived parameters and φ(attenuated) (P < .05). Mean φ(attenuated) (P = .036), but not femoral neck BMD or HSA-estimated geometry, was impaired in women who had experienced fragility fractures. Femoral geometry by HSA, hip BMD, and factor of risk for hip fracture attenuated by soft tissue are impaired in AN and superior in obesity, suggesting higher and lower hip fracture risk, respectively. Only attenuated factor of risk was associated with fragility fracture prevalence, suggesting that variability in soft tissue padding may help explain site-specific fracture risk not captured by BMD.

  6. Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes.

    PubMed

    Ackerman, Kathryn E; Cano Sokoloff, Natalia; DE Nardo Maffazioli, Giovana; Clarke, Hannah M; Lee, Hang; Misra, Madhusmita

    2015-08-01

    This study was aimed to compare fracture prevalence in oligoamenorrheic athletes (AA), eumenorrheic athletes (EA), and nonathletes (NA) and determine relationships with bone density, structure, and strength estimates. One hundred seventy-five females (100 AA, 35 EA, and 40 NA) 14-25 yr old were studied. Lifetime fracture history was obtained through participant interviews. Areal bone mineral density (BMD) was assessed by DXA at the spine, hip, and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (P ≤ 0.001). Bone mineral density Z-scores were lower in AA versus EA at the total hip, femoral neck, spine, and whole body (P ≤ 0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%; P ≤ 0.001), largely driven by stress fractures in AA versus EA and NA (32% vs 5.9% vs 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, volumetric BMD (vBMD) of outer trabecular region in radius and tibia, and trabecular thickness of the radius (P ≤ 0.05). In AA, those who had two or more stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness, and failure load at radius; and lower stiffness and failure load at tibia versus those with fewer than two stress fractures (P ≤ 0.05). Weight-bearing athletic activity increases BMD but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes.

  7. Pathogenesis of Fifth Metatarsal Fractures in College Soccer Players

    PubMed Central

    Fujitaka, Kohei; Taniguchi, Akira; Isomoto, Shinji; Kumai, Tsukasa; Otuki, Shingo; Okubo, Mamoru; Tanaka, Yasuhito

    2015-01-01

    Background: The pathogenesis of fifth metatarsal stress fractures remains uncertain. Hypothesis: Physical characteristics and environmental factors, which have received limited attention in the literature thus far, might be involved in the development of fifth metatarsal stress fractures. Study Design: Case-control study; Level of evidence, 3. Methods: To test the study hypothesis, a medical examination and survey of the living environment of collegiate soccer players was conducted and correlated with the existence of fifth metatarsal stress fractures. The survey and measurements were conducted in 273 male athletes from the same college soccer team between 2005 and 2013. A medical examination comprising assessment of stature, body weight, body mass index, foot–arch height ratio, toe-grip strength, quadriceps angle, leg-heel angle, functional reach test, single-leg standing time with eyes closed, straight-leg raise angle, finger-floor distance, heel-buttock distance, ankle joint range of motion, and a general joint laxity test were performed once a year, along with a questionnaire survey. The survey was also repeated when a fifth metatarsal stress fracture was diagnosed. The study participants were separated into a fifth metatarsal stress fracture injury group and a noninjury group. The measurement items and survey items were compared, and the association between the factors and the presence or absence of injuries was analyzed. Results: Toe-grip strength was significantly weaker in the injury group compared with the noninjury group, suggesting that weak toe-grip is associated with fifth metatarsal stress fracture (P < .05). In addition, fifth metatarsal stress fractures were more common in the nondominant leg (P < .05). Between-group comparisons of the other items showed no statistically significant differences. Conclusion: The association between weak toe-grip strength and fifth metatarsal fracture suggests that weak toe-grip may lead to an increase in the load applied onto the lateral side of the foot, resulting in stress fracture. The finding of stress fracture being more common in the nondominant leg needs further study. PMID:26535399

  8. Comparison of Hip Geometry, Strength, and Estimated Fracture Risk in Women With Anorexia Nervosa and Overweight/Obese Women

    PubMed Central

    Bachmann, Katherine Neubecker; Fazeli, Pouneh K.; Lawson, Elizabeth A.; Russell, Brian M.; Riccio, Ariana D.; Meenaghan, Erinne; Gerweck, Anu V.; Eddy, Kamryn; Holmes, Tara; Goldstein, Mark; Weigel, Thomas; Ebrahimi, Seda; Mickley, Diane; Gleysteen, Suzanne; Bredella, Miriam A.; Klibanski, Anne

    2014-01-01

    Context: Data suggest that anorexia nervosa (AN) and obesity are complicated by elevated fracture risk, but skeletal site-specific data are lacking. Traditional bone mineral density (BMD) measurements are unsatisfactory at both weight extremes. Hip structural analysis (HSA) uses dual-energy X-ray absorptiometry data to estimate hip geometry and femoral strength. Factor of risk (φ) is the ratio of force applied to the hip from a fall with respect to femoral strength; higher values indicate higher hip fracture risk. Objective: The objective of the study was to investigate hip fracture risk in AN and overweight/obese women. Design: This was a cross-sectional study. Setting: The study was conducted at a Clinical Research Center. Patients: Patients included 368 women (aged 19–45 y): 246 AN, 53 overweight/obese, and 69 lean controls. Main Outcome Measures: HSA-derived femoral geometry, peak factor of risk for hip fracture, and factor of risk for hip fracture attenuated by trochanteric soft tissue (φattenuated) were measured. Results: Most HSA-derived parameters were impaired in AN and superior in obese/overweight women vs controls at the narrow neck, intertrochanteric, and femoral shaft (P ≤ .03). The φattenuated was highest in AN and lowest in overweight/obese women (P < .0001). Lean mass was associated with superior, and duration of amenorrhea with inferior, HSA-derived parameters and φattenuated (P < .05). Mean φattenuated (P = .036), but not femoral neck BMD or HSA-estimated geometry, was impaired in women who had experienced fragility fractures. Conclusions: Femoral geometry by HSA, hip BMD, and factor of risk for hip fracture attenuated by soft tissue are impaired in AN and superior in obesity, suggesting higher and lower hip fracture risk, respectively. Only attenuated factor of risk was associated with fragility fracture prevalence, suggesting that variability in soft tissue padding may help explain site-specific fracture risk not captured by BMD. PMID:25062461

  9. Dynamic deformation and fracture of single crystal silicon: Fracture modes, damage laws, and anisotropy

    DOE PAGES

    Huang, J. Y.; E, J. C.; Huang, J. W.; ...

    2016-05-25

    Impact fracture of single-crystal Si is critical to long-term reliability of electronic devices and solar cells for its wide use as components or substrates in semiconductor industry. Single-crystal Si is loaded along two different crystallographic directions with a split Hopkinson pressure bar integrated with an in situ x-ray imaging and diffraction system. Bulk stress histories are measured, simultaneously with x-ray phase contrast imaging (XPCI) and Laue diffraction. Damage evolution is quantified with grayscale maps from XPCI. Single-crystal Si exhibits pronounced anisotropy in fracture modes, and thus fracture strengths and damage evolution. For loading along [11¯ 0] and viewing along [001],more » (1¯1¯0)[11¯ 0] cleavage is activated and induces horizontal primary cracks followed by perpendicular wing cracks. However, for loading along [011¯] and viewing along [111], random nucleation and growth of shear and tensile-splitting crack networks lead to catastrophic failure of materials with no cleavage. The primary-wing crack mode leads to a lower characteristic fracture strength due to predamage, but a more concentrated strength distribution, i.e., a higher Weibull modulus, compared to the second loading case. Furthermore, the sequential primary cracking, wing cracking and wing-crack coalescence processes result in a gradual increase of damage with time, deviating from theoretical predictions. Particle size and aspect ratios of fragments are discussed with postmortem fragment analysis, which verifies fracture modes observed in XPCI.« less

  10. Mechanical Strength of the Proximal Femur After Arthroscopic Osteochondroplasty for Femoroacetabular Impingement: Finite Element Analysis and 3-Dimensional Image Analysis.

    PubMed

    Oba, Masatoshi; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2018-06-21

    To examine the influence of femoral neck resection on the mechanical strength of the proximal femur in actual surgery. Eighteen subjects who received arthroscopic cam resection for cam-type femoroacetabular impingement (FAI) were included. Finite element analyses (FEAs) were performed to calculate changes in simulative fracture load between pre- and postoperative femur models. The finite element femur models were constructed from computed tomographic images; thus, the models represented the shape of the original femur, including the bone resection site. Three-dimensional image analysis of the bone resection site was performed to identify morphometric factors that affect strength in the postoperative femur model. Four oblique sagittal planes running perpendicular to the femoral neck axis were used as reference planes to measure the bone resection site. At the transcervical reference plane, both the bone resection depth and the cross-sectional area at the resection site correlated strongly with postoperative changes in the simulated fracture load (R 2  = 0.6, P = .0001). However, only resection depth was significantly correlated with the simulated fracture load at the reference plane for the head-neck junction. The resected bone volume did not correlate with the postoperative changes in the simulated fracture load. The results of our FEA suggest that the bone resection depth measured at the head-neck junction and transcervical reference plane correlates with fracture risk after osteochondroplasty. By contrast, bone resection at more proximal areas did not have a significant effect on the postoperative femur model strength in our FEA. The total volume of resected bone was also not significantly correlated with postoperative changes in femur model strength. This biomechanical study using FEA suggest that there is a risk of femoral neck fracture after arthroscopic cam resection, particularly when the resected lesion is located distally. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - II. Microstructures and their implications for permeability and strength

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Ito, H.; Ikeda, R.; Tanaka, H.; Omura, K.

    2009-01-01

    Samples of damage-zone granodiorite and fault core from two drillholes into the active, strike-slip Nojima fault zone display microstructures and alteration features that explain their measured present-day strengths and permeabilities and provide insight on the evolution of these properties in the fault zone. The least deformed damage-zone rocks contain two sets of nearly perpendicular (60-90?? angles), roughly vertical fractures that are concentrated in quartz-rich areas, with one set typically dominating over the other. With increasing intensity of deformation, which corresponds generally to increasing proximity to the core, zones of heavily fragmented rock, termed microbreccia zones, develop between prominent fractures of both sets. Granodiorite adjoining intersecting microbreccia zones in the active fault strands has been repeatedly fractured and locally brecciated, accompanied by the generation of millimeter-scale voids that are partly filled with secondary minerals. Minor shear bands overprint some of the heavily deformed areas, and small-scale shear zones form from the pairing of closely spaced shear bands. Strength and permeability measurements were made on core collected from the fault within a year after a major (Kobe) earthquake. Measured strengths of the samples decrease regularly with increasing fracturing and fragmentation, such that the gouge of the fault core and completely brecciated samples from the damage zone are the weakest. Permeability increases with increasing disruption, generally reaching a peak in heavily fractured but still more or less cohesive rock at the scale of the laboratory samples. Complete loss of cohesion, as in the gouge or the interiors of large microbreccia zones, is accompanied by a reduction of permeability by 1-2 orders of magnitude below the peak values. The core samples show abundant evidence of hydrothermal alteration and mineral precipitation. Permeability is thus expected to decrease and strength to increase somewhat in active fault strands between earthquakes, as mineral deposits progressively seal fractures and fill pore spaces. ?? Birkh??user Verlag, Basel 2009.

  12. Evidence Report: Risk of Bone Fracture due to Spaceflight-Induced Changes to Bone

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Smith, Scott A.; Spector, Elisabeth R.; Yardley, Greg; Myer, Jerry

    2017-01-01

    Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.

  13. A study on electromigration-inducing intergranular fracture of fine silver alloy wires

    NASA Astrophysics Data System (ADS)

    Hsueh, Hao-Wen; Hung, Fei-Yi; Lui, Truan-Sheng

    2017-01-01

    In this study, Pd-coated Cu, Ag (purity = 4 N), and Ag alloy (Ag-8Au-3Pd) wires were employed to measure the tensile properties during current stressing using the so-called dynamic current tensile (DCT) test. Both the tensile strength and elongation of the wires decreased dramatically in the DCT test, particularly of the Ag-based wires, and the fracture morphology of the Cu-based and Ag-based wires was ductile fracture and intergranular fracture, respectively. Compared to the Cu-based wires, electromigration occurred more easily in the Ag-based wires, and it always generated voids and cracks at the grain boundaries; therefore, the fracture morphology of the Ag-based wires was intergranular fracture owing to the weakened grain boundary. Further, the results indicated that the Ag-based wires could not carry a higher current density than the Cu-based wires, primarily because their extremely low strength and elongation in current stressing might cause serious reliability problems.

  14. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene".

    PubMed

    Sandoz-Rosado, E; Beaudet, T D; Balu, R; Wetzel, E D

    2016-06-07

    As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.

  15. Evaluation of fracture torque resistance of orthodontic mini-implants.

    PubMed

    Dalla Rosa, Fernando; Burmann, Paola Fp; Ruschel, Henrique C; Vargas, Ivana A; Kramer, Paulo F

    2016-12-01

    This study sought to assess the fracture torque resistance of mini-implants used for orthodontic anchorage. Five commercially available brands of mini-implants were used (SIN®, CONEXÃO®, NEODENT®, MORELLI®, andFORESTADENT®). Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. The mini-implants were subject to a static torsion test as described in ASTMstandard F543. Analysis of variance (ANOVA) with the Tukey multiple comparisons procedure was used to assess results. Overall, mean fracture strength ranged from 15.7 to 70.4 N·cm. Mini-implants with larger diameter exhibited higher peak torque values at fracture and higher yield strength, regardless of brand. In addition, significant differences across brands were observed when implants were stratified by diameter. In conclusion, larger mini-implant diameter is associated with increased fracture torque resistance. Additional information on peak torque values at fracture of different commercial brands of mini-implants may increase the success rate of this orthodontic anchorage modality. Sociedad Argentina de Investigación Odontológica.

  16. Augmentation of failed human vertebrae with critical un-contained lytic defect restores their structural competence under functional loading: An experimental study.

    PubMed

    Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B

    2015-07-01

    Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.

  17. Influence of water immersion on the mechanical properties of fiber posts.

    PubMed

    Komada, Wataru; Inagaki, Tasuku; Ueda, Yoji; Omori, Satoshi; Hosaka, Keiichi; Tagami, Junji; Miura, Hiroyuki

    2017-01-01

    The purpose of this study was to evaluate the influence of water immersion on the mechanical properties of three kinds of glass fiber posts and the fracture resistance of structures using resin composites with glass fiber posts. Each post was divided into three groups; a control group and two water immersion groups (30 and 90 days). Flexural strength was determined by three-point bending test. Each structure was divided into two groups; a control group and a water immersion group for 30 days. The fracture strength of structures was determined by a static loading test. In the flexural strength, two kinds of post in water immersion groups showed lower values than control groups. In the fracture strength, two kinds of structures in water immersion group showed lower values than control groups. The prefabricated glass fiber posts and structures using resin composites with glass fiber posts were affected by water immersion. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55

    NASA Astrophysics Data System (ADS)

    Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.

    2017-10-01

    This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.

  19. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  20. Fracture temperature and flaw growth in nitronic 40 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Domack, M. S.

    1984-01-01

    The fracture resistance and fatigue response of Armco Nitronic 40 austenitic stainless steel were evaluated under cryogenic conditions. Tensile, fracture toughness and fatigue crack growth properties were measured at -275 F. The tensile yield strength was approximately 120 ksi and the fracture toughness was estimated to be 350 ksi-in /2 on the basis of fracture toughness measurements. Testing was conducted to evaluate the behavior of a simulated section of the wing of the Pathfinder 1 model subject to a load and temperature history typical of that for testing in the National Transonic Facility. The wing section model incorporated a proposed brazing technique for pressure-transducer attachment. The simulated wing section performed satisfactorily at stress levels of nearly 60 percent of the material yield strength. The brazing technique proved to be an effective method of transducer attachment under conditions of high stress levels and large temperature excursions.

  1. Relative scale and the strength and deformability of rock masses

    NASA Astrophysics Data System (ADS)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  2. Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements.

    PubMed

    Moshaverinia, Alireza; Brantley, William A; Chee, Winston W L; Rohpour, Nima; Ansari, Sahar; Zheng, Fengyuan; Heshmati, Reza H; Darr, Jawwad A; Schricker, Scott R; Rehman, Ihtesham U

    2010-12-01

    To investigate the effects of N-vinylcaprolactam (NVC)-containing terpolymers on the fracture toughness, microhardness, and flexural strength of conventional glass-ionomer cements (GIC). The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with 8:1:1 (AA:IA:NVC) molar ratio was synthesized by free radical polymerization and characterized using (1)H NMR and FTIR. Experimental GIC samples were made from a 50% solution of the synthesized terpolymer with Fuji IX powder in a 3.6:1 P/L ratio. Specimens were mixed and fabricated at room temperature. Plane strain fracture toughness (K(Ic)) was measured in accordance with ASTM Standard 399-05. Vickers hardness was determined using a microhardness tester. Flexural strength was measured using samples with dimensions of 2 mm×2 mm×20 mm. For all mechanical property tests, specimens were first conditioned in distilled water at 37°C for 1 day or 1 week. Fracture toughness and flexural strength tests were conducted on a screw-driven universal testing machine using a crosshead speed of 0.5mm/min. Values of mechanical properties for the experimental GIC were compared with the control group (Fuji IX GIC), using one-way ANOVA and the Tukey multiple range test at α=0.05. The NVC-modified GIC exhibited significantly higher fracture toughness compared to the commercially available Fuji IX GIC, along with higher mean values of flexural strength and Vickers hardness, which were not significantly different. It was concluded that NVC-containing polymers are capable of enhancing clinically relevant properties for GICs. This new modified glass-ionomer is a promising restorative dental material. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur.

    PubMed

    Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho

    2004-01-01

    Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.

  4. Treatment of femoral shaft fractures with monoaxial external fixation in polytrauma patients

    PubMed Central

    Testa, Gianluca; Aloj, Domenico; Ghirri, Alessandro; Petruccelli, Eraclite; Pavone, Vito; Massé, Alessandro

    2017-01-01

    Background: Femoral shaft fractures, typical in younger people, are often associated with polytrauma followed by traumatic shock. In these situations, despite intramedullary nailing being the treatment of choice, external fixation could be used as the definitive treatment. The aim of this study is to report evidence regarding definitive treatment of femoral shaft fractures with monoaxial external fixation. Methods: Between January 2006 and December 2015, 83 patients with 87 fractures were treated at the Department of Orthopaedics and Traumatology CTO of Turin, with a monoaxial external fixation device. Mean age at surgery, type of fracture, mean follow-up, time and modalities of treatment, non-weight bearing period, average healing, external fixation removal time, and complications were reported. Results: The average patient age was 31.43±15.19 years. In 37 cases (42.53%) the right femur was involved. 73 (83.91%) fractures were closed, and 14 (16.09%) were open. The average follow-up time was 61.07±21.86 weeks.  In 68 (78.16%) fractures the fixation was carried out in the first 24 hours, using a monoaxial external fixator. In the remaining 19 cases, the average delay was 6.80±4.54 days. Mean non-weight bearing time was 25.82±27.66 days (ranging from 0 to 120). The 87 fractures united at an average of 23.60±11.37 weeks (ranging from 13 to 102). The external fixator was removed after an average of 33.99±14.33 weeks (ranging from 20 to 120). Reported complications included 9.19% of delayed union, 1.15% of septic non-union, 5.75% of malunion, and 8.05% cases of loss of reduction. Conclusions: External fixation of femoral shaft fractures in polytrauma is an ideal method for definitive fracture stabilization, with minimal additional operative trauma and an acceptable complication rate. PMID:28928953

  5. [Hip Fracture--Epidemiology, Management and Liaison Service. Risk factor for hip fracture].

    PubMed

    Fujiwara, Saeko

    2015-04-01

    Many risk factors have been identified for hip fracture, including female, advanced age, osteoporosis, previous fractures, low body weight or low body mass index, alcohol drinking, smoking, family history of fractures, use of glucocorticoid, factors related to falls, and bone strength. The factors related to falls are number of fall, frail, post stroke, paralysis, muscle weakness, anti-anxiety drugs, anti-depression drugs, and sedatives. Dementia and respiratory disease and others have been reported to be risk factors for secondary hip fracture.

  6. Decreased muscle strength is associated with impaired long-term functional outcome after intramedullary nailing of femoral shaft fracture.

    PubMed

    Larsen, P; Elsoe, R; Graven-Nielsen, T; Laessoe, U; Rasmussen, S

    2015-12-01

    To examine the long-term outcome after intramedullary nailing of femoral diaphysial fractures measured as disease-specific patient reported function, walking ability, muscle strength, pain and quality of life (QOL). Cross-sectional study. Retrospective review and follow-up with clinical examination of 48 patients treated with intramedullary nailing after femoral shaft fracture between 2007 and 2010. The patients underwent a clinical examination and assessment of walking ability, maximal muscle strength during knee flexion and extension and hip abduction. Hip disability and Osteoarthritis Outcome Score (HOOS) and questionnaire evaluating QOL (Eq5D-5L) were completed by patients. Fourty-eight patients agreed to participate. Mean time for follow-up was 4.7 years. The mean HOOS scores were 84.9 (Pain), 86.6 (ADL), 85.0 (Symptoms), 72.6 (QOL), and 69.1 (Sport). The mean muscle strength of knee flexion with the injured leg (226.0 N) was significantly lower then knee flexion with the non-injured leg (259.5 N, P < 0.0001). Likewise for knee extension (335.2 vs 406.4 N, P < 0.001) and hip abduction (129.2 vs 156.0 N, P < 0.001). Significant association between HOOS and an increase in the difference in muscle strength were observed as well as between worse HOOS outcome and increasing body mass index. This study showed that decreased muscle strength for knee flexion, knee extension and hip abduction was associated with worse long-term functional outcome measured with a disease-specific questionnaire (HOOS) after intramedullary nailing of femoral shaft fracture.

  7. Constant-load delayed fracture test of atmospherically corroded high strength steels

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Matsukado, Katsuhiro; Li, Songjie; Tsuzaki, Kaneaki

    2011-07-01

    Constant load tests of circumferentially notched round bar specimens of high strength steels after cyclic corrosion test and outdoor exposure have been performed to demonstrate that delayed fracture occurs when the hydrogen content from the environment, H E, exceeds the critical hydrogen content for delayed fracture, H C. During the constant load tests the humidity around the specimen was increased in stepwise manner to increase hydrogen entry. After fracture the specimen was kept at the humidity long enough to homogenize hydrogen in the specimen and to obtain more quantitative hydrogen content by thermal desorption analysis. H E of the fractured specimens was higher than H C, and H E of the specimens not fractured was lower than H C. This result confirms that the balance between H C and H E determines the occurrence of delayed fracture and that hydrogen-content-based evaluation of susceptibility to delayed fracture is reasonable. To certify the increase of H E with increase in humidity, electrochemical hydrogen permeation test was carried out. The hydrogen permeation current density was increased especially at 98%RH. Enhancement of hydrogen entry with increase in CCT number was also shown by the test.

  8. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications.

    PubMed

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-06-02

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.

  9. The elevated temperature mechanical properties of silicon nitride/boron nitride fibrous monoliths

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Wayne

    A unique, all-ceramic material capable of non-brittle fracture via crack deflection has been characterized from 25sp°C through 1400sp°C. This material, called fibrous monoliths (FMs), was comprised of unidirectionally aligned 250 mum diameter cells of silicon nitride surrounded by 10 mum thick cell boundaries of boron nitride. Six weight percent yttria and two weight percent alumina were added to the silicon nitride to aid in densification. TEM experiments revealed that the sintering aids used to densify the silicon nitride cells were migrating into the boron nitride cell boundary during hot-pressing and that a fine network of micro-cracks existed between basal planes of boron nitride. Elevated temperature four point bending tests were performed on fibrous monolith ceramics from room temperature through 1400sp°C. Peak strengths of FMs averaged 510 MPa for specimens tested at room temperature through 176 MPa at 1400sp°C. Work of fractures ranged from 7300 J/msp2 to 3200 J/msp2 under the same temperature conditions. The interfacial fracture energy of boron nitride, GammasbBN, as a function of temperature has been determined using the Charalambides method. The fracture energy of boron nitride is approximately 40 J/msp2 and remained constant from 25sp°C through 950sp°C. A sharp increase in GammasbBN, to about 60 J/msp2, was observed at 1000sp°C-1050sp°C. This increase in GammasbBN was attributed to interactions of the crack tip with the cell boundary glassy phase. Subsequent measurements at 1075sp°C indicated a marked decrease in GammasbBN to near 40 J/msp2 before plateauing at 17-20 J/msp2 in the 1200sp°C-1300sp°C regime. The Mode I fracture toughness of silicon nitride was also determined using the single edge precracked beam method as a function of temperature. The He and Hutchinson model relating crack deflection at an interface to the Dundurs' parameter was applied to the current data set using the temperature dependent fracture energies of the boron nitride and the silicon nitride. A more refractory fibrous monolith was fabricated in an effort to extend the high temperature properties of SN/BN fibrous monoliths. Only 4 wt.% yttria was added to the silicon nitride to aid in densification. The presence of residual carbon following binder burnout was proposed to be responsible for the formation of melilite, a phase known to undergo severe oxidation between 900sp°C-1100sp°C. When residual carbon was removed prior to hot-pressing with a post-binder burnout heat treatment at 400sp°C in air this phase was not present. A room temperature strength of 553 MPa and a work of fracture of 6700 J/msp2 was observed. A strength of 293 MPa was measured at 1400sp°C.

  10. Biomechanical evaluation of fixation of intra-articular fractures of the distal part of the radius in cadavera: Kirschner wires compared with calcium-phosphate bone cement.

    PubMed

    Yetkinler, D N; Ladd, A L; Poser, R D; Constantz, B R; Carter, D

    1999-03-01

    The purpose of this study was to compare the biomechanical efficacy of an injectable calcium-phosphate bone cement (Skeletal Repair System [SRS]) with that of Kirschner wires for the fixation of intraarticular fractures of the distal part of the radius. Colles fractures (AO pattern, C2.1) were produced in ten pairs of fresh-frozen human cadaveric radii. One radius from each pair was randomly chosen for stabilization with SRS bone cement. These ten radii were treated with open incision, impaction of loose cancellous bone with use of a Freer elevator, and placement of the SRS bone cement by injection. In the ten control specimens, the fracture was stabilized with use of two horizontal and two oblique Kirschner wires. The specimens were cyclically loaded to a peak load of 200 newtons for 2000 cycles to evaluate the amount of settling, or radial shortening, under conditions simulating postoperative loading with the limb in a cast. Each specimen then was loaded to failure to determine its ultimate strength. The amount of radial shortening was highly variable among the specimens, but it was consistently higher in the Kirschner-wire constructs than in the bone fixed with SRS bone cement within each pair of radii. The range of shortening for all twenty specimens was 0.18 to 4.51 millimeters. The average amount of shortening in the SRS constructs was 50 percent of that in the Kirschner-wire constructs (0.51+/-0.34 compared with 1.01+/-1.23 millimeters; p = 0.015). With the numbers available, no significant difference in ultimate strength was detected between the two fixation groups. This study showed that fixation of an intra-articular fracture of the distal part of a cadaveric radius with biocompatible calcium-phosphate bone cement produced results that were biomechanically comparable with those produced by fixation with Kirschner wires. However, the constructs that were fixed with calcium-phosphate bone cement demonstrated less shortening under simulated cyclic load-bearing.

  11. Design with high strength steel: A case of failure and its implications

    NASA Astrophysics Data System (ADS)

    Rahka, Klaus

    1992-10-01

    A recent proof test failure of a high strength steel pressure vessel is scrutinized. Apparent deficiencies in the procedures to account for elasto-plastic local strain are indicated for the applicable routine (code) strength calculations. Tentative guidance is given for the use of material tensile fracture strain and its strain state (plane strain) correction in fracture margin estimation. A hypothesis that the calculated local strain is comparable with a gauge length weighted tensile ductility for fracture to initiate at a notch root is given. A discussion about the actual implications of the failure case and the suggested remedy in the light of the ASME Boiler and Pressure Vessel Code section 3 and 8 is presented. Further needs for research and development are delineated. Possible yield and ductility related design limits and their use as material quality indices are discussed.

  12. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  13. Morphomics of the Talus.

    PubMed

    Gorman, David; Handy, Ebram; Wang, Sikui; Irwin, Annette L; Wang, Stewart

    2016-11-01

    Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05). Separately, a specific set of Computed Tomography (CT) scans from the International Center for Automotive Medicine (ICAM) scan database was used to characterize the talar dome. This control population consisted of 207 adults aged 18 to 84, with no foot or ankle trauma, and scans that had suitable coverage of the talus. Size of the talus was determined using medial-to-lateral width and anterior-to-posterior depth measurements. Geometry was assessed by evaluating the radius of the articulating talus and strength was assessed using a combination of cross sectional area and density. Demographics were studied to investigate correlation with talus measurements from the CT scan database. A multi-variable linear regression model of the morphomics showed gender to be statistically significant (p<0.05) for talus depth, width, cross-sectional area, radius and strength. Body Mass Index (BMI) was significant for depth and radius. Weight was significant for depth, width, density and strength. Stature was significant for depth, cross-sectional area, radius and strength. Age was significant for radius and density.

  14. Microstructure dependence of dynamic fracture and yielding in aluminum and an aluminum alloy at strain rates of 2 × 106 s-1 and faster

    NASA Astrophysics Data System (ADS)

    Dalton, D. A.; Worthington, D. L.; Sherek, P. A.; Pedrazas, N. A.; Quevedo, H. J.; Bernstein, A. C.; Rambo, P.; Schwarz, J.; Edens, A.; Geissel, M.; Smith, I. C.; Taleff, E. M.; Ditmire, T.

    2011-11-01

    Experiments investigating fracture and resistance to plastic deformation at fast strain rates (>106 s-1) were performed via laser ablation on thin sheets of aluminum and aluminum alloys. Single crystal high purity aluminum (Al-HP) and a single crystal 1100 series aluminum alloy (AA1100) were prepared to investigate the role of impurity particles. Specimens of aluminum alloy +3 wt. % Mg (Al+3Mg) at three different grain sizes were also studied to determine the effect of grain size. In the present experiments, high purity aluminum (Al-HP) exhibited the highest spall strength over 1100 series aluminum alloy (AA1100) and Al+3Mg. Fracture characterization and particle analysis revealed that fracture was initiated in the presence of particles associated with impurity content in the AA1100 and at both grain boundaries and particles in Al+3Mg. The Al+3Mg specimens exhibited the greatest resistance to plastic deformation likely resulting from the presence of magnesium atoms. The Al-HP and AA1100, both lacking a strengthening element such as Mg, were found to have the same Hugoniot elastic limit (HEL) stress. Within the single crystal specimens, orientation effects on spall strength and HEL stress appear to be negligible. Although the fracture character shows a trend with grain size, no clear dependence of spall strength and HEL stress on grain size was measured for the Al+3Mg. Hydrodynamic simulations show how various strength and fracture models are insufficient to predict material behavior at fast strain rates, and a revised set of Tuler-Butcher coefficients for spall are proposed.

  15. Transverse Isotropy of Phyllite Under Brazilian Tests: Laboratory Testing and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Guowen; He, Chuan; Chen, Ziquan; Su, Ang

    2018-04-01

    Phyllite is a low-grade, metamorphic rock with well-developed foliation. We characterized the fracture pattern and failure strength of phyllite specimens under Brazilian tests. The specimens were obtained from the Zhegu mountain tunnel in China and had different foliation-loading angles, namely 0°, 15°, 30°, 45°, 60°, 75° and 90°. The processes for the initiation and propagation of macro-cracks were recorded using high-speed photography. The evolution of micro-cracks was analyzed based on the results of acoustic emission (AE) tests. The failure process of the specimens during the Brazilian tests was simulated with a new numerical approach based on the particle discrete element method. The influence of foliation strength and the microstructure of the rock matrix were also studied numerically. The experimental results showed that the failure strength of the specimens was related to their fracture patterns and the areas of their fracture surfaces. The initial cracking point of the specimens appeared at the upper or lower loading position, and the cracks propagated to the boundaries of the specimens along or across foliation. The temporal distributions of the AE counts and AE energy of the specimens were affected predominantly by the fracture pattern, and we divided these distributions into two modes: the peak mode and the uniformly distributed mode. The numerical results indicated that the fracture surface was roughly parallel to the loading direction and that the surface was located in the central part of the disk specimens for rocks with loose structure (low coordination number or large crack density) or with strong foliation, i.e., foliation with high shear strength. The failure pattern and trends of variation in failure strength as a function of foliation-loading angles varied with the ratio of cohesion to the tensile strength of foliation, the crack density, and the coordination number.

  16. Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces.

    DTIC Science & Technology

    1992-12-31

    Bimaterials Interfaces includes three sections: Mechanics of Interfaces, Coating Design for Composite Systems, and Mechanics of Brittle Matrix... Composites . For more details see Executive Summary. 14. SUBJECT TERM 15. NUMBER OF PAGES Effect, Microstructure, Strength, Fracture Energy, Bimatenal...The Role of Interfaces in Fiber-Reinforced Brittle A.G. Evans Matrix Composites F.W. Zok J.B. Davis Article 2. Effects of Fiber Roughness on Interface

  17. Stress Analysis and Fracture in Nanolaminate Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.

  18. Shock induced spall fracture in aluminium alloy "Al2014-T4"

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Das, P. C.; Gupta, Satish C.

    2015-06-01

    The plate impact experiments have been carried out on 8mm thick target plates of aluminium alloy Al2014-T4 at impact velocities of 180 m/s, 290 m/s and 500m/s, respectively, using single stage gas gun facility. In each experiment, the of free surface velocity history of the sample plate is measured using VISAR instrument and utilized to determine the spall strength and dynamic yield strength of this material. The spall strength of 0.87 GPa, 0.97 GPa and 1.11 GPa, respectively, measured for impact velocities of 180 m/s, 290 m/s and 500 m/s with corresponding average strain rates varying from 1.36×104/s to 2.41×14/s has been found to display nearly linear dependence upon the strain rates. The dynamic yield strength with its value ranging from 0.395 GPa to 0.400 GPa, though, is higher than the quasi static value of 0.355GPa, appears to be relatively independent of impact velocities up to at least 500 m/s or equivalently strain rates up to ˜ 9.4×104/s.

  19. Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.; Shatynski, S.; Vedamanikam, P. M.

    1972-01-01

    The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests.

  20. Susceptibility to keel bone fractures in laying hens and the role of genetic variation.

    PubMed

    Candelotto, Laura; Stratmann, Ariane; Gebhardt-Henrich, Sabine G; Rufener, Christina; van de Braak, Teun; Toscano, Michael J

    2017-10-01

    Keel bone fractures are a well-known welfare problem in modern commercial laying hen systems. The present study sought to identify genetic variation in relation to keel bone fracture susceptibility of 4 distinct crossbred and one pure line, and by extension, possible breeding traits. Susceptibility to fractures were assessed using an ex vivo impact testing protocol in combination with a study design that minimized environmental variation to focus on genetic differences. The 5 crossbred/pure lines differed in their susceptibility to keel bone fractures with the greatest likelihood of fracture in one of the 3 commercial lines and the lowest susceptibility to fractures in one of the experimental lines. Egg production at the hen-level did not differ between the crossbred/pure lines (P > 0.05), though an increased susceptibility to keel bone fractures was associated with thinner eggshells and reduced egg breaking strength, a pattern consistent among all tested crossbred/pure lines. Our findings suggest an association between egg quality and bone strength which appeared to be independent of crossbred/pure line. The findings indicate the benefit of the impact methodology to identify potential breeding characteristics to reduce incidence of keel fracture as well as the potential relationship with eggshell quality. © 2017 Poultry Science Association Inc.

  1. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1985-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  2. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Chamis, Christos C.

    1987-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  3. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    NASA Technical Reports Server (NTRS)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  4. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    PubMed

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. Biodegradable implants for Pipkin fractures.

    PubMed

    Prokop, Axel; Helling, Hanns-Joachim; Hahn, Ulrich; Udomkaewkanjana, Chira; Rehm, Klaus Emil

    2005-03-01

    The current study was designed to clarify whether biodegradable poly-L/DL lactide pins provide an operative alternative for fixation of Pipkin fractures. Nine patients with Pipkin fractures (one with Pipkin Type I, one with Pipkin Type II, and seven with Pipkin Type IV fractures) were treated surgically between 1996 and 2002. In all patients, the femoral head fractures were fixed with biodegradable, 2.7-mm and 2.0-mm polylactide pins. Eight patients were followed up for an average of 54.2 months. One patient died before the final followup. Eight fractures healed uneventfully. In one patient, a persisting femoral head defect led to posttraumatic arthritis requiring insertion of a femoral endoprosthesis at 1 year. The average range of motion of the affected hips of all patients at followup was 109 degrees -0 degrees -0 degrees in flexion and extension. External and internal rotation averaged 37 degrees -0 degrees -29 degrees . One patient had Brooker Grade I heterotopic ossification develop, and another had a Grade II heterotopic develop. Merle d'Aubigne and Postel ratings showed two excellent and five satisfactory results (average score, 13.1). Adverse effects from the polylactide implants were not observed. Pipkin fractures can be fixed successfully with biodegradable polylactide pins.

  6. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and therapeutics on bone quality will be discussed.

  7. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.

  8. Prevention of distal extension cantilever fracture in mandibular overdentures.

    PubMed

    Quirynen, Thomas; Quirynen, Marc; Duyck, Joke

    2015-09-01

    Fractures of distal bar extensions, supporting a mandibular overdenture, do occur with significant functional and economic consequences for the patient. This study therefore aims to evaluate the effect of different bar cross-sectional shapes and surfaces, bar extension lengths and the placement of a support rib under the distal bar extension on fracture resistance. The 2nd moment area and static strength were calculated for 11 frequently used bar designs using finite element analysis (FEA). For two specific designs (Ackermann round Ø 1.8mm and Dolder-Y macro, the former with and without a support rib) additional physical static and fatigue strength tests were included. The FEA static strength data corresponded well to the 2nd moment area (a similar ranking when maximum allowed force was considered). The application of a rib support (Ackermann Ø 1.8mm) and limitations of the bar extension length (6mm for the Ackermann Ø 1.8mm, 8mm for the Dolder-Y macro) allowed the bars to exceed 5 × 10(6) cycles of 120 and 250N, respectively, before fracture. The region of highest stresses in FEA corresponded well with the locations of the fractures observed in static- and fatigue-testing. With some simple guidelines/modifications, the number of bar extension fractures can be reduced significantly. This study focusses on distal bar extensions which improve the positioning of an implant supported overdenture. By combining laboratory testing and finite element simulations we aim to: (1) explain why fractures occur (dependent on physical characteristics of the bar), and (2) give clinical guidelines on how to prevent such fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Autohesive strength development in polysulfone resin and graphite-polysulfone composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.

    1988-01-01

    The effects of bonding temperature and contact time on autohesive strength development in thermoplastic polysulfone resin and graphite-polysulfone composites were investigated. Two test methods were examined to measure autohesion in the neat resin samples. These included an interfacial tension test and a compact tension fracture toughness test. Autohesive strength development in fiber-reinforced composites was measured using a double cantilever beam interlaminar fracture toughness test. The results of the tests were compared with current diffusion theories explaining crack healing and welding of glassy polymers. Discrepancies between the results of the present investigation and the diffusion theories are discussed.

  10. Investigation of interfacial fracture behavior on injection molded parts

    NASA Astrophysics Data System (ADS)

    Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines

    2016-03-01

    In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.

  11. Properties of RBSN and RBSN-SiC composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ker, H. L.; Haggerty, J. S.; Ritter, J. E.

    1990-01-01

    Strengths, fracture toughnesses, hardnesses, and dimensional changes have been measured for RBSN and RBSN/SiC composites. Samples were made from mixtures of Si and either Si- or C-rich SiC powders. For pure, 75 pct dense RBSN dispersed with octanol, strengths up to 858 MPa have been achieved. Improved strengths result from a combination of microstructural perfection and increased fracture toughness. The mechanical properties of the composites were approximately equal to those of methanol processed RBSN but not quite equal to those of the octanol-processed RBSN. Results are discussed in terms of observed microstructural features.

  12. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia.

    PubMed

    Devmurari, Kamlesh N; Song, Hae Ryong; Modi, Hitesh N; Venkatesh, K P; Ju, Kim Seung; Song, Sang Heon

    2010-09-01

    We studied the callus features seen in cases of regenerate fracture in femoral lengthening using a monolateral fixator in achondroplasia to determine whether callus types and shapes can predict the probability of callus fracture. The radiographs of 28 cases of femoral lengthening in 14 patients, 14 cases of callus fracture, and 14 cases without callus fracture were retrospectively analyzed by four observers and classified into different shapes and types in concordance with the Ru Li classification. The average lengthening of 9.4 cm (range 7.5-11.8 cm) was achieved, which was 41% (range 30-55%) of the original length and the average timing of callus fracture was 470 days (range 440-545 days) after surgery in the callus fracture group. While the average lengthening of 9.1 cm (range 8-9.7 cm) was achieved, this was 30% (range 28-32%) of the original length in the group of patients without callus fracture. The callus was atypically shaped, there was a 48% average (range 30-72%) reduction of the callus width compared with the natural width of the femur, and a lucent pathway was present in all cases of regenerate fracture. A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was more than 30% lengthening and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures. These signs help the surgeon to predict the outcome and guide him in planning for any additional interventions. The Ru Li classification is an effective method for the evaluation of the chance of callus fracture.

  13. Flexural strength and reliability of monolithic and trilayer ceramic structures obtained by the CAD-on technique.

    PubMed

    Basso, G R; Moraes, R R; Borba, M; Griggs, J A; Della Bona, A

    2015-12-01

    To evaluate the flexural strength, Weibull modulus, fracture toughness, and failure behavior of ceramic structures obtained by the CAD-on technique, testing the null hypothesis that trilayer structures show similar properties to monolithic structures. Bar-shaped (1.8mm×4mm×16mm) monolithic specimens of zirconia (IPS e.max ZirCAD - Ivoclar Vivadent) and trilayer specimens of zirconia/fusion ceramic/lithium dissilicate (IPS e.max ZirCAD/IPS e.max CAD Crystall./Connect/IPS e.max CAD, Ivoclar Vivadent) were fabricated (n=30). Specimens were tested in flexure in 37°C deionized water using a universal testing machine at a crosshead speed of 0.5mm/min. Failure loads were recorded, and the flexural strength values were calculated. Fractography principles were used to examine the fracture surfaces under optical and scanning electron microscopy. Data were statistically analyzed using Student's t-test and Weibull statistics (α=0.05). Monolithic and trilayer specimens showed similar mean flexural strengths, characteristic strengths, and Weibull moduli. Trilayer structures showed greater mean critical flaw and fracture toughness values than monolithic specimens (p<0.001). Most critical flaws in the trilayer groups were located on the Y-TZP surface subjected to tension and propagated catastrophically. Trilayer structures showed no flaw deflection at the interface. Considering the CAD-on technique, the trilayer structures showed greater fracture toughness than the monolithic zirconia specimens. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  15. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    PubMed

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  17. Interlocking intramedullary nailing in distal tibial fractures.

    PubMed

    Tyllianakis, M; Megas, P; Giannikas, D; Lambiris, E

    2000-08-01

    This retrospective study examined the results of non-pilon fractures of the distal part of the tibia treated with interlocking intramedullary nailing. Seventy-three patients with equal numbers of fractures treated surgically between 1990 and 1998 were reviewed. Mean patient age was 39.8 years, and follow-up averaged 34.2 months. The AO fracture classification system was used. Concomitant fractures of the lateral malleolus were fixed. All but three fractures achieved union within 4.2 months on average. Satisfactory or excellent results were obtained in 86.3% of patients. These results indicate interlocking intramedullary nailing is a reliable method of treatment for these fractures and is characterized by high rates of union and a low incidence of complications.

  18. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  19. Development of a Novel Synthetic Drug for Osteoporosis and Fracture Healing

    DTIC Science & Technology

    2015-11-01

    Four-point bending setup for mechanical testing. (C & D) X-ray images of the fractured tibiae. Of note, a stainless steel rod was inserted in the...respectively. Figure 15. Mechanical strength 4 weeks after fracture induction for experiment 1. (A) Force- displacement relationship for the hydrogel...University Purdue University Indianapolis, Indianapolis, IN 46202, USA Keywords: bone fracture , tibia, salubrinal, hydrogel, mechanical test Running

  20. Cratering in glasses impacted by debris or micrometeorites

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Kinser, Donald L.

    1993-01-01

    Mechanical strength measurements on five glasses and one glass-ceramic exposed on LDEF revealed no damage exceeding experimental limits of error. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. As a result of this, the impact events on the sample were not detected in the mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength. The size of the impact site, insofar as it determines flaw size for fracture purposes, was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the fused zone cannot be included in the fracture mechanics analyses based on simple flaw size measurements. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  1. Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella.

    PubMed

    Kim, Young Mo; Yang, Jun Young; Kim, Kyung Cheon; Kang, Chan; Joo, Yong Bum; Lee, Woo Yong; Hwang, Jung Mo

    2011-12-01

    To evaluate the usefulness of separate vertical wirings for extra-articular fracture of distal pole of patella. We have analyzed the clinical results of 18 cases that underwent separate vertical wirings for extra-articular fracture of distal pole of the patella from March 2005 to March 2010, by using the range of motion and Bostman score. Occurrence of complication was also evaluated. Additionally, by taking simple radiographs, the correlation between the postoperative degree of anterior transposition of bone fragment and the time of bone fusion, preoperative length of bone fragment, and occurrence of comminuted fracture were investigated. It took an average of 13.8 weeks for radiological bone union after separate vertical wiring fixation. Flexion contracture was an average of 0.8 degrees and further flexion was an average of 127.6°, and Bostman score was an average of 27.5 points (excellent in 12 cases, and good in 6 cases). On the first postoperative year, average flexion contracture was 0.6 degrees and further flexion was an average of 136.3°, which exhibited increased joint motion and recovery to normal range of motion, and Bostman score was an average of 28.7 points (excellent in 16 cases, and good in 2 cases). There was no statistically significant difference between the preoperative bone fragment length and presence of comminution, and degree of anterior transposition of bone fragment after fracture union on simple radiograph (p=0.175, p=0.146). We were able to obtain satisfactory clinical results, while preserving the bone fragment by separate vertical wiring fixation for extra-articular fracture of distal pole of patella. Moreover, the method is easy to perform, which is also considered as a useful surgical method for extra-articular fracture of distal pole of patella.

  2. Comparative Evaluation of Impact Strength of Fragment Bonded Teeth and Intact Teeth: An In Vitro Study

    PubMed Central

    Venugopal, L; Lakshmi, M Narasimha; Babu, Devatha Ashok; Kiran, V Ravi

    2014-01-01

    Background: To test and compare the impact strength of fragment bonded teeth with that of intact teeth by using impact testing machine (pendulum type) as a mode of load. Materials and Methods: Forty extracted, maxillary, central incisors selected for this study (20 control group and 20 experimental group). In experimental group, teeth crowns were fractured with a microtome at 2.5 mm from mesioincisal angle cervically, fractured portion is attached to original crown portion with 3 M single bond dentin bonding agent and 3 M Z ‘100’, composite resin. Impact strength of fragment bonded teeth and intact teeth tested with impact testing machine and compared. Results: Mean impact strength of fragment bonded teeth (30.76 KJ/M2 ) is not statistically significant deferent from mean impact strength of intact teeth (31.11 KJ/M2 ). Conclusion: Mean impact strength of fragment bonded teeth is not statistically different with that of intact teeth. Hence, after fracture of teeth if it is restored with fragment reattachment by using 3 M single bond dentin bonding agent and 3 M Z ‘100’ composite resin is having impact strength like that of intact teeth. How to cite the article: Venugopal L, Lakshmi MN, Babu DA, Kiran VR. Comparative evaluation of impact strength of fragment bonded teeth and intact teeth: An in vitro study. J Int Oral Health 2014;6(3):73-6. PMID:25083037

  3. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  4. Operative Cost Comparison: Plating Versus Intramedullary Fixation for Clavicle Fractures.

    PubMed

    Hanselman, Andrew E; Murphy, Timothy R; Bal, George K; McDonough, E Barry

    2016-09-01

    Although clavicle fractures often heal well with nonoperative management, current literature has shown improved outcomes with operative intervention for specific fracture patterns in specific patient types. The 2 most common methods of midshaft clavicle fracture fixation are intramedullary and plate devices. Through retrospective analysis, this study performed a direct cost comparison of these 2 types of fixation at a single institution over a 5-year period. Outcome measures included operative costs for initial surgery and any hardware removal surgeries. This study reviewed 154 patients (157 fractures), and of these, 99 had intramedullary fixation and 58 had plate fixation. A total of 80% (79 of 99) of intramedullary devices and 3% (2 of 58) of plates were removed. Average cost for initial intramedullary placement was $2955 (US dollars) less than that for initial plate placement (P<.001); average cost for removal was $1874 less than that for plate removal surgery (P=.2). Average total cost for all intramedullary surgeries was $1392 less than the average cost for all plating surgeries (P<.001). Average cost for all intramedullary surgeries requiring plate placement and removal was $653 less than the average cost for all plating surgeries that involved only placement (P=.04). Intramedullary fixation of clavicle fractures resulted in a statistically significant cost reduction compared with plate fixation, despite the incidence of more frequent removal surgeries. [Orthopedics.2016; 39(5):e877-e882.]. Copyright 2016, SLACK Incorporated.

  5. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  6. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel

    PubMed Central

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-01-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493

  7. Effect of screw torque level on cortical bone pullout strength.

    PubMed

    Cleek, Tammy M; Reynolds, Karen J; Hearn, Trevor C

    2007-02-01

    The objectives of this study were 2-fold: (1) to perform detailed analysis of cortical screw tightening stiffness during automated insertion, and (2) to determine the effect of 3 torque levels on the holding strength of the bone surrounding the screw threads as assessed by screw pullout. Ten pairs of ovine tibiae were used with 3 test sites spaced 20 mm apart centered along the shaft. One side of each pair was used for measuring ultimate failure torque (Tmax). These Tmax and bone-density values were used to predict Tmax at contralateral tibia sites. Screws were inserted and tightened to 50%, 70%, and 90% of predicted Tmax at the contralateral sites to encompass the average clinical level of torque (86% Tmax). Pullout tests were performed and maximum force values were normalized by cortical thickness. Torque to failure tests indicated tightening to 86% Tmax occurs after yield and leads to an average 51% loss in stiffness. Normalized pullout strength for screws tightened to 50% Tmax, 70% Tmax, and 90% Tmax were 2525 +/- 244, 2707 +/- 280, and 2344 +/- 346 N, respectively, with a significant difference between 70% Tmax and 90% Tmax groups (P < 0.05). Within the limitations of our study involving the testing of 1 type of screw purchase in ovine tibiae, results demonstrate that clinical levels of lag screw tightening (86% Tmax) are past the yield point of bone. Tightening to these high torque levels can cause damage leading to compromised holding strength. Further research is still required to establish the appropriate level of torque required for achieving optimal fracture fixation and healing.

  8. In situ grain fracture mechanics during uniaxial compaction of granular solids

    NASA Astrophysics Data System (ADS)

    Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.

    2018-03-01

    Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.

  9. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  10. Multiscale mechanics of graphene oxide and graphene based composite films

    NASA Astrophysics Data System (ADS)

    Cao, Changhong

    The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li-ion batteries. The novel methods developed in this work to study GO multilayered structures were also applied to study the mechanics of graphene-TiO 2 composites. It was found that a critical thickness range of TiO2 deposition on graphene is required for the observed stiffness enhancement effect of graphene to influence the mechanical behavior of the composite.

  11. Direct Observations of Fracture and the Damage Mechanics of Ceramics

    DTIC Science & Technology

    1988-10-31

    microplasticity up to the fracture load. d. It shculd have low enough strength in tension and compression to enable strength measurements at easily accessible...15jm. SEM examination of the grains after large amounts of deformation indicated that the grains are brittle without any evidence of microplasticity . In...and microplasticity in polycrystalline alumina", J.Mater.Sci., 12(1977)791-796. 93. J Lankford, "Compressive microfracture and indentation damage in A1

  12. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  13. The Evolution of Plate and Extruded Products with High Strength and Fracture Toughness

    NASA Astrophysics Data System (ADS)

    Denzer, D. K.; Rioja, R. J.; Bray, G. H.; Venema, G. B.; Colvin, E. L.

    From the first use of 2017-T74 on the Junkers F13, improvements have been made to plate and extruded products for applications requiring the highest attainable strength and adequate fracture toughness. One such application is the upper wing of large aircraft. The progression of these product improvements achieved through the development of alloys that include 7075-(T6 & T76), 7150-(T6 & T77) and 7055-(T77 & T79) and most recently 7255-(T77 & T79) is reviewed. The most current advancements include aluminum-copper-lithium, alloy 2055 plate and extruded products that can attain strength equivalent to that of 7055-T77 with higher modulus, similar fracture toughness and improved fatigue, fatigue crack growth and corrosion performance. The achievement of these properties is explained in terms of the several alloy design principles. The highly desired and balanced characteristics make these products ideal for upper wing applications.

  14. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    PubMed

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  15. Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors.

    PubMed

    Ho, A Wh; Lee, M Ml; Chan, E Wc; Ng, H My; Lee, C W; Ng, W S; Wong, S H

    2016-02-01

    Sarcopenia and osteoporosis are age-related declines in the quantity of muscle and bone, respectively. Both contribute in disability, fall, and hip fracture in the elderly. This study reported the prevalence of sarcopenia in Chinese geriatric patients with hip fracture, and the correlation between relative appendicular skeletal muscle mass index and other factors. This case series was conducted in Kowloon West Cluster Orthopaedic Rehabilitation Centre in Hong Kong. Data of all geriatric patients with primary hip fracture admitted to the above Centre from June to December 2014 were studied. Isometric grip strength, the maximal handgrip strength, was measured using a JAMAR hand dynamometer. Body composition including appendicular and whole-body lean body mass was measured using dual-energy X-ray absorptiometry. Pearson's correlation was used to examine the correlation between relative appendicular skeletal muscle mass index and other factors. A total of 239 patients with a mean age of 82 years were included in the study. Stratifying patients as male or female, the mean (± standard deviation) hand grip strength was 20.6 ± 7.3 kg and 13.6 ± 4.5 kg, the mean relative appendicular skeletal muscle mass index was 5.72 ± 0.83 kg/m(2) and 4.87 ± 0.83 kg/m(2), and the mean hip bone mineral density was 0.696 ± 0.13 g/cm(2) and 0.622 ± 0.12 g/cm(2), respectively. The prevalence of sarcopenia based on relative appendicular skeletal muscle mass index and hand grip strength according to the Asian Working Group for Sarcopenia definition was 73.6% in males and 67.7% in females. According to the European Working Group on Sarcopenia definition, the prevalence of pre-sarcopenia was 20.8% in males and 12.4% in females. Relative appendicular skeletal muscle mass index was positively correlated with hand grip strength, body weight, hip bone mineral density, body mass index, and total fat mass in males; and hand grip strength, body weight, body height, body mass index, and total fat mass in females. Except for body height in females, all correlations were statistically significant. The prevalence of sarcopenia was very high in geriatric hip fracture patients, and much higher than that in community-dwelling elderly population. Apart from the need to prescribe osteoporosis medicine, sarcopenia screening and treatment should be offered and is essential to reduce subsequent fall, subsequent fracture, fracture-related complications and economic burden to Hong Kong.

  16. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  17. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1974-01-01

    The high tensile strength characteristic of strong interfacial filament/matrix bonding can be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of high and low shear stress (and low and high toughness). Such weak and strong areas can be achieved by appropriate intermittent coating of the fibers. An analysis is presented for toughness and strength which demonstrates, in broad terms, the effects of varying the coating parameters of concern. Results show that the toughness of interfaces is an important parameter, differences in which may not be shown up in terms of interfacial strength. Some observations are made upon methods of measuring the components of toughness in composites.

  19. Resistance to fracture of roots filled with different sealers.

    PubMed

    Sağsen, Burak; Ustün, Yakup; Pala, Kanşad; Demırbuğa, Sezer

    2012-01-01

    The aim of this study was to compare the fracture resistance of roots filled with gutta percha (GP) and different root canal sealers.Fifty-five human maxillary central incisors were selected and randomly divided into three experimental groups (Groups 1-3) and two control groups (Groups 4 and 5). They were Group 1-15 root canals filled with an epoxy resin-based sealer (AH Plus) and GP, Group 2 -15 root canals filled with a calcium silicate-based sealer (iRoot SP) and GP, Group 3: 15 root canals filled with another calcium silicate-based sealer (MTA Fillapex) and GP, Group 4: five roots were instrumented but not filled, and Group 5: five roots were neither instrumented nor filled. Compressive loading was carried out using a universal testing machine until fracture occurred. Force applied at time of fracture was recorded as fracture strength of specimen in Newtons. There were no significant differences in fracture strength among the three experimental groups (p>0.05), whose results were significantly superior to that of Group 4 (p<0.05). In conclusion, all the root canal sealers used in the present study increased the fracture resistance of instrumented root canals.

  20. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.

    PubMed

    Sundaram, R O; Cohen, D; Barton-Hanson, N

    2006-06-01

    Tibial plateau fractures following anterior cruciate ligament (ACL) reconstruction are extremely rare. This is the first reported case of a tibial plateau fracture following four-strand gracilis-semitendinosus autograft ACL reconstruction. The tibial tunnel alone may behave as a stress riser which can significantly reduce bone strength.

  1. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    NASA Astrophysics Data System (ADS)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  2. High-speed imaging on static tensile test for unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  3. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.

    In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less

  4. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications

    PubMed Central

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-01-01

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age. PMID:26035060

  5. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  6. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    USGS Publications Warehouse

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically.The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84?? W and dip of 20?? N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79?? E and dip of 71?? S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally dimi

  7. Improving the mechanical properties of nano-hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj Prasad

    Hydroxyapatite (HAp) is an ideal bioactive material that is used in orthopedics. Chemical composition and crystal structure properties of HAp are similar to the natural bone hence it promotes bone growth. However, its mechanical properties of synthetic HAp are not sufficient for major load-bearing bone replacement. The potential of improving the mechanical properties of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNT) and polymerized epsilon-caprolactam (nylon) is studied. The fracture toughness, tensile strength, Young's modulus, stiffness and fracture energy were studied for a series of HAp samples with CfSWCNT concentrations varying from 0 to 1.5 wt. % without, and with nylon addition. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were used to characterize the samples. The fracture toughness and tensile test was performed under the standard protocol of ASTM D5045 and ASTM D638-02a respectively. Reproducible maximum values of (3.60 +/- 0.3) MPa.m1/2 for fracture toughness and 65.38 MPa for tensile strength were measured for samples containing 1 wt. % CfSWCNT and nylon. The Young's modulus, stiffness and fracture energy of the samples are 10.65 GPa, 1482.12 N/mm, and 644 J/m2 respectively. These values are comparable to those of the cortical bone. Further increase of the CfSWCNT content results to a decreased fracture toughness and tensile strength and formation of a secondary phase.

  8. Fracture toughness of advanced ceramics at room temperature

    NASA Technical Reports Server (NTRS)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  9. Nuclear Graphite - Fracture Behavior and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Battiste, Rick; Strizak, Joe P

    2011-01-01

    Evidence for the graphite fracture mechanism is reviewed and discussed. The roles of certain microstructural features in the graphite fracture process are reported. The Burchell fracture model is described and its derivation reported. The successful application of the fracture model to uniaxial tensile data from several graphites with widely ranging structure and texture is reported. The extension of the model to multiaxial loading scenarios using two criteria is discussed. Initially, multiaxial strength data for H-451 graphite were modeled using the fracture model and the Principle of Independent Action. The predicted 4th stress quadrant failure envelope was satisfactory but the 1stmore » quadrant predictions were not conservative and thus were unsatisfactory. Multiaxial strength data from the 1st and 4th stress quadrant for NBG-18 graphite are reported. To improve the conservatism of the predicted 1st quadrant failure envelope for NBG-18 the Shetty criterion has been applied to obtain the equivalent critical stress intensity factor, KIc (Equi), for each applied biaxial stress ratio. The equivalent KIc value is used in the Burchell fracture model to predict the failure envelope. The predicted 1st stress quadrant failure envelope is conservative and thus more satisfactory than achieved previously using the fracture model combined with the Principle of Independent Action.« less

  10. Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Permana, Andy; Arsada, Robbi; Asmoro, Gundhi; Budiono, Herru Santosa; Firdaus, Yohanes

    2017-01-01

    The objective of this experiment is to investigate the maximum bending strength of sugar palm composite by optimizing acetylation treatment and soaking time of the fiber. In this research, the acetylation treatments were varied in acetic acid content (0-10%, in weight) and soaking time (30-150 minutes). The composite specimens were produced using a press mold method for 40% of fiber and 60% of bisphenolic matrix composition in weight. The bending testing was conducted using three point bending method according to ASTM D790. The composite with the treated fiber of 4% acetyl acid has maximum bending strength and modulus due to the effect of removing lignin and other polluters without degrading the fiber strength. The longer of soaking time in the acid solution can significantly enhance the bending strength and modulus. The composite with low strength has an opening fracture, and there is no opening fracture on the composite with high strength.

  11. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  12. Influence of nanoclay on interlaminar shear strength and fracture toughness of glass fiber reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M. S.; Chithirai Pon Selvan, M.; Sampath, P. S.; Raja, K.; Balasundaram, K.

    2018-04-01

    Multilayer glass fiber reinforced polymer (GFRP) laminates filled with nanoclay was manufactured with compression moulding machine. In the present work, five kinds of nanoclay (Cloisite 25A) loadings viz. 2, 4, 6, 8 and 10% on weight basis of epoxy resin were employed to modify the interlaminar shear strength (ILSS), critical energy release rate (GIc) and impact energy properties of GFRP laminates. Experimental results obtained from ILSS test on clay filled GFRP confirm that the superior strength was attained at low clay content of 155.10 MPa. Furthermore, the mode I interlaminar fracture toughness test conducted on DCB specimens revealed that the commanding improvement of GIc was obtained at 2 wt.% clay content level. On the other hand, both ILSS and fracture toughness was getting reduced at higher clay loadings. At last, the impact strength of the test samples was investigated by using Izod impact test apparatus and observed that the impact energy was increased by 44.39% for 2 wt.% and followed by 24.87% for 4 wt.% clay loadings.

  13. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  14. Fracture and crack growth in orthotropic laminates

    NASA Technical Reports Server (NTRS)

    Goree, James G.; Kaw, Autar K.

    1985-01-01

    A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.

  15. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Joshi, V. S.; Harris, B. W.

    2009-12-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.

  16. Transverse stresses and modes of failure in tree branches and other beams

    PubMed Central

    Ennos, A. R.; van Casteren, A.

    2010-01-01

    The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved ‘hazard beams’ that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic ‘greenstick fracture’. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength. PMID:20018786

  17. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  18. Postmenopausal women with osteopenia and a healed wrist fracture have reduced physical function and quality of life compared to a matched, healthy control group with no fracture

    PubMed Central

    2014-01-01

    Background Fractures lead to reduced physical function and quality of life (QOL), but little is known about postmenopausal women with osteopenia and a healed wrist fracture. The purpose was to evaluate physical function in terms of quadriceps strength, dynamic balance, physical capacity and QOL in postmenopausal women with osteopenia and a healed wrist fracture compared to a matched, healthy control group with no previous fracture. Methods Eighteen postmenopausal women with osteopenia (patients) (mean age 59.1 years, range 54 – 65) and a healed wrist fracture were matched to 18 healthy control subjects on age (mean age 58.5 years, range 51 – 65), height, weight and body mass index (BMI). We measured quadriceps strength at 60°/sec and at 180°/sec with Biodex 6000, dynamic balance with the Four Square Step Test (FSST), physical capacity with the six-minute walk test (6MWT) followed by the Borg’s scale (BS), and QOL with the Short Form 36 (SF-36), bone mineral density (BMD) with dual x-ray absorptiometry (DXA) and physical activity level with the Physical Activity Scale for the Elderly. Results The patients had 17.6% lower quadriceps strength at 60°/sec (p = 0.025) at left limb and 18.5% at 180°/sec (p = 0.016) at right limb, and 21% lower at 180°/sec (p = 0.010) at left limb compared to the controls. Impaired performance for the patients was found with 2.4 seconds (p = 0.002) on the FSST, 74 metres (p < 0.001) on the 6MWT, and 1.4 points (p = 0.003) on the BS compared to the controls. The patients scored lower on the sub-scales on the SF-36 role limitations-physical (p = 0.014), bodily pain (p = 0.025) and vitality (p = 0.015) compared to the controls. Conclusions The patients with osteopenia and a healed wrist fracture scored significantly lower on quadriceps strength, dynamic balance, physical capacity and QOL compared to the matched controls. Greater focus should be put on this patient group in terms of rehabilitation and early prevention of subsequent fractures. PMID:25086601

  19. The relationship of fall-related fractures to social deprivation.

    PubMed

    Court-Brown, C M; Aitken, S A; Ralston, S H; McQueen, M M

    2011-04-01

    The relationship between fall-related fractures and social deprivation was studied in 3,843 patients. The incidence of fractures correlated with deprivation in all age groups although the spectrum of fractures was not affected by deprivation. The average age and the prevalence of hip fractures decreased with increasing deprivation. This study examines the relationship between social deprivation and fall-related fractures. Social deprivation has been shown to be a predisposing factor in a number of diseases. There is evidence that it is implicated in fractures in children and young adults, but the evidence that it is associated with fragility fractures in older adults is weak. As fragility fractures are becoming progressively more common and increasingly expensive to treat, the association between social deprivation and fractures is important to define. All out-patient and in-patient fractures presenting to the Royal Infirmary of Edinburgh over a 1-year period were prospectively recorded. The fractures caused by falls from a standing height were analysed in all patients of at least 15 years of age. Social deprivation was assessed using the Carstairs score and social deprivation deciles, and the 2001 census was used to calculate fracture incidence. The data were used to analyse the relationship between social deprivation and fall-related fractures in all age groups. The incidence of fall-related fractures correlated with social deprivation in all age groups including fragility fractures in the elderly. The overall spectrum of fractures was not affected by social deprivation although the prevalence of proximal femoral fractures decreased with increasing deprivation. The average age of patients with fall-related fractures also decreased with increasing social deprivation as did the requirement for in-patient treatment. This is the first study to show the relationship between fall-related fractures and social deprivation in older patients. We believe that the decreased incidence of proximal femoral fractures, and the lower average age of patients with fall-related fractures, in the socially deprived relates to the relative life expectancies in the different deprivation deciles.

  20. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    DOE PAGES

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less

  1. Effect of different filler wires on weld formation for fiber laser welding 6A02 Aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xu, F.; Chen, L.; Lu, W.; He, E. G.

    2017-12-01

    6A02 aluminum alloy was welded by fibre laser welding with two different filler wires (ER4043 and ER5356). The weld apperance, microstructure and mechanical properties were analysed. The results show the welding course with ER4043 is more stable than that with ER5356, and the welding spatters of the former are smaller than that of the latter. The microsturtrue of the weld zone, including columnar-grains near the fusion zone and mixed microstructures (columnar grains and equiaxed grains) in the weld center zone, is finer with ER5356 than that with ER4043. So the average microhardness value of the former is higher than the latter. A great number of low melting point eutectic phases disperse in grains boundary. Due to the eutectic phases distributing more in two zones (overheat zone near the fusion zone and the weld center zone) than other zones, the welded joints have these two low hardness and weak strength zones. The ultimate strength and the elongations after fracture of the welded joints with ER4043 are lower than that with ER5356 slihgtly. However, the former are improved obviously and higher than the latter after heat treatment. The tensile properties of all joints can reach to the base material level. And the tensile fractures always occur near the fusion zone.

  2. A financial analysis of maxillomandibular fixation versus rigid internal fixation for treatment of mandibular fractures.

    PubMed

    Schmidt, B L; Kearns, G; Gordon, N; Kaban, L B

    2000-11-01

    The aim of this study was to compare the cost-effectiveness of mandibular fracture treatment by closed reduction with maxillomandibular fixation (CRF) with open reduction and rigid internal fixation (ORIF). This was a retrospective study of 85 patients admitted to the Oral and Maxillofacial Surgery Service at San Francisco General Hospital and treated for mandibular fractures from January 1 to December 31, 1993. The patients were divided into 2 groups: 1) those treated with CRF and 2) those treated with ORIF. The outcome variables were length of hospital stay, duration of anesthesia, and time in operating room. The charge for primary fracture treatment included the fees for the operation and hospitalization without any complications. Within the group of 85 patients treated for mandibular fractures in 1993, 10 patients treated with CRF and 10 patients treated with ORIF were randomly selected, and hospital billing statements were used to estimate the average charge of primary treatment. The average charge to manage a major postoperative infection also was estimated based on the billing statements of 10 randomly selected patients treated in 1992 (5 treated with CRF, 5 with ORIF) who required hospital admission for the management of a complication. The average total charge was computed by using the average charge for primary treatment plus the incidence of postoperative infection multiplied by the average charge for management of that complication. Eighty-five patients were included in the study. The average charge for primary treatment was $10,100 for the CRF group and $28,362 for the ORIF group. The average charge for the inpatient management of a major postoperative infection was $26,671 for the CRF group and $39,213 for the ORIF group. The average total charge for management of a mandible fracture with CRF was $10,927; the total charge for the ORIF group was $34,636. The results of this retrospective study suggest that the use of CRF in the management of mandibular fractures at our institution provides considerable savings over treatment by using ORIF. The use of ORIF should be reserved for patients and fracture types with specific indications.

  3. [Treatment of multi-segment fracture of complex femoral shaft with instrument-assisted reduction combined with intramedullary interlocking nail fixation].

    PubMed

    Fan, Ke-Jie; Chen, Ke; Ma, Wen-Long; Tian, Ke-Wei; Ye, Ye; Chen, Hong-Gan; Tang, Yan-Feng; Cai, Hong-Min

    2018-05-25

    To investigate the effect of minimally invasive mini-incision and instrumented reduction combined with interlocking intramedullary nailing in the treatment of patients with multi-segment fracture of complex femoral shaft. From January 2013 to January 2016, 32 patients with multiple fractures segments of femoral shaft were treated with instrumentation-assisted reduction combined with interlocking intramedullary nailing, including 22 males and 10 females with an average age of 45 years old ranging 17 to 68 years old. The time from injured to operation was 5 to 10 days with an average of 7 days. After admission, routine tibial tubercle or supracondylar bone traction was performed. The patient's general condition was evaluated, the operation time and intraoperative blood loss were recorded. According to Thorsen femoral fracture morphology evaluation criteria and Hohl knee function evaluation of postoperative efficacy, postoperative fracture healing, complications and postoperative recovery of limb function were observed. All patients were followed up for 6 to 24 months with an average of 12 months. The operative time ranged from 48 to 76 minutes with an average of 67 min. The intraoperative blood loss was 150 to 400 ml with an average of 220 ml. The surgical incisions all achieved grade A healing. The fractures reached the clinical standard of healing. The fracture healing time ranged from 4.2 to 10.8 months with an average of 5.7 months. There were no nonunion, incision infection and internal fixation fracture, failure and other complications. According to Thorsen femoral fracture morphology evaluation criteria, the result was excellent in 28 cases, good in 3 cases, fair in 1 case. According to Hohl knee function evaluation criteria, the result was excellent in 30 cases, good in 2 cases. Instrument-assisted reduction combined with interlocking intramedullary nail fixation is a safe and effective method for the treatment of complex femoral shaft fractures. It has advantages of small trauma, fixed fixation, quick recovery, early postoperative functional exercise. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  4. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  5. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie, B. X.; Huang, J. Y.; Fan, D.

    Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less

  6. Survival of resin infiltrated ceramics under influence of fatigue.

    PubMed

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.

    PubMed

    Wang, Yaohui; Ural, Ani

    2018-06-01

    A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy dissipation processes during MCF rupture and separation relative to the changes in the individual constituents of the tissue. This new knowledge significantly contributes to improving the understanding of how the material property alterations at the submicroscale that can occur due to diseases, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Hormonal and biochemical parameters and osteoporotic fractures in elderly men.

    PubMed

    Center, J R; Nguyen, T V; Sambrook, P N; Eisman, J A

    2000-07-01

    Low testosterone has been associated with hip fracture in men in some studies. However, data on other hormonal parameters and fracture outcome in men is minimal. This study examined the association between free testosterone (free T) estradiol (E2), sex hormone-binding globulin (SHBG), 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), insulin-like growth factor I (IGF-I), and fracture in 437 elderly community-dwelling men. Age, height, weight, quadriceps strength, femoral neck bone mineral density (FN BMD), and fracture data (1989-1997) also were obtained. Fractures were classified as major (hip, pelvis, proximal tibia, multiple rib, vertebral, and proximal humerus) or minor (remaining distal upper and lower limb fractures). Fifty-four subjects had a fracture (24 major and 30 minor). There was no association between minor fractures and any hormonal parameter. Risk of major fracture was increased 2-fold for each SD increase in age, decrease in weight and height, and increase in SHBG, and risk of major fracture was increased 3-fold for each SD decrease in quadriceps strength, FN BMD, and 25(OH)D (univariate logistic regression). Independent predictors of major fracture were FN BMD, 2.7 (1.5-4.7; odds ratio [OR]) and 95% confidence interval [CI]); 25(OH)D, 2.8 (1.5-5.3); and SHBG, 1.7 (1.2-2.4). An abnormal value for three factors resulted in a 30-fold increase in risk but only affected 2% of the population. It is not immediately apparent how 25(OH)D and SHBG, largely independently of BMD, may contribute to fracture risk. They may be markers for biological age or health status not measured by methods that are more traditional and as such may be useful in identifying those at high risk of fracture.

  9. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    PubMed

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  10. Sex differences and growth-related adaptations in bone microarchitecture, geometry, density and strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study

    PubMed Central

    Gabel, Leigh; Macdonald, Heather M.; McKay, Heather A.

    2016-01-01

    Sex differences in bone strength and fracture risk are well-documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density and geometry that accompany gains in bone strength. Thus, our objectives are to 1) describe growth related adaptations in bone microarchitecture, geometry, density and strength at the distal tibia and radius in boys and girls; 2) compare differences in adaptations in bone microarchitecture, geometry, density and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9–20y at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity; APHV) and fit a mixed effects model to these longitudinal data. Importantly, boys demonstrated 28–63% greater estimated bone strength across 12 years of longitudinal growth. Boys demonstrated 28–80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls’ values were 2% greater than boys’. Boys demonstrated 13–48% greater cortical and total bone area across growth. Load-to-strength ratio was 26–27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys’ superior bone size and strength compared with girls may confer them a protective advantage. However, boys’ consistently more porous cortices may contribute to boys’ higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. PMID:27556581

  11. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-03-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  12. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  13. Shear bond strength and enamel fracture behavior of ceramic brackets Fascination® and Fascination®2.

    PubMed

    Gittner, Robert; Müller-Hartwich, Ralf; Engel, Sylvia; Jost-Brinkmann, Paul-Georg

    2012-01-01

    The purpose of this study was to compare the shear bond strength and incidence of enamel fractures of the ceramic brackets Fascination® and Fascination®2. A total of 360 teeth (180 first upper bicuspids and 180 lower incisors) were stored in 96% ethanol, while 360 other teeth (180 first upper bicuspids and 180 lower incisors) were stored in 0.1% thymol. All 720 teeth were bonded one-half each with Fascination® and Fascination®2 brackets using three different adhesives and three different light curing units. The teeth were debonded with a debonding-device according to DIN EN ISO 10477 using a universal testing machine with a crosshead speed of 1 mm per minute. The enamel surface was then examined stereomicroscopically (10x and 40x magnification). The non-parametric Mann-Whitney U test was used, since the data were not normally distributed. The Fascination®2 brackets provided significantly lower shear bond strength than Fascination® brackets (p = 0.003). Fascination® brackets demonstrated significantly fewer, smaller enamel fractures than Fascination®2 brackets (p = 0.012). The lower shear bond strength of the Fascination®2 brackets is clinically acceptable, but our study's experimental design did not enable us to prove whether this is clinically associated with a lower risk of enamel fracture.

  14. The Brittleness and Chemical Stability of Optimized Geopolymer Composites

    PubMed Central

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-01-01

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability. PMID:28772756

  15. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    PubMed

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  16. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  17. Fractures of the distal tibia treated with polyaxial locking plating.

    PubMed

    Gao, Hong; Zhang, Chang-Qing; Luo, Cong-Feng; Zhou, Zu-Bin; Zeng, Bing-Fang

    2009-03-01

    We evaluated the healing rate, complications, and functional outcomes in 32 adult patients with very short metaphyseal fragments in fractures of the distal tibia treated with a polyaxial locking system. The average distance from the distal extent of the fracture to the tibial plafond was 11 mm. All fractures healed and the average time to union was 14 weeks. Six patients (19%) reported occasional local disturbance over the medial malleolus. There were two cases of postoperative superficial infections and evidence of delayed wound healing. Using the American Orthopaedic Foot and Ankle Society ankle score, the average functional score was 87.3 points (of 100 total possible points). Our results show the polyaxial locking plates, which offer more fixation versatility, may be a reasonable treatment option for distal tibia fractures with very short metaphyseal segments.

  18. Hip fractures: incidence, risk factors, energy absorption, and prevention.

    PubMed

    Lauritzen, J B

    1996-01-01

    The present review summarizes the pathogenic mechanisms leading to hip fracture based on epidemiological, experimental, and controlled clinical studies. The estimated lifetime risk of hip fracture is about 14% in postmenopausal women and 6% in men. The incidence of hip fractures increases exponentially with aging, but the time trend in increasing age-specific incidence may finally reach a plateau. Postmenopausal women suffering earlier non-hip fractures have an increased risk of later hip fracture. The relative risk is highest within the first years following the fracture. Nursing home residents have a high risk of hip fracture (annual rate of 5-6%), and their incidence of falls is about 1.5 falls/person per year. Most hip fractures are a result of a direct trauma against the hip. The incidence of falls on the hip among nursing home residents is about 0.29 falls/person per year and about 20% of these traumas lead to hip fracture. Women with hip fractures have a lower body weight compared with controls, and they may also have less soft tissue covering the hip, even when adjusted for body mass index, indicating a more android body habitus. Experimental studies show that the passive energy absorption in soft tissue covering the hip may influence the risk of hip fracture and be an important determinant for the development of hip fracture, perhaps even more important than bone strength. External hip protectors were developed and tested in an open randomized nursing home study. The rate of hip fracture was reduced by 50%, corresponding to 9 of 247 residents saved from sustaining a hip fracture. This review points to the essentials in the development of hip fracture: risk of fall; type of fall; type of impact; energy absorption; and last, bone strength, which is the final permissive factor leading to hip fracture. Risk estimation and prevention of hip fracture may prove realistic when these issues are taken into consideration.

  19. Fractography and fracture toughness of human dentin.

    PubMed

    Yan, J; Taskonak, B; Mecholsky, J J

    2009-10-01

    Dentin, the mineralized tissue forming the bulk of the tooth, serves as an energy-absorbing cushion for the hard, wear-resistant enamel and protects the inner soft tissues. Several studies used fracture mechanics methods to study the fracture toughness of dentin. However, all of them utilized precracks and cannot be used to estimate the intrinsic critical flaw size of dentin. We applied quantitative fractography to study the fracture pattern and fracture toughness of human dentin. Sixteen specimens were prepared from the coronal dentin and fractured in three-point flexure. Fracture surfaces were examined using a scanning electron microscope and the fracture toughness was calculated using a fracture mechanics equation. It was found that human dentin has a fracture surface similar to those of brittle materials. Twist hackle markings were observed and were used to identify the fracture origins. Average fracture toughness of all specimens was found to be 2.3 MPa m(1/2) and the average critical flaw size was estimated to 120 mum. It is suggested that fractography is a promising technique in analyzing the fracture of dentin under catastrophic failure.

  20. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    NASA Astrophysics Data System (ADS)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

Top